
Service-oriented Process Control using High-Level
Petri Nets

J. Marco Mendes

Faculty of Engineering -
University of Porto, Rua Dr.
Roberto Frias s/n, 4200-465

Porto, Portugal
marco.mendes@fe.up.pt

Paulo Leitão
Polytechnic Institute of
Bragança, Quinta Sta

Apolónia, Apartado 134,
5301-857 Bragança, Portugal

pleitao@ipb.pt

Armando W. Colombo
Schneider Electric GmbH,
Steinheimer Str. 117, D-

63500 Seligenstadt, Germany
armando.colombo@

de.schneider-electric.com

Francisco Restivo
Faculty of Engineering -

University of Porto, Rua Dr.
Roberto Frias s/n, 4200-465

Porto, Portugal
fjr@fe.up.pt

Abstract- Service-oriented systems constitute a suitable

approach for the development of modular, flexible and
reconfigurable production systems, addressing the current
requirements imposed by global markets. This paper focuses on
the process control of Service-oriented production systems, whose
behavior is regulated by the coordination of services that are
available from distributed modular and collaborative control
components. The proposed control is based on a kind of High-
level Petri Nets tailored for the description, connection and
synchronization of different concurrent processes. Several
features can be distinguished by this approach, since its
modularity, control reusability, flexibility and other valuable
inherited characteristics from the proposed High-Level Petri Nets.

I. INTRODUCTION

Traditionally, the control in automation systems is done in a
centralized/hierarchical manner, e.g. using a PLC
(Programmable Logic Controller) that communicates and
synchronizes the operation of individual devices, providing
limited reconfiguration capabilities. However, production
systems should be modular and easily reconfigurable to
address current requirements imposed by global markets and
customers demands. Additionally, reconfigurable production
systems, instead of incorporating all the flexibility once at the
beginning of their life cycle, should incorporate basic process
models - both hardware and software - that can be rearranged
or replaced quickly and reliably [1].

New revolutionary manufacturing concepts and emerging
technologies, which take advantage of the newest
mechatronics, information and communication technologies
are being researched to increase the flexibility and re-
configurability of automation systems. Service-oriented
Architectures (SoA) is an example of these emergent
paradigms that is suitable to address this challenge. Since
industrial automation and production systems domains present
distinct technical requirements from the originally application
in business levels, SoA must be proved not only at its most
basic form (see the SIRENA project [2]), but also to permit
complex engineering steps that are required in modern
distributed systems (see the SOCRADES project [3]).

However, an important question remains unanswered: how
to efficiently handle distributed systems based on services and
consequently their processes? In other words, the challenge is
how to describe the processes that regulates the system

behavior and how to synchronize and coordinate the execution
of the services offered by distributed entities to achieve the
desired behavior. Besides the individual control, interaction
must occur along individual components of the system. This
can be done by defining processes between them that
agglomerates together pieces of single process models
controlled by the components. Whatever is the strategy chosen
by the system engineer, i.e. a centralized control by gluing
control models together or peer-to-peer synchronization
between components’ control models, it should be possible to
design the control with a minimal effort.

The present solution for the control of service-oriented
systems is based on modular process description of intra- and
inter-control activities. The goal is to apply a kind of High-
Level Petri Nets (HLPN) to define the predictable and modular
control of distributed devices and other components that offer
their control capabilities as services. Complex control emerged
from individual ones can be tied together from the modular,
collaborative and event-based nature of these systems.
Unpredicted behavior that interferes in the control may also
happen, requiring the support of composable intelligence
systems. Semantically rich interactions may also contribute for
the definition of control models and description of existing and
new available resources and events [4].

After the introductory notes, Section 2 resumes the service-
oriented control architecture and its control components.
Section 3 describes the High-level Petri Nets based approach
for the design and coordination of service-oriented systems and
Section 4 refers to the engineering of modular control and the
connection of service-oriented control components. At last,
Section 5 gives the final conclusions.

II. SERVICE-ORIENTED CONTROL ARCHITECTURE PRINCIPLES

The proposed architecture for reconfigurable automation
systems is based in Service-oriented Architecture (SoA)
principles, which introduces distributed control structures that
exhibits agility, modularity and interoperability [5]. The
achieved reconfigurable automation systems are based on
modular and simple mechatronic devices, each one providing a
set of services that represent its internal functionalities. All the
interaction processes among the components are via the access
to services that are connected by a communication network.

