
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

September 1988

Formally Integrating Real-Time Specification: A Research Formally Integrating Real-Time Specification: A Research

Proposal Proposal

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Richard Gerber
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Insup Lee, Susan B. Davidson, and Richard Gerber, "Formally Integrating Real-Time Specification: A
Research Proposal", . September 1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-84.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/766
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/766
mailto:repository@pobox.upenn.edu

Formally Integrating Real-Time Specification: A Research Proposal Formally Integrating Real-Time Specification: A Research Proposal

Abstract Abstract
To date, research in reasoning about timing properties of real-time programs has considered specification
and implementation as separate issues. Specification uses formal methods; it abstracts out program
execution, defining a specification that is independent of any machine-specific details (see [I, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14] for examples). In this manner, it describes only the high-level timing
requirements of processes in the system, and dependencies between them. One then typically attempts
to prove the mutual consistency of these timing constraints, or to determine whether the constraints
maintain a safety property critical to system correctness. However, since the model has abstracted out
machine-specific details, these correctness proofs either assume very optimistic operating environment
(such as a one to one assignment of processes to processors), or make very pessimistic assumptions
(such as that all interleavings of process executions are possible). Since neither of these assumptions
will hold in practice, these "predictions" about the behavior of the system may not be accurate.

The implementation level captures this operating environment: a real- time system is characterized by
such things as process schedulers, devices and local clocks. However, advances here have been primarily
in scheduling theory (examples of which are [15, 16]) and language design (examples of which are [15, 16,
17, 18,19,20]). Unfortunately, since formal models have not been used at this level, proofs of time-related
properties cannot be made. To construct these proofs, we must show that an implementation is correct
with respect to a specification; timing properties that can be shown to hold about the specification will
therefore be known to hold for the implementation. We therefore need to represent the implementation
formally so as to prove that the implementation satisfies the specification. The proof of satisfaction
requires a well-defined formal mapping between the implementation and specification models.

We therefore propose to develop an integrated bi-level approach to the problem of reasoning about timing
properties of real-time programs. At the specification level, we will use the Timed Acceptances model, a
logically sound and complete axiom system which we have recently developed [21]. Using this model, the
effect of interaction among time dependent processes can be precisely specified and then analyzed. We
will then develop a formal implementation model (similar to the specification model) which captures
operational behaviors: for example, the assignment of processes to processors, assumptions about
scheduling and clock synchronization, and the different treatment of execution and wait times. A mapping
will then be formulated between these two layers.

The bulk of our proposed work will be to formulate the implementation layer and define a mapping
between it and the specification layer. We also need to continue work on the Timed Acceptances model to
facilitate its use as a specification model, and to provide "hooks" for mappings between the two layers.

The rest of this proposal is organized as follows. The next section overviews related work in formal
specification models. Section 3 describes our current specification model and proposed enhancements.
We also detail the proposed implementation model, and required properties of the mappings between the
two models. Section 4 provides a summary of the proposed research, and a yearly plan.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-84.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/766

https://repository.upenn.edu/cis_reports/766

FORMALLY INTEGRATING
REAL-TIME SPECIFICATION

AND IMPLEMENTATION:
A RESEARCH PROPOSAL

lnsup Lee, Susan B. Davidson
and Richard Gerber

MS-CIS-88-84
GRASP LAB 160

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04

October 1988

Acknowledgements: This research was supported in part by NSF grants IR186-10617,
DCR 8501482, DMC 851 2838, MCS 821 91 96-CER, U.S. Army grants DAA29-84-K-0061,
DAA29-84-9-0027 and a grant from AT&T's Telecommunications Program at the University of
Pennsylvania.

October 26, 1988

1 Introduction

To date, research in reasoning about timing properties of real-time programs has con-
sidered specification and implementation as separate issues. Specification uses formal
methods; it abstracts out program execution, defining a specification that is indepen-
dent of any machine-specific details (see [I, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 141 for
examples). In this manner, it describes only the high-level timing requirements of pro-
cesses in the system, and dependencies between them. One then typically attempts to
prove the mutual consistency of these timing constraints, or to determine whether the
constraints maintain a safety property critical to system correctness. However, since the
model has abstracted out machine-specific details, these correctness proofs either assume
very optimistic operating environment (such as a one to one assignment of processes to
processors), or make very pessimistic assumptions (such as that all interleavings of pro-
cess executions are possible). Since neither of these assumptions will hold in practice,
these L'predictions" about the behavior of the system may not be accurate.

