403 research outputs found

    A four-quadrant switched capacitor DC-DC convertor enabling power-efficient lab-grade potentiostats

    Get PDF
    This paper presents a low-power potentiostat based on a four-quadrant switched capacitor DC-DC convertor for use in lab applications. The gearbox convertor achieves a compliance voltage of ±2.5V. Through the use of frequency scaling, the convertor features output currents in the range of 1µA to 1mA, outclassing other state-of-the-art power efficient potentiostats. A hysteretic control loop and a seperate hysteretic comparator allow the potentiostat to be used for both voltammetric and ampere-metric experiments. Simulations demonstrate a peak efficiency of 87%, and a competitive overall efficiency. The system is designed and simulated in a 0.35µm process

    Study of Single-Event Transient Effects on Analog Circuits

    Get PDF
    Radiation in space is potentially hazardous to microelectronic circuits and systems such as spacecraft electronics. Transient effects on circuits and systems from high energetic particles can interrupt electronics operation or crash the systems. This phenomenon is particularly serious in complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs) since most of modern ICs are implemented with CMOS technologies. The problem is getting worse with the technology scaling down. Radiation-hardening-by-design (RHBD) is a popular method to build CMOS devices and systems meeting performance criteria in radiation environment. Single-event transient (SET) effects in digital circuits have been studied extensively in the radiation effect community. In recent years analog RHBD has been received increasing attention since analog circuits start showing the vulnerability to the SETs due to the dramatic process scaling. Analog RHBD is still in the research stage. This study is to further study the effects of SET on analog CMOS circuits and introduces cost-effective RHBD approaches to mitigate these effects. The analog circuits concerned in this study include operational amplifiers (op amps), comparators, voltage-controlled oscillators (VCOs), and phase-locked loops (PLLs). Op amp is used to study SET effects on signal amplitude while the comparator, the VCO, and the PLL are used to study SET effects on signal state during transition time. In this work, approaches based on multi-level from transistor, circuit, to system are presented to mitigate the SET effects on the aforementioned circuits. Specifically, RHBD approach based on the circuit level, such as the op amp, adapts the auto-zeroing cancellation technique. The RHBD comparator implemented with dual-well and triple-well is studied and compared at the transistor level. SET effects are mitigated in a LC-tank oscillator by inserting a decoupling resistor. The RHBD PLL is implemented on the system level using triple modular redundancy (TMR) approach. It demonstrates that RHBD at multi-level can be cost-effective to mitigate the SEEs in analog circuits. In addition, SETs detection approaches are provided in this dissertation so that various mitigation approaches can be implemented more effectively. Performances and effectiveness of the proposed RHBD are validated through SPICE simulations on the schematic and pulsed-laser experiments on the fabricated circuits. The proposed and tested RHBD techniques can be applied to other relevant analog circuits in the industry to achieve radiation-tolerance

    Analog baseband circuits for sensor systems

    Get PDF
    This thesis is composed of six publications and an overview of the research topic, which also summarizes the work. The research presented in this thesis focuses on research into analog baseband circuits for sensor systems. The research is divided into three different topics: the integration of analog baseband circuits into a radio receiver for sensor applications; the integration of an ΔΣ modulator A/D converter into a GSM/WCDMA radio receiver for mobile phones, and the integration of algorithmic A/D converters for a capacitive micro-accelerometer interface. All the circuits are implemented using deep sub-micron CMOS technologies. The work summarizes the design of different blocks for sensor systems. The research into integrated analog baseband circuits for a radio receiver focuses on a circuit structures with a very low power dissipation and that can be implemented using only standard CMOS technologies. The research into integrated ΔΣ modulator A/D converter design for a GSM/WCDMA radio receiver for mobile phones focuses on the implications for analog circuit design emerging from using a very deep sub-micron CMOS process. Finally, in the research into algorithmic A/D converters for a capacitive microaccelerometer interface, new ways of achieving a good performance with low power dissipation, while also minimizing the silicon area of the integrated A/D converter are introduced