ⓒ

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on March 26, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The control of such systems is mainly related to the
coordination of the services provided by these distributed
mechatronic devices and other components in the system.

Our approach considers several levels of control, namely
local control embedded in the mechatronic components,
collaborative control among mechatronic components and
aggregated control where a specific control service is used,
normally to create higher level services based on individual
ones. For this purpose, four classes of functional control
components were defined, as illustrated in Fig. 1, that can be
extended to fulfill the requirements and also combined together
to provide an integrated solution [5]: Mechatronic Components
(MeC), Smart Mechatronic Component (SMeC), Process
Control Components (PCC) and Intelligence Support
Component (ISC).

Fig. 1. Overview of the control components classes.

Mechatronic Components are the mechatronic devices,
including the device interface and the service-oriented
communication module. They can be easily combined to form
more complex devices to build the desired automation system
in a “Russian doll” manner [2]. The Smart Mechatronic
Components are mechatronic components that additionally
have embedded their own “smart” control, being able to
participate in collaborative activities. Process Control
Components (PCC) provide logic process control services
based on descriptions able to coordinate different services (e.g.
offered by MeC) to create aggregate services of higher value.
Intelligence Support Components (ISC) have decision services
to support flexibility, indirection and conflict resolution in
logic processes, e.g. deciding which alternative should be
chosen. It can also force undocumented procedures to support
the treatment of unexpected situations.

The proposed architecture is open to permit the introduction
of other components, even not related to the direct control,
such as components that incorporate and manage workflow
databases, ontology/description and product flow. Furthermore,
the architecture is flexible enough to support different control
solutions: in a more centralized manner by using PCC
components to introduce control over the services offered by
simple MeC or in a more distributed manner by using SMeC
working together to coordinate their services.

The generic internal organization of control components
may correspond to functional organs that are responsible for
specific tasks, providing the "vital" properties to be able to
fulfill their requirements. Since the internal structure is
independent from the communication technology and can be
differently implemented, a structural pattern is described in [5].

It deploys a set of functional, pluggable and reusable modules
and an event-based framework to permit the
intercommunication of modules. The main modules are the
Service-oriented Communication, Logical Control, Decision
Support and Exception Handler, Device Interface and Event
Router-Scheduler.

The Service-oriented Communication is responsible to
handle the communication between the control component and
the other components, i.e. requesting and providing services.
The Logical Control is an engine that manages the process
model that describes the component behavior and synchronizes
it taking in consideration the internal activities and the external
events (e.g. services and I/O signals). The Decision Support
and Exception Handler module provides intelligence over the
control and manages the occurrence of unexpected events. The
Device Interface module provides mechanisms to access the
physical device, such as setting outputs or reading inputs. At
last, the Event Router-Scheduler module provides mechanisms
to connect all internal modules and regulate the internal
operation of the control component.

These modules are included in the control component
according to its needs and possibly implemented using
different technologies. For example, the inter-component
communication and description can be implemented using
SOA4D implementation of Device Profile for Web Services
(DPWS). The reader can consult Mendes et al. [5] for more
information on the architecture principles and how the
components are internally structured.

III. A HIGH-LEVEL PETRI NETS APPROACH FOR THE PROCESS
CONTROL

In the previous section, it was described the components of
the control architecture for a service-oriented automation
system. However, the specification of process description and
control is needed to assemble part of the internal and external
behavior of control components, aiming to achieve the
coordination of service-oriented systems.

It is then clear that a flexible and powerful enough approach
is necessary to support a low-cost and detailed design-
implementation process of the control of service-oriented
automation systems, covering the specification,
implementation, operation and reconfiguration phases. In
service-oriented automation systems, the research on
coordination models (service-oriented engineering in general)
is a relatively new area, since the proven concepts of SoA at
the device level by the SIRENA project [2]. From the side of
process modeling in SoA, research is mainly directed to e-
business/e-commerce (see [6-8]) and even to Petri Nets
formalism to describe service-oriented systems [9-10].
This section introduces a formal approach to develop logic

controllers that defines and synchronizes process models in
service-oriented systems, covering the requirements of the
modular control activities. Please note that these logic
controllers could be embedded in SMeC or PCC components.