The implementation level captures this operating environment: a real- time system
is characterized by such things as process schedulers, devices and local clocks. However,
advances here have been primarily in scheduling theory (examples of which are [15, 161)
and language design (examples of which are [15, 16, 17, 18,19,20]). Unfortunately, since
formal models have not been used at this level, proofs of time-related properties cannot
be made. To construct these proofs, we must show that an implementation is correct
with respect to a specification; timing properties that can be shown to hold about the
specification will therefore be known to hold for the implementation. We therefore need
to represent the implementation formally so as to prove that the implementation satis-
fies the specification. The proof of satisfaction requires a well-defined formal mapping
between the implementation and specification models.

We therefore propose to develop an integrated bi-level approach to the problem of
reasoning about timing properties of real- time programs. At the specification level, we
will use the Timed Acceptances model, a logically sound and complete axiom system
which we have recently developed [21]. Using this model, the effect of interaction among
time dependent processes can be precisely specified and then analyzed. We will then
develop a formal implementation model (similar to the specification model) which cap-
tures operational behaviors: for example, the assignment of processes to processors,
assumptions about scheduling and clock synchronization, and the different treatment of
execution and wait times. A mapping will then be formulated between these two layers.

The bulk of our proposed work will be to formulate the implementation layer and
define a mapping between it and the specification layer. We also need to continue work
on the Timed Acceptances model to facilitate its use as a specification model, and to
provide "hooks" for mappings between the two layers.

The rest of this proposal is organized as follows. The next section overviews related
work in formal specification models. Section 3 describes our current specification model
and proposed enhancements. We also detail the proposed implementation model, and

October 26, 1988 3

required properties of the mappings between the two models. Section 4 provides a
summary of the proposed research, and a yearly plan.

Related Work

In this section we briefly survey related work in real-time modeling. Because there are
no formal models for the implementation level, we limit our attention to specification
models and point out perceived weakness.'

Specification models range from the very abstract, where there is no notion of a pro-
cess or even a program, to more structure-oriented, which permit high-level specification
of real-time processes and provide semantics for their parallel composition. Many of the
methods discussed here are quite complex, and we attempt only to cover their most
salient features. There are some concepts, however, which we strive to emphasize. To
be effective, a specification model should incorporate both a sound and complete set of
axioms. Without this, verification is not possible. Also, the model must possess a high
enough level of abstraction so that most implementation details remain hidden. Fur-
thermore, there should be some notion of "containment ." With this feature, properties
proved consistent with a set of behaviors are also consistent with its subsets. This is
the essence of abstraction, and is fundamental for adequate specification models [23].
Thus, models based on process structure require a process containment relation, while
those based on logics employ the implication connective. Finally, a specification method
should possess a realistic execution model.

RTL: Jahanian and Mok [I, 21 have developed a highly abstract model called Real-
Time Logic (RTL), which represents timing constraints in order to prove safety proper-
ties. RTL is essentially a typed, first-order logic containing constants which represent
actions, events and transitions. Also included are functions which represent the occur-
rence times of events, predicates on the system states during time intervals, as well as
axioms to describe the properties of events. The objective of RTL is to specify a sys-
tem's timing constraints, and then show that they satisfy a specific safety property, also
expressed in RTL. To achieve this, a graph-theoretic procedure is used.

The structure of the logic results in some very complex specifications of even simple
processes. Therefore, a specification tool is provided, called the Event-Action model.
It permits a high level specification of the system's timing requirements and a method
of translating it into the corresponding RTL formulas. Using the event-action model,
a system designer denotes the relevant actions and events that occur during execution.
Also defined are the predicates that describe the state of the system and the timing
constraints relating the actions, events and states. These constraints include assertions
about the absolute timing of events and the ordering of actions.

'A survey of real-time languages (syntactic implementation models) can be found in [22].

October 26, 1988 4

We believe that RTL is a successful, though limited, model. It succeeds in providing
a means by which safety assertions can be proved, a feature that few of the other models
can claim to possess. However, it is not apparent how one can prove that the system's
timing constraints are mutually consistent. Moreover, RTL suffers from being too high-
level. The event-action model does not provide constructs necessary for expressing the
structure of a system at even a rudimentary level. For example, it does not possess the
means for representing a choice between alternative actions; furthermore, it does not
have a way to express nondeterminism. Because the model lacks the notion of system
structure, it would appear difficult to map specifications to a lower, and more operational
level.

DRTL: DRTL [3] is an extension of RTL, which was defined to reflect the constraints
placed on message-passing systems. Akin to the event-action model, there is a high-level
specification language called RReq [24]. One of the more intriguing goals of this work is
to integrate it with the group's implementation language, RNet. Rnet, however, lacks
formal semantics.

