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A factorization-based algorithm to predict EMG data using only 

kinematics information 

EMG analyses have several applications, such as identifying muscle excitation 

patterns during rehabilitation or training plans, or controlling EMG-driven devices. 

However, experimental measurements can be time consuming or difficult to 

obtain. This study presents a simple algorithm to predict EMG signals that can be 

applied in real time during running, given only the instantaneous vector of 

kinematics. We hypothesize that the factorization of the kinematics of the skeleton 

together with the EMG data of calibration subjects could be used to predict EMG 

data of another subject only using the kinematic information. The results showed 

that EMG signals of lower-limb muscles can be predicted accurately in less than a 

second using this method. Correlation coefficients between predicted and 

experimental EMG signals were higher than 0.7 in ten out of eleven muscles for 

most prediction trials and subjects, and their overall median value was higher than 

0.8. These values confirm that this method could be used to accurately predict 

EMG signals in real time when only kinematics are measured. 

Keywords: EMG prediction; muscle excitation; signal factorization; kinematic and 

muscle synergies 

 

 

  



Introduction 

The information provided by the measured EMG data can be crucial in different 

biomechanical contexts, such as athletic training [1] or rehabilitation programs [2], or to 

control a device driven by muscle excitations [3]. The measurement of EMG data 

provides information that helps in the diagnosis of different mobility impairments. In 

addition, it can be used to follow up rehabilitation programs in subjects who need to 

recover mobility, or to design subject-specific athletic training programs to enhance the 

performance of the muscles. The measurement of EMG data can be used to establish 

subject-specific rehabilitation programs for subjects with mobility impairments. 

However, the time and economic resources needed when performing an 

electromyography (EMG) analysis, as well as the acquisition of EMG data from a subject 

wearing a device, could become drawbacks. If the measurements are performed non-

invasively, the electrodes, attached to the skin surface, might fall or reduce their contact 

with the movement of the patient, which can delay the process. If we could predict EMG 

data accurately using other available data (e.g. kinematics data) instead of measuring 

muscle activity experimentally, the process would be more efficient, less time consuming 

and more comfortable for both the injured subject and the clinician. 

Research has been done over recent years in order to predict muscle activations. 

The delay between neural commands, represented by the electrical signal from the 

motoneurons (measured through EMG) and the subsequent muscle activations (result of 

the active contraction of muscle fibres) are usually modelled with a first-order ordinary 

differential equation [4,5]. On the one hand, in terms of musculoskeletal modelling, 

optimization techniques have been developed to estimate muscle activations and forces 

[6–8]. In this regard, computational algorithms based on multibody techniques are used 

to track or predict joint kinematics and dynamics. From the obtained muscle-tendon 



kinematics and a muscle model, it is possible to estimate muscle activations and forces. 

Although consistent musculoskeletal kinematics and dynamics are obtained, these 

methods require scaling the models, calibrating the neuromusculoskeletal parameters, and 

applying inverse or forward dynamics analyses. The methods to calibrate subject-specific 

parameters are time consuming, and they usually cannot be used in real time due to the 

high computational cost. On the other hand, artificial neural networks have also been 

developed to predict EMG activity from kinematics data. For instance, Prentice et al. [9] 

developed a network to accurately predict EMG signals of eight lower-limb and trunk 

muscles from kinematics data (RMS > 0.9 for most muscles). However, a high number 

of strides are usually required to train the neural network (120 in the mentioned example). 

Synergies between kinematics and EMG signals (normalized EMG) could be used 

to predict muscle activity using only kinematics data knowledge. The concept of muscle 

synergies has been used to analyze the muscle activation patterns when performing 

certain tasks [10–12], to control an EMG-driven device [13,14], or to analyze the 

differences in muscle activation patterns among different injured subjects [15,16]. The 

concept of muscle synergies is mathematically represented by the factorization of the 

matrix containing the envelope of EMG signals into two matrices of lower rank. This 

process is usually performed using a non-negative matrix factorization algorithm [17]. 

