
Sede Amministrativa: Università degli Studi di Padova
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Abstract

Functional magnetic resonance images (fMRI) are brain scan images by MRI machine

which are taken functionally cross the time. Several studies have investigated methods

analyzing such images (or actually the drawn data from them) and is interestingly

growing up. For examples models can predict the behaviours and actions of people based

on their brain pattern, which can be useful in many fields. We do the classification study

and prediction of fMRI data and develop some approaches and some modifications on

them which have not been used in such classification problems. The proposed approaches

were assessed by comparing the classification error rates in a real fMRI data study and

the merits of our proposed methods are shown. In addition, many programming codes

for reading from fMRI scans and codes for using classification approaches are provided

to manipulate fMRI data in practice. The codes, can be gathered later as a package in

R.

Also, there is a steadily growing interest in analyzing functional data which can often

exploit Riemannian geometry. As a prototypical example of these kind of data, we

will consider the functional data rising from an electroencephalography (EEG) signal in

Brain-Computer interface (BCI) which translates the brain signals to the commands in

the machine. It can be used for people with physical inability and movement problems

or even in video games, which has had increased interest. To do that, a classification

study on EEG signals has been proposed, while the data in hand to be classified are

matrices. A multiplicative algorithm (MPM), which is a fast and efficient algorithm,

was developed to compute the power means for matrices which is the crucial step in our

proposed approaches for classification. In addition, some simulation studies were used

to examine the performance of MPM against existing algorithms and the behavior of

different power means in terms of accuracy are compared in our classifications, which

had not been discovered previously. We will show that it is difficult to have a guess



to find the optimal power mean to have higher accuracy depending on the multivariate

distribution of available data. Then, an approach which is combination of power means

is also developed to have the benefit of all to improve the classification performance.

All the codes related to the fast MPM algorithms and the codes for manipulating EEG

signals in classification are written in MATLAB and can be developed later as a toolbox.



Sommario

Le immagini da risonanza magnetica funzionale (functional magnetic resonance image

- fMRI) sono immagini di scansioni cerebrali effettuate tramite la macchina MRI pre-

se come funzione del tempo. Negli ultimi anni sta crescendo l’interesse sull’analisi di

queste immagini, o meglio dei dati da loro estratti. L’obiettivo di questo tipo di anali-

si, applicabile in molti ambiti diversi, è quello di stimare e prevedere i comportamenti

e le azioni delle persone a partire dai loro pattern cerebrali. Il nostro lavoro si basa

sulla classificazione e previsione dei dati fMRI e sullo sviluppo di nuove tecniche che

non sono mai state applicate a questi problemi di classificazione. La validazione delle

tecniche proposte è stata effettuata tramite il confronto degli errori di misclassificazione

su dati fMRI provenienti da studi reali. Inoltre, vengono forniti i codici di lettura dalle

immagini fMRI ed quelli per applicare le tecniche di classificazione proposte per la ma-

nipolazione dei dati fMRI. In futuro i codici potranno essere organizzati per la creazione

di un pacchetto R.

L’interesse nell’analisi di dati funzionali che utilizzano la geometria riemanniana è in

costante crescita. Un prototipo di questi dati consiste nei dati funzionali generati dal

segnale EEG nell’interfaccia Brain-Computer (BCI), la quale traduce i segnali cerebrali

ai comandi nella macchina. Il BCI può essere utilizzato da persone con inabilità fisi-

che e problemi motori o persino, con crescente interesse, nell’ambito dei video giochi.

A questo scopo, abbiamo proposto uno studio di classificazione dei segnali EEG i cui

dati sono raccolti in matrici. Abbiamo sviluppato un algoritmo moltiplicativo (MPM)

veloce ed efficiente nel calcolare le medie di potenza di matrici, punto cruciale dei me-

todi proposti per la classificazione. In alcuni studi di simulazione abbiamo esaminato

le performance del MPM rispetto a quelle di algoritmi già esistenti. Abbiamo inoltre

comparato il coportamento di diverse medie di potenza in termini di accuratezza delle

classificazioni, cosa che non era stato mai fatta fino ad ora. Abbiamo verificato la dif-

ficolt di scegliere la potenza associata con la migliore accuratezza del modello poichè



questa dipende dalla distribuzione multivariata dei dati. Inoltre abbiamo sviluppato

un approccio basato sulla combinazione di medie di potenza per poter beneficiare e per

migliorare le performance di classificazione. Tutti i codici relativi all’ algoritmo MPM

veloce e quelli per la manipolazione dei segnali EEG nella classificazione sono scritti in

MATLAB e possono essere sviluppati successivamente per la creazione di un pacchetto.





To my dad and my mom
my uniformly most powerful tests.





Acknowledgements

First, I would like to give my special thanks to whom contributed to helping me grow

up: my dad and mom. However, I have lost the warm support of my father over the

past six years, but, if I did not have encouragement from my mom to start this difficult

period of my life as a PhD, I would not have been able to be at this position, almost

at the graduation. Beside them, I was the last kid between five more brothers and one

lovely sister. During whole of my educational and research life, I always had one of them

as an expert of my problems beside myself to help me solve my homework and teach

me what I did not understand in lectures. Now, they have earned their PhD and they

are professors in universities in different fields such as biology, mechanical engineering,

electrical engineering, statistics, religious studies and genetic engineering! I am the last

chain of this long queue.

Of cours, Livio has played a major role in guiding me in this work. This was my first

experience working with a non-Iranian supervisor, and I was very lucky to meet him.

He is patient, smart, always full of ideas and working beside you! not behind!

I also would like to thank Marco Congedo and Bruno Scarpa. In my productive 3-month

study visit in Grenoble in France, Marco really helped to open my eyes to the correct

method of publishing papers in scientific world and I am still learning from those lessons.

Bruno was like a father in research life, to set you in the right way to be efficient in

the work. I don’t remember I left his office without finding the idea for my problems;

never! I am also grateful for my brother Mahmood, who is now an associate professor

in statistics in Iran. Regardless of his own busy schedule, he was always available for

me and greatly helped me in my PhD the past three years. I would also like to show

my appreciation for Monica and Nicola, our PhD coordinators. I always found them as

a strong supporter of us, and I always felt free to share all my concerns with them.

I want to give my special thanks to Patrizia Piacentini, the PhD secretary in our de-

partment, who is a very kind and patient lady who was always helping me to overcome

my concerns, even with entrance visa problems, before we met in Padova. Lastly, I

would like to thank my lovely colleagues in XXX cycle , which is where I had my best

experiences and developed many wonder friendships.







Contents

List of Figures xv

List of Tables xx

Introduction 1

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Main contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Functional Magnetic Resonance Image Analysis 11

1.1 Introduction to fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Procrustes Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.0.1 Uniqueness of T . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Hyperliagnment Approach . . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Generalized Procrustes (GP) . . . . . . . . . . . . . . . . . . . . . 16

1.3.3 Modification on GP . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Classifier Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Lasso, Ridge and Elastic net . . . . . . . . . . . . . . . . . . . . . 20

1.5 Real data study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Electroencephalographic Signals 25

2.1 Introduction to EEG signals . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 EEG Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Covariance Matrix for Motor Imagery (MI) . . . . . . . . . . . . . 27

2.2.2 Covariance Matrix for Event-Related Potentials (ERPs) case . . . 27

2.3 Fixed point algorithms for estimating power means of positive definite
matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 The Manifold of Symmetric Positive-Definite Matrices . . . . . . . 32

2.3.2.1 The Geodesic . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2.2 The Distance . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3 Means of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3.1 Frechet’s variational approach . . . . . . . . . . . . . . . 34

xi



xii Contents

2.3.3.2 The Geometric Mean of a Matrix Set . . . . . . . . . . . 35

2.3.3.3 Power Mean . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.4 Algorithm For Power Means . . . . . . . . . . . . . . . . . . . . . 37

2.3.4.1 A General Multiplicative Fixed-Point Algorithm . . . . . 38

2.3.4.2 Geometric Mean Approximation by Power Means . . . . 41

2.3.5 Studies With Simulated Data . . . . . . . . . . . . . . . . . . . . 41

2.3.5.1 Simulated Data Model . . . . . . . . . . . . . . . . . . . 41

2.3.5.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.6 Studies with Real Data . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.6.1 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.7 Mean fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Statistical Combinations of Power Means: Classification Study on Func-
tional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.2 Classification Methodologies . . . . . . . . . . . . . . . . . . . . . 51

2.4.2.1 MDM (minimum distance to mean) Classification . . . . 51

2.4.2.2 Application to Motorimagery data . . . . . . . . . . . . 52

2.4.2.3 Combination of Power means . . . . . . . . . . . . . . . 53

2.4.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.3.1 Application to P300 data . . . . . . . . . . . . . . . . . 54

2.4.3.2 Motorimagery data . . . . . . . . . . . . . . . . . . . . . 57

2.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Appendix 61

Bibliography 69







List of Figures

1 fMRI (left) and MRI (right) images of the brain of a case study. . . . . . 4

2 Schematic of voxels (over time) in a brain. . . . . . . . . . . . . . . . . . 4

3 Time series of computed BOLD for voxels of a fMRI over a segment of
time for a case study brain. . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 EEG signals as a trail in a case study (Congedo et al., 2013). . . . . . . . 7

5 Classification accuracy on 9 subjects for the classes 3 vs 4 in Motorim-
agery task using MDM algorithm for the training and test sets in size
of 288 trials. Power means with p ∈ {±1,±0.75,±0.50,±0.25, 0} are
estimated by MPM algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 An fMRI image with yellow areas showing increased activity compared
with a control condition. (http://cnx.org/contents/FPtK1zmh@8.25:fEI3C8Ot@10/Preface) 12

1.2 Schematic of GP (Crosilla and Beinat, 2002) . . . . . . . . . . . . . . . . 17

1.3 The constraint region for ridge regression (right side) is the disk β2
1 +

β2
2 ≤ t, while the constraint region for lasso is the diamond (left side)
|β1| + |β2| ≤ t. Both methods find the first point where the elliptical
contours hit the constraint region. Unlike the disk, the diamond has
corners; if the solution occurs at a corner, then it has one parameter βj
equal to zero. Although it is not visually clear, the elastic net has sharp
(non-differentiable) corners (Hastie et al., 2008) . . . . . . . . . . . . . . 21

1.4 Box plot for total errors in 100 times re-sampling: raw data, hyperalign-
ment, GP and GPQ methods. . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 AUC plots for GPQ and Raw approaches. . . . . . . . . . . . . . . . . . 23

xv



xvi List of Figures

2.1 Schematic representation of the SPD manifold, the geometric mean G of
two points and the tangent space at G. Consider two points (e.g., two
covariance matrices) C1 and C2 on M. The geometric mean of these
points is the midpoint on the geodesic connecting C1 and C2, i.e., it
minimizes the sum of the two squared distances δ1(C1, G) + δ2(C2, G).
Now construct the tangent space TGM at G. There exists one and only
one tangent vector ζ1 (respectively ζ2) departing from G and arriving
at the projection of C1 (respectively C2) from the manifold onto the
tangent space; we see that the geodesics onM through G are transformed
into straight lines in the tangent space and that therein distances are
mapped logarithmically; the map from the manifold (symmetric positive
definite matrices S++) to the tangent space (symmetric matrices S) is of
logarithmic nature. Furthermore, the inverse map from the tangent space
to the manifold is of exponential nature. See Bhatia (2009) for details on
these maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 The schematic procedure of estimating power means in (2.22). Suppose
P0 as the initial value for this iterative equation. By fixing the order
of power mean as p, we are at the point gpk = P0#pCk on the geodesic
connecting Ck and P0 for k = 1, . . . , K. Then, the arithmetic mean
of gpk’s is computed and it is considered as the new starting point in
(2.22). Again, the arithmetic mean of new gpk’s in the second iteration is
calculated and this procedure continues till the power mean is obtained
up to a given precision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 The φ function of |p| (2.30) comprises a boomerang-shaped area enclosed
by two hyperbolas: the upper limit is the unit hyperbola (ε = 1) and the
other hyperbola obtained for ε = 2 is the lower limit. This area delimits
an acceptable range of φ values for any given |p|. . . . . . . . . . . . . . . 40

2.4 Typical convergence behavior (on abscissa, the number of iterations, and
on the ordinate, the convergence as defined in (2.34)) on simulated data
for the gradient descent algorithm for estimating the geometric mean
(GDGM), naive fixed point power mean with p = 0.5 and the MDM al-
gorithm with p = {0.5, 0.001}, for N = 20 (dimension of input matrices),
K = 100 (number of input matrices) and SNR = {100, 10, 1, 0.1} (2.32). . 44

2.5 main effects average (bars) and sd (lines) number of iterations obtained
across 50 repetitions for N = {10, 25, 50}, K = {10, 100, 500} and SNR=
{100, 1, 0.01} for the MPM algorithm with p = {0.5, 0.25, 0.01}, the naive
algorithm with p = {0.5, 0.01} and the gradient descent algorithm for
estimating the geometric mean (GDGM) . . . . . . . . . . . . . . . . . . 45

2.6 Relative error to the true geometric mean obtained with the GDGM
algorithm, MPM with p = 0.1, MPM with p = 0.01 and as the midpoint
of the geodesic joining the estimations obtained by MPM with p = ±0.01
(Section 2.3.4). Left: N = 20, K = 5. Right: N = 20, K = 80. In both
plots, the horizontal axis is the SNR sampling the range {10−3, . . . , 103}. 46



List of Figures xvii

2.7 A: from left to right and from top to bottom, AUC (disks) ± one stan-
dard deviation (vertical bars) obtained for 38 healthy subjects sorted by
decreasing value of maximal AUC obtained across a sampling of power
means in the interval p = {−1, . . . , 1}. B: scatter plot and regression
line of the maximal AUC and the value of p allowing the maximal value.
Each disk represents a subject. . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8 TraDe plot obtained with N=10, K=10 and SNR=1 for power means cor-
responding to p = 1 (arithmetic), 0.5, 0.1, 0 (geometric), −0.1,−0.5 and
−1 (harmonic). The relationship between the trace and the determinant
of power means is log-log linear. . . . . . . . . . . . . . . . . . . . . . . . 49

2.9 Schematic of MDM. C is a new observation (matrix) and M1 and M2 are
the center of masses in two different groups (Congedo et al., 2013). . . . 51

2.10 Classification accuracy on 9 subjects for the classes 3 vs 4 in Motorim-
agery task using MDM algorithm for the training and test sets in size
of 288 trials. Power means with p ∈ {±1,±0.75,±0.50,±0.25, 0} were
estimated by MPM algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 53

2.11 Accuracy of classification on 19 subjects in P300 data with n = 25 us-
ing power means by MPM and MDM algorithms. The solid line shows
the average accuracy over M = 50 replication of combination approach
bounded by 1 standard deviation by dashed line, and + shows the av-
erage accuracy classification over M = 50 repeats using several power
means with P = {±1,±0.75,±0.5,±0.25, 0} bounded by the area of 1
standard deviation. The last plot on the right bottom side shows the
average accuracy over all subjects. . . . . . . . . . . . . . . . . . . . . . . 56

2.12 Average accuracy of classification for class 3 vs 4 on 9 subjects in Mo-
torimagery data for n = 50 (576 trials) using power means by MPM and
MDM algorithms. The solid line shows the average accuracy over M = 50
replication of combination approach bounded by 1 standard deviation by
dashed line. The + shows the average accuracy classification over M = 50
repeats using several power means with P = {±1,±0.75,±0.5,±0.25, 0}
bounded by the area of 1 standard deviation. The last plot on the right
bottom side shows the average accuracy over all subjects. . . . . . . . . . 58

