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Abstract- Service-oriented systems constitute a suitable 

approach for the development of modular, flexible and 
reconfigurable production systems, addressing the current 
requirements imposed by global markets. This paper focuses on 
the process control of Service-oriented production systems, whose 
behavior is regulated by the coordination of services that are 
available from distributed modular and collaborative control 
components. The proposed control is based on a kind of High-
level Petri Nets tailored for the description, connection and 
synchronization of different concurrent processes. Several 
features can be distinguished by this approach, since its 
modularity, control reusability, flexibility and other valuable 
inherited characteristics from the proposed High-Level Petri Nets. 

I. INTRODUCTION 

Traditionally, the control in automation systems is done in a 
centralized/hierarchical manner, e.g. using a PLC 
(Programmable Logic Controller) that communicates and 
synchronizes the operation of individual devices, providing 
limited reconfiguration capabilities. However, production 
systems should be modular and easily reconfigurable to 
address current requirements imposed by global markets and 
customers demands. Additionally, reconfigurable production 
systems, instead of incorporating all the flexibility once at the 
beginning of their life cycle, should incorporate basic process 
models - both hardware and software - that can be rearranged 
or replaced quickly and reliably [1].  

New revolutionary manufacturing concepts and emerging 
technologies, which take advantage of the newest 
mechatronics, information and communication technologies 
are being researched to increase the flexibility and re-
configurability of automation systems. Service-oriented 
Architectures (SoA) is an example of these emergent 
paradigms that is suitable to address this challenge. Since 
industrial automation and production systems domains present 
distinct technical requirements from the originally application 
in business levels, SoA must be proved not only at its most 
basic form (see the SIRENA project [2]), but also to permit 
complex engineering steps that are required in modern 
distributed systems (see the SOCRADES project [3]). 

However, an important question remains unanswered: how 
to efficiently handle distributed systems based on services and 
consequently their processes? In other words, the challenge is 
how to describe the processes that regulates the system 

behavior and how to synchronize and coordinate the execution 
of the services offered by distributed entities to achieve the 
desired behavior. Besides the individual control, interaction 
must occur along individual components of the system. This 
can be done by defining processes between them that 
agglomerates together pieces of single process models 
controlled by the components. Whatever is the strategy chosen 
by the system engineer, i.e. a centralized control by gluing 
control models together or peer-to-peer synchronization 
between components’ control models, it should be possible to 
design the control with a minimal effort. 

The present solution for the control of service-oriented 
systems is based on modular process description of intra- and 
inter-control activities. The goal is to apply a kind of High-
Level Petri Nets (HLPN) to define the predictable and modular 
control of distributed devices and other components that offer 
their control capabilities as services. Complex control emerged 
from individual ones can be tied together from the modular, 
collaborative and event-based nature of these systems. 
Unpredicted behavior that interferes in the control may also 
happen, requiring the support of composable intelligence 
systems. Semantically rich interactions may also contribute for 
the definition of control models and description of existing and 
new available resources and events [4]. 

After the introductory notes, Section 2 resumes the service-
oriented control architecture and its control components. 
Section 3 describes the High-level Petri Nets based approach 
for the design and coordination of service-oriented systems and 
Section 4 refers to the engineering of modular control and the 
connection of service-oriented control components. At last, 
Section 5 gives the final conclusions. 

II. SERVICE-ORIENTED CONTROL ARCHITECTURE PRINCIPLES 

The proposed architecture for reconfigurable automation 
systems is based in Service-oriented Architecture (SoA) 
principles, which introduces distributed control structures that 
exhibits agility, modularity and interoperability [5]. The 
achieved reconfigurable automation systems are based on 
modular and simple mechatronic devices, each one providing a 
set of services that represent its internal functionalities. All the 
interaction processes among the components are via the access 
to services that are connected by a communication network. 

ⓒ
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The control of such systems is mainly related to the 
coordination of the services provided by these distributed 
mechatronic devices and other components in the system.  

Our approach considers several levels of control, namely 
local control embedded in the mechatronic components, 
collaborative control among mechatronic components and 
aggregated control where a specific control service is used, 
normally to create higher level services based on individual 
ones. For this purpose, four classes of functional control 
components were defined, as illustrated in Fig. 1, that can be 
extended to fulfill the requirements and also combined together 
to provide an integrated solution [5]: Mechatronic Components 
(MeC), Smart Mechatronic Component (SMeC), Process 
Control Components (PCC) and Intelligence Support 
Component (ISC). 

 
Fig. 1. Overview of the control components classes. 

