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Formally Integrating Real-Time Specification: A Research Proposal Formally Integrating Real-Time Specification: A Research Proposal 

Abstract Abstract 
To date, research in reasoning about timing properties of real-time programs has considered specification 
and implementation as separate issues. Specification uses formal methods; it abstracts out program 
execution, defining a specification that is independent of any machine-specific details (see [I, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11, 12, 13, 14] for examples). In this manner, it describes only the high-level timing 
requirements of processes in the system, and dependencies between them. One then typically attempts 
to prove the mutual consistency of these timing constraints, or to determine whether the constraints 
maintain a safety property critical to system correctness. However, since the model has abstracted out 
machine-specific details, these correctness proofs either assume very optimistic operating environment 
(such as a one to one assignment of processes to processors), or make very pessimistic assumptions 
(such as that all interleavings of process executions are possible). Since neither of these assumptions 
will hold in practice, these "predictions" about the behavior of the system may not be accurate. 

The implementation level captures this operating environment: a real- time system is characterized by 
such things as process schedulers, devices and local clocks. However, advances here have been primarily 
in scheduling theory (examples of which are [15, 16]) and language design (examples of which are [15, 16, 
17, 18,19,20]). Unfortunately, since formal models have not been used at this level, proofs of time-related 
properties cannot be made. To construct these proofs, we must show that an implementation is correct 
with respect to a specification; timing properties that can be shown to hold about the specification will 
therefore be known to hold for the implementation. We therefore need to represent the implementation 
formally so as to prove that the implementation satisfies the specification. The proof of satisfaction 
requires a well-defined formal mapping between the implementation and specification models. 

We therefore propose to develop an integrated bi-level approach to the problem of reasoning about timing 
properties of real-time programs. At the specification level, we will use the Timed Acceptances model, a 
logically sound and complete axiom system which we have recently developed [21]. Using this model, the 
effect of interaction among time dependent processes can be precisely specified and then analyzed. We 
will then develop a formal implementation model (similar to the specification model) which captures 
operational behaviors: for example, the assignment of processes to processors, assumptions about 
scheduling and clock synchronization, and the different treatment of execution and wait times. A mapping 
will then be formulated between these two layers. 

The bulk of our proposed work will be to formulate the implementation layer and define a mapping 
between it and the specification layer. We also need to continue work on the Timed Acceptances model to 
facilitate its use as a specification model, and to provide "hooks" for mappings between the two layers. 

The rest of this proposal is organized as follows. The next section overviews related work in formal 
specification models. Section 3 describes our current specification model and proposed enhancements. 
We also detail the proposed implementation model, and required properties of the mappings between the 
two models. Section 4 provides a summary of the proposed research, and a yearly plan. 
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1 Introduction 

To date, research in reasoning about timing properties of real-time programs has con- 
sidered specification and implementation as separate issues. Specification uses formal 
methods; it abstracts out program execution, defining a specification that is indepen- 
dent of any machine-specific details (see [I, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 141 for 
examples). In this manner, it describes only the high-level timing requirements of pro- 
cesses in the system, and dependencies between them. One then typically attempts to 
prove the mutual consistency of these timing constraints, or to determine whether the 
constraints maintain a safety property critical to system correctness. However, since the 
model has abstracted out machine-specific details, these correctness proofs either assume 
very optimistic operating environment (such as a one to one assignment of processes to 
processors), or make very pessimistic assumptions (such as that all interleavings of pro- 
cess executions are possible). Since neither of these assumptions will hold in practice, 
these L'predictions" about the behavior of the system may not be accurate. 

The implementation level captures this operating environment: a real- time system 
is characterized by such things as process schedulers, devices and local clocks. However, 
advances here have been primarily in scheduling theory (examples of which are [15, 161) 
and language design (examples of which are [15, 16, 17, 18,19,20]). Unfortunately, since 
formal models have not been used at this level, proofs of time-related properties cannot 
be made. To construct these proofs, we must show that an implementation is correct 
with respect to a specification; timing properties that can be shown to hold about the 
specification will therefore be known to hold for the implementation. We therefore need 
to represent the implementation formally so as to prove that the implementation satis- 
fies the specification. The proof of satisfaction requires a well-defined formal mapping 
between the implementation and specification models. 

We therefore propose to develop an integrated bi-level approach to the problem of 
reasoning about timing properties of real- time programs. At the specification level, we 
will use the Timed Acceptances model, a logically sound and complete axiom system 
which we have recently developed [21]. Using this model, the effect of interaction among 
time dependent processes can be precisely specified and then analyzed. We will then 
develop a formal implementation model (similar to the specification model) which cap- 
tures operational behaviors: for example, the assignment of processes to processors, 
assumptions about scheduling and clock synchronization, and the different treatment of 
execution and wait times. A mapping will then be formulated between these two layers. 

The bulk of our proposed work will be to formulate the implementation layer and 
define a mapping between it and the specification layer. We also need to continue work 
on the Timed Acceptances model to facilitate its use as a specification model, and to 
provide "hooks" for mappings between the two layers. 

The rest of this proposal is organized as follows. The next section overviews related 
work in formal specification models. Section 3 describes our current specification model 
and proposed enhancements. We also detail the proposed implementation model, and 
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required properties of the mappings between the two models. Section 4 provides a 
summary of the proposed research, and a yearly plan. 