.1 Average accuracy of classification for class 1 vs 2 on 9 subjects in Mo-
torimagery data for n = 50 (576 trials) using power means by MPM and
MDM algorithms. The solid line shows the average accuracy over M = 50
replication of combination approach bounded by 1 standard deviation by
dashed line, and + shows the average accuracy classification over M = 50
repeats using several power means with P = {±1,±0.75,±0.5,±0.25, 0}
bounded by the area of 1 standard deviation. The last plot on the right
bottom side shows the average accuracy over all subjects. . . . . . . . . . 61



xviii List of Figures

.2 Average accuracy of classification for class 1 vs 3 on 9 subjects in mo-
torimagery data for n = 50 (576 trials) using power means by MPM and
MDM algorithms. The solid line shows the average accuracy over M = 50
replication of combination approach bounded by 1 standard deviation by
dashed line, and + shows the average accuracy classification over M = 50
repeats using several power means with P = {±1,±0.75,±0.5,±0.25, 0}
bounded by the area of 1 standard deviation. The last plot on the right
bottom side shows the average accuracy over all subjects. . . . . . . . . . 62

.3 Average accuracy of classification for class 1 vs 4 on 9 subjects in mo-
torimagery data for n = 50 (576 trials) using power means by MPM and
MDM algorithms. The solid line shows the average accuracy over M = 50
replication of combination approach bounded by 1 standard deviation by
dashed line, and + shows the average accuracy classification over M = 50
repeats using several power means with P = {±1,±0.75,±0.5,±0.25, 0}
bounded by the area of 1 standard deviation. The last plot on the right
bottom side shows the average accuracy over all subjects. . . . . . . . . . 63

.4 Average accuracy of classification for class 2 vs 3 on 9 subjects in mo-
torimagery data for n = 50 (576 trials) using power means by MPM and
MDM algorithms. The solid line shows the average accuracy over M = 50
replication of combination approach bounded by 1 standard deviation by
dashed line, and + shows the average accuracy classification over M = 50
repeats using several power means with P = {±1,±0.75,±0.5,±0.25, 0}
bounded by the area of 1 standard deviation. The last plot on the right
bottom side shows the average accuracy over all subjects. . . . . . . . . . 64

.5 Average accuracy of classification for class 2 vs 4 on 9 subjects in mo-
torimagery data for n = 50 (576 trials) using power means by MPM and
MDM algorithms. The solid line shows the average accuracy over M = 50
replication of combination approach bounded by 1 standard deviation by
dashed line, and + shows the average accuracy classification over M = 50
repeats using several power means with P = {±1,±0.75,±0.5,±0.25, 0}
bounded by the area of 1 standard deviation. The last plot on the right
bottom side shows the average accuracy over all subjects. . . . . . . . . . 65





xx List of Tables



List of Tables

1.1 Average (standard deviation) of total error and AUC on test set of size
40 repeated in 100 times. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Minimum distance to mean (MDM) algorithm for classification using
power means of SPD matrices. . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Algorithm to do classification by combination approach with M number
of cross-validation using MPM and MDM. . . . . . . . . . . . . . . . . . 55

2.3 Accuracy of classification with n = 25 on 19 subjects using geometric
mean, best p and the combination approach with M = 50. . . . . . . . . 57

2.4 Accuracy of classification with n = 50 on 9 subjects class 3 vs 4 Motorim-
agery data using geometric mean, best p and combination approach with
M = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

.1 Accuracy of classification with n = 50 on 9 subjects class 1 vs 2 motorim-
agery data using geometric mean, best p and combination approach with
M = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

.2 Paired t-test for the accuracy of classification with n = 50 on 9 subjects
class 1 vs 2 motoimagery data using geometric mean, best p and combi-
nation approach with M = 50. Each cell shows the decision about null
hypothesis which is mean equality of two groups. . . . . . . . . . . . . . 62

.3 Accuracy of classification with n = 50 on 9 subjects class 1 vs 3 motorim-
agery data using geometric mean, best p and combination approach with
M = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

.4 Paired t-test for the accuracy of classification with n = 50 on 9 subjects
class 1 vs 3 motorimagery data using geometric mean, best p and com-
bination approach with M = 50. Each cell shows the decision about null
hypothesis which is mean equality of two groups. . . . . . . . . . . . . . 63

.5 Accuracy of classification with n = 50 on 9 subjects class 1 vs 4 motorim-
agery data using geometric mean, best p and combination approach with
M = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

.6 Paired t-test for the accuracy of classification with n = 50 on 9 subjects
class 1 vs 4 motorimagery data using geometric mean, best p and com-
bination approach with M = 50. Each cell shows the decision about null
hypothesis which is mean equality of two groups. . . . . . . . . . . . . . 64

.7 Accuracy of classification with n = 50 on 9 subjects class 2 vs 3 motorim-
agery data using geometric mean, best p and combination approach with
M = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xxi



xxii List of Tables

.8 Paired t-test for the accuracy of classification with n = 50 on 9 subjects
class 2 vs 3 motorimagery data using geometric mean, best p and com-
bination approach with M = 50. Each cell shows the decision about null
hypothesis which is mean equality of two groups. . . . . . . . . . . . . . 65

.9 Accuracy of classification with n = 50 on 9 subjects class 2 vs 4 motorim-
agery data using geometric mean, best p and combination approach with
M = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

.10 Paired t-test for the accuracy of classification with n = 50 on 9 subjects
class 2 vs 4 motorimagery data using geometric mean, best p and com-
bination approach with M = 50. Each cell shows the decision about null
hypothesis which is mean equality of two groups. . . . . . . . . . . . . . 66







List of Tables 1





Introduction

Overview

The digital era that has begun in the last decades stimulates the production of a

paramount quantity of data. Because of this revolution, the work of the statisticians

changed due to the economic and powerful tools that she/he can use. Most of all, the

work of statistics has changed because of the kind of data that is requested to analyzed.

This does not simply mean the well-known characteristic of the new-generation dataset

that are usually ”big”. The ”big data” issue is well recognised by the statistics commu-

nity, and many efforts have been made to study such problems. More interestingly, the

digital era stimulates the production of more complex data. For example, functional

data is among the most well formalized and studied one. Functional data is very com-

mon in various fields, like, signals, stock market, imaging, traffic, internet, etc. Such

amount of data, stimulates the research in the geometry and statistics fields. However,

in many practical analyses that use statistical tools, researchers are encountering with

a kind of huge amount of data which is called big data in scientific term in the sense

that the number of variables are big, much larger than the observations.

Functional magnetic resonance images (fMRI) are the brain scan images by MRI ma-

chine which are taken functionally over the time. Analyzing such images (or actually

the drawn data from) is interestingly growing up. For example, studies have developed

models capable of modeling and predicting people behaviors and actions based on their

brain pattern, which can be useful in many fields. During a fMRI experiment, a series

of brain images are taken while the subject is doing a task in specific time segments (see

Figure 1). Each image comprises roughly 100,000 voxels, i.e., a cubic unit in the 3D

brain volume, as shown in Figure 2. Each brain volume comprises three slices: coronal,

sagittal, and axial. In addition, each voxel has its own time series for each subject, as

shown in Figure 3.

3
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Figure 1: fMRI (left) and MRI (right) images of the brain of a case study.

Brain imaging can be used to show different type of issues by using captured neuron

signals. Typically, there are two major issues in studying brain images: spacial resolution

which can be used to make inference on different parts of brain which are activated

during a stimuli in a fix time point and temporal resolution which is related to images

on different time points during a stimuli. The latter is our main focus in this research.

Facing a stimuli, neurons in different voxels are active; consequently, they access to

oxygen. BOLD (Blood Oxygenation Level Dependent) is the usual method used to

interpret neuronal activities and it measures the ratio of oxygenated to deoxygenated

hemoglobin in the blood. Note that it does not directly measure neuronal activity.

Figure 2: Schematic of voxels (over time) in a brain.
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Figure 3: Time series of computed BOLD for voxels of a fMRI over a segment of
time for a case study brain.

An fMRI experiment may contain many subjects while there are different runs for a

specific stimuli. Moreover, each run consists of a series of brain volumes which are made

up by multiple slices, and each slice contains many voxels. Consequently, fMRI data

is a big data problem. There are many studies on fMRI in the literature of the differ-

ent science fields. For example Spiridon and Kanwisher (2002), Cox and Savoy (2003),

Tsao et al. (2006), Hung et al. (2005), Kiani et al. (2007) and Brants et al. (2011)

studied the multivariate pattern analysis of brain images (fMRI) of how to categorize

representation of ventral temporal cortex in the brain. More references about the other

aspects on this topic might be found in Haxby et al. (2011) who proposed a so-called

method, hyperalignment, to study the behavior of fMRI during some stimuli from a

statistical perspective of view. The first chapter of this thesis proposes some predictions

on the brain behaviors under stimuli based on the data rising from fMRI in the high

dimensional perspective. Consequently, some classification techniques and approaches

are developed to make the classifier model more powerful to distinguish different groups

within a possible minor error rate. In this way, Procrustean problem are used to reach

our goal. Procrustes, basically, is a least-square problem to transform a given matrix

A to a given matrix B by T such that trace(ETE) is minimized and T TT = I, where

E = B−AT (Schönemann, 1966). This concept is discussed in greater detail in section

1.3. Procrustean problem is used in generalized Procrustean (GP) analysis (Devrim,

2003). GP finds a transformation matrix for each matrix data point to align them to

the true and unknown common coordinates such that all the errors together are min-

imized, and this is shown in Section 1.3.2. An extension of the GP approach is also

proposed which enhances the classification accuracy. Then, by doing statistical classifi-

cation using the logistic regression by Lasso and Elastic net (see section 1.4.1) one can

find the involved part of the brain of new subject during a stimulus and re-obtain the

brain image to see those parts in the brain. Our results show that the accuracy of our

classification approach is higher than existing ones. Moreover, by using our method, the

brain image (the fMRI) can be captured again, ignoring the uninvolved regions during
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the stimuli. Whereas, this is the missing link in the fMRI classification methods previ-

ously presented. Specifically, the limitation of GP is that the solution is not unique. For

example, given one solution (map), any possible reshafling of its transformation matrix

columns (voxels), i.e. multiplying T by any orthogonal matrix Q is still a valid solution

(see 1.3.3). Therefore, the spatial coherence is lost. On the other side, the sequential

application of Procrustes rotation does not reach the global minimum imposed by GP.

As a matter of fact, to the best of our knowledge, all the proposed methods rely on

sequential application of Procrustes rotation (e.g. Haxby et al. (2011)), while GP has

been never used. In this thesis, GP is applied and an additional constrain is imposed

that makes the solution unique (sections 1.3.2 and 1.3.3). The constrain is defined to

enhance the interpretability of the solution (map/image). As a further advantage, the

application to real data shows that the proposed method also enhances the classification

accuracy.

Electroencephalogram (EEG)

Manipulating functional data in machine learning studies is highlighted in many prac-

tical researches, increasingly as big data problems, such as brain-computer interface

(BCI). The main goal of BCI is translating brain signals to commands in the machine.

It can be used for people with physical inability and movement problems and has at-

tracted increased interest for use in video games (Barachant et al., 2012). EEG signals

which show the brain activity are the main focused data in BCI. EEG often obtained on

short-time segments called trials such that each of them can be presented as a matrix

with number of electrodes in the row and the epoch (time period) duration in the col-

umn (Barachant et al., 2013); see Figure 4. Electroencephalographic data, with number

of electrodes 19–64, number of time points between 200 and 1000 and more than 500

trails for one subject are treated as a kind of big data in statistics (Congedo, 2013).

In BCI, the brain signals need to be classified depending on what the subject imagines

or wants to do. Thus, a big data classification problem is encountered, and the clas-

sification problem of functional data rising from EEG signals in BCI is considered. In

brief, each observation to be classified is the brain activity (i.e. multiple electrodes)

over a fixed period of time. Therefore, each observation is a matrix. In the rest of the

thesis, we make use of such setting as leading example (see Figure 2.10) to present the

classification problem and the method proposed in this work. More details about the

nature of the data are given in sub-section 2.1.1.
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Figure 4: EEG signals as a trail in a case study (Congedo et al., 2013).

While searching for appropriate models to describe and analyze functional data, the

concept of covariance matrix sometimes is raised naturally or can be driven from the raw

data depending on the problem in hand (Congedo et al., 2013). Thus, the classification

problem moves from observed covariance matrices to sample covariance matrices (i.e.

symmetric positive definite - SPD - matrices). Statistical analysis of covariance matrices

are arised in many applications as well as in BCI classification as a functional data

problem. Estimating the average of available sample covariance matrices is a crucial step

in such classification problems. Assuming m random vector samples (V1i, . . . , Vni), i =

1, . . . ,m; from Wishart distribution, causes to the arithmetic mean as the estimation

of population mean, which coincides with the MLE. This estimator can be presented

using Euclidean distance in Frechet varational approach (see Section 2.3.3.1). However,

working on the sample covariance matrices, the Euclidean space does not provide optimal

properties. Skovgaard (1984) shows that when the data arise from a multivariate normal

distribution, the Riemannian mean of SPD matrices provides some optimal properties.

We consider the Riemannian manifold of SPD matrices. This manifold in coincidence

with Riemannian geometry techniques are well adopted in BCI classification, and they

provide a rich framework to manipulate in this context (Barachant et al., 2012). In

addition, estimating means of the data points lying on the Riemannian manifold of SPD

matrices has proved of great utility in applications requiring interpolation, extrapolation,

smoothing, signal detection and classification (Barachant et al., 2012; Congedo et al.,

2017). Lim and Pálfia (2012) introduced the concept of power means for SPD matrices

such as real positive numbers case. As an extention of the univariate case, power means
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with exponent p in the interval [−1, 1] interpolate in between the harmonic mean when

p = −1 and the arithmetic mean when p = 1, while the geometric (Cartan or Karcher)

mean arises when p → 0 (Congedo et al., 2017). to compute the power means, a

general fixed point algorithm (MPM) is provided, and its convergence rate for p = ±0.5

deteriorates very little with the number and dimension of points given as input. Along

the whole continuum, MPM is also robust with respect to the dispersion of the points

on the manifold (noise) which is much more so than the gradient descent algorithm

(Lim and Pálfia, 2012) usually employed to estimate the geometric mean. Thus, MPM

is an efficient algorithm for the whole family of power means, including the geometric

mean, which by MPM can be approximated with a desired precision by interpolating two

solutions obtained with a small ±p value. Another motivation to use power means and

their combinations is the convergence problems of available algorithms to estimate the

geometric mean. The most popular algorithm for computing the geometric mean, which

is the one currently employed in most applications, is a Riemannian gradient descent

flow with fixed step size Afsari et al. (2013); Jeuris et al. (2012). The convergence

rate of this algorithm deteriorates rapidly as the dispersion of points on the manifold

decreases and it does not converge at all in some cases. The algorithm proposed in

Zhang (2014) has high complexity per iteration and slow convergence rate and for a

review of available algorithms for estimating the geometric mean see Congedo et al.

(2015); Jeuris et al. (2012). A multiplicative algoithm is proposed for for estimating

power means (MPM), which it can be used to estimate the geometric mean, as well. For

a complete discussion on the benefits of MPM compared to other available algorithms

in different cases, see Congedo et al. (2017). Geometric mean is the most used one

in practice for such classifications so far, while, we will see that it might not be the

best estimator of the mean population depending on the data distribution. Indeed, this

optimality strongly relies on the distributional assumption that cannot be verified in

practise (specially in the multivariate framework). To provide an intuition of this fact,

a simple example is drawn from the univariate case. The arithmetic mean is the best

estimator of the mean population when the data follow a normal distribution. However

if, for example, the data were from a lognormal distribution i.e. X1, . . . , Xn ∼ LG(µ, σ2),

the MLE of parameter eµ is the geometric mean of the observation (
∏n

i=1Xi)
1/n and not

the arithmetic mean. This has direct consequences on current classification problems:

the centers of the classes should be the geometric mean and the distance to be used is

euclidean with log transformed data. When this example is extended to the multivariate

setting, the lack of adequate tools to judge the fit of the data to a given multivariate

distribution makes the problem even more difficult to be dealt. The analysis of the real
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data of our motivating example (Figure 5) shows that different subjects present different

best (in terms of accurcy in the classification) power means and that a pattern to select

the optimal power mean among subjects cannot be drawn. After providing an adequate

theoretical background, sub-section 2.4.2.2 (and Figure 5) presents with better details

of these considerations.

