
Static Deadlock Detection for the SHIM Concurrent Language

Nalini Vasudevan
Department of Computer Science

Columbia University
New York, USA

naliniv@cs.columbia.edu

Stephen A. Edwards
Department of Computer Science

Columbia University
New York, USA

sedwards@cs.columbia.edu

Abstract

Concurrent programming languages are becoming manda-
tory with the advent of multi-core processors. Two ma-
jor concerns in any concurrent program are data races
and deadlocks. Each are potentially subtle bugs that can
be caused by non-deterministic scheduling choices in most
concurrent formalisms. As an alternative, the SHIM con-
current language guarantees the absence of data races by
eschewing shared memory, but a SHIM program may still
deadlock if a program violates a communication protocol.

We present a model-checking-based static deadlock de-
tection technique for the SHIM language. Although SHIM
is asynchronous, its semantics allow us to model it syn-
chronously without losing precision, greatly reducing the
state space that must be explored. This plus the obvious di-
vision between control and data in SHIM programs makes
it easy to construct concise abstractions.

Experimentally, we find our procedure runs in only a few
seconds for modest-sized programs, making it practical to
use as part of a compilation chain.

Keywords: Concurrency, SHIM, Static Analysis, Dead-
lock, NuSMV

1. Introduction

Concurrent programs can exhibit many difficult-to-
diagnose problems that are absent in all sequential pro-
grams. One such problem is deadlock: a program state
where two or more tasks wait for each other indefinitely.
Deadlock is never wanted, so finding and removing it is a
necessary part of the concurrent programming process.

In this paper, we describe a way to statically detect
deadlocks in SHIM [6, 18, 19]. Being an asynchronous
concurrent language, SHIM’s main novelty is scheduling-
independence: regardless of non-deterministic scheduling
choices taken by its runtime environment (e.g., an operating
system), it is guaranteed to have the same input/output be-
havior. A SHIM system consists of asynchronously running

sequential tasks that synchronize only when they communi-
cate. SHIM combines the functional determinism of Kahn
networks [14] with the rendezvous of Hoare’s CSP [12].

A central goal of our work was to confirm that a careful
choice of concurrent semantics simplifies the verification
problem. In particular, while SHIM’s semantics are asyn-
chronous, they are constructed so that checking a (much
simpler) synchronous abstraction remains sound. In par-
ticular, we do not need the power of a model checker such
as Holtzmann’s SPIN [13], which is designed to analyze an
interleaving concurrency model.

The synchronous abstraction we use to check for dead-
lock is sound because of SHIM’s scheduling independence:
the choice of scheduling policy cannot affect the function
of the program. In particular, a program either always or
never deadlocks for a particular input—a scheduling choice
cannot affect this. This means we are free to choose a partic-
ular scheduling policy without fear of missing or introduc-
ing deadlocks. Here, we choose a scheduling policy that
amounts to a synchronous execution of a SHIM program.
This greatly reduces the number of distinct states our model
checker must consider, simplifying its job.

In this paper, we propose a technique that builds a syn-
chronous abstraction of a SHIM program and uses the
NuSMV symbolic model checker to determine whether the
model can deadlock. Because of SHIM’s semantics, if the
model does not deadlock, the program is guaranteed not to
deadlock, but because we abstract the data values in the pro-
gram, the converse is not true: a program may not deadlock
when we report it does.

By design, SHIM is a finite-state language provided it
has no unbounded recursion (Edwards and Zeng [10] show
how to remove bounded recursion), which makes the dead-
lock problem decidable. Unfortunately, exact analysis of
SHIM programs can be impossible in practice because of
state space explosion; we build sound abstractions instead.

Our main contribution is an illustration of how efficient,
synchronous model-checking techniques can be used to an-
alyze an asynchronous system. The result is a practical

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161438589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

static deadlock detector for a particular asynchronous lan-
guage. While the theoretical equivalence of synchronous
and asynchronous models has long been known, we know
of few other tools that exploit it.

This work confirms that having designed SHIM’s seman-
tics to be scheduling-independent makes the language much
easier to analyze with automated tools (elsewhere, we have
argued that scheduling independence helps designers under-
stand programs [6]). Few other concurrent languages were
designed with formal verification in mind.

After reviewing related work, we describe the SHIM lan-
guage and show how we abstract SHIM programs to make
their deadlock properties easy to analyze. After that, we
detail the generation of a NuSMV model and present ex-
perimental results that show our method is practical enough
to run as part of a normal compilation flow. Overall, this
suggests that careful language design can simplify the chal-
lenge of concurrent programming by making it easy to au-
tomatically check for certain problems.