Related Work 

In this section we briefly survey related work in real-time modeling. Because there are 
no formal models for the implementation level, we limit our attention to specification 
models and point out perceived weakness.' 

Specification models range from the very abstract, where there is no notion of a pro- 
cess or even a program, to more structure-oriented, which permit high-level specification 
of real-time processes and provide semantics for their parallel composition. Many of the 
methods discussed here are quite complex, and we attempt only to cover their most 
salient features. There are some concepts, however, which we strive to emphasize. To 
be effective, a specification model should incorporate both a sound and complete set of 
axioms. Without this, verification is not possible. Also, the model must possess a high 
enough level of abstraction so that most implementation details remain hidden. Fur- 
thermore, there should be some notion of "containment ." With this feature, properties 
proved consistent with a set of behaviors are also consistent with its subsets. This is 
the essence of abstraction, and is fundamental for adequate specification models [23]. 
Thus, models based on process structure require a process containment relation, while 
those based on logics employ the implication connective. Finally, a specification method 
should possess a realistic execution model. 

RTL: Jahanian and Mok [I, 21 have developed a highly abstract model called Real- 
Time Logic (RTL), which represents timing constraints in order to prove safety proper- 
ties. RTL is essentially a typed, first-order logic containing constants which represent 
actions, events and transitions. Also included are functions which represent the occur- 
rence times of events, predicates on the system states during time intervals, as well as 
axioms to describe the properties of events. The objective of RTL is to specify a sys- 
tem's timing constraints, and then show that they satisfy a specific safety property, also 
expressed in RTL. To achieve this, a graph-theoretic procedure is used. 

The structure of the logic results in some very complex specifications of even simple 
processes. Therefore, a specification tool is provided, called the Event-Action model. 
It permits a high level specification of the system's timing requirements and a method 
of translating it into the corresponding RTL formulas. Using the event-action model, 
a system designer denotes the relevant actions and events that occur during execution. 
Also defined are the predicates that describe the state of the system and the timing 
constraints relating the actions, events and states. These constraints include assertions 
about the absolute timing of events and the ordering of actions. 

'A survey of real-time languages (syntactic implementation models) can be found in [22]. 
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We believe that RTL is a successful, though limited, model. It succeeds in providing 
a means by which safety assertions can be proved, a feature that few of the other models 
can claim to possess. However, it is not apparent how one can prove that the system's 
timing constraints are mutually consistent. Moreover, RTL suffers from being too high- 
level. The event-action model does not provide constructs necessary for expressing the 
structure of a system at  even a rudimentary level. For example, it does not possess the 
means for representing a choice between alternative actions; furthermore, it does not 
have a way to express nondeterminism. Because the model lacks the notion of system 
structure, it would appear difficult to map specifications to a lower, and more operational 
level. 

DRTL: DRTL [3] is an extension of RTL, which was defined to reflect the constraints 
placed on message-passing systems. Akin to the event-action model, there is a high-level 
specification language called RReq [24]. One of the more intriguing goals of this work is 
to integrate it with the group's implementation language, RNet. Rnet, however, lacks 
formal semantics. 

Quantified Temporal Logic: Temporal logic [4] is a modal logic that expresses the 
development of situations in time. Using temporal logic, the execution of a program can 
be formalized, and not just the function or relation it computes. In a quantified temporal 
logic timing properties are expressed explicitly. The quantified temporal logic of Harter 
and Bernstein [25] allows one to express the relative progress of two programs with 
respect to each other, as well as the execution time of a program fragment. Quantification 
of time is introduced by providing a real-time component to the eventuality operator. The 
authors demonstrate their method by proving safety properties of real-time programs, 
writ ten in a Modula-style language. 

The quantification of temporal logic provides a compact means of expressing tempo- 
ral relationships between program states, and allows reasoning about the execution of 
real-time programs. The model of execution, however, is unrealistic for true real-time 
programming, in that it employs a pure interleaving approach. Thus, true concurrent 
program execution cannot be modeled. Because of this, the execution of all possible op- 
erations in the "ready" state is not forced; instead, the execution of only one is ensured. 
We believe this defect mandates an assumption of fairness, i.e., scheduling. Without 
such an assumption, it is possible to specify a process whose timing constraints are 
consistent when its operations are executed in only one order. Deadlock may intervene 
when execution proceeds in an "unfair" order. 

Net Models Extensive work has been performed using Petri Nets to model concurrent 
and real-time systems. There are two approaches to augmenting nets with time. Either 
a time is assigned to each transition in the net [5, 61 or a time is assigned to each place 
[7] .  Petri nets have several advantages as a model. They are simple, elegant and posses 
an extensive theory that has already been developed. They can directly represent the 
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causality and dependence between events. Their graph structure implies that they can 
be used to represent the system at various levels of abstraction. Furthermore, the token 
labeling makes them particularly useful for performance analysis. However, they are not 
readily decomposable, and there is no simple notion net "containment" other than other 
than graph equivalence. As we have stated above, without a containment relation, a 
specification model does not provide a realistic foundation for verification. It is obvious 
that the equivalence relation is much too strong. 