Figure 5: Classification accuracy on 9 subjects for the classes 3 vs 4 in Motorimagery
task using MDM algorithm for the training and test sets in size of 288 trials. Power
means with p ∈ {±1,±0.75,±0.50,±0.25, 0} are estimated by MPM algorithm.

Main contributions of the thesis

For fMRI, by using the proposed approach to classify and predict brain activity for

a new case in the presence of a stimuli, more powerful performance is obtained com-

pared to other approaches in the sense that a lower misclassification errors obtain using

the proposed approach. Furthermore, some proposed approaches (i.e. generalized Pro-

crustes and its modification) have not been used so far in such fMRI classification study,

however some modifications that enhance the accuracy of classification are supplied. In

addition, with our method, after classifying the brain fMRI of a new subject to the true

class, one will be able to re-capture the brain images to see involved parts. It is notewor-

thy, by previous approaches that there might be several brain images that minimise the

error of the orthogonal transformation in Procrustes problem. This is very important

from neuroscience point of view and it can be used in any problems that predict brains
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are important. Many programming codes for reading from fMRI scans and codes for

using classification approaches are provided to manipulate the fMRI data in practice.

The codes are developed in R and are available on request to the author and can be

gathered later as a package in R.

In addition, a classification study is proposed on EEG signals while the available data

are matrices. In addition, a multiplicative algorithm (MPM) which is a fast and efficient

algorithm was developed to compute the power means (for a set of values of parameter

p in section 2.3.3) for matrices which is the crucial step in our proposed approaches

for classification. A motivation to use power means is the convergence problems of

available algorithms for estimating the geometric mean. In some simulation studies ,

the performance of MPM is examined and compared against existing algorithms. In

addition, the behavior of different power means are compared in terms of accuracy in

our classifications, which has not been discovered so far in such studies. We will show

that it is difficult to have a guess to find the optimal power mean that provides the

highest accuracy depending on the multivariate distribution of data in hand. Then,

an approach that is a combination of power means was developed to have the benefit

of all to improve the classification performance. As a result, the combination method

is shown to be a very general approach and to be more powerful for different sample

sizes of the training set and an accuracy almost close to the accuracy of optimal power

mean can be obtained while a pattern to select the optimal power mean among subjects

cannot be drawn in advance. All the codes related to the fast MPM algorithms and the

codes for manipulating EEG signals in classification are written in MATLAB and can

be later developed as a package.

Chapter 1 explains the classification and analysis related to fMRI and chapter 2 dis-

cusses the analysis and classification of EEG signals in a BCI problem. The chapter

contains two main sections. Section 2.3 explains some basic details is needed to know

to work with EEG data and some algorithms that they will be used in our classifica-

tion approaches, and section 2.4 is for developing our classification approaches on EEG

signals.



Chapter 1

Functional Magnetic Resonance

Image Analysis

1.1 Introduction to fMRI

Functional magnetic resonance imaging (fMRI) showing the brain activity , and it

focuses on the detected activities related to the blood flow. This measurement is based

on the fact that cerebral blood flow and neuronal activation are associated. As a matter

of fact when a region in the brain is working, blood flow to that area also increases.

(Huettel et al., 2004; Logothetis et al., 2001). This measurement can be done, as it is

so far, based on the blood oxygen level dependence which called in brief BOLD. Due

to the energy used by brain cells, by imaging the change in blood flow (hemodynamic

response), this is a type of specialized brain and body scan used to map neural activity

(but not directly) in the brain or spinal cord of humans or other animals. BOLD

measure is quite often took down by noise from various sources; therefore, statistical

tools are needed to extract the underlying signal. In practice, the brain activation can

be graphically captured by color-coding the strength of activation across the brain or

the specific region studied (Figure 1.1). The technique can localize activity to within

millimeters and using standard techniques, no better than within a window of a few

seconds. fMRI is used more in the research world; however, it is used to a lesser extent,

in the clinical world. Newer methods which improve both spatial and time resolution

are being researched, and these largely use biomarkers other than the BOLD signal

(Langleben and Moriarty, 2013), because the brain does not store glucose, its primary

source of energy. When neurons become active, getting them back to their original

state of polarisation requires actively pumping ions across the neuronal cell membranes

in both directions. The energy for those ion pumps is mainly produced from glucose.

11
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Figure 1.1: An fMRI image with yellow areas show-
ing increased activity compared with a control condition.
(http://cnx.org/contents/FPtK1zmh@8.25:fEI3C8Ot@10/Preface)

More blood flows in to transport more glucose, also bringing in more oxygen in the form

of oxygenated hemoglobin molecules in red blood cells. This is from both a higher rate

of blood flow and an expansion of blood vessels. Oxygen is carried by the hemoglobin

molecule in red blood cells. The blood-flow change is localized to within 2 or 3 mm of

where the neural activity is, and the brought-in oxygen is usually more than the oxygen

consumed in burning glucose (it is not yet settled whether most glucose consumption

is oxidative), and this causes a net decrease in deoxygenated hemoglobin (dHb) in the

blood vessels of that area of the brain (Huettel et al., 2004). When neurons become

active, local blood flow to those brain regions increases, and oxygen-rich (oxygenated)

blood displaces oxygen-depleted (deoxygenated) blood around 2 seconds later. This

rises to a peak over 46 seconds before falling back to the original level (and typically

undershooting slightly).

1.2 Data Structure

fMRI are obtained cross the time during a specific task (stimuli). Furthermore, each

voxel has its own activity during the stimulus which is measured by BOLD. Consider

the generic data model X ∈ Rt×p where t indicates the time points and p is the number

of voxels. Due to the huge number of voxels, each matrix X uses a large part of RAM

(or hard disk) while manipulating the data in the computer such as doing any kind of

algebra operation on the matrices. Based on our experience, this is sometimes around 15

GB which is too much only for doing operation on a single matrix. Instead, the number

of columns is reduced by averaging the more correlated voxels in a process which we

call pixelizing. Pixelizing can be performed up to have a certain number of voxels which
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can be used in practice. All the related codes for pixelizing and also for reading fMRI

scans are written in R and are easy to use.

1.3 Procrustes Approach

The Procrustes problem is basically a mathematical problem to transform a given

matrix A to a given matrix B by T such that tr(ETE) minimized and T T = I, where

E = B − AT . In practice, A is usually the currently observed matrix, and T is calcu-

lated. Schönemann (1966) proposed a general solution for this problem. Mathematically

speaking, it is a least-square problem to find a transformation matrix T such that,

AT = B + E (1.1)

with respect to

tr(ETE) minimized (1.2)

and

T TT = I. (1.3)

Both A and B are in the same dimension and not necessarily square. Mathematically,

(1.1) introduces the main focused model, (1.3) is the side condition and (1.2) is our

criterion in this least square problem. To solve the model in (1.1), the Equation (1.2)

can be written as (Schönemann, 1966),

H1 = tr(ETE) = tr(T TATAT − 2T TATB +BTB). (1.4)

Also, by reforming the side condition (1.3), like

H2 = tr
(
L
(
T TT − I

))
, (1.5)

where L is the matrix of Lagrange coefficients, the usual Lagrange optimization problem

in matrix form is established

H = H1 +H2. (1.6)

Now, the task is partial derivating H with respect to the T (in a matrix form; see Dwyer

and MacPhail (1948)) and then find the extremum values:

∂H

∂T
= 2ATAT − 2ATB + T (L+ LT ). (1.7)
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For more simplicity, in (1.7), set P = ATA, S = ATB and Q = 2(LT +L), so, by setting

(1.7) to zero, the following equation must be solved to obtain the extremum of H1,

S = PT + TQ, (1.8)

Q = T TS − T TPT. (1.9)

It is quite clear that P and Q are symmetric matrices. Therefore, in (1.9), T TPT and

T TS are held symmetric; i.e.

T TS = STT (1.10)

The fact that T is orthonormal (1.3) and using (1.10) leads to obtain S = TSTT and

consequently

SST = TSTST T . (1.11)

As Schönemann (1966) mentioned, from now we work on the known symmetric matrices

SST and STS which have the same spectral decomposition (latent roots); (Schönemann

et al., 1965)). Therefore, consider the following spectral decomposition

STS = V DV T , (1.12)

SST = WDW T , (1.13)

where W and V are the corresponding matrix of eigenvectors and D is a diagonal matrix

of eigenvalues. It is well known that W TW = WW T = V TV = V V T = I. Starting

from (1.11), one obtains

WDW T = TV DV TT T , (1.14)

which leads to W = TV and then, consequently,

T = WV T , (1.15)

showing that the transformation T minimizes (1.2).

1.3.0.1 Uniqueness of T

The Eckart-Young matrix decomposition (Eckart and Young, 1936) can help to show

the uniqueness of T . Some more discussions on this decomposition in approaches and

usages can be found in Johnson (1963) and Schönemann et al. (1965). In particular,
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considering (1.4) and (1.15), we have

H1 = tr(ETE) = tr(T TPT − 2T TS +BTB) (1.16)

= tr(P +BTB)− 2tr(T TS), (1.17)

the latter equation is due to the orthogonality of T . The scalar ν can be defined as the

following,

ν = tr(T TS) = tr(VW TS) (1.18)

= tr(VW TWD1/2V T ) (1.19)

= tr(WW TD1/2V TV ) (1.20)

= tr(D1/2), (1.21)

which the last equality is possible by cyclic permutation inside the trace function, since

trace function is invariant under cyclic permutations of input matrices. In group theory,

a cyclic permutation is a permutation of the elements of some set x which maps the

elements of some subset s of x to each other in a cyclic fashion that starts permutation

from an element and finishes the permutation to it , while fixing all other elements

of x (that is, mapping to themselves). If s has k elements, the cycle is called a k-

cycle. D is already introduced in (1.11). Equation (1.17) shows that minimizing H1 is

equivalent to maximizing ν. Therefore, ν is maximized if all diagonal elements in D1/2

are non-negative. Once they are chosen, the orientation of W can be obtained by

S = WD1/2V T , (1.22)

which is the Eckart-Young decomposition and it is used in the (1.18). This guarantees

the uniqueness of T in the case of distinct eigenvalues (Schönemann, 1966).

There are two concerns in this approach. First, when multiple zero occurs in eigen-

values, since, orthogonal eigenvectors occur for distinct eigenvalues. To handle this,

the projection matrix should be T = [Tr T0], where Tr is the correspond matrix of

eigenvectors of the nonzero eigenvalues and T0 = NG. N is the null space of Tr i.e.

T Tr N = 0, while N is orthogonalised by G using the Gram-Schmidt approach. Thus,

T Tr Tr = I, T T0 T0 = I, T Tr T0 = 0.

The second concern is more computational, and due to the available data, D1/2 =

W TSV has some negative diagonal elements. To handle this, rotate W with an arbitrary
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projection matrix until all the elements of D1/2 are nonnegative. By calling the final

rotation as W ∗, then T = W ∗V ′ minimises Trace(E ′E). To get all the elements of D1/2

nonnegative, for having a fast loop, a choice of the arbitrary projection matrix can be a

diagonal one, with elements -1 to correspond to the negative diagonal elements of D1/2

and 0 as the rest.

1.3.1 Hyperliagnment Approach

Haxby et al. (2011) introduced the so-called approach hyperalignment. The idea in

hyperalignment is to use Procrustean transformation repetitively. In particular, first the

voxel spaces for two matrices (subjects) were brought into optimal alignment. Then, a

third subjects voxel space was brought into optimal alignment with the mean trajectory

for the first two subjects and proceeded by successively bringing the voxel space of the

remaining subjects into alignment with the mean trajectory of response vectors from

previous subjects. In a second iteration , the voxel space of each individual subject

was brought into alignment with the group mean trajectory from the first iteration and

recalculated the group mean vector trajectory. The third and final step recalculated the

orthogonal matrix that brought the voxel space of each subject into optimal alignment

with the final group mean vector trajectory. The orthogonal matrix for each subject

was then treated as the hyperalignment parameters of the subjects that were used to

transform data from independent experiments into the common space (Haxby et al.,

2011).

1.3.2 Generalized Procrustes (GP)

Let X1, . . . Xn be t × p matrix observations in fMRI data for n subjects. The GP

idea provides the least squares for more than two matrices. Indeed, one is looking for

the transformation matrices Ti to satisfy (Devrim, 2003)

min
n∑
i=1

n∑
j=i+1

tr(XiTi −XjTj)
T (XiTi −XjTj). (1.23)

In the GP idea, there is an unknown matrix Z, also called the consensus matrix. Z

represents the matrix that all the matrices in hand are going to align to its spaces in the

common true coordinate system (Goodall, 1991; Devrim, 2003), as shown in Figure 1.2.

Therefore, this problem can be seen as looking for the unknown matrix Z, as follows:

Z + Ei = XiTi = Âi, i = 1, . . . , n; (1.24)
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where Ei represents the error matrix with normal distribution, i.e.

Ei ∼ N(0t×p,Σtp×tp). (1.25)

We mention this distributional assumption on Ei, to give a cue and head line for possible

future works like considering some priors on parameters to challenge more with the

likelihood. Thus, Equation (1.23) can be written as

min
n∑
i=1

n∑
j=i+1

tr(Âi − Âj)T (Âi − Âj) = min

n∑
i=1

n∑
j=i+1

∥∥∥Âi − Âj∥∥∥2 , (1.26)

Figure 1.2: Schematic of GP (Crosilla and Beinat, 2002)

and then by defining the centroid as

C =
1

n

n∑
i=1

Âi, (1.27)

Equation (1.26) is equivalent with

min

n∑
i=1

∥∥∥Âi − C∥∥∥2 = min
n∑
i=1

tr(Âi − C)T (Âi − C), (1.28)

(Kristof and Wingersky, 1971; Borg and Groenen, 2005). As a result, GP can be per-

formed through minimizing the Equation (1.28) , which is easier than implementing

(1.26). The iterative solutions for (1.26) can be found in Gower (1975) and Ten Berge

(1977), and for (1.28) the algorithm is as follows:
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Algorithm for GP

INPUT: X1, . . . , Xn input matrices.

An initial value for C.

OUTPUT: Ti, and Ẑ the estimation of consensus matrix.

REPEAT

Obtain the transformation parameter (Ti) for each of Xi with respect to C

as a Procrustes problem.

Update C by (1.27).

Till

C stabilization at a certain precision.

As a matter of fact, with respect to the minimization condition, the final C determines

the true coordinates in which all the Xis are aligned. Therefore, C can be seen as the

least square estimate for Z (Crosilla and Beinat, 2002), i.e.,

Ẑ = C =
1

n

n∑
i=1

Âi. (1.29)

Devrim (2003) proposed GP procedure in different cases of dependency of time points

in each Xis and between, which, will show its affect on parameter Σ in (1.25).

1.3.3 Modification on GP

GP does not provide a unique solution as the transformation matrix (T ). For exam-

ple, given one solution (map), any possible reshafling of columns of its transformation

matrix (voxels), i.e. multiplying T by any orthogonal matrix Q, is still a valid solution.