One matrix contains the time-dependent commands (with a lower number of commands 

than muscles) and the other contains the weights of each command to each muscle. Some 

studies have analyzed the synergies of EMG and kinematics data separately [18,19]. The 

mapping of EMG to kinematics data has been used to predict the kinematics, especially 

in upper limb movements [20,21]. Nevertheless, an integrated factorization of EMG and 

kinematics data have not been broadly explored. The possibility of predicting EMG data 

in real time using synergies obtained from the kinematics of the whole human body and 



EMG signals of the lower limb has not been extensively studied yet. The use of human 

body kinematics to predict muscle activity could facilitate new technical developments 

using the predicted information but just measuring kinematics. 

This study presents a method to predict the envelope of normalized EMG signals 

during running given only a vector of kinematics data at a certain time frame based on 

the optimization of synergy parameters obtained from another subject. We factorized 

scaled kinematics and normalized filtered EMG data of five subjects. After that, using the 

reference factorization data of this set of subjects, EMG data for other subjects were 

predicted. Each prediction is obtained in less than a second. Therefore, this algorithm also 

makes real-time use possible. In order to test the algorithm, two different sets of data were 

factorized to predict the EMG data a posteriori. The first one included three trials at 3 m/s 

from five different subjects, and the second group included three trials at 2 m/s, 3 m/s and 

5 m/s from the same five subjects. The use of this method would speed up the evaluation 

of muscle excitations or would facilitate the control of certain EMG-driven devices, 

especially due to the current decreasing cost of motion capture systems. 

Methods 

Experimental data 

The experimental data of this study consisted of EMG and kinematic running data (five 

steps starting from heel-strike) at four velocities (2, 3, 4, and 5 m/s). These data were 

extracted from the study of Hamner and Delp [22], available online, and they contain 

running trials of ten subjects (gender: all male, age: 29 ± 5 years, height: 1.77 ± 0.04 m, 

and 70.9 ± 7.0 kg). EMG data were available for 11 muscles of the right leg: biceps 

femoris long head (bflh), gastrocnemius lateralis (gaslat), gastrocnemius medialis 

(gasmed), gluteus maximus (glmax), gluteus medius (glmed), rectus femoris (rf), 



semimembranosus (semimem), soleus (soleus), tibialis anterior (ta), vastus lateralis 

(vaslat) and vastus medialis (vasmed). These data were high-pass filtered at 10 Hz with a 

Butterworth filter of 3rd order, rectified and low-pass filtered at 6 Hz. After that, filtered 

EMG of each subject was normalized against the maximum EMG value for each muscle 

over the four trials at different running speeds. Kinematics data consisted of joint 

coordinates from a model with 29 degrees of freedom (dofs) [23], which was scaled 

specifically for each subject. Joint coordinates were obtained from marker trajectories 

using an inverse kinematics analysis in OpenSim [24] and then low-pass filtered at 6 Hz. 

Both EMG and kinematics were parameterized with b-splines (polynomial piecewise 

functions) using 20 nodes per second (similar to [25]). Velocities and accelerations of 

joint coordinates were computed from the b-spline representation of the joint coordinates. 

Finally, for all subjects, joint coordinates were demeaned (mean subtraction) and joint 

coordinates, velocities, and accelerations were scaled so that all values ranged between -1 

and 1, ensuring that all types of variables played the same role during the optimization 

process. Following this approach, the scale factors for coordinates, velocities, and 

accelerations were 1, 10, and 100, respectively. This scaling process ensures that all 

kinematics and EMG data are ranged approximately between -1 and 1. 

Factorization 

In this phase (calibration phase), we factorized the matrices containing the experimental 

reference data (scaled) for three cycles (from heel strike to heel strike) of five subjects 

(calibration subjects). The concept of factorizing data consists of representing them with 

a lower number of degrees of freedom. In this study we factorized matrices containing, 

in columns, kinematics and EMG data. This process maps the EMG data with the 

kinematics. These matrices contain the scaled relative joint coordinates, all 29 scaled 

velocities and accelerations, and normalized EMG. Global joint coordinates (3 



translations and 3 rotations of the pelvis with respect to the ground) were removed from 

the set to avoid having solutions dependent on the position of the subject with respect to 

the laboratory reference. These data were time normalized by each cycle to have 101 

frames per cycle. 