SCCS: SCCS [8] is the most general of all the real-time models. With only four 
operators and a recursive construct, all operators found in the other models of real- 
time concurrency can be expressed. SCCS implicitly models time by associating the 
occurrence of an event with the passage of a single time unit. Thus, an executing 
process must engage in an event at each instant in time. This requirement makes it 
cumbersome, but necessary, to define an idling event in order to represent process delay. 

The parallel operator in SCCS is the most general found in any of the models of 
time dependence. Concurrency is represented by processes executing in a mutually lock- 
step fashion. This method allows the simultaneous occurrence of events, but does not 
provide any inherent notion of shared events or synchronization. Interaction among 
processes is captured by using parallel composition and event restriction. However, 
this representation is quite awkward, as the restriction operator must allow all correct 
actions. Thus, the user must know a priori all allowable actions and every combination 
of actions. 

An SCCS process is analyzed by proving that it has some desired property. This is 
done by transforming the property into an SCCS process, and showing the two processes 
to be equivalent. One must derive a bisimulation between them, or manipulate their 
terms using a set of process identities. Like many other models, SCCS does not have 
an ordering relation on processes. Thus, to show that an implementation satisfies a 
specification, the two must be equivalent. 

CIRCAL: CIRCAL [9] was developed to provide a useful and powerful calculus to 
describe and analyze communicating systems. Concurrency is modeled by event-driven 
synchronization among multiple processes. That is, if an event occurs in several processes 
simultaneously, the processes interact. Using this method, CIRCAL can be used to 
model time dependent processes by synchronizing event occurrences with ticks of a 
clock process. This yields an event-based representation of time, which differs from 
SCCS in the following respect: Only those events synchronized with a clock have a time 
associated with them. Therefore, the occurrence time of a nonsynchronized event cannot 
be derived. Like SCCS, CIRCAL provides a set of rules to show process equivalence. 
Also like SCCS, there is no containment ordering on processes - the essential ingredient 
in a verification system. 
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Timed Stability and Timed Failures: The Timed Stability [lo] and Timed Failures 
models [Ill are both extensions of CSP. Timed Stability is a temporal extension of the 
trace model for CSP [26] and is used to represent deterministic, real-time communicating 
processes. A timed CSP process is defined as a set of ordered pairs (s, a) where s is 
a t imed trace2 and a is the stability t ime  associated with s. The stability time defines 
the earliest time after which a process is able to engage in any possible next event after 
executing s .  The Timed Stability model is consistent with the algebraic laws presented 
in [12], and these laws can be used to show process equivalence and process containment. 
There is also a satisfaction relation defined in Timed Stability which can be used to relate 
a process to its logical specification. 

The timed failures model of Gerth and Boucher is an extension of the failure set 
model of CSP [12]. A timed failure consists of an event relation and a failure relation. 
The event relation is similar to a trace, which records all events that occur during a 
program's execution. A failure relation contains all of the events that can be refused 
throughout a computation, and a pair (J, i ) ,  representing termination of the machine 
at time i. This is the minimum amount of failure information that is needed to model 
both timeout s and the simultaneous occurrence of actions. 

CSP-R and DNP-R: De Roever's group at  Eindhoven has proposed a model of real- 
time computing that extends the linear history semantics for CSP of Francez, Lehman 
and Pnueli [27]; it is used to define the semantics of Ada's essential features. Their 
execution model is a variant of the maximal parallelism model of Salwicki and Miildner 
[28], where events are forced to occur at the earliest time possible. As we have noted 
above, this notion is a quite unrealistic, as it assumes a one-to-one relationship between 
processes and processors. 

A process P is represented by its possible "executions," where each execution consists 
of a state and a history. The state records the values of the variables if P terminates, 
and is undefined if P does not. The history is a (possibly infinite) sequence of time 
records which notes all communications leading to the state. The ith record corresponds 
to time i, and the length of the history is equal to the time of termination. 

The first version of this model was developed by Koymans et al. [13] and was used 
to capture the semantics of Ada constructs in a language called CSP-R. However, it 
was shown [14] that in this model two fragments with identical semantics may admit 
different observable behaviors. Huizing, Gerth and de Roever extended the model to 
correct this defect, and then used it to supply denotational semantics for Occam in a 
language called DNP-R. 

'A timed trace is a sequence of event-time pairs representing the events a process executes and their 
occcurrence times. 
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3 Our Approach 

In this section we define our specification and implementation models. We argue that 
both are necessary when one reasons about the temporal properties of a real-time system. 
Moreover, if the reasoning is to be mathematically sound, both models must be based 
on formal semantics, and there must be precise relationships between the semantics and 
their meanings. In the traditional specification/verification paradigm [29], the specifi- 
cation "abstracts out" most properties of program execution, and thus is represented 
at a much higher level than its underlying system. This makes it possible to define a 
specification that is independent of any machine-specific details. In this manner, the 
specification of a real-time system describes only the high-level timing requirements of 
processes, and the timing dependencies between them. Conversely, the implementation 
model captures all aspects that affect a system's timing behavior during execution. At 
neither level, however, do we model non time-related properties such as variable state. 

Our goal is to develop both specification and implementation models, and to define a 
well-founded mapping between them. Each model consists of a language and a semantic 
domain, such that representations written in the language denote objects in the domain. 
Within the specification language, a given specification represents a set of acceptable 
temporal behaviors. This model is based on the Timed Acceptance paradigm that we 
have developed [2 11. 