Therefore, spatial coherence is lost. On the other side, the sequential application of

Procrustes rotation does not reach the global minimum imposed by GP. As a matter of

fact, to the best of our knowledge, all the proposed methods of Procrustes rotation rely

on sequential application (e.g. Haxby et al. (2011)). In particular, for every matrix Q
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with suitable dimension such that QTQ = I, (1.28) can still be minimized, i.e.

min

n∑
i=1

tr(XiTiQ− CQ)T (XiTiQ− CQ), (1.30)

= min

n∑
i=1

trQT (XiTi − C)T (XiTi − C)Q, (1.31)

= min

n∑
i=1

tr(XiTi − C)T (XiTi − C)QQT , (1.32)

= min

n∑
i=1

tr(XiTi − C)T (XiTi − C), (1.33)

because of orthogonality and cyclic permutation in the trace function. Therefore, the

final transformation is not unique and one can rotate the matrices in hand several times

while still maintaining minimal condition on the trace of error matrix. This is crucial

for capturing back the brain image. Since once for a new subject the active voxels

are obtained after classification in a specific task, one might be interested in having the

brain image with active regions, consequently, having a unique rotation is necessary. Let

X̄ denote the mean of the observed data in hand i.e. X̄ = 1
n

∑n
i=1Xi. It is reasonable

to consider that X̄ and C in (1.27) are expected to be close to each other. Thus, we

find the orthogonal transformation Q such that

tr(CQ− X̄)T (CQ− X̄), (1.34)

is minimized. Hence, the least square parameters as the transformation matrix Q are

obtained to minimize the trace of error matrix with respect to C. In fact, another Pro-

crustes problem this time between C and X̄ can be solved, and the final transformation

matrix which is applied on the data is

TiM = TiQ. (1.35)

According to (1.34), one more criterion is added to the problem, i.e. minimizing the

trace of another error matrix, this time between X̄ and C. In addition, this is also

expected to decrease the misclassification error as shown in the real data study, see 1.5.
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1.4 Classifier Model

Because of structure of the data in hand (see section 1.2) and the expected possible

linearity among voxels (columns of our data matrices), the logistic regression was used

as the classification approach. The matrix of the variables was constructed with voxels

(p) in columns and the time points (t) in the row considering all subjects (n). Hence,

yij =

0 having stimuli for the i-th subject in j-th time point

1 otherwise.
(1.36)

Thus, y = [yij]tn×1 and Xtn×p represent response and matrix of variables, respectively.

Voxels in a fMRI study are roughly 500,000. However, after pixelizing (see section

1.2), the number of columns is reduced , but the number of variables (voxels) may

still be larger than the number of observations. Therefore, this leads to model selection

approaches such as lasso to be used in logistic regression. Also, regardless of the number

of variables, since in our case one wants to find non zero coefficients (active voxels) during

the stimuli, to re-obtain the brain image again with active regions, the model section

becomes highlighted. Moreover, because of the existence of possible collinearity among

variables, shrinkage methods such as ridge regression may be useful, see Hastie et al.

(2008). The so-called elastic net method that is a convex combination of lasso and ridge

was used in this research.

1.4.1 Lasso, Ridge and Elastic net

Lasso regularization was used to provide model selection. Lasso regularization causes

some unimportant coefficients to be exactly zero. Lasso shrinks the regression coeffi-

cients by applying a penalty on their size; therefore, coefficients in this approach mini-

mize a penalized residual. Generally speaking, shrinkage methods are more continuous

and do not suffer as much from high variability (Hastie et al., 2008).

max
β0,β
{

n∑
i=1

[yi(β0 + βTxi)− log(1 + eβ0+β
T xi)] + λ

p∑
j=1

|βj|} (1.37)

The penalty part which is known as L1 penalty can be written as
∑p

j=1 |βj| < t, and

makes the size constraint explicit on the parameters. There is a one-to-one correspon-

dence between the parameters λ and t, and because of the nature of the penalty, for suf-

ficient small value of t, some coefficients are set to be exactly zero. If t > t0 =
∑p

j=1 |β̂j|,
then Lasso estimates are the usual least square estimations, i.e., |β̂j| are least square
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estimates. On the other side, by t = t0/2, the least square estimates are shrunk by

an average of 50%. Usually, the parameter λ is chosen by cross validation to have a

model which has the minimal mean cross validated error (in logistic, the deviance).

Ridge regression is also useful when there are many correlated variables in the model

and their coefficients can become poorly determined and exhibit high variance. In ridge,

the penalty term is the L2 penalty (λ
∑p

j=1 β
2
j ). λ is a complexity parameter that con-

trols the amount of shrinkage and large values of λ cause greater amounts of shrinkage.

Using L2 penalty, coefficients can be shrunk toward zero (and each other) but not ex-

actly zero (Hastie et al., 2008). To have both benefits of lasso and ridge, the elastic

net penalty introduced by Zou and Hastie (2005) may be applied to balance the ridge

and lasso penalties (L1 and L2 norms, respectively). The elastic net penalty is a convex

combination of lasso and ridge penalties:

p∑
j=1

α|βj|+ (1− α)β2
j . (1.38)

Elastic net selects variables like lasso, and shrinks together the coefficients of correlated

predictors like ridge, as shown in Figure 1.3. The parameter α can be chosen by cross

validation, again.

Figure 1.3: The constraint region for ridge regression (right side) is the disk β21+β22 ≤
t, while the constraint region for lasso is the diamond (left side) |β1|+ |β2| ≤ t. Both
methods find the first point where the elliptical contours hit the constraint region.
Unlike the disk, the diamond has corners; if the solution occurs at a corner, then it
has one parameter βj equal to zero. Although it is not visually clear, the elastic net
has sharp (non-differentiable) corners (Hastie et al., 2008)
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1.5 Real data study

The task is covert verb generation which is already considered in the work by Gor-

golewski et al. (2013) and 10 subjects were asked to think of a verb complementing a

noun visually presented to them. The following instructions were used: When a word

appears it will be a noun. Think of what you can do with it and then imagine saying

”With that I can ...” or ”That I can ...”. A block design with 30 s activation and 30 s

rest blocks was employed (each scan takes 2.5 s ∗ 12 scan = 30 s). During the activation

blocks, 10 nouns were presented for 1 s , and each were followed by a fixation cross

during which subject had to generate the response. More details about the data can be

found in Gorgolewski et al. (2013). Then, the brain fMRI are provided during the pres-

ence of stimulus and rest time. This is repeated for having 168 time points in general.

As mentioned in Section 1.2, for each subject, the data from fMRI were gathered in a

matrix with voxels in columns and time points in rows. The following tables are the

classification error rates for four cases, data transformed by TiM in (1.35) in modifica-

tion on generalized Procrustes (GPQ), by Ti in (1.15) in GP, by hyperalignment in 1.3.1

and not transformed data (Raw). Considering all the subjects, a test set of time points

of size 40 is chosen and the rest is used as the training set. Then, once the nonzero

coefficients of the voxels were obtained in the training set by elastic net penalty, the

test set was used to find the error of misclassification. This procedure is repeated by

100 times re-sampling, and the average (standard deviation) of errors and ACU were

calculated in Table 1.1. In addition, a box plot for all approaches is provided in Figure

1.4 to see the difference of methods visually.

Methods

Raw Hyper. GP GPQ

Total error 15.11(1.38) 15.088(1.485) 7.728(1.239) 6.667(1.223)

AUC 0.917(0.011) 0.925(0.012) 0.978(0.005) 0.982(0.01)

Table 1.1: Average (standard deviation) of total error and AUC on test set of size
40 repeated in 100 times.
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Figure 1.4: Box plot for total errors in 100 times re-sampling: raw data, hyperalign-
ment, GP and GPQ methods.

Figure 1.5: AUC plots for GPQ and Raw approaches.

Table 1.1 shows that, first of all, applying Procrustes problem is useful in classifica-

tion. Furthermore, generalized Procrustes and our modification also will result to make

the classifier model more powerful to distinguish different groups with smaller error rates

and higher values of AUC, which GP has not been used in such classification studies

thus far due to our knowledge; as shown in Figure 1.5.
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1.6 Conclusion

To the best of our knowledge, all the proposed methods for rotating the data matrices

rely on sequential application of Procrustes rotation and the sequential application of

Procrustes rotation does not reach the global minimum imposed by GP, while GP has

been never used in such classification studies of fMRI data. The limitation of GP is

that the solution is not unique. Moreover, as mentioned, the spatial coherence is lost

using GP on the data. In this thesis, GP was applied, and an additional constrain

was imposed to make the solution unique. The criterion is defined to enhance the

interpretability of the solution (map/image). As a further advantage, the application

to real data shows that it also enhances the classification accuracy. Furthermore, the

related codes for reading from MRI scans and writing the data as an image again all

are provided in R. Also, the programming codes for Procrustes problem, modification

on GP and hyperalignment are written in R. All together, the codes are available and

will be provided as package as easily as possible for any usages.



Chapter 2

Electroencephalographic Signals

2.1 Introduction to EEG signals

2.1.1 EEG Signals

The main goal of brain computer interface (BCI) is translating the brain signals to

the commands in the machine. BCI can be used for people with physical inability and

movement problems or even with a focus on video games, which as shown growing in-

terest (Barachant et al., 2012). EEG signals which show the brain activity are the focus

of the data obtained from BCI. EEG often obtained on short-time segments called trials

such that, each of them can be presented as a matrix with number of electrodes in the

row and the epoch duration in the column (Barachant et al., 2013). Electroencephalo-

graphic data, with number of electrodes 19–64, number of time points like 200–1000

and more than 500 trails for one subject are treated as a kind of big data in statistics

(Congedo, 2013). In BCI, the brain signals need to be classified depending on what the

subject imagines or desires to achieve. Thus, this classification is basically a big data

classification problem. Raw EEG are known to have a poor spatial resolution, since they

are acquired with multiple electrodes covering the whole scalp which contains a consid-

erable amount of spatial information. Usually in practice, spatial filtering is required

to represent the data in a different space, possessing some desirable statistical property

(Blankertz et al., 2008; Congedo, 2013). Instead of using EEG signals, the correspond-

ing covariance matrices of the data are considered, in which the diagonal elements are

the variance of electrodes and the off-diagonal elements are their covariances. By this

approach, spatial information are contained in the covariance matrices, and no more

spatial filtering is needed (Barachant et al., 2012). For event-related potentials data

(ERP-based BCI) the spatial structure contained in that covariance matrix of a trial

does not hold sufficient information for classification. In the other words, in this case,

25
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that covariance matrix does not contain any temporal information at all. To overcome

the problem, Congedo et al. (2013) proposed a modification of the usual covariance

matrices for some kind of signals including ERP which is the main focused data in this

work; see Section 2.2. In the rest of the thesis, covariance matrix means the latter

extension and is used for all classifications (Section 2.2).

As a leading example (Figure 2.10), consider the experiment to produce motorim-

agery data by BCI Competition 2008 Graz data set A1. In this experiment, the subjects

are asked to seat comfortably and look at the in-front monitor. At beginning of the trial

(t = 0s), on the black color screen, a cross is appeared. After t = 2s, an arrow is

shown while its direction to the left, right, down and up notifies the subject to imagine

moving their left hand, right hand, foot and tongue, which constructs four classes for

classification. The subject performs the motor imagery task till t = 6s when the cross

disappears from the screen. Then, 22 electrodes collect the EEG signals, and this trial

is stored in the matrix, with 22 rows and many time points (more than 1000) in the

columns. For a trial, which can belong to any of four classes, the covariance matrix

is obtained as the working data in hand. This data set consists of EEG data from 9

subjects. The cue-based BCI paradigm consisted of four different motor imagery tasks,

namely the imagination of movement of the left hand (class 1), right hand (class 2),

both feet (class 3), and tongue (class 4). Two sessions on different days were recorded

for each subject, and Each session comprised of 6 runs separated by short breaks. One

run consists of 48 trials (12 for each of the four possible classes), yielding a total of 288

trials per subject. However, it may be possible some trials were removed as artifact

records, and two classes (3 vs 4) were considered for classification.

2.2 Data model

The main thing in a BCI task is classifying single trials. In the first step, a generic

model of the available data were specified and presented in such studies. Suppose

x(t) ∈ RN is the EEG data vector with N electrodes at a discrete sample time t with

zero mean. Let Xk ∈ RN×T be a trial, as a finite time-interval realization and one of

the T samples belonging to the class k ∈ {1, . . . , K}. Each trial data is assumed to have

zero mean since there is a usual band-pass filtering (Congedo, 2013). Thus, the well

known sample covarince matrix of a sample trial belonging to the class k is given by

Ck = 1/(T − 1)(XkX
T
k ) (2.1)

1http://www.bbci.de/competition/iv/
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2.2.1 Covariance Matrix for Motor Imagery (MI)

In the sample covariance matrix in (2.1), the diagonal elements present the variance

of the signal at each electrode while the off-diagonal elements present the covarinace

among all pairs of electrodes. (2.1) contains only spacial information which is sufficient

for classification of MI data since MI trials for different classes generate different spatial

patterns which is completely infixed in sample covariance matrix (2.1) according to its

structure (Pfurtscheller and Da Silva, 1999; Congedo et al., 2013). Thus, there is no

extension for MI data to obtain the related covariance matrices as the working data;

therefore,

CMI
k = Ck. (2.2)

In MI-based BCI, the only pre-processing step is filtering the data band-pass (e.g., 8–30

Hz); as shown in Congedo et al. (2013).

2.2.2 Covariance Matrix for Event-Related Potentials (ERPs)

case

In ERP-based BCI (which is related to P300 data in our research; , as described

in Section 2.4.3), the usual sample covariance matrix is not efficient, since the spacial

structure of covariance matrix of a single trial does not contain sufficient information for

classification. Indeed, in case, (2.1) does not contain temporal information (Congedo

et al., 2013). The reason is clear, because with a random jumble in samples of a trial

Xk, the sample covariance matrix in (2.1) is not changed, nonetheless, ERPs have a

specific time signature and it makes distinguished an ERP from another or an ERP

from the absence of the ERP. Therefore, this is the required information (extracting

and embedding) in a covariance matrix. To overcome this problem, consider a bunch

of training trials Xk; k ∈ {1, . . . , K}, while each class corresponds to a different ERP,

also, a no-ERP class is usually added. For example, in P300-based BCI, one class is the

target class, containing a P300, and the other is the non-target class which provides two

classes (K = 2); see section 2.4.3 and the beginning introduction part. Now, a so-called

super trial can be made (Congedo et al., 2013):

XERP
k =



X̄(1)

X̄(2)

...

X̄(K)

Xk


∈ RN(K+1)×T , (2.3)
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where X̄(1), . . . , X̄(K) are so-called temporal prototypes which are the average of the

training trials on the previous session of the user or a data base of other users for

each classes. These prototypes are computed for all classes, and the index (k) in the

parentheses emphasizes the difference with index of Xk, which shows the k-th training

class. The covarince matrix for the super-trail XERP
k , which is a block matrix, can be

obtained as

CERP
k = 1/(T − 1)

(
XERP
k

(
XERP
k

)T)
(2.4)

= 1/(T − 1)

[
X̄.X̄.T

(
XkX̄.

T
)T

XkX̄.
T XkX

T
k

]
∈ RN(K+1)×N(K+1), (2.5)

where

X̄.X̄.T =


X̄(1)X̄

T
(1) . . . X̄(1)X̄

T
(K)

...
. . .

...

X̄(K)X̄
T
(1) . . . X̄(Z)X̄

T
(K)

 ∈ RNK×NK , (2.6)

and

XkX̄.
T =

[
XkX

T
(1) . . . XkX(K)

]
∈ RN×NK . (2.7)

More precisely, in (2.5), the N×N block XkX
T
k establishes the covarince matrix in (2.1)

,which contains only spacial information as discussed previously.