Quantified Temporal Logic: Temporal logic [4] is a modal logic that expresses the
development of situations in time. Using temporal logic, the execution of a program can
be formalized, and not just the function or relation it computes. In a quantified temporal
logic timing properties are expressed explicitly. The quantified temporal logic of Harter
and Bernstein [25] allows one to express the relative progress of two programs with
respect to each other, as well as the execution time of a program fragment. Quantification
of time is introduced by providing a real-time component to the eventuality operator. The
authors demonstrate their method by proving safety properties of real-time programs,
writ ten in a Modula-style language.

The quantification of temporal logic provides a compact means of expressing tempo-
ral relationships between program states, and allows reasoning about the execution of
real-time programs. The model of execution, however, is unrealistic for true real-time
programming, in that it employs a pure interleaving approach. Thus, true concurrent
program execution cannot be modeled. Because of this, the execution of all possible op-
erations in the "ready" state is not forced; instead, the execution of only one is ensured.
We believe this defect mandates an assumption of fairness, i.e., scheduling. Without
such an assumption, it is possible to specify a process whose timing constraints are
consistent when its operations are executed in only one order. Deadlock may intervene
when execution proceeds in an "unfair" order.

Net Models Extensive work has been performed using Petri Nets to model concurrent
and real-time systems. There are two approaches to augmenting nets with time. Either
a time is assigned to each transition in the net [5, 61 or a time is assigned to each place
[7] . Petri nets have several advantages as a model. They are simple, elegant and posses
an extensive theory that has already been developed. They can directly represent the

October 26, 1988 5

causality and dependence between events. Their graph structure implies that they can
be used to represent the system at various levels of abstraction. Furthermore, the token
labeling makes them particularly useful for performance analysis. However, they are not
readily decomposable, and there is no simple notion net "containment" other than other
than graph equivalence. As we have stated above, without a containment relation, a
specification model does not provide a realistic foundation for verification. It is obvious
that the equivalence relation is much too strong.

SCCS: SCCS [8] is the most general of all the real-time models. With only four
operators and a recursive construct, all operators found in the other models of real-
time concurrency can be expressed. SCCS implicitly models time by associating the
occurrence of an event with the passage of a single time unit. Thus, an executing
process must engage in an event at each instant in time. This requirement makes it
cumbersome, but necessary, to define an idling event in order to represent process delay.

The parallel operator in SCCS is the most general found in any of the models of
time dependence. Concurrency is represented by processes executing in a mutually lock-
step fashion. This method allows the simultaneous occurrence of events, but does not
provide any inherent notion of shared events or synchronization. Interaction among
processes is captured by using parallel composition and event restriction. However,
this representation is quite awkward, as the restriction operator must allow all correct
actions. Thus, the user must know a priori all allowable actions and every combination
of actions.

An SCCS process is analyzed by proving that it has some desired property. This is
done by transforming the property into an SCCS process, and showing the two processes
to be equivalent. One must derive a bisimulation between them, or manipulate their
terms using a set of process identities. Like many other models, SCCS does not have
an ordering relation on processes. Thus, to show that an implementation satisfies a
specification, the two must be equivalent.

CIRCAL: CIRCAL [9] was developed to provide a useful and powerful calculus to
describe and analyze communicating systems. Concurrency is modeled by event-driven
synchronization among multiple processes. That is, if an event occurs in several processes
simultaneously, the processes interact. Using this method, CIRCAL can be used to
model time dependent processes by synchronizing event occurrences with ticks of a
clock process. This yields an event-based representation of time, which differs from
SCCS in the following respect: Only those events synchronized with a clock have a time
associated with them. Therefore, the occurrence time of a nonsynchronized event cannot
be derived. Like SCCS, CIRCAL provides a set of rules to show process equivalence.
Also like SCCS, there is no containment ordering on processes - the essential ingredient
in a verification system.

October 26, 1988 6

Timed Stability and Timed Failures: The Timed Stability [lo] and Timed Failures
models [Ill are both extensions of CSP. Timed Stability is a temporal extension of the
trace model for CSP [26] and is used to represent deterministic, real-time communicating
processes. A timed CSP process is defined as a set of ordered pairs (s, a) where s is
a t imed trace2 and a is the stability t ime associated with s. The stability time defines
the earliest time after which a process is able to engage in any possible next event after
executing s . The Timed Stability model is consistent with the algebraic laws presented
in [12], and these laws can be used to show process equivalence and process containment.
There is also a satisfaction relation defined in Timed Stability which can be used to relate
a process to its logical specification.