Mechatronic Components are the mechatronic devices, 
including the device interface and the service-oriented 
communication module. They can be easily combined to form 
more complex devices to build the desired automation system 
in a “Russian doll” manner [2]. The Smart Mechatronic 
Components are mechatronic components that additionally 
have embedded their own “smart” control, being able to 
participate in collaborative activities. Process Control 
Components (PCC) provide logic process control services 
based on descriptions able to coordinate different services (e.g. 
offered by MeC) to create aggregate services of higher value. 
Intelligence Support Components (ISC) have decision services 
to support flexibility, indirection and conflict resolution in 
logic processes, e.g. deciding which alternative should be 
chosen. It can also force undocumented procedures to support 
the treatment of unexpected situations. 

The proposed architecture is open to permit the introduction 
of other components, even not related to the direct control, 
such as components that incorporate and manage workflow 
databases, ontology/description and product flow. Furthermore, 
the architecture is flexible enough to support different control 
solutions: in a more centralized manner by using PCC 
components to introduce control over the services offered by 
simple MeC or in a more distributed manner by using SMeC 
working together to coordinate their services. 

The generic internal organization of control components 
may correspond to functional organs that are responsible for 
specific tasks, providing the "vital" properties to be able to 
fulfill their requirements. Since the internal structure is 
independent from the communication technology and can be 
differently implemented, a structural pattern is described in [5]. 

It deploys a set of functional, pluggable and reusable modules 
and an event-based framework to permit the 
intercommunication of modules. The main modules are the 
Service-oriented Communication, Logical Control, Decision 
Support and Exception Handler, Device Interface and Event 
Router-Scheduler. 

The Service-oriented Communication is responsible to 
handle the communication between the control component and 
the other components, i.e. requesting and providing services. 
The Logical Control is an engine that manages the process 
model that describes the component behavior and synchronizes 
it taking in consideration the internal activities and the external 
events (e.g. services and I/O signals). The Decision Support 
and Exception Handler module provides intelligence over the 
control and manages the occurrence of unexpected events. The 
Device Interface module provides mechanisms to access the 
physical device, such as setting outputs or reading inputs. At 
last, the Event Router-Scheduler module provides mechanisms 
to connect all internal modules and regulate the internal 
operation of the control component. 

These modules are included in the control component 
according to its needs and possibly implemented using 
different technologies. For example, the inter-component 
communication and description can be implemented using 
SOA4D implementation of Device Profile for Web Services 
(DPWS). The reader can consult Mendes et al. [5] for more 
information on the architecture principles and how the 
components are internally structured. 

III. A HIGH-LEVEL PETRI NETS APPROACH FOR THE PROCESS 
CONTROL 

In the previous section, it was described the components of 
the control architecture for a service-oriented automation 
system. However, the specification of process description and 
control is needed to assemble part of the internal and external 
behavior of control components, aiming to achieve the 
coordination of service-oriented systems. 

It is then clear that a flexible and powerful enough approach 
is necessary to support a low-cost and detailed design-
implementation process of the control of service-oriented 
automation systems, covering the specification, 
implementation, operation and reconfiguration phases. In 
service-oriented automation systems, the research on 
coordination models (service-oriented engineering in general) 
is a relatively new area, since the proven concepts of SoA at 
the device level by the SIRENA project [2]. From the side of 
process modeling in SoA, research is mainly directed to e-
business/e-commerce (see [6-8]) and even to Petri Nets 
formalism to describe service-oriented systems [9-10]. 
This section introduces a formal approach to develop logic 

controllers that defines and synchronizes process models in 
service-oriented systems, covering the requirements of the 
modular control activities. Please note that these logic 
controllers could be embedded in SMeC or PCC components. 
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A. High-Level Petri Nets Solution for the Development of Logic 
Controllers 

The proposed approach to develop logic controllers, 
embedded in control components, is to use a kind of HLPN 
tailored for service-oriented systems, taking the advantage of 
their powerful mathematical foundation to represent and 
validate certain typical relationships, such as concurrency and 
parallelism, synchronization, resource sharing, mutual 
exclusion, memorizing, monitoring, supervising, which are 
typical specifications of automation systems [11-12]. For sake 
of simplicity, the tokens here represented have no associated 
data structure, which represent the status of pallets and 
message exchange in the subsequent models. 

HLPN-based logic controllers have to interpret and execute 
the process model expressed in HLPN, as illustrated in Fig. 2, 
synchronizing and coordinating the whole process until it 
reaches the goal. The process model is elaborated according to 
the behavior of the process, using normal transitions to define 
structural and logic behavior and three-phase firing transitions 
to model time-consuming activities, such as the execution of a 
robot program or a transfer movement. 