Each resultant matrix M of 92 columns (see Appendix A1) was factorized with 

time-dependent variables (Commands – C) and weights for each input variable to each 

command (Weights – W), such as follows: 

~M C W             (1) 

where M is the matrix (nframes x nvar) containing kinematics and EMG data, nframes is 

the number of time frames, and nvar is the number of variables factorized (92 in this 

case). Matrix C is nframes x nsyn and matrix W is nsyn x nvar, where nsyn is the number 

of synergies (i.e. the number of commands) used to factorize the matrix M (Figure 1). 

One matrix C was obtained for each subject, and a common matrix W was obtained for 

all five subjects simultaneously. Note that if nsyn is much lower than nvar, the 

factorization allows reconstructing the signals with a much lower number of elements 

than the ones of matrix M (nframes x nvar). Matrices C and W were computed by solving 

an optimization problem minimizing the following difference: 

 
2

min
nframesntrials nvar

ijs iks kj

s j i

M C W           (2) 

subject to boundary constraints of the weights W (the module of the weight vectors 

constrained to be equal to one). Note that since matrices M and C contain both positive 

and negative values, which can lead to negative values in the reconstructed EMG data, 

all negative predicted EMG values were truncated to zero. 

In total, 40 sets of factorization variables were calculated for: a) 20 different number of 

synergies (nsyn), from 1 to 20, i.e., the optimization was run 20 times to obtain 



combinations of C and W, with a number of synergies (commands) from 1 to 20; b) two 

sets of input trials, using either three trials simultaneously at 3 m/s (intermediate velocity) 

or three trials simultaneously at 2, 3 and 5 m/s; c) five subjects simultaneously. Case b) 

was included to check whether the information of trials at different speeds improved the 

predictions compared to results when using only trials at a single speed. For each 

factorization (a) and set of input trials (b), a single matrix W was estimated, so that the 

contribution to each command was the same independently of the subject and velocity, 

and 15 different matrices C were obtained, one for each velocity and subject.  

In brief, the optimization problems solved during the factorization consist of minimizing 

Eq. (2) (objective function) while constraining the module of the weight vectors (rows of 

matrix W) to be equal to 1 (equality constraints). These optimization problems were 

solved using fmincon (with an interior-point algorithm) in 64-bit MATLAB (using a 

standard laptop IntelCore i7-6700HQ CPU 2.6GHz, 16 GB RAM). 

Prediction of the EMG envelope 

The prediction of the EMG envelope was performed for the other five subjects (prediction 

subjects) of the data set. The input data to the algorithm were only the experimental 

kinematics of the current frame for the prediction subject (vkin). A combination of 

factorization terms obtained in the previous phase multiplied by nsyn scale factors f was 

searched to best fit the new kinematics vector vkin (Figure 1). In this phase, an optimization 

problem was run frame by frame to find the proper scale factors f. For example, when 

predicting EMG data for a prediction subject, we scaled the previously obtained matrix 

W so that the current kinematics vector (single time frame) of the prediction subject fits 

one of the frames of the reconstructed kinematics data of one calibration subject 

(Figure 1, with Subject P – prediction – and Subjects C – calibration). In this prediction 

phase, the input data were the matrices of commands C and the weights W (with nvar 



columns) obtained in the calibration phase. The first 81 (nvarkin) columns of W contained 

information from the joint coordinates, velocities, and accelerations Wkin, and the last 11 

columns (nvarEMG) contained information from the EMG data WEMG. This process 

consisted of scaling the weighting factors so that the commands of one data trial ( iksC ) 

multiplied by these new scaled weights ( ·
kjkin kW f  ) fit the kinematics data: 

 
2

minmin
kin

kj

nvar

kin j iks kin k
i

j

v C W f
 

   
 

       (3) 

where vkin is the vector containing joint angles, velocities, and accelerations at the current 

time frame and fk are the optimized scale factors. For each set of factorization variables, 

the predictions were calculated frame by frame for the trials at 2, 3, 4, and 5 m/s. fmincon 

was also used to solve the optimization.  