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on March 26, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

A. High-Level Petri Nets Solution for the Development of Logic
Controllers

The proposed approach to develop logic controllers,
embedded in control components, is to use a kind of HLPN
tailored for service-oriented systems, taking the advantage of
their powerful mathematical foundation to represent and
validate certain typical relationships, such as concurrency and
parallelism, synchronization, resource sharing, mutual
exclusion, memorizing, monitoring, supervising, which are
typical specifications of automation systems [11-12]. For sake
of simplicity, the tokens here represented have no associated
data structure, which represent the status of pallets and
message exchange in the subsequent models.

HLPN-based logic controllers have to interpret and execute
the process model expressed in HLPN, as illustrated in Fig. 2,
synchronizing and coordinating the whole process until it
reaches the goal. The process model is elaborated according to
the behavior of the process, using normal transitions to define
structural and logic behavior and three-phase firing transitions
to model time-consuming activities, such as the execution of a
robot program or a transfer movement.

Fig. 2. Example model with the characteristics of the proposed High-Level
Petri Nets and supporting structures.

Input events (e.g. a signal indicating the status of a sensor or
a service request) and output actions (e.g. a signal to an
actuator or a notification of a service execution) can be
connected to transitions. As an example, the execution of the
HLPN process model, illustrated in Fig. 2, is behind the
transfer service that is triggered when the start transfer service
is requested. This feature of HLPN allows adapting interfaces
to I/Os and services, via the description of transitions.
The real-time execution of the developed HLPN models,

aiming to achieve the control of service-oriented systems,
requires an interpreter that can evolve their state and control
the associated ports (services and I/Os), by setting actions and
respond to external events. For this purpose, the engine should
detect the enabled transitions, services and actions associated
with the enabled transition must be called and, after that, the
process model has to be updated to reflect the actual state of
the system. Transitions may only be activated by enabling the
rule of the HLPN and through the activation of all input events
connected to the transition. The transition firing corresponds to
the firing rule of the HLPN and the setting of output actions.

The three-phase firing transitions may be exploded (detailed)
into a sub-Petri net, creating a step-wise and hierarchical
refinement of the model, allowing reaching the control at
physical level, i.e. sensing and actuating hardware devices. In
Fig. 2, transition t4 represents the transfer out (right/left)
operation that is actually a sequence of different steps, modeled
by its explosion in a sub-Petri net. By enabling such transition,
the associated detailed Petri net is executed, being fired when
the sub-HLPN has reached its terminate state.

Since HLPN models describe processes based on predicted
behavior by the system engineer, there are several questions to
the occurrence of unexpected events and error manipulation
that somehow change the system's behavior and/or should be
considered. The process model illustrated in Fig. 2 presents a
conflict with transitions t1 and t2 being alternatives to the
evolution of the model, i.e. two alternative outputs for the
transfer execution (right and left). Resolving this conflict
means that only one transition in the conflict may be fired.
These situations should be handled by the embedded decision
support and exception handler module or a special dedicated
external component, but there may also be required a
modification in the process model to reflect the new state.
The HLPN-based logic controller module, that interprets

HLPN models, should be portable in sense of being included in
software applications, embedded in micro-controllers devices
and primarily in the proposed modular structure of a
component, performing the logic control behavior of the
automation systems. The module can be integrated in an
independent PCC or directly in the SMeC for collaboration
purposes.

B. Building High-Level Petri Net Control Models for Devices
Aiming to illustrate the development of HLPN-based logic

controllers, let us consider the Unidirectional Transfer Unit and
Cross Transfer Unit from the FlexLink® Dynamic Assembly
System (DAS) 30.

Fig. 3. HLPN control model for the unidirectional transfer unit.

The Unidirectional Transfer Unit, illustrated in Fig. 3,
provides two ports (In and Out) to be connected to other
devices, such as similar transfer units, and a device interface to
set and read the inputs/outputs of the device. The logic that

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on March 26, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

controls the three ports is done by a HLPN model, as also
illustrated in Fig. 3. The expected behavior is basically related
to set ON or OFF the motor m1 according to the external
requests (e.g. start transfer service) and the status of the sensor
(which indicates that a pallet is available after a transfer in
operation). The two transfer ports can also be used to
synchronize the transfer in and out of pallets.

