965 research outputs found

    Ada(R) Test and Verification System (ATVS)

    Get PDF
    The Ada Test and Verification System (ATVS) functional description and high level design are completed and summarized. The ATVS will provide a comprehensive set of test and verification capabilities specifically addressing the features of the Ada language, support for embedded system development, distributed environments, and advanced user interface capabilities. Its design emphasis was on effective software development environment integration and flexibility to ensure its long-term use in the Ada software development community

    Formally Integrating Real-Time Specification: A Research Proposal

    Get PDF
    To date, research in reasoning about timing properties of real-time programs has considered specification and implementation as separate issues. Specification uses formal methods; it abstracts out program execution, defining a specification that is independent of any machine-specific details (see [I, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] for examples). In this manner, it describes only the high-level timing requirements of processes in the system, and dependencies between them. One then typically attempts to prove the mutual consistency of these timing constraints, or to determine whether the constraints maintain a safety property critical to system correctness. However, since the model has abstracted out machine-specific details, these correctness proofs either assume very optimistic operating environment (such as a one to one assignment of processes to processors), or make very pessimistic assumptions (such as that all interleavings of process executions are possible). Since neither of these assumptions will hold in practice, these predictions about the behavior of the system may not be accurate. The implementation level captures this operating environment: a real- time system is characterized by such things as process schedulers, devices and local clocks. However, advances here have been primarily in scheduling theory (examples of which are [15, 16]) and language design (examples of which are [15, 16, 17, 18,19,20]). Unfortunately, since formal models have not been used at this level, proofs of time-related properties cannot be made. To construct these proofs, we must show that an implementation is correct with respect to a specification; timing properties that can be shown to hold about the specification will therefore be known to hold for the implementation. We therefore need to represent the implementation formally so as to prove that the implementation satisfies the specification. The proof of satisfaction requires a well-defined formal mapping between the implementation and specification models. We therefore propose to develop an integrated bi-level approach to the problem of reasoning about timing properties of real-time programs. At the specification level, we will use the Timed Acceptances model, a logically sound and complete axiom system which we have recently developed [21]. Using this model, the effect of interaction among time dependent processes can be precisely specified and then analyzed. We will then develop a formal implementation model (similar to the specification model) which captures operational behaviors: for example, the assignment of processes to processors, assumptions about scheduling and clock synchronization, and the different treatment of execution and wait times. A mapping will then be formulated between these two layers. The bulk of our proposed work will be to formulate the implementation layer and define a mapping between it and the specification layer. We also need to continue work on the Timed Acceptances model to facilitate its use as a specification model, and to provide hooks for mappings between the two layers. The rest of this proposal is organized as follows. The next section overviews related work in formal specification models. Section 3 describes our current specification model and proposed enhancements. We also detail the proposed implementation model, and required properties of the mappings between the two models. Section 4 provides a summary of the proposed research, and a yearly plan

    Static Deadlock Detection for the SHIM Concurrent Language

    Get PDF
    Concurrent programming languages are becoming mandatory with the advent of multi-core processors. Two major concerns in any concurrent program are data races and deadlocks. Each are potentially subtle bugs that can be caused by non-deterministic scheduling choices in most concurrent formalisms. As an alternative, the SHIM concurrent language guarantees the absence of data races by eschewing shared memory, but a SHIM program may still deadlock if a program violates a communication protocol. We present a model-checking-based static deadlock detection technique for the SHIM language. Although SHIM is asynchronous, its semantics allow us to model it synchronously without losing precision, greatly reducing the state space that must be explored. This plus the obvious division between control and data in SHIM programs makes it easy to construct concise abstractions. Experimentally, we find our procedure runs in only a few seconds for modest-sized programs, making it practical to use as part of a compilation chain

    A model-driven approach to teaching concurrency

    Get PDF
    We present an undergraduate course on concurrent programming where formal models are used in different stages of the learning process. The main practical difference with other approaches lies in the fact that the ability to develop correct concurrent software relies on a systematic transformation of formal models of inter-process interaction (so called shared resources), rather than on the specific constructs of some programming language. Using a resource-centric rather than a language-centric approach has some benefits for both teachers and students. Besides the obvious advantage of being independent of the programming language, the models help in the early validation of concurrent software design, provide students and teachers with a lingua franca that greatly simplifies communication at the classroom and during supervision, and help in the automatic generation of tests for the practical assignments. This method has been in use, with slight variations, for some 15 years, surviving changes in the programming language and course length. In this article, we describe the components and structure of the current incarnation of the course?which uses Java as target language?and some tools used to support our method. We provide a detailed description of the different outcomes that the model-driven approach delivers (validation of the initial design, automatic generation of tests, and mechanical generation of code) from a teaching perspective. A critical discussion on the perceived advantages and risks of our approach follows, including some proposals on how these risks can be minimized. We include a statistical analysis to show that our method has a positive impact in the student ability to understand concurrency and to generate correct code

    Compositional semantics for real-time distributed computing

    Get PDF
    We give a compositional denotational semantics for a real-time distributed language, based on the linear history semantics for CSP of Francez et al. Concurrent execution is not modelled by interleaving but by an extension of the maximal parallelism model of Salwicki, that allows the modelling of transmission time for communications. The importance of constructing a semantics (and in general a proof theory) for real-time is stressed by such different sources as the problem of formalizing the real-time aspects of Ada and the elimination of errors in real-time flight control software ([Sunday Times 7-22-84])

    Program Model Checking: A Practitioner's Guide

    Get PDF
    Program model checking is a verification technology that uses state-space exploration to evaluate large numbers of potential program executions. Program model checking provides improved coverage over testing by systematically evaluating all possible test inputs and all possible interleavings of threads in a multithreaded system. Model-checking algorithms use several classes of optimizations to reduce the time and memory requirements for analysis, as well as heuristics for meaningful analysis of partial areas of the state space Our goal in this guidebook is to assemble, distill, and demonstrate emerging best practices for applying program model checking. We offer it as a starting point and introduction for those who want to apply model checking to software verification and validation. The guidebook will not discuss any specific tool in great detail, but we provide references for specific tools

    Hard Real-Time Java:Profiles and Schedulability Analysis

    Get PDF
    corecore