Note that this algorithm uses gradient-based methods, and Eq. (3) is not 

continuous. Therefore, to evaluate whether or not using the non-continuous cost function 

with fmincon leads to local minima, we also performed a test consisting of solving the 

optimization problem using a global optimization algorithm (ga in MATLAB) in one 

case. This test was carried out for the prediction of EMG of one subject using the 

factorization variables with five synergies, at 2, 3, 4, and 5 m/s. 

Multiway ANOVA tests were used to analyse the influence of the velocities used 

in the calibration phase, the velocity of the prediction trial, and the subject, on the Pearson 

correlation coefficients and RMS values for muscle predictions. Differences were 

considered significant when p-value < 0.05.  

Additionally, we also tested the algorithm with a set of data from another 

database. EMG data were predicted for two overground running trials at 5 and 7 m/s using 

data available from Dorn et al. [26]. The calibration data were commands and weight 

variables of running trials at 2, 3 and 5 m/s. 



 

Figure 1. Process to predict muscle excitations (PME as normalized EMG) using three 

trials from five subjects in the calibration phase. M is the matrix containing, in columns, 

the scaled kinematics and normalized EMG of one of the calibration subjects (Subject C, 

calibration subject). The numbers below angular coordinates q , velocities q , 

accelerations q , and normalized EMG stand for the number of columns. C and W are 

matrices containing the commands and the weights of the factorization, respectively. i is 

the time frame, j is the signal, k is the synergy and s is the trial. vkin is the vector containing 

the kinematics data of Subject P (prediction subject) at one frame, and f is the vector of 

scale factors multiplying the matrix W. In the calibration phase, C and W are estimated 

from data of Subjects C and in the prediction phase f vector is estimated using C, W and 

the vkin to predict normalized EMG signals. 

Results 

The estimated values of the kinematics (coordinates, velocities, and accelerations) and 

EMG signals after the factorization (calibration phase) reproduced all experimental data 

quite accurately, especially when using more than eight synergies (r > 0.9 when using 

trials at a single velocity, Figure 2a). The fact of using different velocities to factorize the 

signals slightly influenced the accuracy of the reconstruction (Figure 2b). 

 

 



 

  

Figure 2. Median correlation coefficients between the experimental and the reconstructed 

data (angles, velocities, accelerations, and EMG signals) obtained at the calibration phase 

by each number of synergies for all subjects. Left: using three trials for each subject at 

3 m/s. Right: using one trial at 2, 3 and 5 m/s for each subject. 

Both correlation coefficients and RMS difference values between the predictions 

of EMG data and the corresponding experimental values show that the best predictions 

were obtained using a low number of synergies (Figure 3). In terms of RMS values, the 

lowest median values for EMG data were obtained using from two to five synergies with 

both calibration sets (median RMS < 0.13). In terms of correlation coefficient values, the 

best predictions were obtained using between three and five synergies with the calibration 

trials at 3 m/s (median r > 0.8) and between four and five synergies with the calibration 

trials at three velocities (median r > 0.8). In 10 out of 11 muscles, the predictions were 

obtained with r > 0.7 when factorizing with data at 3 m/s (the exception was the ta) and 

in 9 out of 11 muscles when using calibration trials at three different velocities (the 

exceptions were ta and bflh). Figure 3 also shows that the higher is the number of 

synergies, the worse is the prediction of tibialis anterior (ta) and gluteus maximus 

(glmax), especially when using all calibration trials at 3 m/s. 



Figure 4 shows an example of EMG predictions of a trial at 4 m/s. In that case, 

factorization data using five synergies from calibration trials at 3 m/s were used. 

Predictions of gaslat, gasmed, semimem, soleus, vaslat and vasmed are accurate in terms 

of normalized magnitude (mean RMS > 0.8) and shape (mean r > 0.8). Bflh, glmax and 

ta had mean r values between 0.7 and 0.8, and RMS < 0.2, and glmed and rf had mean r 

values ≥ 0.85, but with RMS values slightly higher (0.15 and 0.23, respectively). The 

magnitude of all predicted signals from this particular example is overall slightly lower 

than the experimental values. Except for the small peaks of gasmed at the flight phase, 

the timing of the peaks for all muscles was predicted precisely. In all muscles, the onset-

offset periods were also predicted accurately.  