The timed failures model of Gerth and Boucher is an extension of the failure set
model of CSP [12]. A timed failure consists of an event relation and a failure relation.
The event relation is similar to a trace, which records all events that occur during a
program's execution. A failure relation contains all of the events that can be refused
throughout a computation, and a pair (J, i) , representing termination of the machine
at time i. This is the minimum amount of failure information that is needed to model
both timeout s and the simultaneous occurrence of actions.

CSP-R and DNP-R: De Roever's group at Eindhoven has proposed a model of real-
time computing that extends the linear history semantics for CSP of Francez, Lehman
and Pnueli [27]; it is used to define the semantics of Ada's essential features. Their
execution model is a variant of the maximal parallelism model of Salwicki and Miildner
[28], where events are forced to occur at the earliest time possible. As we have noted
above, this notion is a quite unrealistic, as it assumes a one-to-one relationship between
processes and processors.

A process P is represented by its possible "executions," where each execution consists
of a state and a history. The state records the values of the variables if P terminates,
and is undefined if P does not. The history is a (possibly infinite) sequence of time
records which notes all communications leading to the state. The ith record corresponds
to time i, and the length of the history is equal to the time of termination.

The first version of this model was developed by Koymans et al. [13] and was used
to capture the semantics of Ada constructs in a language called CSP-R. However, it
was shown [14] that in this model two fragments with identical semantics may admit
different observable behaviors. Huizing, Gerth and de Roever extended the model to
correct this defect, and then used it to supply denotational semantics for Occam in a
language called DNP-R.

'A timed trace is a sequence of event-time pairs representing the events a process executes and their
occcurrence times.

October 26, 1988

3 Our Approach

In this section we define our specification and implementation models. We argue that
both are necessary when one reasons about the temporal properties of a real-time system.
Moreover, if the reasoning is to be mathematically sound, both models must be based
on formal semantics, and there must be precise relationships between the semantics and
their meanings. In the traditional specification/verification paradigm [29], the specifi-
cation "abstracts out" most properties of program execution, and thus is represented
at a much higher level than its underlying system. This makes it possible to define a
specification that is independent of any machine-specific details. In this manner, the
specification of a real-time system describes only the high-level timing requirements of
processes, and the timing dependencies between them. Conversely, the implementation
model captures all aspects that affect a system's timing behavior during execution. At
neither level, however, do we model non time-related properties such as variable state.

Our goal is to develop both specification and implementation models, and to define a
well-founded mapping between them. Each model consists of a language and a semantic
domain, such that representations written in the language denote objects in the domain.
Within the specification language, a given specification represents a set of acceptable
temporal behaviors. This model is based on the Timed Acceptance paradigm that we
have developed [2 11.

The implementation model is used to accurately capture the execution behaviors of
real-time programs. First, we distinguish between two different types of time: execution
time and wait time. We also preserve the difference between true device concurrency,
and synchronized process interleaving. With these tools, we enable the specification
of scheduling disciplines. Furthermore, our compositional semantics for concurrency
include assumptions on clock discrepancy.

Instead of using an existing programming language as our foundation, we have de-
cided to develop an independent implementation model. There are several reasons for
pursuing this strategy. First, there is no real-time programming language that possesses
both well-defined semantics and also explicitly captures timing properties. Second, our
implementation model is general enough to formally define the semantics of various re-
cent real-time programming languages [30, 31, 22, 321. Finally, by focusing strictly on
timing behavior, we are free to concentrate expressly on the temporal issues of real-time
programs.

The remainder of this section is organized as follows: We first describe the Timed
Acceptances model, and note the additional work required to enhance its specification
abilities. Following this, we discuss our implementation model, which enables the rep-
resentation of real-time programs within their execution environments. The section
concludes with our proposed efforts directed toward relating the two models.

October 26, 1988

3.1 The Timed Acceptances Model

The Timed Acceptances model [21] is used to specify the abstract temporal behavior
of concurrent processes. In this model, a time dependent process is represented by its
possible executions. Each execution includes both the externally visible events and the
internal choices the process makes while executing. The external behavior is maintained
by a timed trace, while the internal choices are represented by a state set. This notation
of nondeterminism is similar to Hennessy's Acceptance Tree model of nondeterministic
processes [33]. The difference lies in the fact that we represent the time at which events
can occur within a process. Furthermore, by including nondeterministic choice we have
provided a valid structure for real-time specification. In this manner, we can abstractly
represent if-then-else constructs based on a process' internal state. Perhaps the most
important feature of the model is that it explicitly represents temporal behavior by
associating an occurrence time with each event in a process' execution.