The implementation model is used to accurately capture the execution behaviors of 
real-time programs. First, we distinguish between two different types of time: execution 
time and wait time. We also preserve the difference between true device concurrency, 
and synchronized process interleaving. With these tools, we enable the specification 
of scheduling disciplines. Furthermore, our compositional semantics for concurrency 
include assumptions on clock discrepancy. 

Instead of using an existing programming language as our foundation, we have de- 
cided to develop an independent implementation model. There are several reasons for 
pursuing this strategy. First, there is no real-time programming language that possesses 
both well-defined semantics and also explicitly captures timing properties. Second, our 
implementation model is general enough to formally define the semantics of various re- 
cent real-time programming languages [30, 31, 22, 321. Finally, by focusing strictly on 
timing behavior, we are free to concentrate expressly on the temporal issues of real-time 
programs. 

The remainder of this section is organized as follows: We first describe the Timed 
Acceptances model, and note the additional work required to enhance its specification 
abilities. Following this, we discuss our implementation model, which enables the rep- 
resentation of real-time programs within their execution environments. The section 
concludes with our proposed efforts directed toward relating the two models. 
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3.1 The Timed Acceptances Model 

The Timed Acceptances model [21] is used to specify the abstract temporal behavior 
of concurrent processes. In this model, a time dependent process is represented by its 
possible executions. Each execution includes both the externally visible events and the 
internal choices the process makes while executing. The external behavior is maintained 
by a timed trace, while the internal choices are represented by a state set. This notation 
of nondeterminism is similar to Hennessy's Acceptance Tree model of nondeterministic 
processes [33]. The difference lies in the fact that we represent the time at which events 
can occur within a process. Furthermore, by including nondeterministic choice we have 
provided a valid structure for real-time specification. In this manner, we can abstractly 
represent if-then-else constructs based on a process' internal state. Perhaps the most 
important feature of the model is that it explicitly represents temporal behavior by 
associating an occurrence time with each event in a process' execution. 

An event is an instantaneous visible action in which a process engages. We have 
decided to make events instantaneous since an action with a duration can be modeled 
using two events: one for the beginning of the action and another for the end. Time 
is modeled by the set, NW, containing the natural numbers N and oo. An execution 
sequence is called an acceptance, and consists of a timed trace and a state set, (s, a). 
A timed trace is a finite sequence ((al, nl), (a2, n2), . . . , (a,, n,)) E (C x NW)*, which 
records the events that a process has executed up to some moment in time. Each (a;, n;) 
pair represents the occurrence of the i th event in the execution sequence. The time nl is 
the time between 0 and the occurrence of al. For i > 1, n; represents the relative time 
between events ai-1 and a;. 

A state set is a saturated set denoting the possible states a process may enter after 
executing the trace s. A state defines a set of deterministic choices a process may make 
when deciding its next action. The next action is either the execution of an event at 
a particular time or a stop condition. A state is denoted by a set of event-time pairs 
{ ( A , ,  nl), . . . , (A,, n,)) C P ( P ( E )  x N"), where P(A) is the powerset of A, and Ai 
is either {ai) or 0. Each ({ai),ni) represents the possibility of event ai occurring at ni 
time units after a process enters the state. The pair (0, n,) represents the possibility 
of the process stopping at time n;. Thus, unlike the failures model, in which a timed 
failure is considerably more complex than its untimed counterpart, the state in the timed 
acceptances model is of about the same complexity as the untimed state. 

3.1.1 Domain of Processes 

Mathematically, a real-time process P is a pair (&P, A(P))  where iiP is the alphabet of 
P and A(P)  is its acceptance set. The alphabet is the set of events P can execute. The 
acceptance set represents all possible executions of P .  For example, 
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is a process that makes a nondeterministic choice before engaging in any event. This is 
reflected by the acceptance (0, {{(a, 3)}, {(b, 5 ) ) ,  {(a, 3), (b, 5 ) ) ) ) .  If it chooses to be in 
the state {(a, 3)), then it can only engage in a at  time 3. 

To guarantee that the alphabet-acceptance set pair corresponds to an intuitive notion 
of process execution, we require that the process only engage in events within its alpha- 
bet. Also, its trace set is prefix closed, and the state sets are all saturated. Furthermore, 
a trace is extensible by all events in all states associated with it. 

The set of time dependent processes is partially ordered by process containment. 
Process containment, denoted 5, is a measure of the amount of nondeterminism displayed 
by one process relative to another. We say that P is more nondeterministic than Q if P 
can make at least as many nondeterministic decisions as Q after both execute the trace 
s. We say that P is contained in Q, P 5 Q, if iiP = 6 Q  and A(&) c A(P). Process 
containment is a natural relation to use when comparing a process to its specification 
[34], because a specification can be expressed as a process Ps. We then say that P 
satisfies its specification Ps if every behavior of P is also a behavior of Ps. In other 
words, Ps C_ P. Process containment also induces an equivalence relation on the domain. 
This equivalence relation corresponds to the intuitive definition of process equivalence 
in that two processes are equivalent if they exhibit the same visible behavior under all 
circumstances, and can make the same nondeterministic decisions at all stages of their 
computation. That is, they have identical alphabets and acceptances. 