2. Related Work

Avoiding deadlocks and data races in concurrent pro-
grams has been studied intensively; both static and dynamic
techniques have been proposed. Detecting deadlocks in a
running system is easy if global information is available.
Distributed algorithms, such as Lee and Kim’s [15], are
more complicated, but computationally inexpensive. In this
paper, we focus on the harder, more interesting problem of
detecting potential deadlocks before a system runs since this
is when we want to correct them.

As we propose in this paper, model checking is often
used for static deadlock. Corbett [5] reviews a variety of
static deadlock detection methods for concurrent Ada pro-
grams. He observes the main challenge is dealing with the
state explosion from Ada’s interleaved concurrency model.
SHIM’s scheduling-independent semantics sidesteps this
problem. Taking a very different approach, Boyapati and
Rinard [2] propose a static type system for an extended Java
language based on programmer-declared ownership of each
object. Their system guarantees objects are only accessed
in a synchronized manner. SHIM guarantees unique owner-
ship by simply prohibiting shared objects.

The interleaved concurrency model in most concurrent
software environments is a challenge for model check-
ers. Many, such as SPIN [13], Improvsio [17], and Java
PathFinder [20] use partial order reduction to reduce the
number of states they much consider. While SHIM is asyn-
chronous, its communication semantics do not require all
possible interleavings to be considered, making the model
checking problem much easier because we can check a syn-
chronous model with far fewer states.

SHIM does not provide locks (although some of its im-
plementations employ them) so it presents no danger of

void main()
{
chan int a, b;
{

// Task 1
next a = 5; // Send 5 on a (wait for task 2)
// a = 5 here
next b; // Receive b (wait for task 2)
// b = 10 here

} par {
// Task 2
next a; // Receive a (wait for task 1)
// a = 5 here
next b = 10;// Send 10 on b (wait for task 1)
// b = 10 here

}
}

Figure 1. A SHIM program in which two tasks
exchange data on channels a and b

deadlock from bad locking policies. Hence lock-focused
analysis, such as Bensalem et al. [1], which examines a
single (non-deadlocking) trace for potential deadlock situa-
tions, is not applicable to SHIM.

3. The SHIM programming language

SHIM [19] is a C-like language with additional con-
structs for communication and concurrency. Specifically,
p par q runs statements p and q in parallel, waiting for both
to terminate before proceeding; next c is a blocking commu-
nication operator that synchronizes on channel c and sends
data if it appears on the left side of an assignment and re-
ceives data when on the right. SHIM tasks communicate
exclusively through this multi-way rendezvous; there are no
global variables or other shared data.

In Figure 1, two peer tasks communicate on channels
a and b. Tasks 1 and 2 are executed in parallel. SHIM
interprets next a in task 1 as a send because it is on the
left-hand side of the assignment. The next a of task 2 is a
receive. The next a in task 1 waits for task 2 to receive the
value. The tasks therefore rendezvous at their nexts then
continue to run after the communication takes place. Next,
the two tasks rendezvous at next b. This time, task 2 sends
and task 1 receives.

In Figure 2, the two tasks also attempt to communicate,
but task 1 attempts to synchronize on a first, then b, while
task 2 expects to synchronize on b first. This is a deadlock—
each task will wait indefinitely for the other.

SHIM was designed for hardware/software codesign ap-
plications. It excels at describing stream-like algorithms,
such as signal processing, but is poor for algorithms that re-

void main() {
chan int a, b;
{

// Task 1
next a = 5; // Deadlocks here
next b = 10;

} par {

// Task 2
next b; // Deadlocks here
next a;

}
}

Figure 2. A SHIM program that deadlocks

quire recursive data structures. By design, it is a finite-state
language, so there is no way to allocate memory at run-
time. In short, it was designed for embedded applications,
not general-purpose programs designed to run on desktops
or servers.

SHIM can be compiled efficiently. By design, most
task code is C-like and imperative, so it can be compiled
onto standard processors using familiar techniques. SHIM’s
communication and concurrency semantics are more subtle.
SHIM has been compiled to shared-memory multiproces-
sors running the pthreads library [9], single-threaded pro-
cessors without operating system support for threads [7],
and even hardware translation has been proposed [8].

By design, SHIM is scheduling-independent in the same
sense and for the same reasons as Kahn networks [14].
Specifically, the sequence of data values communicated
across each channel is independent of the particular order
in which tasks are executed, due to its block-on-a-single-
channel semantics. Provided the scheduler blocks tasks that
are waiting to rendezvous, any scheduling policy will pro-
duce the same result.

SHIM’s scheduling independence means that the dead-
lock in Figure 2 will always occur, regardless of decisions
made by the scheduler. This greatly simplifies the problem
of checking for deadlocks since it suffices to check only
one schedule. To minimize the number of states the model
checker must explore, we check simple synchronous sched-
ules in which each task rendezvous at most once per cycle.