An event is an instantaneous visible action in which a process engages. We have
decided to make events instantaneous since an action with a duration can be modeled
using two events: one for the beginning of the action and another for the end. Time
is modeled by the set, NW, containing the natural numbers N and oo. An execution
sequence is called an acceptance, and consists of a timed trace and a state set, (s, a).
A timed trace is a finite sequence ((al, nl), (a2, n2), . . . , (a,, n,)) E (C x NW)*, which
records the events that a process has executed up to some moment in time. Each (a;, n;)
pair represents the occurrence of the i th event in the execution sequence. The time nl is
the time between 0 and the occurrence of al. For i > 1, n; represents the relative time
between events ai-1 and a;.

A state set is a saturated set denoting the possible states a process may enter after
executing the trace s. A state defines a set of deterministic choices a process may make
when deciding its next action. The next action is either the execution of an event at
a particular time or a stop condition. A state is denoted by a set of event-time pairs
{ (A , , nl), . . . , (A,, n,)) C P (P (E) x N"), where P(A) is the powerset of A, and Ai
is either {ai) or 0. Each ({ai),ni) represents the possibility of event ai occurring at ni
time units after a process enters the state. The pair (0, n,) represents the possibility
of the process stopping at time n;. Thus, unlike the failures model, in which a timed
failure is considerably more complex than its untimed counterpart, the state in the timed
acceptances model is of about the same complexity as the untimed state.

3.1.1 Domain of Processes

Mathematically, a real-time process P is a pair (&P, A(P)) where iiP is the alphabet of
P and A(P) is its acceptance set. The alphabet is the set of events P can execute. The
acceptance set represents all possible executions of P . For example,

October 26, 1988 9

is a process that makes a nondeterministic choice before engaging in any event. This is
reflected by the acceptance (0, {{(a, 3)}, {(b, 5)) , {(a, 3), (b, 5)))) . If it chooses to be in
the state {(a, 3)), then it can only engage in a at time 3.

To guarantee that the alphabet-acceptance set pair corresponds to an intuitive notion
of process execution, we require that the process only engage in events within its alpha-
bet. Also, its trace set is prefix closed, and the state sets are all saturated. Furthermore,
a trace is extensible by all events in all states associated with it.

The set of time dependent processes is partially ordered by process containment.
Process containment, denoted 5, is a measure of the amount of nondeterminism displayed
by one process relative to another. We say that P is more nondeterministic than Q if P
can make at least as many nondeterministic decisions as Q after both execute the trace
s. We say that P is contained in Q, P 5 Q, if iiP = 6 Q and A(&) c A(P). Process
containment is a natural relation to use when comparing a process to its specification
[34], because a specification can be expressed as a process Ps. We then say that P
satisfies its specification Ps if every behavior of P is also a behavior of Ps. In other
words, Ps C_ P. Process containment also induces an equivalence relation on the domain.
This equivalence relation corresponds to the intuitive definition of process equivalence
in that two processes are equivalent if they exhibit the same visible behavior under all
circumstances, and can make the same nondeterministic decisions at all stages of their
computation. That is, they have identical alphabets and acceptances.

3.1.2 Primitive Operators

Here we define a set of operators on the domain. They enjoy a variety of algebraic
properties such as monotonicity with respect to process containment and continuity.
Furthermore, we believe they fully capture the temporal properties of all known real-
time languages.

Timed action represents the sequential execution of events with respect to time.
i

The process a n+ P engages in event a and, after delaying for exactly i time units,
behaves like the process P. This operator represents the occurrence time of events, the
simultaneous occurrence of events and the initial delay in a process' execution.

PI(& denotes the simultaneous execution of P and Q. Simultaneous execution is
represented by interleaving the executions of P and Q in a way that preserves the
occurrence times of the events in the two processes. P and Q interact only if they are
able to engage in the same event simultaneously. Thus, PI(Q contains all traces that
belong to P and Q when they are restricted to the alphabet of P and Q, respectively. The
parallel operator is associative and permits the specification of n-way synchronization.
The choice construct, P O Q, represents the deterministic choice between two processes.
Specifically, the choice made on the occurrence time of events. P n Q represents the
nondeterministic choice between two processes. In the above example, the process P can

3
be represented as (r & a & STOP)n(c b & STOP). On the other hand, (r e

5 2
a & STOP) O (r -+ b + STOP) has the initial acceptance (0, {{(a, 3), (b, 5) } }) .