3.1.2 Primitive Operators 

Here we define a set of operators on the domain. They enjoy a variety of algebraic 
properties such as monotonicity with respect to process containment and continuity. 
Furthermore, we believe they fully capture the temporal properties of all known real- 
time languages. 

Timed action represents the sequential execution of events with respect to time. 
i 

The process a n+ P engages in event a and, after delaying for exactly i time units, 
behaves like the process P. This operator represents the occurrence time of events, the 
simultaneous occurrence of events and the initial delay in a process' execution. 

PI(& denotes the simultaneous execution of P and Q. Simultaneous execution is 
represented by interleaving the executions of P and Q in a way that preserves the 
occurrence times of the events in the two processes. P and Q interact only if they are 
able to engage in the same event simultaneously. Thus, PI(Q contains all traces that 
belong to P and Q when they are restricted to the alphabet of P and Q, respectively. The 
parallel operator is associative and permits the specification of n-way synchronization. 
The choice construct, P O  Q, represents the deterministic choice between two processes. 
Specifically, the choice made on the occurrence time of events. P n Q represents the 
nondeterministic choice between two processes. In the above example, the process P can 

3 
be represented as (r & a & STOP)n(c b & STOP). On the other hand, (r e 

5 2 
a & STOP) O (r -+ b + STOP) has the initial acceptance (0, {{(a, 3), (b, 5 ) } } ) .  
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Concealment and renaming are abstraction mechanisms. Concealment is used to 
isolate the relevant events from the surrounding details of a process' execution. P \A  
engages in all the behaviors of P, but only those events in &P - A are in its acceptances. 
Concealment preserves the occurrence times in P of the visible events. It can also 
introduce nondeterminism into the execution. Renaming is an abstraction mechanism 
that is used to define sets of processes with similar behavior. If f : C + C is a 
function that renames events, then the process f [PI engages in the event f (a) whenever 
P would have engaged in a. If f is not one-to-one, then renaming by f may introduce 
nondeterminism since it may identify two or more events which were distinguishable in 
P .  Repetition is modeled using the recursive construct pP.F(P) where F is a function 
composed of the above operators and P is a process identifier. The semantics of pP .F(P)  
are defined as the least fixed point of the chain of processes approximating pP.F(P). 
The least fixed point exists and is unique since all the other operators are continuous. 

3.1.3 Derived Operators  

Using the primitive operators, we derive constructs representing interval timing bounds, 
timeouts and periodic processes. There are two constructs for denoting interval timing 

int 
bounds. Deterministic timed action on intervals, a + P, is derived from timed action 

and choice. Thus a P is equivalent to the process that executes a at  time 0 and 
then deterministically chooses to start executing P at some time i E int. For example, 

int 
Nondeterministic timed action on intervals, a FS+ P, is derived from timed action and 

int 
nondeterministic composition. Thus a R+- P is equivalent to the nondeterministic choice 

i 
among the processes a + P' for all i E int. For example, 

[3,51 
a F S ~  P' = (a A PI) n (a &- PI) n (a -% P') 

A process is subject to a timeout if it must execute some event a by a time n. If a 
is not executed by this time, then either the process fails, or another process is invoked 
to handle the timeout. A process in which a must occur by time n, and otherwise Q is 
executed, is represented by P '?? Q. Note that this mechanism allows us to specify real- 
time exception handlers. Finally, a periodic process is a cyclic process that is activated 
every n time units. We represent a periodic process by TP, n.F(P) ,  where P is a process 
variable and F ( P )  is the process that must begin execution every n time units. 

3.1.4 Examples of a T ime  Dependent Process 

We now describe a timed Producer-Consumer problem using the timed acceptances 
model. We then use the properties of the algebra to analyze its execution behavior. In 
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doing so, we find that the timing constraints on the problem lead to deadlock, and are 
therefore inconsistent. 

The system is composed of three processes; a consumer and two producers, and is 
denoted by the term CI(P111P2. The system operates correctly if the Consumer processes 
the data from both producers and none of the component processes stop. The Consumer 
deterministically chooses between processing data from Producerl or Producer2. If it 
chooses to process data from Producerl (modeled by the event a)  it operates on this 
data for two seconds and then waits for another data item from either Producerl or 
Producer2. If it accepts the data from Producer2 (executes b), it operates on the data for 
four seconds and then waits for another data item from either process. After processing 
the data from a producer, it must immediately receive another piece of data. The 
Consumer is represented by the following expression: 

Producerl generates a data item in one second and then can wait up to two seconds for 
this data to be accepted. Producer2 also needs one second to produce a data item, but 
will only wait one additional second for this item to be accepted. These two processes 
are represented by the expressions: 

Using the properties of parallel composition and choice, we eliminate the parallel 
operator, obtaining a representation of CII PI 1 1  P2 that explicitly demonstrates the inter- 
actions between the three processes, and the effect of these interactions on their subse- 
quent behavior. Examining the simplified expression, we see that two of the executions 
lead to deadlock. The simplified process is as follows: 

We see from the first subterm in the above representation of CJIPlIIP2 that if C 
initially chooses to accept a from PI, the system deadlocks at  time 2. Here, the Consumer 
takes too long to process the data from Producerl and as a result, Producer2 deadlocks. 
Similarly, if C chooses b from P2, then PI stops at time 3. 

