38 research outputs found

    A factorization-based algorithm to predict EMG data using only kinematics information

    Get PDF
    EMG analyses have several applications, such as identifying muscle excitation patterns during rehabilitation or training plans, or controlling EMG-driven devices. However, experimental measurements can be time consuming or difficult to obtain. This study presents a simple algorithm to predict EMG signals that can be applied in real time during running, given only the instantaneous vector of kinematics. We hypothesize that the factorization of the kinematics of the skeleton together with the EMG data of calibration subjects could be used to predict EMG data of another subject only using the kinematic information. The results showed that EMG signals of lower-limb muscles can be predicted accurately in less than a second using this method. Correlation coefficients between predicted and experimental EMG signals were higher than 0.7 in ten out of eleven muscles for most prediction trials and subjects, and their overall median value was higher than 0.8. These values confirm that this method could be used to accurately predict EMG signals in real time when only kinematics are measured.Peer ReviewedPostprint (author's final draft

    Muscle Synergy Assessment during Single-Leg Stance

    Get PDF
    In the study of muscle synergies during the maintenance of single-leg stance there are several methodological issues that must be taken into account before muscle synergy extraction. In particular, it is important to distinguish between epochs of surface electromyography (sEMG) signals corresponding to "well-balanced" and "unbalanced" single-leg stance, since different motor control strategies could be used to maintain balance. The aim of this work is to present and define a robust procedure to distinguish between "well-balanced" and "unbalanced" single-leg stance to be chosen as input for the algorithm used to extract muscle synergies. Our results demonstrate that the proposed approach for the selection of sEMG epochs relative to "well-balanced" and "unbalanced" single-leg stance is robust with respect to the selection of the segmentation threshold, revealing a high consistency in the number of muscle synergies and high similarity among the weight vectors (correlation values range from 0.75 to 0.97). Moreover, differences in terms of average recruitment levels and balance control strategies were detected, suggesting a slightly different modular organization between "well-balanced" and "unbalanced" single-leg stance. In conclusion, this approach can be successfully used as a pre-processing step before muscle synergy extraction, allowing for a better assessment of motor control strategies during the single-leg stance task

    Muscle synergies for the control of single-limb stance with and without visual information in young individuals

    Get PDF
    Purpose: Single-limb stance is a demanding postural task featuring a high number of daily living and sporting activities. Thus, it is widely used for training and rehabilitation, as well as for balance assessment. Muscle activations around single joints have been previously described, however, it is not known which are the muscle synergies used to control posture and how they change between conditions of normal and lack of visual information. Methods: Twenty-two healthy young participants were asked to perform a 30 s single-limb stance task in open-eyes and closed-eyes condition while standing on a force platform with the dominant limb. Muscle synergies were extracted from the electromyographical recordings of 13 muscles of the lower limb, hip, and back. The optimal number of synergies, together with the average recruitment level and balance control strategies were analyzed and compared between the open- and the closed-eyes condition. Results: Four major muscle synergies, two ankle-dominant synergies, one knee-dominant synergy, and one hip/back-dominant synergy were found. No differences between open- and closed-eyes conditions were found for the recruitment level, except for the hip/back synergy, which significantly decreased (p = 0.02) in the closed-eyes compared to the open-eyes condition. A significant increase (p = 0.03) of the ankle balance strategy was found in the closed-eyes compared to the open-eyes condition. Conclusion: In healthy young individuals, single-limb stance is featured by four major synergies, both in open- and closed-eyes condition. Future studies should investigate muscle synergies in participants with other age groups, as well as pathological conditions

    Lateral Symmetry of Synergies in Lower Limb Muscles of Acute Post-stroke Patients After Robotic Intervention

    Get PDF
    Gait disturbance is commonly associated with stroke, which is a serious neurological disease. With current technology, various exoskeletons have been developed to provide therapy, leading to many studies evaluating the use of such exoskeletons as an intervention tool. Although these studies report improvements in patients who had undergone robotic intervention, they are usually reported with clinical assessment, which are unable to characterize how muscle activations change in patients after robotic intervention. We believe that muscle activations can provide an objective view on gait performance of patients. To quantify improvement of lateral symmetry before and after robotic intervention, muscle synergy analysis with Non-Negative Matrix Factorization was used to evaluate patients\u27 EMG data. Eight stroke patients in their acute phase were evaluated before and after a course of robotic intervention with the Hybrid Assistive Limb (HAL), lasting over 3 weeks. We found a significant increase in similarity between lateral synergies of patients after robotic intervention. This is associated with significant improvements in gait measures like walking speed, step cadence, stance duration percentage of gait cycle. Clinical assessments [Functional Independence Measure-Locomotion (FIM-Locomotion), FIM-Motor (General), and Fugl-Meyer Assessment-Lower Extremity (FMA-LE)] showed significant improvements as well. Our study shows that muscle synergy analysis can be a good tool to quantify the change in neuromuscular coordination of lateral symmetry during walking in stroke patients

    Deciphering the functional role of spatial and temporal muscle synergies in whole-body movements

    Get PDF
    International audienceVoluntary movement is hypothesized to rely on a limited number of muscle synergies, the recruitment of which translates task goals into effective muscle activity. In this study, we investigated how to analytically characterize the functional role of different types of muscle synergies in task performance. To this end, we recorded a comprehensive dataset of muscle activity during a variety of whole-body pointing movements. We decomposed the electromyographic (EMG) signals using a space-by-time modularity model which encompasses the main types of synergies. We then used a task decoding and information theoretic analysis to probe the role of each synergy by mapping it to specific task features. We found that the temporal and spatial aspects of the movements were encoded by different temporal and spatial muscle synergies, respectively, consistent with the intuition that there should a correspondence between major attributes of movement and major features of synergies. This approach led to the development of a novel computational method for comparing muscle synergies from different participants according to their functional role. This functional similarity analysis yielded a small set of temporal and spatial synergies that describes the main features of whole-body reaching movements
    corecore