A more complex device is the Cross Transfer Unit, depicted
in Fig. 4, which can be seen as a composition of two individual
devices: a Unidirectional Transfer Unit and a Cross Lifter Unit.
The cross unit allows that pallets be transferred not only in the
longitudinal but also in transversal axis, presenting a distinct
behavior those presented by the individual transfer unit (note
that now the conveyor possesses 6 transfer ports).

Fig. 4. HLPN control model for the cross transfer unit.

With the lifter unit down and using the motor m1 it is
possible to transfer from port 1 to port 4. When the lifter is up,
the transfer from port 2 to port 6 is done using the motor m2
and the transfer from port 3 to port 5 is done by setting the
motor m2 with reverse polarity. The movement of the lifter is
done via the motor m3, using two sensors (s3 and s4) to
indicate if the lifter is up or down.
The embedded control model has now different options to

receive and route a pallet. For simplification, only the logic for
the transfer from the port 2 to port 4 is present in Fig. 4, being
the others done in a similar way. In this model, a decision is
required to choose one among several options that are
described and detected by the control module. A special
decision support module (or external ISC component) may
provide necessary decision information based e.g. on the
identifier of the pallet (given by the RFID device in the middle
of the unit).
The designed control models for the Unidirectional Transfer

Unit and the Cross Transfer Unit have some design flaws and
may not respond adequately to several events. These situations
were not considered here to reduce the complexity of the
models and also because they are out of scope. For example,

there are minimal stops between a transfer in and a transfer out
operation in the unit illustrated in Fig. 3, even if the movement
should be continuous. Other characteristic is related to
disturbances in the normal control, such as a pallet that falls
down or get stucked on the transport system. Some of these
situations can be handled by the indirect control of ISC or by
the embedded exception handling module [5].
The logic control model, using High-level Petri nets, is

designed according to the type of physical device it represents:
the behavior associated to a conveyor is certainly different
from the behavior associated to a robot. Also, the logic control
model is designed according to the type of operation the
physical device performs. For example, an industrial robot can
perform different operations, such as handling, welding or
painting, which corresponds to different logic models. In this
way, some work should be devoted to the identification of the
patterns associated to which type of operations the different
usual automation devices perform. Having these patterns it is
possible to build a library of HLPN models to represent each
one of these identified operations, simplifying the development
of modular automation systems.

IV. ENGINEERING OF MODULAR HLPN-BASED CONTROL OF
SERVICE-ORIENTED SYSTEMS

An important piece of the puzzle in the HLPN-based
approach for the control of service-oriented systems is to have
mechanisms that automatically support the design and
validation of automation systems, contributing for an easy and
fast reconfiguration. This section focuses on engineering
aspects about the control possibilities, the connection and
synthesis of HLPN control models and the analysis, validation
and simulation of service-oriented systems using HLPN-based
control.

A. Interface Mapping and Control Strategies
The proposed control approach does not fix the control

layout and topology to be used based on the control modules.
Independently from where the control is done, the described
interfaces of the models (e.g. transfer connection interface and
device interface) must be associated to a type of technology,
e.g. access the inputs/outputs of a device, permit the
conversation of distributed models via service-orientation and
connect two local control models.

Fig. 5 describes two different control strategies that use the
same control model for the Unidirectional Transfer Unit,
represented in Fig. 3: the embedded control and the centralized
control.
The embedded control is used whenever it is possible to

include and/or define the logic inside the device. The internal
control engine, that runs a HLPN process model, has to
synchronize the activity and to evolve the state based on the
events received from the Transfer Service and the Device
Interface (directly embedded in the device). External access is
only done via the service invocation (that can be used by
service requestors) and its two ports.

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on March 26, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

Fig. 5. Embedded and centralized control strategies.

In the case of using a centralized control approach, i.e. when
the HLPN-based logic controller runs in a PCC component that
does not directly access the device's I/O, the distribution can be
handled by including an intermediate proxy mechanism
(service-oriented) so that the client (i.e. the central control) can
easily access the atomic operations provided by the server (i.e.
a (S)MeC). This case is frequent when device vendors may
only provide the access to the interface and/or do not enable
the ability to program the device itself. In theses cases, or the
device is prepared to be integrated in a distributed environment
or a PCC component is required to synchronize the control
with the devices.