The shape was better reproduced for the prediction trials at 3 and 4 m/s (p < 0.01), 

independently of the factorization used (Figure 5), whereas the magnitude was better 

predicted for prediction trials at 2 and 3 m/s (p < 0.01), also independently of the 

factorization used (Figure 5).  

The algorithm could also predict the data of another database. For instance, when 

testing the algorithm with the second database [26] at 5 m/s and using five synergies, five 

muscles had r values higher than 0.75 (bflh, glmax, glmed, vaslat and vasmed), four 

muscles between 0.5 and 0.75 (gaslat and gasmed, semimem, and soleus), and tibant and 

recfem with r < 0.5. At 7 m/s (velocity higher than the used during the calibration), EMG 

of two muscles were predicted with r > 0.75 (gaslat and gasmed), two muscles between 

0.5 and 0.75 (soleus and vasmed), four muscles with r between 0.4 and 0.5 (bflh, glmax, 

glmed, and vaslat), and the other muscles with r < 0.4 (recfem, semimem, and tibant). 

The use of a gradient-based method to solve for the scale factors of the 

factorization variables did not seem to lead to differences compared to the use of a global 

optimization approach. The results showed that the correlation coefficients between the 



EMG data obtained using fmincon and ga were 0.9909 ± 0.0031 at 2 m/s, 0.9949 ± 0.0015 

at 3 m/s, 0.9960 ± 0.0012 at 4 m/s and 0.9970 ± 0.0010 at 5 m/s. 

  

 

 



  

Figure 3. Median of correlation coefficients (first two rows) and root mean square errors 

(last two rows) between the EMG predictions and the normalized experimental EMG data 

for all prediction subjects. The left column contains the predictions using factorization 

data from a calibration C using three trials at 3 m/s for all calibration subjects, and the 

right column from calibration data using three trials at 3, 4 and 5 m/s for all calibration 

subjects. The first and third rows represent the median values for each type of variable, 

and the second and fourth rows, the EMG predictions for each muscle. All predictions 

are for all 20 factorization sets, according to the number of synergies used (from 1 to 20).  

Figure 4. Example of normalized EMG predictions for one subject at 4 m/s obtained using 

the calibration data factorizing calibration trials (3 m/s) with five synergies. Vertical 

dashed lines indicate the heel-strike events. 



 

 

Figure 5. Mean of correlation coefficients (first row) and RMS values (second row) 

between EMG predictions and normalized experimental EMG data over all 21 

factorization sets. The predictions are obtained using the factorization from calibration 

trials at 3 m/s (left column) and from calibration trials at 2, 3 and 5 m/s (right column).  

Discussion 

The goal of this study was to investigate the accuracy of the predictions of EMG data 

during running when using only experimental kinematic data. This method consists of 

factorizing, in the first place, the matrix of kinematics (23 angular coordinates, and 29 

velocities and accelerations of the skeletal model) and normalized EMG data (11 muscles) 

into two matrices of lower rank, containing the time-dependent commands and the non-

time-dependent weights of each signal to each command. Secondly, it predicts muscle 

excitations (represented with the normalized EMG in this study) by giving only the vector 

of the experimental kinematic data at one frame. The predictions took 0.287 ± 0.068 

seconds using factorized data of trials at 3 m/s, and 0.304 ± 0.070 seconds using factorized 

data at three different trials (test using five synergies, i.e. five commands). If the 



kinematics data could be obtained at least every 0.3 seconds, this method could predict 

the EMG data at this frequency.  

The algorithm optimized scale factors of the weights so that the reconstructed 

kinematics at that frame matched with one time frame of the reference kinematics. Then, 

with the reference factorization terms and the new scale factors, we predicted the 

normalized EMG signals for the 11 muscles. The results showed that we can obtain 

accurate EMG predictions using this method (correlation coefficients higher than 0.7 for 

10 of the 11 muscles). These predictions are better than the ones typically obtained using 

musculoskeletal systems [27–29] and similar to the ones obtained with complex neural 

networks [9]. 