The N × N diagonal blocks of X̄.X̄.T in (2.6) represent the covariance matrices of

K temporal prototypes, and its N × N off-diagonal elements represent the covariance

between their pairs. Obviously, all these blocks are based on the fixed prototypes, and do

not change from trials to trials, so they do not share useful information for classification.

In (2.7), the N × N blocks hold the covariance between the trial Xk (corresponds to

the class k) and K temporal prototypes; indeed, these blocks are temporal covariances,

which was our concern in recent discussion. In addition, shuffling at random in samples

of trials has some affects on the covarinace now. When the covariance of the trail and

prototype with the same class in a block is large then there is relevant information

regarding the covariance structure for classification. Also, a usual 1–16 Hz band-pass

filtering is required as a pre-process step; however, the precise value of band-pass is not

vital for ERP classification problems based on the lab experiments claimed by Congedo

et al. (2013). We must say that what researchers are facing often, is the case of presence

and absence of ERP, like, P300-based BCI. In that case, the following two classes are

obtained: TARGET trials, which are when P300 is presented, and NON-TARGET

trials, which are when P300 are not presented. Consequently, in P300-based BCI, the
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super trial in (2.3) is simplified as the following

XP300
k =

[
X̄(+)

Xk

]
∈ R2N×T , (2.8)

where X̄(+) is the prototype of TARGET class (presence of P300) and the class index

is k ∈ {+,−}. The + and − represent the TARGET and NON-TARGET classes,

respectively. Thus, the covariance matrix of the super trial (2.8) changes to a simpler

block matrix (Congedo et al., 2013)

CP300
k = 1/(T − 1)

[
XP300
k

(
XP300
k

)T]
(2.9)

= 1/(T − 1)

[
X̄(+)X̄

T
(+) X̄(+)X

T
k

XkX̄
T
(+) XkX

T
k

]
∈ R2N×2N . (2.10)

As shown in (2.6), X̄(+)X̄
T
(+) is based on the fixed prototypes and does not change

from trial to trial; consequently, it is not useful for classification. Similar to (2.7),

XkX̄
T
(+) which is the temporal covariance, is sufficient for classifying TARGET and

NON-TARGET classes. Notice that temporal covariance is large if the trial belongs to

the TARGET class, while the temporal covariance is small if the trial does not belong to

the TARGET class. Also, as discussed, XkXk has little information for classification. In

the rest of the thesis by covarince matrix, we mean the latter extension in different type

of the data in hand. Also, all the related programming codes in MATLAB to obtain

such covariance matrices are written and are easily used in hand now. The extended

covariance matrix for another type of data, steady-state svoked potentials, (SSEP),

which is not our goal in this thesis, can be found in Congedo et al. (2013) .

2.3 Fixed point algorithms for estimating power means

of positive definite matrices

Estimating means of data points lying on the Riemannian manifold of symmetric

positive-definite (SPD) matrices has proved of great utility in applications requiring

interpolation, extrapolation, smoothing, signal detection and classification. The power

means of SPD matrices with exponent p in the interval [−1, 1] interpolate in between

the Harmonic mean (p = −1) and the Arithmetic mean (p = 1), while the Geometric

(Cartan/Karcher) mean, which is the one currently employed in most applications, cor-

responds to their limit evaluated at 0. In this article we treat the problem of estimating
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power means along the continuum p ∈ (−1, 1) given noisy observed measurement. We

provide a general fixed point algorithm (MPM; see 2.3.4) and we show that its conver-

gence rate for p = ±0.5 deteriorates very little with the number and dimension of points

given as input. Along the whole continuum, MPM is also robust with respect to the

dispersion of the points on the manifold (noise), much more so than the gradient descent

algorithm usually employed to estimate the geometric mean. Thus, MPM is an efficient

algorithm for the whole family of power means, including the geometric mean, which

by MPM can be approximated with a desired precision by interpolating two solutions

obtained with a small ±p value. Finally, we show the appeal of power means through

the classification of brain-computer interface event-related potentials data.

2.3.1 Introduction

The study of means (centers of mass) for a set of symmetric positive definite (SPD)

matrices has recently attracted much attention, driven by practical problems in radar

data processing, image and speech processing, computer vision, shape and movement

analysis, medical imaging (especially diffusion magnetic resonance imaging and brain-

computer interface), sensor networks, elasticity, numerical analysis and machine learning

e.g., (Arsigny et al., 2007; Arnaudon et al., 2013; Barachant et al., 2012, 2013; Congedo,

2013; Kalunga et al., 2016; Faraki et al., 2015; Fillard et al., 2005; Fletcher, 2013; Li

and Wong, 2013; Li et al., 2012; Moakher, 2006; Zhang et al., 2016). In many applica-

tions the observed data can be conveniently summarized by SPD matrices, for example,

some form of their covariance matrix in the time, frequency or time-frequency domain,

or autocorrelation matrices. In others, SPD matrices arise naturally as kernels, ten-

sors (or slice of), density matrices, elements of a search space, etc. Averaging such

SPD matrices is a ubiquitous task. In signal processing we find it in a wide variety of

datadriven algorithms allowing spatial filters, blind source separation, beamformers and

inverse solutions. While robust estimation of covariance matrices and related quantities

is a long-standing topic of research, only recently an information/differential geometry

perspective has been considered (Bhatia, 2009; Sra, 2016; Chebbi and Moakher, 2012;

Moakher and Zéräı, 2011; Moakher, 2005; Bhatia and Holbrook, 2006; Nakamura, 2009;

Georgiou, 2007; Jiang et al., 2012). Once observations are represented as SPD matrices,

they may be treated as points on a smooth Riemannian manifold in which the funda-

mental geometrical notion of distance between two points and the center of mass among

a number of points are naturally defined (Bhatia, 2009). In turn, these notions allow

useful operations such as interpolation, smoothing, filtering, approximation, averag-

ing, signal detection and classification. In classification problems a simple Riemannian
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classifier based on a minimum distance to mean (MDM) procedure (Barachant et al.,

2012) has been tested with success on electroencephalographic data, in several kinds

of brain-computer interfaces (Barachant et al., 2012, 2013; Congedo, 2013; Kalunga

et al., 2016) and in the analysis of sleep stages (Li and Wong, 2013; Li et al., 2012), as

well as on motion capture data for the classification of body movements (Zhang et al.,

2016). A similar method has been used for clustering in the context of video-based

face and scene recognition (Faraki et al., 2015) and in radar detection (Arnaudon et al.,

2013). These examples demonstrate that simple machine learning algorithms, which are

known to allow poor performance using the Euclidean metric, can be easily translated

into equivalent Riemannian classifiers using an appropriate metric, obtaining excellent

performance, Among the several means one may define from an information geometry

point of view, so far the geometric mean (sometimes referred to as Karcher, Cartan or

Frchet mean) has been the most studied and the most used in practical applications. It

is the natural definition of mean when the Fisher-Rao metric is applied to multivariate

Gaussian distributions (Nakamura, 2009; Georgiou, 2007), but also arises naturally from

a pure geometrical and algebraic perspective without making assumptions on the data

distribution (Bhatia, 2009). It happens that the geometric mean satisfies a number of

desirable invariances, including congruence invariance, self-duality, joint homogeneity

and the determinant identity (Congedo et al., 2015). The simultaneous verification of

all these properties is hard to find for means based on other metrics, such as the arith-

metic, harmonic and log-Euclidean mean, thus the geometric mean of SPD matrices

is not just important in practice, but a fundamental mathematical object per se. For

positive numbers the arithmetic, geometric and harmonic mean are all members of the

family of power means, also known as Holder or generalized mean. Given a set of K posi-

tive numbers {x1, . . . , xK} and K associated weights {w1, . . . , wK} satisfying
∑
wk = 1,

the w-weighted power mean of order p of {x1, . . . , xK} is

g = (
K∑
k=1

wkx
p)1/p (2.11)

power mean interpolates continuously between Harmonic mean (p = −1) and Arithmetic

mean (p = 1) in the continuum p ∈ [−1, 1] while the limit p → 0 allows the Geometric

mean. This generality of power means is appealing from a signal processing perspective;

in a typical engineering scenario the sensor measurement is affected by additive noise

and varying p one can find an optimal mean depending on the signal-to-noise-ratio

(SNR), as we will show.

Recently Lim and Pálfia (2012) extended the concept of power means of positive numbers
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to SPD matrices for the continuum p ∈ [−1, 1], with the case p = −1 being the matrix

harmonic mean, p = 1 the matrix arithmetic mean and the limit to zero from both

sides allowing the matrix geometric mean we have discussed (see also (Lawson and Lim,

2013, 2014; Pálfia, 2016). So far power means of SPD matrices have not been applied in

signal processing. Also, only a ”naive” fixed-point algorithm has been proposed for their

estimation (Lim and Pálfia, 2012) and its convergence behavior is unsatisfactory. In this

research we report a fixed-point algorithm for computing power means of SPD matrices

along the interval p ∈ (−1, 1)\{0}. This algorithm has been recently presented in

(Congedo et al., 2017) and therein we have named it MPM (multiplicative power means).

We then demonstrate a procedure to use MPM for approximating the geometric mean

with a desired precision. By means of simulation we show that the MPM displays better

convergence properties as compared to alternatives used for the geometric mean, with

equal or lesser computational complexity. We also show that it offers a better estimation

of the geometric mean as compared to the standard gradient descent algorithm. Then,

we show the advantage of considering the whole family of power means, instead of the

sole geometric mean as it is customary, in classification problems, by analyzing a data

set of 38 subjects related to brain-computer interface event-related potentials.

2.3.2 The Manifold of Symmetric Positive-Definite Matrices

In differential geometry, a smooth manifold is a topological space that is locally

similar to the Euclidean space and has a globally defined differential structure. A

smooth Riemannian manifold M is equipped with an inner product on the tangent

space defined at each point and varies smoothly from point to point. The tangent space

TGM at point G is the vector space containing the tangent vectors to all curves on M
passing through G. For the manifold M of SPD matrices S++ , this is the space S

of symmetric matrices. (Figure 2.1). For any two tangent vectors ζ1 and ζ2, the inner

product given by the Fisher-Rao metric at any base-point G is desired (Bhatia, 2009):

〈 ζ1, ζ2〉G = tr(G−1ζ1G
−1ζ2). (2.12)

2.3.2.1 The Geodesic

The SPD manifold has non-positive curvature and is complete (Bhatia, 2009); for

any two points C1 and C2 on M, a unique path on M of minimal length (at constant

velocity) connecting the two points always exists. The path is named the geodesic, and
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H

Figure 2.1: Schematic representation of the SPD manifold, the geometric mean G
of two points and the tangent space at G. Consider two points (e.g., two covariance
matrices) C1 and C2 on M. The geometric mean of these points is the midpoint
on the geodesic connecting C1 and C2, i.e., it minimizes the sum of the two squared
distances δ1(C1, G) + δ2(C2, G). Now construct the tangent space TGM at G. There
exists one and only one tangent vector ζ1 (respectively ζ2) departing from G and
arriving at the projection of C1 (respectively C2) from the manifold onto the tangent
space; we see that the geodesics on M through G are transformed into straight lines
in the tangent space and that therein distances are mapped logarithmically; the map
from the manifold (symmetric positive definite matrices S++) to the tangent space
(symmetric matrices S) is of logarithmic nature. Furthermore, the inverse map from
the tangent space to the manifold is of exponential nature. See Bhatia (2009) for
details on these maps.

the points along it have analytical expressions given by

C1#tC2 = C
1/2
1 (C

−1/2
1 C2C

−1/2
1 )tC

1/2
1 , t ∈ [0, 1]. (2.13)

By changing t we are moving over the geodesic connecting two points. For exam-

ple, t = 0 corresponds to the C1 location, t = 1 corresponds to the C2 location, and

t = 1/2 corresponds to the geometric mean of the two points (Figure 2.1). As a spe-

cial case, I#tC = Ct and geodesic equation (2.13) verifies C1#tC2 = C2#1−tC1 and

(C1#tC2)
−1 = C−11 #tC

−1
2 . The points along the geodesic can be understood as the t-

weighted geometric means of C1 and C2 according to the Riemannian metric, in analogy

with the weighted mean according to the Euclidean metric given by (1 − t)C1 + tC2,

which still results in a SPD matrix, but, greater than C1#tC2 in the Loewner order

sense (Pálfia, 2016).
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2.3.2.2 The Distance

For two matrices (points) C1 and C2 of dimension N × N on M, the Riemannian

distance is defined as the length of the geodesic in (2.13) and is given by (Bhatia, 2009),

δ(C1, C2) =
∥∥∥Ln(C

−1/2
1 C2C

−1/2
1 )

∥∥∥
F

=

√
tr(Ln2(Λ)) =

√∑N
i=1 Ln2(λi), (2.14)

where Λ is the diagonal matrix holding theN eigenvalues λ1, . . . , λN of matrix C
−1/2
1 C2C

−1/2
1

or of similar matrix C−11 C2. Some key features of Riemannian distance are listed in Con-

gedo et al. (2015). Both symmetry and positivity are obvious properties and the next

proposition mentions the two invariance properties that are useful in signal processing.

For any invertible matrix with suitable dimension B,

Congruence δ(BC1B
T , BC2B

T ) = δ(C1, C2), (2.15)

Self-Duality δ(C−11 , C−12 ) = δ(C1, C2). (2.16)

2.3.3 Means of Matrices

The study of means (centers of mass) for a set of SPD matrices has recently at-

tracted much attention, driven by practical problems in radar data processing, image

and speech processing, computer vision, shape and movement analysis, medical imaging

(especially diffusion magnetic resonance imaging and brain-computer interface), sensor

networks, elasticity, numerical analysis and machine learning. In many applications,

the observed data can be conveniently summarized by SPD matrices, for example, some

form of their covariance matrix in the time, frequency or time-frequency domains. In

others, SPD matrices arise naturally as kernels, tensors (or slice of) density matrices,

elements of a search space, etc. Averaging such SPD matrices is a ubiquitous task, and

the averaging can be obtained in a wide variety of data driven by signal processing algo-

rithms such as spatial filters, blind source separation, beamformers and inverse solutions.

2.3.3.1 Frechet’s variational approach

Let C = {C1, . . . , CK} be a set of SPD matrices and w = {w1, . . . , wK} be a set of

K associated positive weights verifying
∑

k wk = 1. Typically, in signal processing, the

elements of C are noisy data points (e.g. recordings, observations, etc.) or quantities

derived thereof. Following the Frechet’s variational approach, the center of mass G of set

C, given a distance function d, is the point G minimizing the dispersion of points, that
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is,
∑

k wkd
2(G,Ck). This definition applies in general. For instance, the w-weighted

arithmetic and harmonic means are defined, respectively, as

GA(C;w) = argmin
G

∑
k
wk ‖Ck −G‖2F =

∑
k
wkCk, (2.17)

GH(C;w) = argmin
G

∑
k
wk
∥∥C−1k −G−1∥∥2F =

(∑
k
wkC

−1
k

)−1
, (2.18)

in which, ‖ · ‖F is the Frobenius norm.

2.3.3.2 The Geometric Mean of a Matrix Set

Following the same idea, the geometric mean of SPD matrices can be defined (Bhatia,

2009). On the manifold M, the w-weighted geometric mean GG(C;w) is the point

realizing the minimum of
∑

k wkδ
2(Ck, G) with respect to G, where the Riemannian

distance function δ acting on M has been defined in definition (2.14). Indeed, the

geometric mean G is the unique point on M such that the following non-linear matrix

equation is satisfied (Moakher, 2005):

∑
k
wkLn(G−1/2CkG

−1/2) = 0. (2.19)

In general, for K > 2 equation (2.19) dose not have closed form solution and needs to

be estimated by iterative algorithms. For K = 2, as mentioned in Section 2.3.2.1, the

geometric mean is equal to C1#1/2C2 (shortly indicated by C1#C2; see (2.13) and Figure

2.1). Furthermore, it is the unique solution of the Riccati equation (C1#C2)C
−1
2 (C1#C2) =

C1 (Arnaudon et al., 2013) and is equal to B−1D
1/2
1 D

1/2
2 B−T for any joint diagonalizer

B of C1 and C2, that is, any B satisfying BC1B
T = D1 and BC2B

T = D2, with D1

and D2 being invertible diagonal matrices Congedo et al. (2015). The geometric mean

satisfies all 10 properties of means postulated in the seminal work (Ando et al., 2004).