Having determined that the system does not execute correctly, and isolated the cause 
of the problem, we modify the Consumer so that the timing constraints are consistent. 
The new Consumer C' strictly alternates accepting data from the producers and pro- 
cesses each piece of data in 1 time unit. It is represented by the expression 

All acceptances of C'II PI/[ P2 consist of a trace that begins with the event a and then 
strictly alternates between the b and a with one second between consecutive events. 
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The state set consists of a single state. If the last event in the trace is an a ,  then the 
state is {(b, I), (q, 1)). If the last event is a b, then the state is {(a, I) ,  (7 , l ) ) .  The pair 
(q,1) reflects the potential deadlock time and is necessary to ensure the associativity of 
parallel composition. It represents the time a t  which Cf(I PII1 P2 stops if, when composed 
with another process that also executes a and b, but a and b are not offered. 

3.1.5 Enhancements  

While the Timed Acceptances model is a logically sound and complete axiom system, 
we feel that several enhancements are needed to make it a useful specification model. 
These enhancements stem mainly from its extremely formal nature, and are designed to 
make it more "user-friendly". Note that similar extensions have been proposed for RTL 
[l, 241. In this section we mention several of these proposed additions. 

Mnemonic Language: As it stands, the operators provide a solid foundation for 
any real-time specification language. However, we propose mapping them to mnemonic 
constructs that more closely resemble those of a programming language. For example, 
the process PI shown above could have the following mnemonic specification: 

while true d o  
after 0 and before 4 

event a 

With constructs such as these, a system designer need not be aware of the algebra 
underlying a specification. 

Modularity: A natural extension to the specification language is enhanced modular- 
ity. First, this permits a top-down approach to specification, which is a desirable asset. 
Moreover, it provides the ability to specify nested timing constraints. For example, let 
PI and P2 be two processes with individual timing constraints: 

Assume we consider P2 to be a subroutine of PI, which is called during the transition 
[1,41 

c + a .  The interpretation is as follows: Before executing a, PI calls P2. Pz must satisfy 
its own local timing constraints, i.e. it must engage in b at  either 1 or 2 time units from 
its entry time. 

Currently we can specify such behaviors in a bottom-up fashion, and then use the 
concealment operator to capture the essential timing constraints of PI. To implement a 
top-down approach, we must associate a process with each transition. This new derived 
operator, yet to be defined, implicitly incorporates P2's alphabet and constraints into 
those of PI. 
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Automated Analysis: There are three approaches to verification. One is to use the 
properties of the algebra to demonstrate the correctness of a program. The second is to 
use it as the model of a logic, and to perform the proofs in the logical system. The third 
approach is a probabilistic expansion of the execution sequences. 

The first approach is a syntactic one. Processes and specifications are represented as 
terms formed by composing the operators. The process satisfies the specification if all of 
its behaviors, when restricted to the specified events, are behaviors of the specification. 
Thus verification is a matter of showing that for a process P and a specification Ps, 
Ps 5 P. That is, the specification is less deterministic than the process. For finite 
processes this can be done by manipulating the two terms, using the properties of the 
operators and the partial ordering. For infinite processes, the proofs are performed 
inductively, by considering the finite approximations [35] of the processes. A process 
satisfies its specification if the process is contained in every finite approximation of the 
specification. 

Our experience shows that these proofs are quite long, but the work involved is 
mechanical. Therefore, we wish to automate as much of the verification as possible. We 
plan to investigate the properties of the algebra to determine whether they form a rewrite 
system [36]. If they do, mechanizing this axiom system will be straightforward. If not, 
further work must be performed to find approaches for mechanizing the proof system. 
We also need to investigate methods of automating the process of reasoning about infinite 
processes. One possible approach is to incorporate some of the techniques used in tactical 
theorem provers [37, 381 that allow user interface during the proof process. 

The second approach to verification is to use the algebra as a model for a logical 
system (either a first order logic or a quantified temporal logic) and define predicates on 
processes. This is the approach used by Hoare for proving properties of CSP processes 
[26]. We also plan to study how we can use the algebra as a model for RTL and prove 
safety assertions expressed in it. 

The third approach is a probabilistic one. The basic idea is to assign probabilities 
with choices and to explore the execution sequences with probabilities higher than some 
predetermined threshold [39]. In this way, the timed trace analyzer need not explore all 
possible execution sequences. Although this method has been developed for processes 
with finite behaviors, we need to investigate further to see whether it can be applied 
effectively to our specification model. 

3.2 An Implementation Model 

Unlike the specification model, an implementation model should describe all essential 
aspects of real-time computation. First, it should be possible to distinguish execution 
time and wait time since their effect on the timing behavior of other processes are 
logically different. Second, it should be possible to represent processes executing con- 
currently on a single processor. Most semantics for parallel composition do not support 
this notion and assume an ideal one-to-one correspondence between processes and pro- 
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cessors. Third, it should be possible to capture scheduling and clock synchronization 
assumptions. Since specification models ignore scheduling paradigms, the derived set 
of potential operational behaviors is artificially inflated. Thus, such specifications may 
include deadlocked behaviors, when a simple earliest-deadline scheduler would preclude 
them. 