 
Fig. 2. Example model with the characteristics of the proposed High-Level 
Petri Nets and supporting structures. 

Input events (e.g. a signal indicating the status of a sensor or 
a service request) and output actions (e.g. a signal to an 
actuator or a notification of a service execution) can be 
connected to transitions. As an example, the execution of the 
HLPN process model, illustrated in Fig. 2, is behind the 
transfer service that is triggered when the start transfer service 
is requested. This feature of HLPN allows adapting interfaces 
to I/Os and services, via the description of transitions. 
The real-time execution of the developed HLPN models, 

aiming to achieve the control of service-oriented systems, 
requires an interpreter that can evolve their state and control 
the associated ports (services and I/Os), by setting actions and 
respond to external events. For this purpose, the engine should 
detect the enabled transitions, services and actions associated 
with the enabled transition must be called and, after that, the 
process model has to be updated to reflect the actual state of 
the system.  Transitions may only be activated by enabling the 
rule of the HLPN and through the activation of all input events 
connected to the transition. The transition firing corresponds to 
the firing rule of the HLPN and the setting of output actions.  

The three-phase firing transitions may be exploded (detailed) 
into a sub-Petri net, creating a step-wise and hierarchical 
refinement of the model, allowing reaching the control at 
physical level, i.e. sensing and actuating hardware devices. In 
Fig. 2, transition t4 represents the transfer out (right/left) 
operation that is actually a sequence of different steps, modeled 
by its explosion in a sub-Petri net. By enabling such transition, 
the associated detailed Petri net is executed, being fired when 
the sub-HLPN has reached its terminate state. 

Since HLPN models describe processes based on predicted 
behavior by the system engineer, there are several questions to 
the occurrence of unexpected events and error manipulation 
that somehow change the system's behavior and/or should be 
considered. The process model illustrated in Fig. 2 presents a 
conflict with transitions t1 and t2 being alternatives to the 
evolution of the model, i.e. two alternative outputs for the 
transfer execution (right and left). Resolving this conflict 
means that only one transition in the conflict may be fired. 
These situations should be handled by the embedded decision 
support and exception handler module or a special dedicated 
external component, but there may also be required a 
modification in the process model to reflect the new state. 
The HLPN-based logic controller module, that interprets 

HLPN models, should be portable in sense of being included in 
software applications, embedded in micro-controllers devices 
and primarily in the proposed modular structure of a 
component, performing the logic control behavior of the 
automation systems. The module can be integrated in an 
independent PCC or directly in the SMeC for collaboration 
purposes. 

B. Building High-Level Petri Net Control Models for Devices 
Aiming to illustrate the development of HLPN-based logic 

controllers, let us consider the Unidirectional Transfer Unit and 
Cross Transfer Unit from the FlexLink® Dynamic Assembly 
System (DAS) 30.  

 

Fig. 3. HLPN control model for the unidirectional transfer unit. 

The Unidirectional Transfer Unit, illustrated in Fig. 3, 
provides two ports (In and Out) to be connected to other 
devices, such as similar transfer units, and a device interface to 
set and read the inputs/outputs of the device. The logic that 
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controls the three ports is done by a HLPN model, as also 
illustrated in Fig. 3. The expected behavior is basically related 
to set ON or OFF the motor m1 according to the external 
requests (e.g. start transfer service) and the status of the sensor 
(which indicates that a pallet is available after a transfer in 
operation). The two transfer ports can also be used to 
synchronize the transfer in and out of pallets. 

A more complex device is the Cross Transfer Unit, depicted 
in Fig. 4, which can be seen as a composition of two individual 
devices: a Unidirectional Transfer Unit and a Cross Lifter Unit. 
The cross unit allows that pallets be transferred not only in the 
longitudinal but also in transversal axis, presenting a distinct 
behavior those presented by the individual transfer unit (note 
that now the conveyor possesses 6 transfer ports).  

 
Fig. 4. HLPN control model for the cross transfer unit. 

With the lifter unit down and using the motor m1 it is 
possible to transfer from port 1 to port 4. When the lifter is up, 
the transfer from port 2 to port 6 is done using the motor m2 
and the transfer from port 3 to port 5 is done by setting the 
motor m2 with reverse polarity. The movement of the lifter is 
done via the motor m3, using two sensors (s3 and s4) to 
indicate if the lifter is up or down. 
The embedded control model has now different options to 

receive and route a pallet. For simplification, only the logic for 
the transfer from the port 2 to port 4 is present in Fig. 4, being 
the others done in a similar way. In this model, a decision is 
required to choose one among several options that are 
described and detected by the control module. A special 
decision support module (or external ISC component) may 
provide necessary decision information based e.g. on the 
identifier of the pallet (given by the RFID device in the middle 
of the unit). 
The designed control models for the Unidirectional Transfer 