4. Abstracting SHIM Programs

A sound abstraction is the central idea behind our dead-
lock detector for SHIM. A SHIM task alternates between
computation and communication. Because tasks only in-
teract when they communicate and never deadlock when
they are computing, we abstract away the computation and
assume a task always either communicates again or termi-

void main() {
int i;
chan int a, b;
{

for (i = 0 ; i < 100 ; i++) {
if (i % 10)

next a = 1;
else

next a = 0;
next b = 10;

}
} par {

next a;
next b;

}
}

Figure 3. A deadlock-free SHIM program with
a loop, conditionals, and a task that termi-
nates

nates, i.e., will never enter an infinite loop that never com-
municates. This is tantamount to assuming a schedule that
perfectly balances the computation time of each process.

This assumption is optimistic in the sense that our tool
may report a program is deadlock-free even if one of its
tasks enters an infinite loop where it computes forever.
However, checking for process termination can be done in-
dependently and can likely consider tasks in isolation. An-
swering the task termination question is outside the scope
of this paper.

We also abstract away the details of data manipulation
and assume all branches of any conditional statement can
always be taken at any time. This is a conservative assump-
tion that may increase the number of states we must con-
sider. As usual, by ignoring data, we leave open the pos-
sibility that two tasks may appear to deadlock but in fact
stay synchronized because of the data they exchange, but
we believe this abstraction is a reasonable one and further-
more believe that system that depend on such behavior are
probably needlessly difficult for the programmer to under-
stand. In Section 7, we show an example of working code
for which our tool reports a deadlock and how to restructure
it to avoid the deadlock report.

4.1. An Example

Consider the SHIM program in Figure 3. The main func-
tion starts two tasks that communicate through channels a
and b. The first task communicates on channels a and b 100
times; the second task synchronizes on channels a and b,
then terminates. This program does not deadlock because
the communication patterns of the two tasks mesh properly.

entry

wait a 6 wait a 10

wait b 13

exit

entry wait a 0

wait b 1exit

par 0

exit

main_1(chan int32 &a, chan int32 &b)
local int32 i
local int32 tmp0
local int32 tmp1

i = 0
goto continue

while:
tmp1 = i % 10
ifnot tmp1 goto else
a = 1
send a // 6
goto endif

else:
a = 0
send a // 10

endif:
b = 10
send b // 13
i = i + 1

continue:
tmp0 = i < 100
if tmp0 goto while

main_2(chan int32 a,
chan int32 b)

recv a // 0
recv b // 1

main()
channel int32 a
channel int32 b

main_1(a, b) : main_2(a, b);

Figure 4. The IR and automata for the exam-
ple in Figure 3. The compiler broke the main
function into three tasks.

entry

wait c p

par p

exit

parent at our par

channel c is ready to synchronize

all children at exit

all siblings at exit

Figure 5. The four types of automaton states.
Each has one entry and exit, but may have
many wait and par states.

Note that SHIM semantics say that once a task terminates,
it is no longer compelled to synchronize on the channels to
which it is connected. So here, after the second task syn-
chronizes on b and terminates, the first task talks to itself.

To abstract this program, our compiler begins by disman-
tling the SHIM program into a traditional, three-address-
code-style IR (Figure 4). The main difference is that
par constructs are dismantled into separate functions, here
main_1 and main_2, to ensure each function is sequential.

We assume the overall SHIM program is not recursive
and remove statically bounded recursion using Edwards and
Zeng [10]. We do not attempt to analyze recursive programs
where the recursion cannot be bounded.

Next, we duplicate code to force each function to have
a unique call site. While this has the potential for an expo-
nential increase in code size, we did not observe it.

We remove trivial functions—those that do not attempt
to synchronize. A function is trivial if it does not contain a
next and all its children are trivial. Provided they terminate
(an assumption we make), the behavior of such functions
does not affect whether a SHIM program deadlocks. Fortu-
nately, it appears that functions called in many places rarely
contain communication (I/O functions are an exception), so
the potential expansion from copying functions to ensure
each has a unique call site rarely occurs in practice.

This preprocessing turns the call structure of the program
into a tree, allowing us to statically enumerate all the tasks,
the channels and their connections, and identify a unique
parent and call site for each task (aside from the root).

Next, our tool creates an automaton that models the con-
trol and communication behavior for each dismantled func-
tion. Figure 4 shows automata and the code they model.

Each automaton consists of four kinds of states, shown
in Figure 5. An automaton in its entry state waits for its
parent to reach the par state at the automaton’s call state.
An automaton in its exit state waits for all its siblings to also
be in their exit states. Each automaton (except the topmost
one) starts in its entry state.