October 26, 1988 10

Concealment and renaming are abstraction mechanisms. Concealment is used to
isolate the relevant events from the surrounding details of a process' execution. P \A
engages in all the behaviors of P, but only those events in &P - A are in its acceptances.
Concealment preserves the occurrence times in P of the visible events. It can also
introduce nondeterminism into the execution. Renaming is an abstraction mechanism
that is used to define sets of processes with similar behavior. If f : C + C is a
function that renames events, then the process f [PI engages in the event f (a) whenever
P would have engaged in a. If f is not one-to-one, then renaming by f may introduce
nondeterminism since it may identify two or more events which were distinguishable in
P . Repetition is modeled using the recursive construct pP.F(P) where F is a function
composed of the above operators and P is a process identifier. The semantics of pP .F(P)
are defined as the least fixed point of the chain of processes approximating pP.F(P).
The least fixed point exists and is unique since all the other operators are continuous.

3.1.3 Derived Operators

Using the primitive operators, we derive constructs representing interval timing bounds,
timeouts and periodic processes. There are two constructs for denoting interval timing

int
bounds. Deterministic timed action on intervals, a + P, is derived from timed action

and choice. Thus a P is equivalent to the process that executes a at time 0 and
then deterministically chooses to start executing P at some time i E int. For example,

int
Nondeterministic timed action on intervals, a FS+ P, is derived from timed action and

int
nondeterministic composition. Thus a R+- P is equivalent to the nondeterministic choice

i
among the processes a + P' for all i E int. For example,

[3,51
a F S ~ P' = (a A PI) n (a &- PI) n (a -% P')

A process is subject to a timeout if it must execute some event a by a time n. If a
is not executed by this time, then either the process fails, or another process is invoked
to handle the timeout. A process in which a must occur by time n, and otherwise Q is
executed, is represented by P '?? Q. Note that this mechanism allows us to specify real-
time exception handlers. Finally, a periodic process is a cyclic process that is activated
every n time units. We represent a periodic process by TP, n.F(P) , where P is a process
variable and F (P) is the process that must begin execution every n time units.

3.1.4 Examples of a T ime Dependent Process

We now describe a timed Producer-Consumer problem using the timed acceptances
model. We then use the properties of the algebra to analyze its execution behavior. In

October 26, 1988 11

doing so, we find that the timing constraints on the problem lead to deadlock, and are
therefore inconsistent.

The system is composed of three processes; a consumer and two producers, and is
denoted by the term CI(P111P2. The system operates correctly if the Consumer processes
the data from both producers and none of the component processes stop. The Consumer
deterministically chooses between processing data from Producerl or Producer2. If it
chooses to process data from Producerl (modeled by the event a) it operates on this
data for two seconds and then waits for another data item from either Producerl or
Producer2. If it accepts the data from Producer2 (executes b), it operates on the data for
four seconds and then waits for another data item from either process. After processing
the data from a producer, it must immediately receive another piece of data. The
Consumer is represented by the following expression:

Producerl generates a data item in one second and then can wait up to two seconds for
this data to be accepted. Producer2 also needs one second to produce a data item, but
will only wait one additional second for this item to be accepted. These two processes
are represented by the expressions:

Using the properties of parallel composition and choice, we eliminate the parallel
operator, obtaining a representation of CII PI 1 1 P2 that explicitly demonstrates the inter-
actions between the three processes, and the effect of these interactions on their subse-
quent behavior. Examining the simplified expression, we see that two of the executions
lead to deadlock. The simplified process is as follows:

We see from the first subterm in the above representation of CJIPlIIP2 that if C
initially chooses to accept a from PI, the system deadlocks at time 2. Here, the Consumer
takes too long to process the data from Producerl and as a result, Producer2 deadlocks.
Similarly, if C chooses b from P2, then PI stops at time 3.

Having determined that the system does not execute correctly, and isolated the cause
of the problem, we modify the Consumer so that the timing constraints are consistent.
The new Consumer C' strictly alternates accepting data from the producers and pro-
cesses each piece of data in 1 time unit. It is represented by the expression

All acceptances of C'II PI/[P2 consist of a trace that begins with the event a and then
strictly alternates between the b and a with one second between consecutive events.

October 26, 1988 12

The state set consists of a single state. If the last event in the trace is an a , then the
state is {(b, I), (q, 1)). If the last event is a b, then the state is {(a, I) , (7 , l)) . The pair
(q,1) reflects the potential deadlock time and is necessary to ensure the associativity of
parallel composition. It represents the time a t which Cf(I PII1 P2 stops if, when composed
with another process that also executes a and b, but a and b are not offered.

3.1.5 Enhancements

While the Timed Acceptances model is a logically sound and complete axiom system,
we feel that several enhancements are needed to make it a useful specification model.
These enhancements stem mainly from its extremely formal nature, and are designed to
make it more "user-friendly". Note that similar extensions have been proposed for RTL
[l, 241. In this section we mention several of these proposed additions.