The properties necessary for the implementation model subsumes those for the spec- 
ification model. This section only describes additional properities needed to represent 
real-time program execution. Since we have to show that the behavior of an implemen- 
tation is contained in the behaviors of a specification, it should be natural to transform 
an implementation behavior to a specification behavior. The relation between the two 
models is discussed in the next section. 

3.2.1 Execution Model 

Unlike the specification model in which time is treated uniformly regardless of its pur- 
pose, we distinguish the time a process spends executing from the time it spends waiting. 
Consider the following two processes executing on the same processor: 

If the execution time of A between events a and b is 2, and the execution time of B 
between events a and c is 2, it is not possible for both A and B to satisfy their local timing 
constraints. However, if their execution times are 1 and 2, respectively, then both local 
timing constraints can be satisfied, assuming that there are no other processes running 
on the same processor. Thus, in order to see whether the local timing constraints can 
be met, the implementation model must support the notion of execution time. That is, 
the timed trace must include execution time information, and the timed action operator 
now needs to denote whether the process is executing an operation, or simply waiting. 

There are several ways to extend a timed trace to include execution. For example, 
additional events can be used o denote the beginning and end of execution, the execution 
time between two events can be included. As part of the proposed research, we will 
develop the most appropriate way to extend timed traces to include execution time 
information. Based on our preliminary study, we plan to operationally represent the 
passage of time using a (execution-time; next-event-time) pair, which means that a 
process executes for execution-time during [0, next event time]. That is, the process 

a --, P engages in event a,  executes i time units by time j ,  and behaves like the 
process P at time j .  The above two processes A and B can then be represented as 
follows: 

(2;s) 3 A A = a ---t b 1 
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We also use execution time is eliminate impossible choices between interacting pro- 
cesses. For example, consider 

If C and D are to run on the same processor, they cannot perform event b at time 2, 
since it is impossible for both C and D to execute 1 and 2 time units within 2 time units. 
Whether they execute event c at time 5, or event d at time 4, depends on the number 
of processes running together on the same processor and the semantics of the parallel 
composition of processes running on the same processor. These issues are discussed in 
the next section. 

Since the execution time of a process cannot be estimated exactly [40, 411, it is 
important to be able to express an execution time using an interval. The lower and upper 
bounds on an execution time interval represent the minimum and maximum possible 
execution times. Since it will be difficult to predict the actual execution time, it is 
natural to model the execution time nondeterministically. That is, 

Another basic temporal behavior of a time dependent process is waiting for an event 
until a timeout or deadline. Such a timing behavior can be naturally expressed using a 
wait time interval. Since the duration of process delay depends on other processes, its 
choice should be made deterministically. That is, 

3.2.2 Parallel Operators 

At the implementation level, process allocation and process scheduling are important in 
determining the temporal behavior of a real-time system. Process allocation refers to 
the assignment of processes to processors. Since two processes on the same processor 
cannot execute at the same time, it is necessary to distinguish whether two processes are 
assigned on the same processor. For example, let us reconsider the above two processes 
A and B. If A and B are on different processors, then they can execute a and c at time 
0 and b at time 3. If they are assigned to the same processor, then they cannot execute 
a and c at time 0, nor can they both be ready to execute b at time 3. This is modeled 
as deadlock at time 3. 

To distinguish whether processes are running on the same processor, we provide two 
parallel operators: the local parallel operator (&) for composing processes running on 
the same processor, and the global parallel operator (11) for composing processes running 
on different processors. The difference is that the global parallel operator allows the 
execution times of component processes to overlap, whereas the local parallel operator 
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only allows interleaved execution of processes. The local parallel operator differs from 
a traditional interleaving operator, since shared events must happen at the same time 
when the former is used to compose processes. 

To illustrate the importance of local and global parallel operators, consider the pro- 
ducer and consumer problem described in the previous section. Suppose that they are 
implemented as follows: 

C' executes one time unit to consume each data. PI executes one time unit to produce 
the next data, whereas P2 is an external device that produces data and thus it does not 
use any execution time. If the current implementation is (C1&P1) 11 P2 or C1&(P1&P2), 
then they become deadlocked at time 1. However, for (C1&P2)II PI, C1JI(P1&P2) or 
(C1(IP1 IIP2), it can be shown that these implementations satisfy the specification. 

Process scheduling determines which process to execute next. Obviously, scheduling 
affects the overall timing behaviors of a real-time system. It is important to be able 
to represent various scheduling disciplines, such as earliest deadline first and highest 
priority process first, in the implementation model. The representation of scheduling 
can be defined implicitly or explicitly. The implicit scheduling approach is to include 
the scheduling assumption in the definition of a parallel operator. For example, the 
semantics of a parallel operator can be defined to obey "maximum parallelism" [28]; 
that is, a process event is never unnecessarily delayed in a "ready" state. This ensures 
that an event happens at the earliest possible time. However, maximum parallelism 
is meaningful only if each process is assigned to a dedicated processor. Thus, it is 
appropriate for the global parallel operator only. For the local parallel operator, the 
next event can be selected based on highest priority process first, earliest next event 
time first or smallest laxity first, where laxity equals nezt-event-time - execution-time. 
We plan to define several local parallel operators with these meanings and a hierarchy 
among them. 