    A highly digital, reconfigurable and voltage scalable SAR ADC

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 109-112).Micropower sensor networks have a broad range of applications which include military surveillance, environmental monitoring, chemical detection and more recently, medical monitoring systems. Each node of the sensor network requires energy efficient circuits powered off small batteries or harvested energy. In such systems, a single reconfigurable analog-to-digital converter (ADC) is needed to digitize a wide range of signals with varying bandwidth and resolution requirements. This thesis describes the design of an ADC whose power scales exponentially with resolution and linearly with frequency to maximize the system lifetime. The proposed ADC has reconfigurable resolution from 5 to 10-bits and a scalable sample rate from 0 to 1-MS/s. The successive approximation register (SAR) architecture was chosen for its highly digital nature which enables low voltage operation. The supply voltage can be scaled from 1V down to 0.4V such that the ADC maintains a constant energy efficiency across all modes of operation when normalized with respect to sample rate and resolution. A capacitive digital-to -analog converter (DAC) in a split capacitor topology with a sub-DAC is used to minimize the DAC power and area. Top plate switches are used to decouple the MSB capacitors as resolution is scaled to avoid parasitic loading of the DAC. The DAC capacitors are laid out in a common-centroid configuration with edge effects minimized at each resolution mode to improve matching. A fully dynamic latched comparator is used to avoid static bias currents.(cont.) Power gating of the digital logic is used to reduce leakage power at low sample rates. Reconfigurability between single-ended or differential modes enables a power versus performance trade-off. Lastly, programmable sampling duration and internal bootstrapping is used to maintain sampling linearity at low voltages. The ADC has been submitted for fabrication in a low power 65nm digital CMOS process and simulation results are presented.by Marcus Yip.S.M

    A Resolution-Reconfigurable 5-to-10-Bit 0.4-to-1 V Power Scalable SAR ADC for Sensor Applications

    Get PDF
    A power-scalable SAR ADC for sensor applications is presented. The ADC features a reconfigurable 5-to-10-bit DAC whose power scales exponentially with resolution. At low resolutions where noise and linearity requirements are reduced, supply voltage scaling is leveraged to further reduce the energy-per-conversion. The ADC operates up to 2 MS/s at 1 V and 5 kS/s at 0.4 V, and its power scales linearly with sample rate down to leakage levels of 53 nW at 1 V and 4 nW at 0.4 V. Leakage power-gating during a SLEEP mode in between conversions reduces total power by up to 14% at sample rates below 1 kS/s. Prototyped in a low-power 65 nm CMOS process, the ADC in 10-bit mode achieves an INL and DNL of 0.57 LSB and 0.58 LSB respectively at 0.6 V, and the Nyquist SNDR and SFDR are 55 dB and 69 dB respectively at 0.55 V and 20 kS/s. The ADC achieves an optimal FOM of 22.4 fJ/conversion-step at 0.55 V in 10-bit mode. The combined techniques of DAC resolution and voltage scaling maximize efficiency at low resolutions, resulting in an FOM that increases by only 7x over the 5-bit scaling range, improving upon a 32x degradation that would otherwise arise from truncation of bits from an ADC of fixed resolution and voltage.United States. Defense Advanced Research Projects AgencyNatural Sciences and Engineering Research Council of Canad

    INTEGRATED SINGLE-PHOTON SENSING AND PROCESSING PLATFORM IN STANDARD CMOS

    Get PDF
    Practical implementation of large SPAD-based sensor arrays in the standard CMOS process has been fraught with challenges due to the many performance trade-offs existing at both the device and the system level [1]. At the device level the performance challenge stems from the suboptimal optical characteristics associated with the standard CMOS fabrication process. The challenge at the system level is the development of monolithic readout architecture capable of supporting the large volume of dynamic traffic, associated with multiple single-photon pixels, without limiting the dynamic range and throughput of the sensor. Due to trade-offs in both functionality and performance, no general solution currently exists for an integrated single-photon sensor in standard CMOS single photon sensing and multi-photon resolution. The research described herein is directed towards the development of a versatile high performance integrated SPAD sensor in the standard CMOS process. Towards this purpose a SPAD device with elongated junction geometry and a perimeter field gate that features a large detection area and a highly reduced dark noise has been presented and characterized. Additionally, a novel front-end system for optimizing the dynamic range and after-pulsing noise of the pixel has been developed. The pixel is also equipped with an output interface with an adjustable pulse width response. In order to further enhance the effective dynamic range of the pixel a theoretical model for accurate dead time related loss compensation has been developed and verified. This thesis also introduces a new paradigm for electrical generation and encoding of the SPAD array response that supports fully digital operation at the pixel level while enabling dynamic discrete time amplitude encoding of the array response. Thus offering a first ever system solution to simultaneously exploit both the dynamic nature and the digital profile of the SPAD response. The array interface, comprising of multiple digital inputs capacitively coupled onto a shared quasi-floating sense node, in conjunction with the integrated digital decoding and readout electronics represents the first ever solid state single-photon sensor capable of both photon counting and photon number resolution. The viability of the readout architecture is demonstrated through simulations and preliminary proof of concept measurements