Unit and the Cross Transfer Unit have some design flaws and 
may not respond adequately to several events. These situations 
were not considered here to reduce the complexity of the 
models and also because they are out of scope. For example, 

there are minimal stops between a transfer in and a transfer out 
operation in the unit illustrated in Fig. 3, even if the movement 
should be continuous. Other characteristic is related to 
disturbances in the normal control, such as a pallet that falls 
down or get stucked on the transport system. Some of these 
situations can be handled by the indirect control of ISC or by 
the embedded exception handling module [5]. 
The logic control model, using High-level Petri nets, is 

designed according to the type of physical device it represents: 
the behavior associated to a conveyor is certainly different 
from the behavior associated to a robot. Also, the logic control 
model is designed according to the type of operation the 
physical device performs. For example, an industrial robot can 
perform different operations, such as handling, welding or 
painting, which corresponds to different logic models. In this 
way, some work should be devoted to the identification of the 
patterns associated to which type of operations the different 
usual automation devices perform. Having these patterns it is 
possible to build a library of HLPN models to represent each 
one of these identified operations, simplifying the development 
of modular automation systems. 

IV. ENGINEERING OF MODULAR HLPN-BASED CONTROL OF 
SERVICE-ORIENTED SYSTEMS 

An important piece of the puzzle in the HLPN-based 
approach for the control of service-oriented systems is to have 
mechanisms that automatically support the design and 
validation of automation systems, contributing for an easy and 
fast reconfiguration. This section focuses on engineering 
aspects about the control possibilities, the connection and 
synthesis of HLPN control models and the analysis, validation 
and simulation of service-oriented systems using HLPN-based 
control. 

A. Interface Mapping and Control Strategies 
The proposed control approach does not fix the control 

layout and topology to be used based on the control modules. 
Independently from where the control is done, the described 
interfaces of the models (e.g. transfer connection interface and 
device interface) must be associated to a type of technology, 
e.g. access the inputs/outputs of a device, permit the 
conversation of distributed models via service-orientation and 
connect two local control models.  

Fig. 5 describes two different control strategies that use the 
same control model for the Unidirectional Transfer Unit, 
represented in Fig. 3: the embedded control and the centralized 
control. 
The embedded control is used whenever it is possible to 

include and/or define the logic inside the device. The internal 
control engine, that runs a HLPN process model, has to 
synchronize the activity and to evolve the state based on the 
events received from the Transfer Service and the Device 
Interface (directly embedded in the device). External access is 
only done via the service invocation (that can be used by 
service requestors) and its two ports. 
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Fig. 5. Embedded and centralized control strategies. 

In the case of using a centralized control approach, i.e. when 
the HLPN-based logic controller runs in a PCC component that 
does not directly access the device's I/O, the distribution can be 
handled by including an intermediate proxy mechanism 
(service-oriented) so that the client (i.e. the central control) can 
easily access the atomic operations provided by the server (i.e. 
a (S)MeC). This case is frequent when device vendors may 
only provide the access to the interface and/or do not enable 
the ability to program the device itself. In theses cases, or the 
device is prepared to be integrated in a distributed environment 
or a PCC component is required to synchronize the control 
with the devices. 

B. Connection and Synthesis of HLPN Control Models 
The development of modular service-oriented automation 

systems requires that (S)MeC components (i.e. the equipment 
itself) be connected together working in a decentralized 
manner or working under the supervision of a PCC. 
Connections are established via the ports of the control models, 
that can be directly done when models are in the same 
component (e.g. running on a PCC) or using the service ports 
for distributed components (e.g. between SMeCs). The 
question is if it is simply a matter of overlapping ports or if it 
requires more complex “connection logics”. 
To be able to provide a reliable activity between control 

models the logical and/or service-oriented connection of them 
must comprehend several rules. In a first instance, each model 
should have a compatible port interface to be connected to; not 
only a set of matching operations but also a complementary 
functionality (see the example of transfer in and transfer out 
services). After that a connection can only be established after 
a successfully agreement between the involved partners; in a 
more complex scenario it may involve some kind of 
negotiation. The connection itself needs of specific “glue” that 
corresponds to a logic that is dependent on the type of the 
connection. This can be seen as a protocol for the 
communication that establishes, among others, a message 
synchronization pattern for the communication. 

Using HLPN to represent the control models of each 
component, the connection task is simplified through the use of 
interfaces and ports and a semi-automatic matching between 
them. Fig. 6 illustrates the application of the previous 

appointments to perform the connection of two Transfer Units, 
each one described using a HLPN control module, similar to 
the logic represented in Fig. 3. 