When an automaton enters a par state, it starts its chil-
dren and waits for each of them to reach exit states. This
is not a race because each child will advance from its entry
state a cycle after the parent reaches the par. An automaton
has one par state for each of its call sites. We label each
with an integer that encodes the program counter.

Finally, wait states handle blocking communication. For
an automaton to leave a wait state, all the running tasks
that are connected to the channel (each wait corresponds
to a unique channel) must also be at a wait for the channel.
Note that an automaton may have more than one wait for
the same channel; we label each with both the name of the
channel and the program counter value at the corresponding
next. The numbers 0, 1, 6, 10, and 13 in Figure 4 correspond
to program counter values.

When we abstract a SHIM program, we ignore se-
quences of arithmetic operations; only conditionals, com-
munication, and parallel function calls are preserved. Con-
ditional branches, such as the test of tmp1 in main_1, are
modeled as non-deterministic choices.

We treat our automata as running synchronously, which
amounts to imposing a particular scheduling policy on the
program. SHIM’s scheduling independence guarantees that
we do not affect the functional behavior of the program by
doing this. And in particular, the program can deadlock
under any schedule if and only if it can deadlock under this
schedule. This is what makes our abstraction of the program
sound.

We do not explicitly model the environment in which the
program is running; instead, we assume it is part of the pro-
gram being tested. A sensor or actuator could be modeled
as an independent SHIM process that is always willing to
communicate: a source or a sink. More complicated restric-
tions on environmental behavior would have to be modeled
by more SHIM processes. See our earlier paper [8] for a
more thorough discussion of how to model in SHIM.

While we could build an explicit synchronous product
automaton from the automata we build for each function,
doing so would subject us to the state space explosion prob-
lem. Instead, we use a symbolic model checker that ana-
lyzes the product of these automata more efficiently.

5. Modeling Our Automata in NuSMV

To check whether our abstracted program (concurrently-
running automata) deadlocks, we use the NuSMV [3] BDD-
and SAT-based symbolic model checker. While it can an-
alyze both synchronous and asynchronous finite-state sys-
tems, we only consider synchronous systems. The spec-
ifications to check can be expressed in Computation Tree
Logic (CTL) and Linear Temporal Logic (LTL).

Using NuSMV involves supplying it with a model and a
property of the model to be checked. We model each of our
automata with two variables: one that represents the con-
trol state of the automaton and one that helps us determine
when a deadlock has occurred. Figure 6 shows the code we
generate for the three automata in Figure 4.

Translating a non-deterministic automaton into NuSMV
is straightforward. We use the following template:

VAR state : {s1, s2, ... };
ASSIGN

init(state) := s1;
next(state) := case

state = s1 & ... : {s2, s3, ...};
state = s2 & ... : {s1, s3, ...};
...
state = sn & ... : {s1, s2, ...};
1 : state;

esac;

MODULE main
DEFINE ready_a :=

(main in {entry, exit} |
main in {par_0} & (main_1 != exit & main_1 != entry |

main_2 != exit & main_2 != entry)) &
main_1 in {entry, exit, wait_a_10, wait_a_6} &
main_2 in {entry, exit, wait_a_0};

DEFINE ready_b :=
(main in {entry, exit} |
main in {par_0} & (main_1 != exit & main_1 != entry |

main_2 != exit & main_2 != entry)) &
main_1 in {entry, exit, wait_b_13} &
main_2 in {entry, exit, wait_b_1};

VAR main: {entry, exit, par_0};
ASSIGN init(main) := par_0;

next(main) := case
main = par_0 & main_2 = exit & main_1 = exit: exit;
1: main;

esac;

VAR changed_main: boolean;
ASSIGN init(changed_main) := 1;
next(changed_main) := case

main = par_0 & main_2 = exit & main_1 = exit: 1;
1: 0;

esac;

VAR main_2: {entry, exit, wait_a_0, wait_b_1};
ASSIGN init(main_2) := entry;
next(main_2) := case

main_2 = entry & main = par_0: wait_a_0;
main_2 = wait_a_0 & ready_a: wait_b_1;
main_2 = wait_b_1 & ready_b: exit;
main_1 = exit & main_2 = exit: entry;
1: main_2;

esac;

VAR changed_main_2: boolean;
ASSIGN init(changed_main_2) := 1;
next(changed_main_2) := case

main_2 = entry & main = par_0: 1;
main_2 = wait_a_0 & ready_a: 1;
main_2 = wait_b_1 & ready_b: 1;
main_1 = exit & main_2 = exit: 1;
1: 0;

esac;