B. Connection and Synthesis of HLPN Control Models
The development of modular service-oriented automation

systems requires that (S)MeC components (i.e. the equipment
itself) be connected together working in a decentralized
manner or working under the supervision of a PCC.
Connections are established via the ports of the control models,
that can be directly done when models are in the same
component (e.g. running on a PCC) or using the service ports
for distributed components (e.g. between SMeCs). The
question is if it is simply a matter of overlapping ports or if it
requires more complex “connection logics”.
To be able to provide a reliable activity between control

models the logical and/or service-oriented connection of them
must comprehend several rules. In a first instance, each model
should have a compatible port interface to be connected to; not
only a set of matching operations but also a complementary
functionality (see the example of transfer in and transfer out
services). After that a connection can only be established after
a successfully agreement between the involved partners; in a
more complex scenario it may involve some kind of
negotiation. The connection itself needs of specific “glue” that
corresponds to a logic that is dependent on the type of the
connection. This can be seen as a protocol for the
communication that establishes, among others, a message
synchronization pattern for the communication.

Using HLPN to represent the control models of each
component, the connection task is simplified through the use of
interfaces and ports and a semi-automatic matching between
them. Fig. 6 illustrates the application of the previous

appointments to perform the connection of two Transfer Units,
each one described using a HLPN control module, similar to
the logic represented in Fig. 3.

Fig. 6. Connection of two transfer units using HLPN models.

In this example, the interface of port 2 (Out) from the
Transfer Unit A is connected to the interface port 1 (In) from
the Transfer Unit B. Additionally a logic connection is used to
group together these two processes, mapping them to integrate
both in one bigger control process.
The design of more complex systems require that some

processes should be coordinated hierarchically, for example, to
aggregate services based on individual ones. The PCC
components provide coordination and aggregation services and
support the complex process flow and interaction of services in
the system, according to the process model or its synthesis
based on smaller ones. For this purpose, it implements the
logic for the process-oriented execution and sequencing of
atomic services (from its point of view), and provides a high-
level interface for the aggregated process.

Fig. 7 illustrates an adaptation of the example of Fig. 6,
considering the inclusion of a PCC as coordinator and
synthesizer of processes, representing a centralized control
approach to the service-oriented approach.

Fig. 7. Connection and synthesis of two transfer units’ models using a PCC.

Several significant differences can be identified when
comparing this control strategy with the distributed one. First
of all, control models of each device run independently and are
synchronized by a central entity, i.e. a PCC component, in
opposite to the distributed approach where each SMeC has its
own coordination mechanism. This supposes that the
communication between the PCC and (S)MeCs components is
done in a simplistic way, using atomic operations instead of
complex connections built in transfer ports. In the centralized

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on March 26, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

approach, all the control process is performed by the PCC
component, including the interaction between the local control
models of the (S)MeCs. In spite of these differences, it is
important to note that the control models of each device remain
the same in both control strategies, reducing the engineering
efforts of the system designer.
The examples given here are based on pallet transfer

mechanisms, but the same control solution can be extended to
other control purposes and modular automation processes, in
sense of building more complex systems. As an example, the
transfer units can be connected to other transfer units or
compatible devices, such as cross transfer units and robots with
transfer capabilities.

C. Analysis and Simulation of High-Level Petri Nets Control Models
The designed HLPN models, including the information

about the system operation (e.g. process plans, resources,
layout and control laws), will constitute a computational model
practical for analytical validation, and a simulation model,
which allows experiments to be performed into the system
model. Combining modeling and validation methods and using
the powerful theoretical foundations of HLPN formalism,
which are completely based on the functional analysis theory, a
practical procedure of formally designing service-oriented
automation systems is applied in this work. In fact, HLPN
models can be easily analyzed and validated in the design
phase, and proceeding into the implementation phase only after
the verification of the correctness of system design.

Basically, two types of analysis can be made: the qualitative
and the quantitative analysis. The first one verifies the
compliance of certain desirable specifications of the system
components and system behavior such as absence of
deadlocks, reversibility, finite number of system states,
boundedness of resources and possible control sequences. The
quantitative analysis, often called performance evaluation,
takes into account system specifications, therewith checking
the system compliance with specified performance indexes,
such as production period for a product, throughput of the
system, percentual use of a resource and manufactured parts
per time units.
The goal of the analysis is to give a complete and correct

description of the behavior of a control component. This task is
crucial, because if only one part of the model is erroneous, the
validity of the complete system is jeopardized and correctness
of validation, simulation and analysis cannot be guaranteed.