Also, straightforward from (2.15) for any invertible matrix B with suitable dimension,

Congruence GG
(
BC1B

T , . . . , BCKB
T ;w

)
= BGG (C;w)BT , (2.20)

Self-Duality G−1G (C−11 , . . . , C−1K ;w) = GG(C;w). (2.21)

2.3.3.3 Power Mean

Given a set ofK positive numbers {x1, . . . , xK} andK associated weights {w1, . . . , wK}
satisfying

∑
k wk = 1 following the Frechet’s variational approach, it is well known that

the power mean in real number case can be defined as Mp = argmin
x

∑
k wk|xpk − xp|2.

This fact leads Mp being as a unique positive solution of the equation x =
∑

k wkx
1−pxk.
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The matrix analogue form can be obtained as (Lim and Pálfia, 2012)

X =
∑

k wk(X#pCk), (2.22)

where C = {C1, . . . , Ck} and wk are arbitrary weights. This matrix equation has unique

SPD solution GP(C;w; p) (called matrix power mean) for p ∈ (0, 1] (Lim and Pálfia,

2012). By defining GP(C;w; p) = G−1P (C−1;w;−p) for p ∈ [−1, 0), power mean inter-

polates continuously between harmonic mean (p = −1) and arithmetic mean (p = 1) in

the continuum p ∈ [−1, 1] while the limit p → 0 produces the geometric mean. It has

been shown that if all Ck input matrices commute, then,

GP(C;w; p) = (
∑

k wkC
p
k)1/p, (2.23)

(Lim and Pálfia, 2012), which is the straightforward extension of real numbers case. For

any pair (G,Ck) in M, G#pCk with p ∈ [0, 1] is the mean of G and Ck weighted by

p. Since G#pCk = Ck#1−pG we see that a power mean is the arithmetic mean of the

input matrices dragged along the geodesic toward the desired mean by an arc-length

equal to 1− p. Briefly, the power means over the continuum [−1, 1] can be presented as

the following, 

GP(C;w; p = 1) = GA(C;w),

GP(C;w; p ∈ (0, 1)) =
∑

k wk(GP#pCk),

GP(C;w; p = 0) = GG(C;w),

GP(C;w; p ∈ (−1, 0)) = G−1P (C−1;w;−p),
GP(C;w; p = −1) = GH(C;w),

(2.24)

C−1 = {C−11 , . . . , C−1K }, GG(C;w) is the geometric mean of Section 2.3.3.2 and GA(C;w)

and GH(C;w) are the arithmetic mean and the harmonic mean in (2.17) and (2.18),

respectively. GP(C;w; p) is named the w-weighted power mean of order p (Lim and

Pálfia, 2012; Pálfia, 2016). As per (2.24), the pair of power means obtained at opposite

values of p around zero are duplicates of each other; for a negative value of p, the mean is

defined as the inverse of the mean for p as applied on the inverted input matrices C−1.

Thus, the power means family encompasses and generalizes all Pythagorean means

encountered thus far. All of them enjoy the congruence invariance as found in the

geometric mean (2.20), but their duality, expressed in the fourth line of (2.24), coincides

with the self-duality property (2.21) only for p = 0. The numerous properties of the

power means can be found in Lim and Pálfia (2012) and a recent extension of this

already quite general mathematical object has been proposed in Pálfia (2016).
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2.3.4 Algorithm For Power Means

Suppose P0 is used as an initial value to determine the power mean in the iterative

equation (2.22). Once the value of p is fixed, it corresponds to a certain point on the

geodesic connecting each Ck and P0. Then, the arithmetic mean of these points on the

geodesics is considered as the new starting value based on the (2.22), and this procedure

continues till the power mean is established, as shown in Figure2.2.

Figure 2.2: The schematic procedure of estimating power means in (2.22). Suppose
P0 as the initial value for this iterative equation. By fixing the order of power mean
as p, we are at the point gpk = P0#pCk on the geodesic connecting Ck and P0 for
k = 1, . . . ,K. Then, the arithmetic mean of gpk’s is computed and it is considered as
the new starting point in (2.22). Again, the arithmetic mean of new gpk’s in the second
iteration is calculated and this procedure continues till the power mean is obtained
up to a given precision.

We sought a general algorithm for computing the w-weighted power mean of order

p, with p ∈ (−1, 1)\{0}. We are also interested in an effective algorithm for estimating

the geometric mean, the third line in (2.24). The most popular algorithm for computing

the geometric mean is a Riemannian gradient descent flow with fixed step size (Afsari

et al., 2013; Jeuris et al., 2012) and the convergence rate of this algorithm deteriorates

rapidly as the SNR decreases (high dispersion of points on the manifold). The same

is true for the method based on approximate joint diagonalization in (Congedo et al.,

2015). Second order methods have complexity grown very fast with the size of the input

matrices; thus, they are little useful in practical applications (Jeuris et al., 2012). The

algorithm proposed in Zhang (2014) has high complexity per iteration and slow con-

vergence rates. For a review of available algorithms for estimating the geometric mean,

see Congedo et al. (2017). Our algorithm does not need to make use of Riemannian

geometry optimization in the manifold of SPD matrices, with consequent conceptual
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and computational advantage. For instance, we will be able to derive a fast approxima-

tion based exclusively on triangular matrix algebra and on the Cholesky decomposition

(details are in the paper by (Congedo et al., 2017)).

2.3.4.1 A General Multiplicative Fixed-Point Algorithm

Hereafter it is convenient to lighten notation; let the weighted power mean of or-

der p be denoted as P , which by (2.24) is equal to GP(C;w; p) if p ∈ (0, 1) or to

G−1P (C−1;w;−p) if p ∈ (−1, 0). This method only needs to handle one expression for

whatever value of p ∈ (−1, 1)\{0}, such as

P ∗ = GP(C∗;w; |p|); (2.25)

where |p| = abs(p) and the dual operator * is defined as ∗ = sgn(p). Definition (2.25) is

here introduced to define an algorithm with identical convergence behavior for all pairs

of values ±p for |p| ∈ (0, 1). Therefore, only the results for p positive are shown. As

initialization, the closed form solution of the mean in the case when all matrices in set

C all pair-wise commute is used, as given by (2.23). Let us now turn to the iterations.

(2.25) can be written out from definition (2.22) and using (2.13) to obtain

P ∗ = P ∗/2

[∑
k

wk
(
P−∗/2C∗kP

−∗/2)|p|]P ∗/2. (2.26)

In Lim and Pálfia (2012), the authors showed that the map defined by f(P ∗) =

GP(C∗;w; |p|); is a strict contraction for the Thompson metric (see Bhatia (2009)) with

the least contraction coefficient less than or equal to 1−|p|, and as such, it has a unique

SPD fixed point. Numerical experiments show that iterating expression (2.26) as it is

(hereafter referred to as ”naive fixed-point”) results in a rather slow convergence rate. It

becomes maximal for |p| = 1/2, but it becomes slower and slower as |p| becomes closer

to 0 or to 1. To hasten convergence we design a multiplicative algorithm as follows:

post-multiplying both sides of (2.26) by P−∗/2 and taking the inverse at both sides, the

following is obtained:

P−∗/2 = H−1P−∗/2, (2.27)

where

H =
∑
k

wk
(
P−∗/2C∗kP

−∗/2)|p| . (2.28)

From (2.26), upon convergence, H = I. H here plays the role of the origin in the SPD

manifold M for data linearly transformed by P−∗/2. In particular, the identity matrix
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I is the point of symmetry in M corresponding to 0 in the Euclidean space due to the

logarithmic map; as P−1/2 is a whitening matrix for the arithmetic mean (p = 1), so

P−∗/2 is a whitening matrix for the whole family of power means. We wish to proceed

by multiplicative updates according to (2.29). Rather than converging to P ∗ itself, an

algorithm converging to P−∗/2 is used, which is its inverse square root for ∗ = 1, i.e.,

when p ∈ (0, 1] and its square root for ∗ = −1, i.e., when p ∈ [−1, 0). The numerical

stability of fixed-point iterates (2.29) is ensured by the fact that H converges toward

I. Moreover, using our update rule, any update matrix with form H−φ in (2.29) is

equivalent to H−1 upon convergence. We have observed that replacing H−1 by H−φ in

the update rule (2.29) does not alter the convergence to the fixed point. Nonetheless, the

value of exponent φ impacts the convergence rate. In practice, using an optimal value of

φ leads to a significantly faster convergence as compared to the convergence achieved by

setting φ = 1. This holds true for power means in the whole interval p ∈ (−1, 1)\{0}.
Therefore, the following iterate equation is used,

P−∗/2 = H−φP−∗/2, (2.29)

interestingly, optimal convergence speed is observed taking φ in an interval whose ex-

tremes vary proportionally to |p|−1. An heuristic rule that has proven adequate in

intensive experiments using both real and simulated data is

φ =
1

2
ε−1/|p|, ε ∈ [1, 2], (2.30)

where ε is a constant eccentricity parameter for hyperbolas (2.30) (Figure 2.3).
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Figure 2.3: The φ function of |p| (2.30) comprises a boomerang-shaped area enclosed
by two hyperbolas: the upper limit is the unit hyperbola (ε = 1) and the other
hyperbola obtained for ε = 2 is the lower limit. This area delimits an acceptable
range of φ values for any given |p|.

The exponent −φ in (2.29) acts by retracting the jumps of the fixed point iterations.

Since the fixed point is reached at H = I, and φ is always positive in (2.30), H−φ =

H#−φI = I#1+φH (see section 2.3.3.2) represents the movements over the geodesic

from I to H (i.e., in the direction opposite to convergence), retracting H by a distance

equal to φ times the distance between I and H (here φ is the arc-length parameter of

equation (2.13)). The retraction is maximal for the unit hyperbola (ε = 1) and minimal

for ε = 2. By increasing ε toward 2 we obtain faster convergence in general, up to a

certain value, which according to our observations mainly depends on the signal-to-noise

ratio. In this study we take ε as 4/3 and we keep it fixed in all analyses; this value has

proven nearly optimal on the average of many combinations of SNR, input matrix sizes

and dimensions we have tested. The MPM algorithm in algebraic pseudo-code is as

follows:
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Algorithm MPM (Multiplicative Power Means)

INPUT: p ∈ [−1, 1]\{0}, K positive weights w = w1, . . . , wK such that
∑
wk = 1

and N ×N SPD matrices C∗ = {C∗1 , . . . , C∗K}, with ∗ = sgn(p).

OUTPUT: P , the w-weighted power mean of order p.

Initialize X as the principal square root inverse of (2.23) if p ∈ (0, 1] or as its

principal square root if p ∈ [−1, 0).

Set ζ equal to a small floating precision number (e.g., 10−10).

Set φ = 0.375/|p|.
REPEAT

H ←∑
k wk

(
XC∗kX

T
)|p|

X ← H−φX

UNTIL 1√
N
‖H − I‖F < ζ

RETURN P =

{
X−1X−T if p ∈ (0, 1],

XTX if p ∈ [−1, 0).

2.3.4.2 Geometric Mean Approximation by Power Means

As an approximation of the geometric mean of Section 2.3.3.2, the midpoint of the

geodesic (2.13) is considered to join a pair of power means obtained by MPM at two

small values ±p (in this research, p = ±0.01 is used). Current estimates of the geometric

mean using the MPM algorithm were improved using this procedure.

2.3.5 Studies With Simulated Data

2.3.5.1 Simulated Data Model

In many engineering applications, the matrix condition number of the SPD matrices

summarizing the data (observations, recordings,. . . ) tends to be positively correlated

with the number of sensors. Also, the dispersion in the manifold of the matrices is

proportional to the noise level. The following generative model for input data matrices

C1, . . . , CK of size N ×N can able to reproduce these properties:

Ck = UDkU
T + (VkEkV

T
k ) + αI, (2.31)

where

• The signal part is given by UDkU
T , where U is a matrix with elements drawn

at random at each simulation from a uniform distribution in [−1, 1] and then
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normalized to have columns with unit norm, and Dk are K diagonal matrices

with diagonal elements dk,n randomly drawn at each simulation from a chi-squared

random variable divided by its degree of freedom and multiplied by 1/2n. Thus,

the expectation of each element is 1/2n, where n ∈ {1, . . . , N} is the index of the

N diagonal elements; thus, forming elements of a well-known geometrical series

absolutely converging to 1. The elements of the series represent the energy of

N source processes, thus their sum is supposed to be finite (e.g. N brain dipole

source processes with finite total energy).

• The uncorrelated noise part is given by αI, where I is the identity matrix and

α here is taken as 10−6;

• The structured noise part is given by VkEkV
T
k , where the Vk matrices are gen-

erated as U above, the Ek matrices are generated as Dk previously and ν is a

constant controlling the SNR of the generated points (2.31) through

SNR =
tr
(∑

k UDkU
T
)

ν [tr (
∑

k VkEkV
T
k + αI)]

. (2.32)

2.3.5.2 Simulation

The ensuing simulations studied relevant outcome parameters as a function of the

SNR, which is inversely proportional to noise level as per (2.32), and a function of

the size (N) and number (K) of input matrices. The gradient descent algorithm for

estimating the geometric mean, (GDGM: Section 2.3.4, the naive fixed point algorithm

for power means given in Lim and Pálfia (2012) (see (2.26) in Section 2.3.4) and the

MPM algorithm here presented were compared, the latter for several values of p. In

comparing the convergence rate of several algorithms, the stopping criterion should be

determined to be identical for all of them. In addition, the relative error of matrix P

with respect to a reference matrix Pref is a dimensionless measure defined as follows

(Higham, 1997):

‖P − Pref‖2F / ‖Pref‖
2
F , (2.33)

As a stopping criterion, considering two successive iterations P(i−1) and P(i), the following

was used:
1

N

∥∥∥P−1(i) P(i−1) − I
∥∥∥2
F

(2.34)

which magnitude does not depend on the size or on the norm of the matrices.

Simulated data was also used to study the estimation of the geometric mean obtained
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by the gradient descent algorithm and by the procedure that uses the MPM algo-

rithm, as per Section 2.3.4. We are interested in the relative error (2.33) of these

estimations with respect to the ”true” geometric mean: according to our data gen-

erating model (2.32), the true geometric mean is the geometric mean of the signal

part given by matrices UDkU
T , where Dk, k = 1, . . . , K are diagonal matrices. Be-

cause of the congruence invariance of the geometric mean, the true geometric mean is

GG(UD1U
T , . . . , UDKU

T ;w) = UGG(D1, . . . , DK ;w)UT and has an algebraic solution,

since the geometric mean of diagonal matrices is their Log-Euclidean mean (Arsigny

et al., 2007) i.e.