VAR main_1: {entry, exit, wait_a_10, wait_a_6, wait_b_13};
ASSIGN init(main_1) := entry;
next(main_1) := case

main_1 = entry & main = par_0: {wait_a_10, wait_a_6, exit};
main_1 = wait_a_6 & ready_a: wait_b_13;
main_1 = wait_a_10 & ready_a: wait_b_13;
main_1 = wait_b_13 & ready_b: {wait_a_10, wait_a_6, exit};
main_1 = exit & main_2 = exit: entry;
1: main_1;

esac;

VAR changed_main_1: boolean;
ASSIGN init(changed_main_1) := 1;
next(changed_main_1) := case

main_1 = entry & main = par_0: 1;
main_1 = wait_a_6 & ready_a: 1;
main_1 = wait_a_10 & ready_a: 1;
main_1 = wait_b_13 & ready_b: 1;
main_1 = exit & main_2 = exit: 1;
1: no;

esac;

SPEC AG(main != exit −>
changed_main | changed_main_2 | changed_main_1)

SPEC EG(main != exit −>
changed_main | changed_main_2 | changed_main_1)

Figure 6. NuSMV code for the program in Fig-
ure 3

For this automaton, state is a variable that can take on
the symbolic values s1, s2, Each rule in the case state-
ment is of the form predicate:values; and the predicates are
prioritized by the order in which they appear.

Predicates are Boolean expressions over the state vari-
ables; values are sets of new values among which the model
checker chooses non-deterministically. We model condi-
tional branches in a SHIM program with non-deterministic
choice. We generate one predicate/value pair for each state
and start each predicate with a test for whether the machine
is in that state. The final predicate/value pair is a default
that holds the machine in its current state if it was not able
to advance.

The NuSMV language has a rich expression syntax, but
we only use Boolean connectives (& and |), comparison (=),
and set inclusion (in).

For an automaton to leave its entry state, its parent must
be in the par state for the automaton. By construction, both
the parent automaton and the par state for a task is unique.
For example, in Figure 6, the parent of main_2 is main, and
main calls main_2 in the par_0 state, so the rule for main_2
to leave its entry state is

main_2 = entry & main = par_0: wait_a_0;

since in main_2, the successor to the entry state is wait_a_0.
For an automaton to leave a par state, all the children at

the call site must be in their exit states. In Figure 6, main_1
and main_2 are invoked by main in the par_0 state, so the
complete rule for main to leave its par_0 state is

main = par_0 & main_2 = exit & main_1 = exit: exit;

since the successor of par_0 in main is exit.
A state labeled wait_c_p represents a task waiting to syn-

chronize on channel c. Since a task may wait on the same
channel in many places, we also label it with a program
counter value p. An automaton transitions from a wait state
when all other automata that are compelled to rendenzvous
have also reached matching wait states.

The rules for when rendezvous can occur on a channel
are complicated because tasks do not always run. When a
task connected to channel c is running children, it passes its
connection to its children. However, if all its children con-
nected to c terminate (i.e., reach their exit states) the parent
resumes responsibility for synchronization and effectively
blocks communication on c until it reaches a wait on c.

For each channel c, we define a variable ready_c that is
true when a rendezvous is possible on the channel. We form
it by taking the logical and of the rendezvous condition for
each task that can connect to the channel (we know stati-
cally which tasks may connect to a particular channel).

For each task on a channel c, the rendezvous condition
is true if the task is in the entry state (when it has not been
started), in the exit state (when it ran and terminated, but its
siblings have not terminated), in a wait state for the channel,

{ // task 8
next a;
{ // task 3

next a;
next a; // task 1

par
next a; // task 2

} par { // task 4
next a;
next b;

} par { // task 5
next b;

}
next a;

next a; // task 6
par

next a; // task 7
}

(t_8 in {enter, exit, wait_a_2, wait_a_0} |
t_8 in {par_3, par_1} & (t_7 != exit & t_7 != enter |

t_6 != exit & t_6 != enter |
t_4 != exit & t_4 != enter |
t_3 != exit & t_3 != enter)) &

(t_3 in {enter, exit, wait_a_0} |
t_3 in {par_1} & (t_2 != exit & t_2 != enter |

t_1 != exit & t_1 != enter)) &
t_7 in {enter, exit, wait_a_0} &
t_6 in {enter, exit, wait_a_0} &
t_4 in {enter, exit, wait_a_0} &
t_2 in {enter, exit, wait_a_0} &
t_1 in {enter, exit, wait_a_0}

Figure 7. A SHIM code fragment and the con-
ditions for rendezvous on the a channel

or in a par state when at least one of its children connected
to c is still running (i.e., when the parent has not recovered
its responsibility for the channel c from its children).

Figure 7 illustrates the rendezvous condition for a fairly
complex set of tasks. Tasks 1, 2, 4, 5, 6, and 7 are leaves—
they do not call other tasks. For each, the condition is that
it be terminated or at a wait state for the channel.