Mnemonic Language: As it stands, the operators provide a solid foundation for
any real-time specification language. However, we propose mapping them to mnemonic
constructs that more closely resemble those of a programming language. For example,
the process PI shown above could have the following mnemonic specification:

while true d o
after 0 and before 4

event a

With constructs such as these, a system designer need not be aware of the algebra
underlying a specification.

Modularity: A natural extension to the specification language is enhanced modular-
ity. First, this permits a top-down approach to specification, which is a desirable asset.
Moreover, it provides the ability to specify nested timing constraints. For example, let
PI and P2 be two processes with individual timing constraints:

Assume we consider P2 to be a subroutine of PI, which is called during the transition
[1,41

c + a . The interpretation is as follows: Before executing a, PI calls P2. Pz must satisfy
its own local timing constraints, i.e. it must engage in b at either 1 or 2 time units from
its entry time.

Currently we can specify such behaviors in a bottom-up fashion, and then use the
concealment operator to capture the essential timing constraints of PI. To implement a
top-down approach, we must associate a process with each transition. This new derived
operator, yet to be defined, implicitly incorporates P2's alphabet and constraints into
those of PI.

October 26, 1988 13

Automated Analysis: There are three approaches to verification. One is to use the
properties of the algebra to demonstrate the correctness of a program. The second is to
use it as the model of a logic, and to perform the proofs in the logical system. The third
approach is a probabilistic expansion of the execution sequences.

The first approach is a syntactic one. Processes and specifications are represented as
terms formed by composing the operators. The process satisfies the specification if all of
its behaviors, when restricted to the specified events, are behaviors of the specification.
Thus verification is a matter of showing that for a process P and a specification Ps,
Ps 5 P. That is, the specification is less deterministic than the process. For finite
processes this can be done by manipulating the two terms, using the properties of the
operators and the partial ordering. For infinite processes, the proofs are performed
inductively, by considering the finite approximations [35] of the processes. A process
satisfies its specification if the process is contained in every finite approximation of the
specification.

Our experience shows that these proofs are quite long, but the work involved is
mechanical. Therefore, we wish to automate as much of the verification as possible. We
plan to investigate the properties of the algebra to determine whether they form a rewrite
system [36]. If they do, mechanizing this axiom system will be straightforward. If not,
further work must be performed to find approaches for mechanizing the proof system.
We also need to investigate methods of automating the process of reasoning about infinite
processes. One possible approach is to incorporate some of the techniques used in tactical
theorem provers [37, 381 that allow user interface during the proof process.

The second approach to verification is to use the algebra as a model for a logical
system (either a first order logic or a quantified temporal logic) and define predicates on
processes. This is the approach used by Hoare for proving properties of CSP processes
[26]. We also plan to study how we can use the algebra as a model for RTL and prove
safety assertions expressed in it.

The third approach is a probabilistic one. The basic idea is to assign probabilities
with choices and to explore the execution sequences with probabilities higher than some
predetermined threshold [39]. In this way, the timed trace analyzer need not explore all
possible execution sequences. Although this method has been developed for processes
with finite behaviors, we need to investigate further to see whether it can be applied
effectively to our specification model.

3.2 An Implementation Model

Unlike the specification model, an implementation model should describe all essential
aspects of real-time computation. First, it should be possible to distinguish execution
time and wait time since their effect on the timing behavior of other processes are
logically different. Second, it should be possible to represent processes executing con-
currently on a single processor. Most semantics for parallel composition do not support
this notion and assume an ideal one-to-one correspondence between processes and pro-

October 26, 1988 14

cessors. Third, it should be possible to capture scheduling and clock synchronization
assumptions. Since specification models ignore scheduling paradigms, the derived set
of potential operational behaviors is artificially inflated. Thus, such specifications may
include deadlocked behaviors, when a simple earliest-deadline scheduler would preclude
them.

The properties necessary for the implementation model subsumes those for the spec-
ification model. This section only describes additional properities needed to represent
real-time program execution. Since we have to show that the behavior of an implemen-
tation is contained in the behaviors of a specification, it should be natural to transform
an implementation behavior to a specification behavior. The relation between the two
models is discussed in the next section.

3.2.1 Execution Model

Unlike the specification model in which time is treated uniformly regardless of its pur-
pose, we distinguish the time a process spends executing from the time it spends waiting.
Consider the following two processes executing on the same processor:

If the execution time of A between events a and b is 2, and the execution time of B
between events a and c is 2, it is not possible for both A and B to satisfy their local timing
constraints. However, if their execution times are 1 and 2, respectively, then both local
timing constraints can be satisfied, assuming that there are no other processes running
on the same processor. Thus, in order to see whether the local timing constraints can
be met, the implementation model must support the notion of execution time. That is,
the timed trace must include execution time information, and the timed action operator
now needs to denote whether the process is executing an operation, or simply waiting.