The explicit scheduling approach is to use a scheduler process that enforces a desired 
discipline on process interaction. In general, the purpose of scheduling is to limit the 
possible behaviors of the processes to only those with desired properties. Similarly, the 
parallel composition of processes restricts the behaviors of a component process to those 
that are mutually consistent with the behaviors of the other processes. Thus, for a given 
set of processes and a scheduling discipline used in the implementation, it is possible 
to define a scheduler process that enforces the discipline. As we have shown in [42], 
formulating an explicit schedule is at times possible. However, it typically results in a 
very complex process; at  the worst case, a scheduler process might have to explicitly 
enumerate all valid execution sequences. We plan to investigate whether there are some 
high-level operators, such as filtering undesirable execution sequences, that can be used 
define a scheduler process succinctly. Once we better understand the implicit and explicit 
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scheduling issues, we also plan to investigate their relationship. 

3.2.3 Clock Synchronization 

All formal models, except DRTL [3], assume that there is a global clock. This, how- 
ever, is an unrealistic assumption for the implementation model since local clocks are 
not perfectly accurate. We have studied three different ways to implement deadlines 
associated with communication primitives [43, 441. They assume that the maximum 
drift between any two clocks can be bounded, the difference between any two clock 
rates can be bounded and the maximum message delay between any two processors can 
be bounded, respectively. Since time based on one clock cannot be converted exactly 
to time based on another clock, it seems natural to represent a time value depending 
on a remote clock as an interval, whose exact value is resolved nondeterrninistically. 
However, the explicit representation of clock discrepancy results in convoluted timing 
information, which makes the analysis difficult. We plan to study the exact effect of 
clock synchronization on the timing behavior of an implementation, and develop a clean 
way to represent clock discrepancy in the implementation model. Our current attempt is 
to capture the clock discrepancy in the semantics of global parallel operator. In partic- 
ular, we are investigating whether it is possible to define a parameterized global parallel 
operator with respect to clock difference. 

3.2.4 Verification 

The verification of an implementation consists in showing that the timing constraints 
are consistent, and that the temporal behaviors of the implementation satisfies the spec- 
ification. To prove the correctness of an implementation, the language used to represent 
the implementation must be well-founded. For this, we plan to develop appropriate 
semantics for the implementation model. The consistency of the timing constraints can 
then be shown by proving that the execution times of each process are guaranteed, and 
that processes do not time deadlock. Techniques for proving them should be similar to 
those described for the specification model. To show the latter, we need to know the 
exact relation between the specification model and the implementation model. 

3.3 Relations Between the Two Models 

There are two ways to relate the specification model and the implementation model. The 
first approach is to use the same semantic domain (of processes) for both the specification 
model and the implementation model. Then, to show that an implementation satisfies a 
specification, we use the process containment relation after implementation-dependent 
events are hidden. Another approach is to define a different semantic domain for the 
implementation model. 

Let Imp and Spec denote the semantic domains of the implementation model and 
the specification model, respectively. Since the implementation model allows a finer 
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distinction on process behaviors than the specification model, it should be possible 
to find an embedding-projection (e ,p)  pair of functions with e : Spec -+ I m p  and 
p : Imp  t Spec. This pair should relate two semantic domains naturally in the following 
sense [45]: 

p o e  = ID,,,, and e o p  C ID;,,, 

where ID,,,, and IDi,, denote the identify function on their respective domain. The 
latter containment relation states that, for every x E Imp,  e o p(x)  should approximate 
x .  

In addition to relating their semantic domains, we also plan to investigate syntactic 
transformations between the implement ation language and the specification language. 
We believe that it should be possible to translate a representation in the implementation 
model to a corresponding representation in the specification model, and vice versa, 
through purely syntactic manipulations. For example, a (execution-time; next-event- 
t ime)  pair can be syntactically translated to an interval in the specification model as 
follows: 

a 9 STOP = a STOP 
([1,21;3) 3 a + STOP = a STOP 

( 1 . ~  31) ~ ~ 3 1  a '-i STOP = a -+ STOP 

The embedding-projection pair should also induce syntactic translations of other oper- 
ators. 

Summary and Research Plan 
The goal of the proposed research is to provide a formal framework for reasoning about 
the temporal properties of real-time systems. We propose to develop two models, one 
for specification and another for implementation, and to relate them mathematically. 
More specifically, we plan to do the following: 

1. Refine our specification model (the timed acceptances model) and develop a high- 
level specification language that is natural to use and that supports modular spec- 
ification. 

2. Investigate various ways to automate analysis. Here, we plan to look at rewrite 
systems, tactical theorem provers and probabilistic verification methods. 

3. Develop the syntax of operators for the implementation model so that the execution 
behavior and operational environment of real-time programs can be represented 
explicitly. Also, we plan to develop the semantics of the implementation model 
and the relations between the specification model and implementation model. 
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4. Evaluate our approach by modeling and analyzing the timing properties of a dis- 
tributed robot system being developed at Penn [46]. 

These issues will be addressed over the next three years as follows: 

Year 1 : Refine specification model and language; begin to develop implement at ion 
model. 

Year 2: Develop semantics of implementation model; relate specification and imple- 
mentation models. Start looking at tools for automated analysis. 

Year 3: Finalize the models, and evaluate by modeling and analyzing distributed robot 
systems. Complete tools for automate analysis. 
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