Task 3 both synchronizes directly on a and invokes
tasks 1 and 2. Its condition is that it be terminated, at its
wait state for a, or that it be at its par state and at least one
of task 1 or 2 be running.

Task 8 is the most complex. It synchronizes on a in
two states (wait_a_0 and wait_a_2) and has two par calls.
At either of the par calls, at least one of its four children
(tasks 3, 4, 6, and 7) must be running.

Note that since task 5 is not connected to channel a, its
state is not considered.

Example Lines Channels Tasks Result Runtime Memory States

Source-Sink 35 2 11 No Deadlock 0.2 s 3.9 MB 97
Pipeline 30 7 13 No Deadlock 0.1 2.0 95
Prime Number Sieve 35 51 45 No Deadlock 1.7 25.4 3.2×109

Berkeley 40 3 11 No Deadlock 0.2 7.2 139
FIR Filter 100 28 28 No Deadlock 0.4 13.4 4134
Bitonic Sort 130 65 167 No Deadlock 8.5 63.8 25
Framebuffer 220 11 12 No Deadlock 1.7 11.6 9593
JPEG Decoder 1020 7 15 May Deadlock 0.9 85.6 571
JPEG Decoder Modified 1025 7 15 No Deadlock 0.9 85.6 303

Table 1. Experimental results

6. Finding Deadlocks

We define a deadlock as a state in which at least one
task is running yet no task can advance because they are all
waiting on other tasks. In particular, we do not consider it a
deadlock when a small group of tasks continue to commu-
nicate with each other but not the rest of the system, which
remains blocked.

For each automaton, we generate an additional state bit
(changed) that tracks whether it will proceed in this cy-
cle or is blocked waiting for communication. Using ad-
ditional state bits is unnecessary; in our first attempt we
performed the check combinationally (i.e., in each state
checked whether there was at least one task that could ad-
vance). However, introducing additional state bits improved
the running time, so we adopted that style.

The rules we use for setting the changed bit for each au-
tomaton are similar to those for the automaton. The pred-
icates are exactly the same, but instead of setting the state,
the values set the changed bit to 1.

Once we have an changed bit for each automaton, the
test for the absence of deadlock is simple: either at least one
task was able to advance or the topmost task has terminated.
This is easy to express in temporal logic for NuSMV:

AG(root != exit −> changed_t1 | changed_t2 | ...)

where root is the state of the topmost task and advanced_tx
indicates that task x was able to make progress. In words,
this says that in each state if the topmost task has not termi-
nated then at least one task was able to make progress.

We also check whether a program will inevitably dead-
lock: if all possible paths lead to a deadlock state irrespec-
tive of the conditional predicates, then the program abso-
lutely will deadlock. The temporal logic expression for its
absence in NuSMV is

EG(root != exit −> changed_t1 | changed_t2 | ...)

I.e., in each state, if the topmost task is running, there is
some path where at least one task was able to advance.

7. Results

We ran our deadlock detector on various SHIM programs
on a 3 GHz Pentium 4 machine with 1 GB RAM. Table 1
lists our results. The Lines column shows for each exam-
ple the number of lines of code including comments. The
Channels and Tasks columns list the number of channels
and concurrently running tasks we find after expanding the
tasks into a tree and removing non-trivial tasks. Runtimes
include the time taken for compilation, abstraction, gener-
ating the NuSMV model, and running the NuSMV model
checker. We check for both the possibility and inevitability
of a deadlock. As expected, the model checking time dom-
inates on the larger examples. The Memory column reports
the total resident set size used by the verifier. The States col-
umn reports the number of reachable states NuSMV found.

Source-Sink is a simple example centered around a pair
of processes that pass data through a channel and print the
results through an output channel. The large number of
tasks arise from I/O functions used to print the output of
this test case. Most of the examples here include many ex-
tra tasks for this reason.

Pipeline and the Prime Number Sieve are examples from
Edwards and Zeng [10] that use bounded recursion. As
mentioned earlier, we use their technique to remove the re-
cursion before running NuSMV. The Sieve has many states
because most of its tasks perform data-dependent communi-
cation and our model ends up considering all apparent pos-
sibilities, even though the system enters far fewer states in
practice. Nevertheless, this illustrates the power of sym-
bolic simulation: analyzing these three billion states takes
NuSMV less than two seconds.

The Berkeley example contains a pair of tasks that com-
municate packets through a channel using a data-based pro-
tocol. After ignoring data, however, the tasks behave like
simple sources and sinks, making it easy to prove the ab-
sence of deadlock.