    The development of a distributed interfacing system

    Get PDF
    The Thesis submitted describes the origins and development of an industrial distributed interfacing system. The component modules of the system are described individually and sample flowcharts and software listings are provided

    Electronic filters, repeated signal charge conversion apparatus, hearing aids and methods

    Get PDF
    An electronic filter for filtering an electrical signal. Signal processing circuitry therein includes a logarithmic filter having a series of filter stages with inputs and outputs in cascade and respective circuits associated with the filter stages for storing electrical representations of filter parameters. The filter stages include circuits for respectively adding the electrical representations of the filter parameters to the electrical signal to be filtered thereby producing a set of filter sum signals. At least one of the filter stages includes circuitry for producing a filter signal in substantially logarithmic form at its output by combining a filter sum signal for that filter stage with a signal from an output of another filter stage. The signal processing circuitry produces an intermediate output signal, and a multiplexer connected to the signal processing circuit multiplexes the intermediate output signal with the electrical signal to be filtered so that the logarithmic filter operates as both a logarithmic prefilter and a logarithmic postfilter. Other electronic filters, signal conversion apparatus, electroacoustic systems, hearing aids and methods are also disclosed

    Development of Robust Analog and Mixed-Signal Circuits in the Presence of Process- Voltage-Temperature Variations

    Get PDF
    Continued improvements of transceiver systems-on-a-chip play a key role in the advancement of mobile telecommunication products as well as wireless systems in biomedical and remote sensing applications. This dissertation addresses the problems of escalating CMOS process variability and system complexity that diminish the reliability and testability of integrated systems, especially relating to the analog and mixed-signal blocks. The proposed design techniques and circuit-level attributes are aligned with current built-in testing and self-calibration trends for integrated transceivers. In this work, the main focus is on enhancing the performances of analog and mixed-signal blocks with digitally adjustable elements as well as with automatic analog tuning circuits, which are experimentally applied to conventional blocks in the receiver path in order to demonstrate the concepts. The use of digitally controllable elements to compensate for variations is exemplified with two circuits. First, a distortion cancellation method for baseband operational transconductance amplifiers is proposed that enables a third-order intermodulation (IM3) improvement of up to 22dB. Fabricated in a 0.13µm CMOS process with 1.2V supply, a transconductance-capacitor lowpass filter with the linearized amplifiers has a measured IM3 below -70dB (with 0.2V peak-to-peak input signal) and 54.5dB dynamic range over its 195MHz bandwidth. The second circuit is a 3-bit two-step quantizer with adjustable reference levels, which was designed and fabricated in 0.18µm CMOS technology as part of a continuous-time SigmaDelta analog-to-digital converter system. With 5mV resolution at a 400MHz sampling frequency, the quantizer's static power dissipation is 24mW and its die area is 0.4mm^2. An alternative to electrical power detectors is introduced by outlining a strategy for built-in testing of analog circuits with on-chip temperature sensors. Comparisons of an amplifier's measurement results at 1GHz with the measured DC voltage output of an on-chip temperature sensor show that the amplifier's power dissipation can be monitored and its 1-dB compression point can be estimated with less than 1dB error. The sensor has a tunable sensitivity up to 200mV/mW, a power detection range measured up to 16mW, and it occupies a die area of 0.012mm^2 in standard 0.18µm CMOS technology. Finally, an analog calibration technique is discussed to lessen the mismatch between transistors in the differential high-frequency signal path of analog CMOS circuits. The proposed methodology involves auxiliary transistors that sense the existing mismatch as part of a feedback loop for error minimization. It was assessed by performing statistical Monte Carlo simulations of a differential amplifier and a double-balanced mixer designed in CMOS technologies
    • …
    corecore