We analyzed whether the results were influenced by the number of synergies and 

the velocities used to factorize data. We obtained a higher accuracy in the reproduction 

of kinematics and EMG data from intrasubject factorization analysis as we increased the 

number of synergies (using commands and weights of the same subject). However, no 

improvement in EMG predictions was observed when increasing the number of synergies 

(using commands and weights from the other subjects) above five. The best overall EMG 

predictions were obtained using four and five synergies. This conclusion is very close to 

the five muscle synergies used to account for the variability of muscle excitation patterns 

in other studies [30,31]. The fact of obtaining a similar optimum number of synergies 

when factorizing kinematics and EMG simultaneously to other studies factorizing only 

EMG data was not obvious a priori, since vector weights could have contained only non-

zero kinematic weights. The presence of such a high number of variables during the 

factorization (81 kinematic variables and 11 EMG signals) gives more information to the 

system, establishing how the different angular coordinates, velocities and accelerations 



might affect the EMG data. In the end, this allows to create a more accurate algorithm 

that will be able to predict more effectively the muscle excitation patterns of a subject. 

Muscle prediction accuracy varies from muscle to muscle. This could be related 

to the number of joints the muscle is spanning. Although it is considered that the CNS 

controls the movement synergistically, it seems obvious that EMG data of one muscle 

would be more related to the coordinates, velocities, and accelerations of the joint/s that 

the muscle is spanning. Therefore, the fact that ta (monoarticular muscle) has the lowest 

prediction accuracy could be explained by the amount of directly related kinematic data 

included in the factorization matrix (lower than in biarticular muscles). 

Since running speed may affect the pattern of muscle synergies [32], we used two 

sets of factorization terms. We factorized the signals using only three trials at 3 m/s per 

subject, and also using three trials at 2, 3 and 5 m/s per subject. The type of factorization 

had no significant effect on the prediction results. A possible explanation could be that 

the scale factors optimized during the prediction phase allow a similar kinematics data 

tracking, independently of the velocity. This would be the case when having commands 

with similar shapes and different magnitudes across velocities. Overall, the trials with the 

best shape prediction were the ones at 3 and 4 m/s, and the trials with the best magnitude 

prediction were the ones at 2 and 3 m/s, independently of the set of factorization terms. 

Additionally, we also tested the capability of the algorithm to predict data from 

another source [26]. The predicted data were overall accurate for the trial at 5 m/s 

(velocity used during the calibration data). At 7 m/s, the predictions were still accurate 

for some muscles (especially gaslat and gasmed). Despite the protocol probably being 

different (difference in sensor location) and despite the calibration data being measured 

while running on a treadmill and the prediction data while running overground, we could 

closely identify the onset-offset patterns.  



We used a gradient-based method to predict EMG data and a non-continuous 

function, which is likely to fall in local minima. Nevertheless, we also proved that a global 

optimization algorithm (which took around 4 seconds per frame) led to very similar 

results. 

The presented approach has some limitations. Firstly, the analysis was performed 

in running data only. It is known that synergy components are task-specific [33,34]. 

Therefore, before applying this method to another type of movement, running style or to 

a completely different running velocity, reference kinematics and EMG should be 

collected and factorized first. Secondly, the experimental data came from healthy 

subjects; future lines of research will be focused on the analysis of the capability to predict 

muscle excitations in injured subjects. Our results suggest that the information of 

kinematics and EMG synergies from five subjects simultaneously can yield to the 

accurate prediction of EMG data in a different subject. Since we expect to have more 

variability of kinematics and EMG data in injured subjects than in healthy subjects, the 

optimization of scale factors of factorization parameters may play an important role to 

obtain accurate predictions. Thirdly, the non-negative factorization of EMG signals has 

been related to the pattern used by the central nervous system to activate the muscles 

(with values of factorization variables ranging from 0 – not activated – to 1 – fully 

activated). In our study, we factorized the data with variables that can have negative and 

positive values (since kinematics data could be positive or negative), whose physical 

meaning has a difficult interpretation. However, the results show that the algorithm can 

be used to predict EMG data accurately. Fourthly, reliable surface EMG data for some 

muscles could be challenging to obtain due to crosstalk; therefore, the predictions of their 

signals are expected to be poor. 