The FIR filter is a parallel five-tap filter with twenty-
eight tasks and channels (the core consists of seventeen
tasks). Each task’s automaton consists of a single loop (the

filter is actually a synchronous dataflow model [16]) so the
analysis is fairly easy.

Bitonic Sort is one of our most parallel examples: it uses
twenty-four comparison tasks to order eight integers. All
the additional tasks are sources, sinks, and (repeated calls
to I/O routines). The communication behavior of the tasks
is straightforward, but the tool has many tasks to consider.

Framebuffer is a 640×480 video framebuffer driven by
a line-drawing task. Its communication is complicated.

The JPEG decoder is one of our largest applications to
date, and illustrates some of the challenges in coding SHIM
to avoid deadlocks. Our tool reported the possibility of a
deadlock on the initial version (which actually works cor-
rectly) because of the code in Figure 8.

This code attempts to run three IDCT processors in par-
allel on an array of n macroblocks. For all but the last it-
eration of the loop, the dispatcher communicates on chan-
nels I1, I2, and I3, then receives data from O1, O2, and O3.
However, since n may not be a multiple of three, this code
is careful not to overrun the array bounds and may only per-
form one or two IDCT operations in the last iteration.

While this program works (provided the predicates on
the if statements are written properly), our tool does not
understand, say, the second and fourth conditionals are cor-
related and reports a potential deadlock.

Figure 9 illustrates how to avoid this problem by dupli-
cating code and factoring it differently. Although our tool
still treats the conditional branches as non-deterministic, it
does not perceive a deadlock because, e.g., the synchroniza-
tions on I3 and O3 remain matched.

Figure 8, however, will not report an unavoidable dead-
lock because it has a non-deadlocking path.

Overall, our tool is able to quickly check these programs
(in seconds) while using a reasonable amount of memory.
While larger programs will be harder to verify, our tech-
nique is clearly practical for modestly sized programs.

8. Conclusions

We presented a static deadlock detection technique for
the SHIM concurrent language. SHIM programs behave
identically regardless of scheduling policy because they are
based on Kahn networks [14]. This allows us to check for
deadlock on synchronous models of SHIM programs and
know the result holds for asynchronous implementations.

We expand each SHIM program into a tree of tasks, ab-
stract each task as an automaton that performs communi-
cation and invokes and waits for its children, then express
these automata in a form suitable for the NuSMV symbolic
model checker. This is a mechanical process.

We abstract away data-dependent decisions when build-
ing each task’s automaton. This both greatly simplifies their
structure and can lead to false positives: our technique can
report a program will deadlock even though it cannot. How-

{
// ...
for (int j = 0 ; j < n ; j += 3) {

next I1 = iblock[j];
if (j+1 < n) {

next I2 = iblock[j+1];
if (j+2 < n)

next I3 = iblock[j+2];
}
oblock[j] = next O1;
if (j+1 < n) {

oblock[j+1] = next O2;
if (j+2 < n)

oblock[j+2] = next O3;
}

}
// ...

} par {
for (;;)

next O1 = IDCT(next I1);
} par {

for (;;)
next O2 = IDCT(next I2);

} par {
for (;;)

next O3 = IDCT(next I3);
}

Figure 8. Fragment of the JPEG Decoder that
causes our tool to report a deadlock; it ig-
nores the correlation among if statements

for(int j = 0 ; j < n ; j += 3) {
next I1 = iblock[j];
if (j+2 < n) {

next I2 = iblock[j+1];
next I3 = iblock[j+2];
oblock[j] = next O1;
oblock[j+1] = next O2;
oblock[j+2] = next O3;

} else if (j+1 < n) {
next I2 = iblock[j+1];
oblock[j] = next O1;
oblock[j+1] = next O2;

} else {
oblock[j] = next O1;

}
}

Figure 9. An equivalent version of the first
task in Figure 8 for which our tool does not
report a deadlock

ever, we believe this is not a serious limitation because there
is often an alternative way to code a particular protocol that
makes it insensitive to data and more robust to small modi-
fications, i.e., less likely to be buggy.

Experimentally, we find NuSMV is able to detect or
prove the absence of deadlock in seconds for modestly sized
examples. We believe this is fast enough to make deadlock
checking a standard part of the compilation process (i.e.,
instead of something too costly to run more than occasion-
ally), which we believe is a first for concurrent languages.

Tardieu and Edwards recently added concurrent, deter-
ministic exceptions to the SHIM model [19], which are a
convenient mechanism for task control. We currently ig-
nore them, which is safe but as a result, we may report as
erroneous programs that throw exceptions to avoid a dead-
lock situation. While we do not know of any such programs,
we plan to consider this issue in the future.

While we found our data abstraction technique works
well on the examples we tried, we suspect it will cause too
many programs to be rejected. We plan to explore counter-
example guided abstraction refinement [4] to see whether
we can further improve the precision of our analysis.

