11 research outputs found

    Common Spatial Pattern revisited by Riemannian Geometry

    Get PDF
    International audienceThis paper presents a link between the well known Common Spatial Pattern (CSP) algorithm and Riemannian geometry in the context of Brain Computer Interface (BCI). It will be shown that CSP spatial filtering and Log variance features extraction can be resumed as a computation of a Riemann distance in the space of covariances matrices. This fact yields to highlight several approximations with respect to the space topology. According to these conclusions, we propose an improvement of classical CSP method

    Generating a fuzzy rule-based brain-state-drift detector by riemann-metric-based clustering

    Full text link
    © 2017 IEEE. Brain-state drifts could significantly impact on the performance of machine-learning algorithms in brain computer interface (BCI). However, less is understood with regard to how brain transition states influence a model and how it can be represented for a system. Herein we are interested in the hidden information of brain state-drift occurring in both simulated and real-world human-system interaction. This research introduced the Riemann metric to categorize EEG data, and visualized the clustering result so that the distribution of the data can be observable. Moreover, to defeat subjective uncertainty of electroencephalography (EEG) signals, fuzzy theory was employed. In this study, we built a fuzzy rule-based brain-statedrift detector to observe the brain state and imported data from different subjects to testify the performance. The result of the detection is acceptable and shown in this paper. In the future, we expect that brain-state drifting can be connected with human behaviors via the proposed fuzzy rule-based classification. We also will develop a new structure for a fuzzy rule-based brain-statedrift detector to improve the detection accuracy

    Classification of covariance matrices using a Riemannian-based kernel for BCI applications

    Get PDF
    International audienceThe use of spatial covariance matrix as a feature is investigated for motor imagery EEG-based classification in Brain-Computer Interface applications. A new kernel is derived by establishing a connection with the Riemannian geometry of symmetric positive definite matrices. Different kernels are tested, in combination with support vector machines, on a past BCI competition dataset. We demonstrate that this new approach outperforms significantly state of the art results, effectively replacing the traditional spatial filtering approach

    Motor Imagery Classification Based on Bilinear Sub-Manifold Learning of Symmetric Positive-Definite Matrices

    Get PDF
    In motor imagery brain-computer interfaces (BCIs), the symmetric positive-definite (SPD) covariance matrices of electroencephalogram (EEG) signals carry important discriminative information. In this paper, we intend to classify motor imagery EEG signals by exploiting the fact that the space of SPD matrices endowed with Riemannian distance is a high-dimensional Riemannian manifold. To alleviate the overfitting and heavy computation problems associated with conventional classification methods on high-dimensional manifold, we propose a framework for intrinsic sub-manifold learning from a high-dimensional Riemannian manifold. Considering a special case of SPD space, a simple yet efficient bilinear sub-manifold learning (BSML) algorithm is derived to learn the intrinsic sub-manifold by identifying a bilinear mapping that maximizes the preservation of the local geometry and global structure of the original manifold. Two BSML-based classification algorithms are further proposed to classify the data on a learned intrinsic sub-manifold. Experimental evaluation of the classification of EEG revealed that the BSML method extracts the intrinsic sub-manifold approximately 5× faster and with higher classification accuracy compared with competing algorithms. The BSML also exhibited strong robustness against a small training dataset, which often occurs in BCI studies

    A New Generation of Brain-Computer Interface Based on Riemannian Geometry

    Full text link
    Based on the cumulated experience over the past 25 years in the field of Brain-Computer Interface (BCI) we can now envision a new generation of BCI. Such BCIs will not require training; instead they will be smartly initialized using remote massive databases and will adapt to the user fast and effectively in the first minute of use. They will be reliable, robust and will maintain good performances within and across sessions. A general classification framework based on recent advances in Riemannian geometry and possessing these characteristics is presented. It applies equally well to BCI based on event-related potentials (ERP), sensorimotor (mu) rhythms and steady-state evoked potential (SSEP). The framework is very simple, both algorithmically and computationally. Due to its simplicity, its ability to learn rapidly (with little training data) and its good across-subject and across-session generalization, this strategy a very good candidate for building a new generation of BCIs, thus we hereby propose it as a benchmark method for the field.Comment: 33 pages, 9 Figures, 17 equations/algorithm

    Assessing the Contribution of Covariance Information to the Electroencephalographic Signals of Brain–Computer Interfaces for Spinal Cord Injury Patients