GG(D1, . . . , DK ;w) = exp
∑
k

wklog(Dk). (2.35)

2.3.5.3 Results

Figure 2.4 shows the typical convergence behavior for the gradient descent algorithm

for computing the geometric mean (GDGM), the naive algorithm with p = 0.5 and the

MPM algorithm (p = 0.5 and p = 0.001), for K = 100 input SPD matrices of dimension

N = 20, and SNR = {100, 10, 1, 0.1}. This example illustrates the typical observed

trend: the MPM algorithm is consistently faster compared to both the naive and gradi-

ent descent algorithm. Moreover, the MPM algorithm also converges in situations when

the gradient descent and the naive algorithm do not (see also Figure 2.5).
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Figure 2.4: Typical convergence behavior (on abscissa, the number of iterations,
and on the ordinate, the convergence as defined in (2.34)) on simulated data for the
gradient descent algorithm for estimating the geometric mean (GDGM), naive fixed
point power mean with p = 0.5 and the MDM algorithm with p = {0.5, 0.001}, for
N = 20 (dimension of input matrices), K = 100 (number of input matrices) and
SNR = {100, 10, 1, 0.1} (2.32).

Figure 2.5 shows the analysis of the convergence behavior of the naive fixed point, the

MPM fixed point and GDGM. The figure shows the main effects (bars) and their stan-

dard deviation (sd: lines) across 50 simulations of N = {10, 25, 50}, K = {10, 100, 500}
and SNR = {100, 1, 0.01} on the number of iterations. Main effects means that for

each level of N , K and SNR, the average and sd of the number of iterations are com-

puted across all levels of the other two variables, as in a classical analysis of variance

(ANOVA). The results show that the number of iterations required by the MPM algo-

rithm is always smaller as compared to the naive algorithm and that the naive algorithm

converges very slow or does not converge at all for p = 0.01 (the maximum number of

iterations allowed was fixed to 50 for all algorithms).
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Figure 2.5: main effects average (bars) and sd (lines) number of iterations obtained
across 50 repetitions for N = {10, 25, 50}, K = {10, 100, 500} and SNR= {100, 1, 0.01}
for the MPM algorithm with p = {0.5, 0.25, 0.01}, the naive algorithm with p =
{0.5, 0.01} and the gradient descent algorithm for estimating the geometric mean
(GDGM)

Figure 2.6 shows the relative error to the true geometric mean of the GDGM al-

gorithm, MPM with p = 0.1, 0.01 and of the middle point of the geodesic joining the

two MPM estimations obtained with p = ±0.01 (see Section 2.3.4), for several SNR in

the range SNR= {10−3, . . . , 103}, N = 20, and K = 5 (left) or K = 80 (right). For

all smaller SNR values (more noise than signal), all MPM-based estimations are closer

to the true geometric mean as compared to the estimation offered by the gradient de-

scent algorithm and that for all SNR values the midpoint of the geodesic joining the

MPM estimations obtained with p = ±0.01 is as good as the best competitor, or better.

Considering this and the convergence behavior of the MPM algorithm (Figure 2.5), we

conclude that the procedure based on MPM described on section 2.3.4 is preferable for

estimating the geometric mean.
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Figure 2.6: Relative error to the true geometric mean obtained with the GDGM
algorithm, MPM with p = 0.1, MPM with p = 0.01 and as the midpoint of the
geodesic joining the estimations obtained by MPM with p = ±0.01 (Section 2.3.4).
Left: N = 20, K = 5. Right: N = 20,K = 80. In both plots, the horizontal axis is
the SNR sampling the range {10−3, . . . , 103}.

2.3.6 Studies with Real Data

2.3.6.1 Procedures

We tested the classification performance obtained by several power means on a real

electroencephalography (EEG) data set acquired at the GIPSA-lab in Grenoble on 38

pairs of subjects participating in a BCI experiment. The BCI used was the multi-

subject Brain Invaders (Korczowski et al., 2015), which the user-interface is similar to

the joystick-controlled vintage video-game Space Invaders (Congedo et al., 2011). The

BCI shows for several levels of the game 36 aliens on the screen and flash them in

random patterns of 6 aliens (Congedo et al., 2011). The task of the participant is to

destroy a TARGET alien only by concentrating on it (i.e. without moving at all). The

on-line classifier analyzes the event-related potentials (ERPs) produced during 1s after

each flash and decides after every sequence of 12 flashes what alien is to be destroyed.

The level continues until the TARGET alien is destroyed or 8 attempts have failed, after

which a new level begins. For this analysis, power means of special covariance matrices

(see Section 2.2.2) for the TARGET and NON-TARGET ERPs were estimated on a

training set, and the remaining trials were used for producing the area under the ROC

curve (AUC). An AUC equal to 1 indicates perfect classification accuracy, while an

AUC equal to 0.5 indicates random classification accuracy. The Riemannian classifier

described in (Congedo, 2013) and Section 2.4.2.1 was employed, which only uses the

means of SPD matrices and distance function (2.14) to reach a decision. In the experi-

ment, across subjects the average (sd) numbers of TARGET and NON-TARGET trials

available were 109.9 (26.2) and 549.48 (130.1), respectively. In order to keep the amount
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of data constant across subjects, only the first 80 TARGET and 400 NON-TARGET

trials were used. AUC is evaluated by using a Monte Carlo cross-validation (MCCV)

procedure averaging 10 random samples comprising 25% of the data selected as the test

set and the remaining used as training set. EEG data were acquired by 16 scalp elec-

trodes. Power means were tested at values of p ∈ {±1,±0.8,±0.6,±0.4,±0.2,±0.1, 0}.

2.3.6.2 Results

The individual area under the ROC curve (AUC) for the BCI experiment on 38

subjects is shown in Figure 2.7. The AUC values are obtained based on the minimum

distance to mean (MDM) classification rule which is looking for the correspond class

of a trial in the test set which has the minimum riemannian distance with the power

mean of TARGET or NON-TARGET trails in the training set. The MDM is discussed

in Section 2.4.2.1. The AUC as a function of p is a smooth curve and the value of p

offering the maximum AUC appears to gravitate around zero. This illustrates a reason

why the geometric mean is found useful in practice. However, the geometric mean

(p = 0) is optimal only for three out of the 38 subjects, and the optimal value of p

is highly variable across individuals. This demonstrates that the use of power means

instead of the sole geometric mean has potential to increase the accuracy. Finally, the

Pearson correlation between the maximal value of AUC obtained and the corresponding

value of p is 0.49. A statistical test for the null hypothesis that this correlation is equal

to zero against the alternative hypothesis that is larger than zero, gives a probability

of type I error equal to 0.002. Therefore, the null hypothesis is rejected and a higher

AUC, that is, a higher SNR of the data correlates to the higher the optimal value of

p. This result matches our intuition: when the noise is higher than the signal, a power

mean with a negative p will suppress the noise more than the signal and vice versa.

2.3.7 Mean fields

The family of power means is continuous and monotonic. Figure 2.8 is a TraDe

plot (log-trace vs. log-determinant) for a sampling of power means along continuum

p ∈ [−1, 1], illustrating the monotonicity of power means. We name a sampling of

power means like those in 2.7 and 2.8 a Pythagorean Mean Field. Applications of mean

fields include the possibility to evaluate the most appropriate choice of mean depending

on its use and on the available data. Mean fields also allow robust extensions of current

Riemannian classifiers, such as in (Arnaudon et al., 2013; Barachant et al., 2012, 2013;

Congedo, 2013; Kalunga et al., 2016; Li and Wong, 2013; Li et al., 2012; Moakher,

2006; Zhang et al., 2016). For instance, we may want to combine Riemannian classifiers
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Figure 2.7: A: from left to right and from top to bottom, AUC (disks) ± one stan-
dard deviation (vertical bars) obtained for 38 healthy subjects sorted by decreasing
value of maximal AUC obtained across a sampling of power means in the interval
p = {−1, . . . , 1}. B: scatter plot and regression line of the maximal AUC and the
value of p allowing the maximal value. Each disk represents a subject.

applied to all the points of a mean field. The application of mean fields to real data will

be the object of next sections.
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Figure 2.8: TraDe plot obtained with N=10, K=10 and SNR=1 for power means
corresponding to p = 1 (arithmetic), 0.5, 0.1, 0 (geometric), −0.1,−0.5 and −1 (har-
monic). The relationship between the trace and the determinant of power means is
log-log linear.

2.3.8 Conclusions

Power means are generalized means interpolating continuously in the interval p ∈
[−1, 1], with p = 1 yielding the arithmetic mean, the limit of p → 0 from both sides

yielding the geometric mean and p = −1 yielding the harmonic mean. A new multiplica-

tive algorithm of estimating power means of SPD matrices in the interval p ∈ (−1, 1)\{0}
has been presented. Furthermore, a numerical analysis shows that its convergence rate

is very fast and quasi-uniform for values of p close to 1/2 and −1/2, while for values of

p close to 0 or ±1 it is still faster as compared to when the gradient descent with fixed

step-size used to estimate the geometric mean. Furthermore, it converges also in low

SNR situations, whereas the gradient descent algorithm fails. The approximation to the

geometric mean proposed in Section 2.3.4 provides better estimates of the geometric

mean with respect to the gradient descent algorithm. We can therefore prefer MPM

also for estimating the geometric mean. In conjunction with the procedure for p = 0 of

Section 2.3.4 and expression (2.17) and (2.18) for p = 1 and p = −1, respectively, the

MPM algorithm can now estimate a number of means sampling along the continuum

p = [−1, 1].
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2.4 Statistical Combinations of Power Means: Clas-

sification Study on Functional Data

2.4.1 Introduction

Manipulating functional data in machine learning studies has been highlighted in

many practical studies, and the amount of interest in this field has been increasing. As a

big data problem, the classification study of the functional data when the data appears as

covariance matrices is proposed. Covariance matrices form a differentiable Riemannian

manifold. Regarding this fact, some classification approaches are proposed, and they

are assessed in terms of accuracy. As mentioned, there is a steadily growing interest in

classification methods for functional data, they often exploit Riemannian geometry (see

Barachant et al. (2010, 2012, 2013); Congedo et al. (2013); Korczowski et al. (2015)),

therewith in this research the classification problem of functional data rising from EEG

signal in BCI is considered. In brief, each observation to be classified is the brain

activity (i.e. multiple electrodes) over a fixed period of time. Estimating the average

of available sample covariance matrices is a crucial step in such classification problems.

The Riemanian manifold of SPD matrices in coincidence with Riemannian geometry

techniques are well adopted in BCI classification, and they provide a rich framework to

manipulate in this context; see Section 2.3. Therefore, some classification approaches

that use the mean field of covariance matrices on their manifold are proposed. As the

univariate case, the best employed mean estimator to higher accuracy classification can

be different from arithmetic or geometric means. In fact, a combination of power means

is presented to provide the benefits of all power means regardless of the matrix data

distribution, as discussed in the beginning introduction of the thesis, EEG part. For

the classification of functional data the power means of covariance matrices, employing

the MPM (provided in 2.3.4) and the MDM (minimum distance to mean; see 2.4.2.1)

algorithms, are used. The behavior of different power means and their combinations are

assessed in terms of classification accuracy using real data and the merits of proposed

approaches are shown. Up to now, only the geometric mean has been used for such

classification studies while our results showed that the optimal mean which produced

the maximal accuracy could be different in the mean field of power means; however, no

educated guesses regarding the optimum p may be possible.
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2.4.2 Classification Methodologies

2.4.2.1 MDM (minimum distance to mean) Classification

As the classification methodology, for all classifications, a simple idea is used, namely

MDM Congedo (2013). Based on it, once the training set (a bunch of trials which are

SPD matrices) are obtained, the power means with several orders p for different classes

are estimated. Then, the Riemanian distance between the correspond SPD matrix of

the new case (a trial with unknown class) and each power means matrix of different

classes are calculated. The predicted class for the new case, based on a fixed p, is the

correspond class in which its power mean has the minimum Riemaninan distance from

new the case.

Figure 2.9: Schematic of MDM. C is a new observation (matrix) and M1 and M2

are the center of masses in two different groups (Congedo et al., 2013).

In BCI, the trials need to be classified regardless of the kind of data: motorimagery

(MI) trials, steady-state evoked potentials (SSEP) trials, or event-related potentials

(ERP). Suppose there are several training trials with different K classes and for a new

unlabeled trial C, which all are in the form of a covarinace matrices (Section 2.2.2) one

of the K classes should be assigned. Considering this fact, the right metric is Riemanian

on the SPD manifold we may want to compute the mean of the each classes in training

set, Mi; i = 1, . . . , K, and then look for the shortest Riemanian distance (Section 2.14)

between C and Mi.
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Algorithm 1: MDM

Input: set of trials Cij (covariance matrices) of j = 1, . . . , K classes.

Input: C, the covariance matrix of new trial with an unknown class.

Output: k̂, the predicted class of the new trial.

for j = 1 to K do

G
(p)
Pj

= GP(Cij;w; p)

end for

k̂ = argmin
j

δ(G
(p)
Pj
, C)

Table 2.1: Minimum distance to mean (MDM) algorithm for classification using
power means of SPD matrices.

2.4.2.2 Application to Motorimagery data

The theory is now applied to our leading example. Figure 2.10 shows a general

behavior of power means with p ∈ {±1,±0.75,±0.50,±.25, 0} in terms of classification

accuracy of EEG signals on 9 subjects mentioned in the Section 2.1.1. As mentioned,

power means have not been yet used in such classification problems. In addition, Figure

2.10 shows that the power mean which maximizes the accuracy slip between harmonic

(i.e. p = −1) and arithmetic means (i.e. p = +1). However, we are not able to find any

pattern or guess to find the optimal power mean, since the best p varies among subjects.
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Figure 2.10: Classification accuracy on 9 subjects for the classes 3 vs 4 in Mo-
torimagery task using MDM algorithm for the training and test sets in size of 288
trials. Power means with p ∈ {±1,±0.75,±0.50,±0.25, 0} were estimated by MPM
algorithm.

2.4.2.3 Combination of Power means

Although arithmetic mean seems to be the most usual and natural mean using MDM,

but some applications on real data show it is the worth one, mostly! As mentioned, only

geometric and arithmetic means has been used for EEG signals classifications, so far.

Section 2.4.2.2 shows that neither arithmetic nor geometric means are optimal in every

subject, while different p values have higher accuracy. However, it might not be possible

to guess the optimal power mean facing a new subject. One could select the best p based

on some cross-validation principle, but this approach is still far from being optimal, and

results are often worse than simply using a prefixed p (e.g. geometric mean). Moving

from these considerations, the idea of combining the classification of a set of power

means has been arised. Furthermore, it is desirable that a combination is more affected

by power means with better accuracy. Therefore, a combination of the classifications

which is weighted depending on the accuracy of every power mean is presented.

Assuming two classes (having labels −1 and +1), the combined classification rule is

the following:

ccr(C) = sgn

(∫ 1

−1
w(p) sgn

(
log

(
R(p, C)1
R(p, C)2

))
dp

)
, (2.36)
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where sgn is the sign function i.e. sgn(x) =

{
1 x ≥ 0

−1 x < 0,
and R(p, C)j = δ(C,G

(p)
Pj

),

while G
(p)
Pj

is the power mean with order p related to the class j, and C is the correspond

covariance matrix of a trial in new subject that needs to be classified. The empirical

version of (2.36) on a set of orders of power means P can be obtained as

ˆccr(C) = sgn
(∑

p∈P w(p) sgn
(

log
(
R(p,C)1
R(p,C)2

)))
, (2.37)

where the weights w(p) are exponential transformed of some (scaled) accuracy, namely

accp, of a pre-classification on a initial training set, i.e. w(p) = exp(accp); p ∈ P . The

pre-classification for obtaining weights can be done on the same training and test sets.

The possible ĉcr values of −1 or 1 show the predicted classes, respectively. In general,

one should note that, depending on the available problem, exponential or sng functions

might been replaced by some other desirable functions.

2.4.3 Application

This section presents the accuracy performance of classifications on two types of EEG

data, namely, P300 and Motorimagenary data which has been presented in Section 2.1.1

and discussed throughout the paper.