Finally, we also plan to explore more modular analysis
techniques, perhaps related to the stuck-free property [11],
that would make interaction without deadlocks something
that could be checked as part of a type system.

Acknowledgments

Alfred Aho (Columbia University), Franjo Ivancic (NEC
Labs), and Michael Theobald (D.E. Shaw Research) pro-
vided valuable suggestions and feedback. This work was
supported by NSF grant CNS–0720292.

References

[1] S. Bensalem, J.-C. Fernandez, K. Havelund, and L. Mounier.
Confirmation of deadlock potentials detected by runtime
analysis. In Proceedings of the Workshop on Parallel and
Distributed Systems: Testing and Debugging (PADTAD),
pages 41–50, Portland, Maine, July 2006.

[2] C. Boyapati, R. Lee, and M. Rinard. Ownership types for
safe programming: Preventing data races and deadlocks.
In Proceedings of the Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOP-
SLA), Nov. 2002.

[3] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NuSMV version 2: An OpenSource tool for symbolic model
checking. In Proceedings of the International Conference on
Computer-Aided Verification (CAV), volume 2404 of Lecture
Notes in Computer Science, pages 359–364, Copenhagen,
Denmark, July 2002.

[4] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Proceed-
ings of the International Conference on Computer-Aided
Verification (CAV), volume 1855 of Lecture Notes in Com-
puter Science, pages 154–169, Chicago, Illinois, July 2000.

[5] J. C. Corbett. Evaluating deadlock detection methods for
concurrent software. IEEE Transactions on Software Engi-
neering, 22(3):161–180, Mar. 1996.

[6] S. A. Edwards and O. Tardieu. SHIM: A deterministic model
for heterogeneous embedded systems. In Proceedings of the
International Conference on Embedded Software (Emsoft),
pages 37–44, Jersey City, New Jersey, Sept. 2005.

[7] S. A. Edwards and O. Tardieu. Efficient code generation
from SHIM models. In Proceedings of Languages, Compil-
ers, and Tools for Embedded Systems (LCTES), pages 125–
134, Ottawa, Canada, June 2006.

[8] S. A. Edwards and O. Tardieu. SHIM: A deterministic model
for heterogeneous embedded systems. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 14(8):854–
867, Aug. 2006.

[9] S. A. Edwards, N. Vasudevan, and O. Tardieu. Pro-
gramming shared memory multiprocessors with determin-
istic message-passing concurrency: Compiling SHIM to
Pthreads. In Proceedings of Design, Automation, and Test in
Europe (DATE), pages 1498–1503, Munich, Germany, Mar.
2008.

[10] S. A. Edwards and J. Zeng. Static elaboration of recursion
for concurrent software. In Proceedings of the Workshop on
Partial Evaluation and Program Manipulation (PEPM), San
Francisco, California, Jan. 2008.

[11] C. Fournet, T. Hoare, S. K. Rajamani, and J. Rehof. Stuck-
free conformance. In Proceedings of the International
Conference on Computer-Aided Verification (CAV), volume
3114 of Lecture Notes in Computer Science, pages 242–254,
Boston, Massachusetts, USA, July 2004.

[12] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall, Upper Saddle River, New Jersey, 1985.

[13] G. J. Holzmann. The model checker SPIN. IEEE Transac-
tions on Software Engineering, 23(5):279–294, May 1997.

[14] G. Kahn. The semantics of a simple language for parallel
programming. In Information Processing 74: Proceedings
of IFIP Congress 74, pages 471–475, Stockholm, Sweden,
Aug. 1974. North-Holland.

[15] D. Lee and M. Kim. A distributed scheme for dynamic dead-
lock detection and resolution. Information Sciences, 64(1–
2):149–164, 1992.

[16] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235–1245, Sept. 1987.

[17] F. Lerda, N. Sinha, and M. Theobald. Symbolic model
checking of software. In B. Cook, S. Stoller, and W. Visser,
editors, Electronic Notes in Theoretical Computer Science,
volume 89. Elsevier, 2003.

[18] O. Tardieu and S. A. Edwards. R-SHIM: Deterministic con-
currency with recursion and shared variables. In Proceed-
ings of the International Conference on Formal Methods and
Models for Codesign (MEMOCODE), page 202, Napa, Cal-
ifornia, July 2006.

[19] O. Tardieu and S. A. Edwards. Scheduling-independent
threads and exceptions in SHIM. In Proceedings of the Inter-
national Conference on Embedded Software (Emsoft), pages
142–151, Seoul, Korea, Oct. 2006.

[20] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model checking programs. Automated Software Engineer-
ing, 10(2):203–232, Apr. 2003.