In conclusion, with the proposed algorithm, we can obtain accurate EMG 

predictions of most muscles with only the knowledge of the vector of kinematics at a 

certain time frame. Since the results are obtained in less than one second, this represents 

an efficient method to be used while acquiring kinematics data at 0.3 seconds per frame. 

This could be applied for different biomechanical purposes, such as in motion analysis to 

perform a follow-up of a rehabilitation treatment or an athletic training program, or to 

control EMG-driven devices. 
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Appendix A1. Data to be factorized 

The data to be factorized contained 92 columns, corresponding to scaled joint coordinates 

(23), joint angular velocities (29), joint angular accelerations (29), and normalized filtered 

EMG of 11 muscles (11). 

  



Table A1. Order and names of the degrees of freedom of joint coordinates, velocities, and 

accelerations, and names of the muscles of EMG data. Vel stands for angular velocity and 

acc for angular acceleration. Tx, ty, and tz are the three translational degrees of freedom 

in the space of the pelvis with respect to the ground. Muscle abbreviations are described 

in the Methods section. 

 

Coordinates Velocities Accelerations Norm. EMG 

1 R Hip flexion angle 24 Pelvis tilt vel 53 Pelvis tilt acc 82 bflh 

2 R Hip adduction angle 25 Pelvis list vel 54 Pelvis list acc 83 gaslat 

3 R Hip rotation angle 26 Pelvis rotation vel 55 Pelvis rotation acc 84 gasmed 

4 R Knee flexion angle 27 Pelvis tx vel 56 Pelvis tx acc 85 glmax 

5 R Ankle angle 28 Pelvis ty vel 57 Pelvis ty acc 86 glmed 

6 L Hip flexion angle 29 Pelvis tz vel 58 Pelvis tz acc 87 rf 

7 L Hip adduction angle 30 R Hip flexion vel 59 R Hip flexion acc 88 semimem 

8 L Hip rotation angle 31 R Hip adduction vel 60 R Hip adduction acc 89 soleus 

9 L Knee flexion angle 32 R Hip rotation vel 61 R Hip rotation acc 90 ta 

10 L Ankle angle 33 R Knee flexion vel 62 R Knee flexion acc 91 vaslat 

11 Lumbar extension angle 34 R Ankle vel 63 R Ankle acc 92 vasmed 

12 Lumbar bending angle 35 L Hip flexion vel 64 L Hip flexion acc  

13 Lumbar rotation angle 36 L Hip adduction vel 65 L Hip adduction acc  

14 R arm flexion angle 37 L Hip rotation vel 66 L Hip rotation acc  

15 R arm adduction angle 38 L Knee flexion vel 67 L Knee flexion acc  

16 R arm rotation angle 39 L Ankle angle vel 68 L Ankle angle acc  

17 R elbow flexion angle 40 Lumbar extension vel 69 Lumbar extension acc  

18 R forearm rotation angle 41 Lumbar bending vel 70 Lumbar bending acc  

19 L arm flexion angle 42 Lumbar rotation vel 71 Lumbar rotation acc  

20 L arm adduction angle 43 R arm flexion vel 72 R arm flexion acc  

21 L arm rotation angle 44 R arm adduction vel 73 R arm adduction acc  

22 L elbow flexion angle 45 R arm rotation vel 74 R arm rotation acc  

23 L forearm rotation angle 46 R elbow flexion vel 75 R elbow flexion acc  

 47 R forearm rotation vel 76 R forearm rotation acc  

 48 L arm flexion vel 77 L arm flexion acc  

 49 L arm adduction vel 78 L arm adduction acc  

 50 L arm rotation vel 79 L arm rotation acc  

 51 L elbow flexion vel 80 L elbow flexion acc  

 52 L forearm rotation vel 81 L forearm rotation acc  

 