V. CONCLUSION

This paper introduces a High-Level Petri nets approach for
the modular control of service-oriented automation and
production systems. The modularity associated to the use of
HLPN for the control of service-oriented systems allows the
easy development of complex automation systems based on the
arrangement of modular and components and leaves different
design choices to the developer. Also the re-configuration of
the automation system is simplified due to the modularity and
adaptability provided. In fact, the proposed architecture can be

compared to the Lego™ concept: as Lego, the proposed
service-oriented architecture does not propose rigid automation
systems, but a set of interconnectable modules that may be
grouped to form a desired evolvable automation system. Using
elementary components it is possible to build systems, which
grouped in a particular way will constitute bigger and more
complex systems.
The use of HLPN-based logic controllers to coordinate the

services provided by distributed entities, according to the logic
behavior model, contributes to achieve this demanding for
modularity, flexibility and re-configurability.

Further research is related to the more detailed specification
of a unified methodology for the design, implementation and
reconfiguration of HLPN logic controllers, and integration of
decision support mechanisms for conflict detection and
resolution.

ACKNOWLEDGMENT

The authors would like to thank the partners of Innovative
Production Machines and Systems (I*PROMS) Network of
Excellence (http://www.iproms.org) and the SOCRADES
project (http://www.socrades.eu) for their support.

REFERENCES
[1] M. G. Mehrabi, A.G. Ulsoy, Y. Koren, “Reconfigurable Manufacturing

Systems and their Enabling Technologies”, International Journal of
Manufacturing Technology and Management, 1(1), 2000.

[2] F. Jammes and H. Smit, "Service-oriented Architectures for Devices - the
SIRENA View", Proceedings of the 3rd IEEE International Conference
on Industrial Informatics, 2005, pp. 140-147.

[3] M. Taisch, “Service-Orientated Cross-layer Infrastructure for Distributed
Smart Embedded Devices”, 2nd World Congress on Engineering Asset
Management and the 4th International Conference on Condition
Monitoring, presentation, 2007.

[4] I. Delamer and L. J. Martinez, "Ontology Modeling of Assembly
Processes and Systems using Semantic Web Services", Proceedings of
the IEEE International Conference on Industrial Informatics, 2006, pp.
611-617.

[5] J. M. Mendes, P. Leitão, A. W. Colombo, F. Restivo, “Service-oriented
Control Architecture for Reconfigurable Production Systems”, submitted
to the 6th IEEE International Conference on Industrial Informatics, 2008.

[6] I. J. G. Santos, M. Fluegge, N. P. Tizzo and E. R. M. Madeira,
“Challenges and Techniques on the Road to Dynamically Compose Web
Services”, Proceedings of the 6th International Conference on Web
engineering, 2006, pp. 40-47, ACM Press.

[7] E. Karakoc, K. Kardas and P. Senkul, “A Workflow-Based Web Service
Composition System”, Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology, IEEE Computer Society, 2006, pp. 113-116.

[8] W. T. Tsai, C. Fan, Y. Chen and R. Paul “DDSOS: A Dynamic
Distributed Service-Oriented Simulation Framework”, Proceedings of the
39th annual Symposium on Simulation, IEEE Computer Society, 2006,
pp. 160-167.

[9] J. Thomas, M. Thomas and G. Ghinea, “Modeling of Web Services
Flow”, IEEE International Conference on E-Commerce, 2003, pp. 391-
398.

[10] Y. Fu, Z. Dong and X. He, “An Approach to Web Services Oriented
Modeling and Validation”, Proceedings of the 2006 International
Workshop on Service-oriented Software Engineering, ACM Press, 2006,
pp. 81-87.

[11] T. Murata, "Petri nets: Properties, Analysis and Applications", IEEE, vol.
77, 1989, pp. 541-580.

[12] J. M. Couvreur and J. Martinez. “Linear Invariants in Commutative High
Level Petri Nets”, Lecture notes in Computer Science, Vol. 483, pp. 146-
165, Springer Verlag, 1990.

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on March 26, 2009 at 07:02 from IEEE Xplore. Restrictions apply.