 

Fig. 6. Connection of two transfer units using HLPN models. 

In this example, the interface of port 2 (Out) from the 
Transfer Unit A is connected to the interface port 1 (In) from 
the Transfer Unit B. Additionally a logic connection is used to 
group together these two processes, mapping them to integrate 
both in one bigger control process.  
The design of more complex systems require that some 

processes should be coordinated hierarchically, for example, to 
aggregate services based on individual ones. The PCC 
components provide coordination and aggregation services and 
support the complex process flow and interaction of services in 
the system, according to the process model or its synthesis 
based on smaller ones. For this purpose, it implements the 
logic for the process-oriented execution and sequencing of 
atomic services (from its point of view), and provides a high-
level interface for the aggregated process.  

Fig. 7 illustrates an adaptation of the example of Fig. 6, 
considering the inclusion of a PCC as coordinator and 
synthesizer of processes, representing a centralized control 
approach to the service-oriented approach. 

 

Fig. 7. Connection and synthesis of two transfer units’ models using a PCC. 

Several significant differences can be identified when 
comparing this control strategy with the distributed one. First 
of all, control models of each device run independently and are 
synchronized by a central entity, i.e. a PCC component, in 
opposite to the distributed approach where each SMeC has its 
own coordination mechanism. This supposes that the 
communication between the PCC and (S)MeCs components is 
done in a simplistic way, using atomic operations instead of 
complex connections built in transfer ports. In the centralized 
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approach, all the control process is performed by the PCC 
component, including the interaction between the local control 
models of the (S)MeCs. In spite of these differences, it is 
important to note that the control models of each device remain 
the same in both control strategies, reducing the engineering 
efforts of the system designer. 
The examples given here are based on pallet transfer 

mechanisms, but the same control solution can be extended to 
other control purposes and modular automation processes, in 
sense of building more complex systems. As an example, the 
transfer units can be connected to other transfer units or 
compatible devices, such as cross transfer units and robots with 
transfer capabilities. 

C. Analysis and Simulation of High-Level Petri Nets Control Models 
The designed HLPN models, including the information 

about the system operation (e.g. process plans, resources, 
layout and control laws), will constitute a computational model 
practical for analytical validation, and a simulation model, 
which allows experiments to be performed into the system 
model. Combining modeling and validation methods and using 
the powerful theoretical foundations of HLPN formalism, 
which are completely based on the functional analysis theory, a 
practical procedure of formally designing service-oriented 
automation systems is applied in this work. In fact, HLPN 
models can be easily analyzed and validated in the design 
phase, and proceeding into the implementation phase only after 
the verification of the correctness of system design. 

Basically, two types of analysis can be made: the qualitative 
and the quantitative analysis. The first one verifies the 
compliance of certain desirable specifications of the system 
components and system behavior such as absence of 
deadlocks, reversibility, finite number of system states, 
boundedness of resources and possible control sequences. The 
quantitative analysis, often called performance evaluation, 
takes into account system specifications, therewith checking 
the system compliance with specified performance indexes, 
such as production period for a product, throughput of the 
system, percentual use of a resource and manufactured parts 
per time units. 
The goal of the analysis is to give a complete and correct 

description of the behavior of a control component. This task is 
crucial, because if only one part of the model is erroneous, the 
validity of the complete system is jeopardized and correctness 
of validation, simulation and analysis cannot be guaranteed. 

V. CONCLUSION 

This paper introduces a High-Level Petri nets approach for 
the modular control of service-oriented automation and 
production systems. The modularity associated to the use of 
HLPN for the control of service-oriented systems allows the 
easy development of complex automation systems based on the 
arrangement of modular and components and leaves different 
design choices to the developer. Also the re-configuration of 
the automation system is simplified due to the modularity and 
adaptability provided. In fact, the proposed architecture can be 

compared to the Lego™ concept: as Lego, the proposed 
service-oriented architecture does not propose rigid automation 
systems, but a set of interconnectable modules that may be 
grouped to form a desired evolvable automation system. Using 
elementary components it is possible to build systems, which 
grouped in a particular way will constitute bigger and more 
complex systems. 
The use of HLPN-based logic controllers to coordinate the 

services provided by distributed entities, according to the logic 
behavior model, contributes to achieve this demanding for 
modularity, flexibility and re-configurability.  

Further research is related to the more detailed specification 
of a unified methodology for the design, implementation and 
reconfiguration of HLPN logic controllers, and integration of 
decision support mechanisms for conflict detection and 
resolution. 
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