    Get PDF
    Las interfaces cerebro-computadora no invasivas basadas en EEG de imaginación motora (miBCI) prometen restaurar efectivamente el control motor a pacientes con discapacidades motoras, por ejemplo, aquellos con lesión de la médula espinal (LME). Sin embargo, todavía es necesario investigar las miBCI, con fines de rehabilitación, para este tipo de pacientes que utilizan dispositivos de adquisición de señales EEG de bajo costo, tales como Emotiv EPOC. En este trabajo, se describe en detalle y se comparan diez arquitecturas miBCI basadas en información de covarianza de señales EEG, adquiridas con Emotiv EPOC, para la decodificación de intención de mano abierta y cerrada en tres sujetos control y dos pacientes con LME cervical. Cuatro de estas diez miBCI usan información de covarianza para construir filtros espaciales y el resto usa la información covarianza como una representación directa de las señales EEG, permitiendo la manipulación directa mediante geometría de Riemann. Como resultado, se encontró que, a pesar de que todas las arquitecturas miBCI tienen una precisión general por encima del nivel de azar, las que utilizan la covarianza como representación directa de las señales EEG junto con clasificadores lineales, superan las miBCI que usan la covarianza para el filtrado espacial, tanto en sujetos de control como en pacientes con LME. Estos resultados sugieren un alto potencial de las miBCI basadas en la geometría de Riemann para la rehabilitación de pacientes con LME, utilizando dispositivos de adquisición de EEG de bajo costo.  Non-invasive EEG-based motor imagery brain–computer interfaces (miBCIs) promise to effectively restore the motor control of motor-impaired patients with conditions that include Spinal Cord Injury (SCI). Nonetheless, miBCIs should be further researched for this type of patients using low-cost EEG acquisition devices, such as the Emotiv EPOC, for home rehabilitation purposes. In this work, we describe in detail and compare ten miBCI architectures based on covariance information from EEG epochs. The latter were acquired with Emotiv EPOC from three control subjects and two SCI patients in order to decode the close and open hand intentions. Four out of the ten miBCIs use covariance information to create spatial filters; the rest employ covariance as a direct representation of the EEG signals, thus allowing the direct manipulation by Riemannian geometry. We found that, although all the interfaces present an overall accuracy above chance level, the miBCIs that use covariance as a direct representation of the EEG signals together with linear classifiers outperform miBCIs that use covariance for spatial filtering, both in control subjects and SCI. These results suggest the high potential of Riemannian geometry-based miBCIs for the rehabilitation of SCI patients with low-cost EEG acquisition devices

    Motor imagery-based brain-computer interface by implementing a frequency band selection

    Get PDF
    Les interfícies cervell-ordinador basades en imaginacions motores (MI-BCI) són una promesa per a revolucionar la manera com els humans interactuen amb les màquines o el programari, realitzant accions només amb el pensament. Els pacients que pateixen discapacitats de moviment crítiques, com l'esclerosi lateral amiotròfica (ALS) o la tetraplegia, podrien utilitzar aquesta tecnologia per controlar una cadira de rodes, pròtesis robòtiques o qualsevol altre dispositiu que els permeti interactuar de manera independent amb el seu entorn. L'objectiu d'aquest projecte és ajudar les comunitats afectades per aquests trastorns amb el desenvolupament d'un mètode que sigui capaç de detectar, amb la màxima precisió possible, la intenció d'executar moviments (sense que es produeixin) en les extremitats superiors del cos. Això es farà mitjançant senyals adquirits amb un electroencefalograma (EEG), el seu condicionament i processament, i la seva posterior classificació amb models d'intel·ligència artificial. A més, es dissenyarà un filtre de senyal digital per mantenir les bandes de freqüència més característiques de cada individu i augmentar significativament l’exactitud del sistema. Després d'extreure les característiques estadístiques, freqüencials i espacials més discriminatòries, va ser possible obtenir una exactitud del 88% en les dades de validació a l'hora de detectar si un participant estava imaginant un moviment de la mà esquerra o de la dreta. A més, es va utilitzar una xarxa neuronal convolucional (CNN) per distingir si el participant estava imaginant un moviment o no, la qual cosa va aconseguir una exactitud del 78% i una precisió del 90%. Aquests resultats es verificaran mitjançant la implementació d'una simulació en temps real amb l'ús d'un braç robòtic.Las interfaces cerebro-computadora basadas en imaginaciones motoras (MI-BCI) son una promesa para revolucionar la forma en que los humanos interactúan con las máquinas o el software, realizando acciones con tan solo pensar en ellas. Los pacientes que sufren discapacidades críticas del movimiento, como la esclerosis lateral amiotrófica (ALS) o la tetraplejia, podrían usar esta tecnología para controlar una silla de ruedas, prótesis robóticas o cualquier otro dispositivo que les permita interactuar de manera independiente con su entorno. El objetivo de este proyecto es ayudar a las comunidades afectadas por estos trastornos con el desarrollo de un método que sea capaz de detectar, con la mayor precisión posible, la intención de ejecutar movimientos (sin que se produzcan) en las extremidades superiores del cuerpo. Esto se hará mediante señales adquiridas con un electroencefalograma (EEG), su acondicionamiento y procesamiento, y su posterior clasificación con modelos de inteligencia artificial. Además, se diseñará un filtro de señal digital para mantener las bandas de frecuencia más características de cada individuo y aumentar significativamente la exactitud del sistema. Después de extraer características estadísticas, frecuenciales y espaciales discriminatorias, fue posible obtener una exactitud del 88% en los datos de validación a la hora de detectar si un participante estaba imaginando un movimiento con la mano izquierda o con la derecha. Además, se utilizó una red neural convolucional (CNN) para distinguir si el participante estaba imaginando un movimiento o no, lo que logró un 78% de exactitud y un 90% de precisión. Estos resultados se verificarán implementando una simulación en tiempo real con el uso de un brazo robótico.Motor Imagery-based Brain-Computer Interfaces (MI-BCI) are a promise to revolutionize the way humans interact with machinery or software, performing actions by just thinking about them. Patients suffering from critical movement disabilities, such as amyotrophic lateral sclerosis (ALS) or tetraplegia, could use this technology to control a wheelchair, robotic prostheses, or any other device that could let them interact independently with their surroundings. The focus of this project is to aid communities affected by these disorders with the development of a method that is capable of detecting, as accurately as possible, the intention to execute movements (without them occurring) in the upper extremities of the body. This will be done through signals acquired with an electroencephalogram (EEG), their conditioning and processing, and their subsequent classification with artificial intelligence models. In addition, a digital signal filter will be designed to keep the most characteristic frequency bands of each individual and increase accuracy significantly. After extracting discriminative statistical, frequential, and spatial features, it was possible to obtain an 88% accuracy on validation data when it came to detecting whether a participant was imagining a left-hand or a right-hand movement. Furthermore, a Convolutional Neural Network (CNN) was used to distinguish if the participant was imagining a movement or not, which achieved a 78% accuracy and a 90% precision. These results will be verified by implementing a real-time simulation with the usage of a robotic arm