2.4.3.1 Application to P300 data

The classification performance obtained by several power means on a real EEG data

set were examined. The data set acquired at the GIPSA-lab in Grenoble, France, on

19 pairs of subjects participating in a BCI experiment. The BCI used was the multi-

subject Brain Invaders Korczowski et al. (2015), which the user-interface is similar to

the joystick-controlled vintage video-game Space Invaders Congedo et al. (2011). The

BCI shows several times 36 aliens on the screen and flashes them in random pattern of 6

aliens Congedo et al. (2011). The task of the participant is to destroy a TARGET alien

only concentrating on it. The on-line classifier analyzes the ERP produced during 1s

after each flash. In the experiment, across subjects, the average (sd) number of TAR-

GET and NON-TARGET trials available were 109.9 (26.2) and 549.48 (130.1). EEG

data were acquired by 32 scalp electrodes, but only a subset of 13 electrodes that were

found optimal on the average of all subjects were used here. Power means were tested

with P = {±1,±0.75,±0.5,±0.25, 0}.
To do the classification with several power means, for each subject, a random training

group of size n among all available TARGET and NON-TARGET trials was chosen and
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the power means with different p ∈ P according to two classes were computed. Then, the

rest of trials were used as the test group to classify the TARGET and NON-TARGET

trials by MDM. The random training set can be used also to obtain the weights w(p)s.

To obtain the accuracy classification, this procedure was repeated M times and the

average accuracy was computed. M = 50 was chosen to have stable results upon a

certain precision. For combination, once the values of w(p)s were obtained, for a trail

in the test group, R(p, C)1 and R(p, C)2 were computed and the predicted class of the

new trial was obtained by using (2.37).

Algorithm 2: Classification accuracy by combined classification

Input: set of trials Cij (i-th trial and j-th class) of S subjects with two classes.

Output: caccs, the combined accuracy in s-th subject

for s = 1 to S do

for m = 1 to M do

choose a random training group (T ) of size n

estimate G
(p)
Pj

for classes j = 1, 2 and p ∈ P on T

compute the weights in (2.37) by MDM on T

compute ˆccr in (2.37) for the rest of trials

end for

caccs =average accuracy in M loops

end for

Table 2.2: Algorithm to do classification by combination approach with M number
of cross-validation using MPM and MDM.

Figure 2.11 shows a general behavior of power means in terms of classification accu-

racy. As mentioned previously, power means have not been used in such classification

problems, so far. Figure 2.11 shows that the optimal power mean which maximizes the

average accuracy is different from geometric mean, and in many cases, the arithmetic

mean is the worse one (+ sign in the bounded area). However, no pattern or educated

guess of the optimal power mean could be obtained.
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Figure 2.11: Accuracy of classification on 19 subjects in P300 data with n = 25
using power means by MPM and MDM algorithms. The solid line shows the average
accuracy over M = 50 replication of combination approach bounded by 1 standard
deviation by dashed line, and + shows the average accuracy classification over M = 50
repeats using several power means with P = {±1,±0.75,±0.5,±0.25, 0} bounded by
the area of 1 standard deviation. The last plot on the right bottom side shows the
average accuracy over all subjects.
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subjects

1 2 3 4 5 6 7 8 9 10

Geometric mean 85.96 84.85 84.09 84.01 85.30 85.19 83.86 84.23 81.11 85.56

Best p 85.63 84.43 83.10 83.36 84.75 84.59 83.07 83.97 81.08 84.65

Combination 86.16 85.03 84.15 83.97 85.29 85.40 83.92 84.26 81.91 85.62

subjects

11 12 13 14 15 16 17 18 19 Ave.

Geometric mean 85.62 94.84 83.64 85.27 84.59 85.37 83.56 82.79 83.95 84.94

Best p 85.38 95.51 82.08 84.64 83.97 85.10 82.30 79.84 83.58 84.27

Combination 85.81 95.14 83.61 85.35 84.65 85.49 83.56 82.54 83.93 85.04

Table 2.3: Accuracy of classification with n = 25 on 19 subjects using geometric
mean, best p and the combination approach with M = 50.

In the Figure 2.11, however, we see that the optimal power mean can be different,

by combination approach (solid lines) we can catch an accuracy almost close to the

accuracy of optimal power mean. So in practice, by using combination approach, while

we do not know which power mean is the optimal one, we can have an enough trusted

accuracy with respect to the optimal power mean. In Table 2.3, first on the random

initial training and test sets of size n, a pre-classification is performed to find the best

p. Then, using that best p, which was mostly different from the geometric mean, a

classification is performed on the rest of trials, and the average accuracy is obtained

by repeating this procedure M times to obtain the accuracy by cross validation. The

combination method has the higher accuracy in most of the subjects and also in average

over all subjects. Also, it is verified by paired t-test.

2.4.3.2 Motorimagery data

We use the Motorimagery data from BCI Competition 2008 Graz data set A; see

Section 2.1.1. There were 22 Ag/AgCl electrodes (with inter-electrode distances of

3.5 cm) used to record the EEG. All signals were recorded monopolarly with the left

mastoid serving as reference, and the right mastoid serving as the ground. The signals

were sampled with 250 Hz and band-pass filtered between 0.5 Hz and 100 Hz. The

sensitivity of the amplifier was set to 100 µV . An additional 50 Hz notch filter was

enabled to suppress line noise. To perform the classification with several power means,

for each subject in classes 3 and 4, a random training group of size n among all available

trials was chosen, then, the power means according to the two classes and w(p) with

different p ∈ P = {±1,±0.75,±0.50,±0.25, 0} were computed. Then, the rest trials
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were used as the test group to classify by MDM. To obtain the accuracy classification

by cross validation, this procedure was repeated M times and the average accuracy

was computed. M = 50 was chosen to have stable results upon a certain precision.

For combination, once the value of w(p)s were obtained, for a trail in the test group,

R(p, C)1 and R(p, C)2 were computed and we obtained the predicted class of the new

trial by using (2.37); see Algorithm 2. Because of the similarity of classification results of

all pairs of classes, to save more pages the results of the classes 3 and 4 were considered

here and the classification results between the other classes pairs in this data set are

provided in the Appendix.

Figure 2.12: Average accuracy of classification for class 3 vs 4 on 9 subjects in
Motorimagery data for n = 50 (576 trials) using power means by MPM and MDM
algorithms. The solid line shows the average accuracy over M = 50 replication of
combination approach bounded by 1 standard deviation by dashed line. The + shows
the average accuracy classification over M = 50 repeats using several power means
with P = {±1,±0.75,±0.5,±0.25, 0} bounded by the area of 1 standard deviation.
The last plot on the right bottom side shows the average accuracy over all subjects.
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subjects

1 2 3 4 5 6 7 8 9 Ave.

Geometric mean 59.97 53.01 66.16 52.56 49.31 54.94 58.69 75.45 83.63 61.53

Best p 60.33 56.71 63.73 54.77 51.40 58.42 60.76 71.33 78.62 61.79

Combination 60.08 55.30 66.15 52.82 51.22 58.05 60.39 75.43 83.19 62.51

Table 2.4: Accuracy of classification with n = 50 on 9 subjects class 3 vs 4 Motorim-
agery data using geometric mean, best p and combination approach with M = 50.

Figure .2 shows using the combination approach that an accuracy close to the optimal

power mean can be obtained and that an accuracy higher than the accuracy obtained

using the optimal power mean can be obtained in some subjects. Moreover, the last plot

on the right bottom in Figure .2 shows that in average over all subjects, the combined

accuracy is higher than all power means and that the optimal power mean is different

from the geometric mean. Also, the combination with the best p and geometric mean

were compared in Table 2.4. The combination approach has higher accuracy, however,

the paired t-test showed combination approach and best p are not significantly different.

2.4.4 Conclusion

This work proposes the classification study of functional data when the working

data appeared as sample covariance matrices. This can be seen in EEG signals in

BCI which is indeed useful when the subject wants to control the machine by brain

commands such as video-games or for people with physical disabilities. In this thesis,

the features of Riemanninan manifold of SPD matrices and Riemanninan geometry

techniques were employed to do classification, and an efficient and fast algorithm MPM

was proposed in 2.3.4 and Congedo et al. (2017) to estimate power means. Up to now,

only geometric mean has been used for such classification studies however, there is

a convergence problem in some cases when computing the geometric mean using the

previous existing algorithms. Our results showed that the optimal mean which caused

the maximum accuracy could be different in the mean field of power means; however,

it may not be possible to have any guess, and interestingly this topic has not been

covered so far! Finally, a combination approach of power means was proposed. Using

the combination approach, accuracy is close enough, or higher than the accuracy of

the optimal power mean in some cases. Moreover, on average within all subjects , the

accuracy of the combination approach was higher than the best p and geometric mean.

Thus, in practice, the user can apply the combination approach while not knowing which

power mean supplies the maximum accuracy.
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Other results of the classification study related to the motorimagery real data in Section

2.4.3.2.

Figure .1: Average accuracy of classification for class 1 vs 2 on 9 subjects in Mo-
torimagery data for n = 50 (576 trials) using power means by MPM and MDM
algorithms. The solid line shows the average accuracy over M = 50 replication of
combination approach bounded by 1 standard deviation by dashed line, and + shows
the average accuracy classification over M = 50 repeats using several power means
with P = {±1,±0.75,±0.5,±0.25, 0} bounded by the area of 1 standard deviation.
The last plot on the right bottom side shows the average accuracy over all subjects.
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subjects

1 2 3 4 5 6 7 8 9 Ave.

Geometric mean 63.97 48.99 73.14 51.42 49.90 53.17 53.84 86.09 77.85 62.04

Best p 63.97 50.12 72.29 53.40 51.99 55.66 56.56 86.46 78.69 63.24

Combination 64.10 49.31 73.36 52.45 50.65 55.15 55.59 87.46 77.76 62.87

Table .1: Accuracy of classification with n = 50 on 9 subjects class 1 vs 2 motorim-
agery data using geometric mean, best p and combination approach with M = 50.

Best p Combination

Geometric mean Rejected Rejected

Best p * Accepted

Table .2: Paired t-test for the accuracy of classification with n = 50 on 9 subjects
class 1 vs 2 motoimagery data using geometric mean, best p and combination approach
with M = 50. Each cell shows the decision about null hypothesis which is mean
equality of two groups.

Figure .2: Average accuracy of classification for class 1 vs 3 on 9 subjects in mo-
torimagery data for n = 50 (576 trials) using power means by MPM and MDM
algorithms. The solid line shows the average accuracy over M = 50 replication of
combination approach bounded by 1 standard deviation by dashed line, and + shows
the average accuracy classification over M = 50 repeats using several power means
with P = {±1,±0.75,±0.5,±0.25, 0} bounded by the area of 1 standard deviation.
The last plot on the right bottom side shows the average accuracy over all subjects.
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subjects

1 2 3 4 5 6 7 8 9 Ave.

Geometric mean 89.22 54.82 75.85 61.44 50.42 62.78 65.67 68.84 82.30 67.93

Best p 88.26 63.43 72.72 65.03 56.71 67.17 70.14 71.58 78.72 70.42

Combination 88.77 58.14 75.15 62.88 52.59 64.86 68.54 70.79 81.48 69.25

Table .3: Accuracy of classification with n = 50 on 9 subjects class 1 vs 3 motorim-
agery data using geometric mean, best p and combination approach with M = 50.

Best p Combination

Geometric mean Accepted Rejected

Best p * Accepted

Table .4: Paired t-test for the accuracy of classification with n = 50 on 9 subjects
class 1 vs 3 motorimagery data using geometric mean, best p and combination ap-
proach with M = 50. Each cell shows the decision about null hypothesis which is
mean equality of two groups.

Figure .3: Average accuracy of classification for class 1 vs 4 on 9 subjects in mo-
torimagery data for n = 50 (576 trials) using power means by MPM and MDM
algorithms. The solid line shows the average accuracy over M = 50 replication of
combination approach bounded by 1 standard deviation by dashed line, and + shows
the average accuracy classification over M = 50 repeats using several power means
with P = {±1,±0.75,±0.5,±0.25, 0} bounded by the area of 1 standard deviation.
The last plot on the right bottom side shows the average accuracy over all subjects.
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subjects

1 2 3 4 5 6 7 8 9 Ave.

Geometric mean 94.72 51.46 85.65 62.41 50.58 56.57 73.13 87.50 94.59 72.96

Best p 92.83 54.40 80.93 67.29 58.62 61.09 75.78 83.53 89.53 73.78

Combination 93.89 52.86 84.74 63.91 53.81 58.15 75.80 86.39 94.55 73.79

Table .5: Accuracy of classification with n = 50 on 9 subjects class 1 vs 4 motorim-
agery data using geometric mean, best p and combination approach with M = 50.

Best p Combination

Geometric mean Accepted Accepted

Best p * Accepted

Table .6: Paired t-test for the accuracy of classification with n = 50 on 9 subjects
class 1 vs 4 motorimagery data using geometric mean, best p and combination ap-
proach with M = 50. Each cell shows the decision about null hypothesis which is
mean equality of two groups.

Figure .4: Average accuracy of classification for class 2 vs 3 on 9 subjects in mo-
torimagery data for n = 50 (576 trials) using power means by MPM and MDM
algorithms. The solid line shows the average accuracy over M = 50 replication of
combination approach bounded by 1 standard deviation by dashed line, and + shows
the average accuracy classification over M = 50 repeats using several power means
with P = {±1,±0.75,±0.5,±0.25, 0} bounded by the area of 1 standard deviation.
The last plot on the right bottom side shows the average accuracy over all subjects.
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subjects

1 2 3 4 5 6 7 8 9 Ave.

Geometric mean 92.99 54.09 82.45 58.05 49.39 58.58 60.31 69.10 68.37 65.93

Best p 91.58 61.66 79.68 61.71 52.26 63.99 65.53 71.90 69.09 68.60

Combination 92.18 57.34 81.69 59.70 52.25 62.19 64.26 71.74 69.10 67.83

Table .7: Accuracy of classification with n = 50 on 9 subjects class 2 vs 3 motorim-
agery data using geometric mean, best p and combination approach with M = 50.

Best p Combination

Geometric mean Rejected Rejected

Best p * Accepted

Table .8: Paired t-test for the accuracy of classification with n = 50 on 9 subjects
class 2 vs 3 motorimagery data using geometric mean, best p and combination ap-
proach with M = 50. Each cell shows the decision about null hypothesis which is
mean equality of two groups.

Figure .5: Average accuracy of classification for class 2 vs 4 on 9 subjects in mo-
torimagery data for n = 50 (576 trials) using power means by MPM and MDM
algorithms. The solid line shows the average accuracy over M = 50 replication of
combination approach bounded by 1 standard deviation by dashed line, and + shows
the average accuracy classification over M = 50 repeats using several power means
with P = {±1,±0.75,±0.5,±0.25, 0} bounded by the area of 1 standard deviation.
The last plot on the right bottom side shows the average accuracy over all subjects.
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subjects

1 2 3 4 5 6 7 8 9 Ave.

Geometric mean 97.24 50.07 88.42 57.66 51.06 51.63 71.08 82.88 85.93 70.66

Best p 95.88 57.60 79.15 65.33 61.12 61.82 75.94 80.99 82.80 73.40

Combination 96.85 51.09 87.66 59.42 53.56 54.65 74.27 82.38 84.86 71.64

Table .9: Accuracy of classification with n = 50 on 9 subjects class 2 vs 4 motorim-
agery data using geometric mean, best p and combination approach with M = 50.

Best p Combination

Geometric mean Accepted Accepted

Best p * Accepted

Table .10: Paired t-test for the accuracy of classification with n = 50 on 9 subjects
class 2 vs 4 motorimagery data using geometric mean, best p and combination ap-
proach with M = 50. Each cell shows the decision about null hypothesis which is
mean equality of two groups.
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