    Classification Approaches in Neuroscience: A Geometrical Point of View

    Get PDF
    Functional magnetic resonance images (fMRI) are brain scan images by MRI machine which are taken functionally cross the time. Several studies have investigated methods analyzing such images (or actually the drawn data from them) and is interestingly growing up. For examples models can predict the behaviours and actions of people based on their brain pattern, which can be useful in many fields. We do the classification study and prediction of fMRI data and we develop some approaches and some modifications on them which have not been used in such classification problems. The proposed approaches were assessed by comparing the classification error rates in a real fMRI data study. In addition, many programming codes for reading from fMRI scans and codes for using classification approaches are provided to manipulate fMRI data in practice. The codes, can be gathered later as a package in R. Also, there is a steadily growing interest in analyzing functional data which can often exploit Riemannian geometry. As a prototypical example of these kind of data, we will consider the functional data rising from an electroencephalography (EEG) signal in Brain-Computer interface (BCI) which translates the brain signals to the commands in the machine. It can be used for people with physical inability and movement problems or even in video games, which has had increased interest. To do that, a classification study on EEG signals has been proposed, while, the data in hand to be classified are matrices. A multiplicative algorithm (MPM), which is a fast and efficient algorithm, was developed to compute the power means for matrices which is the crucial step in our proposed approaches for classification. In addition, some simulation studies were used to examine the performance of MPM against existing algorithms. We will compare the behavior of different power means in terms of accuracy in our classifications, which had not been discovered previously. We will show that it is hard to have a guess to find the optimal power mean to have higher accuracy depending on the multivariate distribution of data available. Then, we also develop an approach, combination of power means, to have the benefit of all to improve the classification performance. All the codes related to the fast MPM algorithms and the codes for manipulating EEG signals in classification are written in MATLAB and can be developed later as a package

    A machine learning approach to taking EEG-based brain-computer interfaces out of the lab

    Get PDF
    Despite being a subject of study for almost three decades, non-invasive brain- computer interfaces (BCIs) are still trapped in the laboratory. In order to move into more common use, it is necessary to have systems that can be reliably used over time with a minimum of retraining. My research focuses on machine learning methods to minimize necessary retraining, as well as a data science approach to validate processing pipelines more robustly. Via a probabilistic transfer learning method that scales well to large amounts of data in high dimensions it is possible to reduce the amount of calibration data needed for optimal performance. However, a good model still requires reliable features that are resistant to recording artifacts. To this end we have also investigated a novel feature of the electroencephalogram which is predictive of multiple types of brain-related activity. As cognitive neuroscience literature suggests, shifts in the peak frequency of a neural oscillation – hereafter referred to as frequency modulation – can be predictive of activity in standard BCI tasks, which we validate for the first time in multiple paradigms. Finally, in order to test the robustness of our techniques, we have built a codebase for reliable comparison of pipelines across over fifteen open access EEG datasets
    corecore