There are several ways to extend a timed trace to include execution. For example,
additional events can be used o denote the beginning and end of execution, the execution
time between two events can be included. As part of the proposed research, we will
develop the most appropriate way to extend timed traces to include execution time
information. Based on our preliminary study, we plan to operationally represent the
passage of time using a (execution-time; next-event-time) pair, which means that a
process executes for execution-time during [0, next event time]. That is, the process

a --, P engages in event a, executes i time units by time j , and behaves like the
process P at time j . The above two processes A and B can then be represented as
follows:

(2;s) 3 A A = a ---t b 1

October 26, 1988 15

We also use execution time is eliminate impossible choices between interacting pro-
cesses. For example, consider

If C and D are to run on the same processor, they cannot perform event b at time 2,
since it is impossible for both C and D to execute 1 and 2 time units within 2 time units.
Whether they execute event c at time 5, or event d at time 4, depends on the number
of processes running together on the same processor and the semantics of the parallel
composition of processes running on the same processor. These issues are discussed in
the next section.

Since the execution time of a process cannot be estimated exactly [40, 411, it is
important to be able to express an execution time using an interval. The lower and upper
bounds on an execution time interval represent the minimum and maximum possible
execution times. Since it will be difficult to predict the actual execution time, it is
natural to model the execution time nondeterministically. That is,

Another basic temporal behavior of a time dependent process is waiting for an event
until a timeout or deadline. Such a timing behavior can be naturally expressed using a
wait time interval. Since the duration of process delay depends on other processes, its
choice should be made deterministically. That is,

3.2.2 Parallel Operators

At the implementation level, process allocation and process scheduling are important in
determining the temporal behavior of a real-time system. Process allocation refers to
the assignment of processes to processors. Since two processes on the same processor
cannot execute at the same time, it is necessary to distinguish whether two processes are
assigned on the same processor. For example, let us reconsider the above two processes
A and B. If A and B are on different processors, then they can execute a and c at time
0 and b at time 3. If they are assigned to the same processor, then they cannot execute
a and c at time 0, nor can they both be ready to execute b at time 3. This is modeled
as deadlock at time 3.

To distinguish whether processes are running on the same processor, we provide two
parallel operators: the local parallel operator (&) for composing processes running on
the same processor, and the global parallel operator (11) for composing processes running
on different processors. The difference is that the global parallel operator allows the
execution times of component processes to overlap, whereas the local parallel operator

October 26, 1988 16

only allows interleaved execution of processes. The local parallel operator differs from
a traditional interleaving operator, since shared events must happen at the same time
when the former is used to compose processes.

To illustrate the importance of local and global parallel operators, consider the pro-
ducer and consumer problem described in the previous section. Suppose that they are
implemented as follows:

C' executes one time unit to consume each data. PI executes one time unit to produce
the next data, whereas P2 is an external device that produces data and thus it does not
use any execution time. If the current implementation is (C1&P1) 11 P2 or C1&(P1&P2),
then they become deadlocked at time 1. However, for (C1&P2)II PI, C1JI(P1&P2) or
(C1(IP1 IIP2), it can be shown that these implementations satisfy the specification.

Process scheduling determines which process to execute next. Obviously, scheduling
affects the overall timing behaviors of a real-time system. It is important to be able
to represent various scheduling disciplines, such as earliest deadline first and highest
priority process first, in the implementation model. The representation of scheduling
can be defined implicitly or explicitly. The implicit scheduling approach is to include
the scheduling assumption in the definition of a parallel operator. For example, the
semantics of a parallel operator can be defined to obey "maximum parallelism" [28];
that is, a process event is never unnecessarily delayed in a "ready" state. This ensures
that an event happens at the earliest possible time. However, maximum parallelism
is meaningful only if each process is assigned to a dedicated processor. Thus, it is
appropriate for the global parallel operator only. For the local parallel operator, the
next event can be selected based on highest priority process first, earliest next event
time first or smallest laxity first, where laxity equals nezt-event-time - execution-time.
We plan to define several local parallel operators with these meanings and a hierarchy
among them.

The explicit scheduling approach is to use a scheduler process that enforces a desired
discipline on process interaction. In general, the purpose of scheduling is to limit the
possible behaviors of the processes to only those with desired properties. Similarly, the
parallel composition of processes restricts the behaviors of a component process to those
that are mutually consistent with the behaviors of the other processes. Thus, for a given
set of processes and a scheduling discipline used in the implementation, it is possible
to define a scheduler process that enforces the discipline. As we have shown in [42],
formulating an explicit schedule is at times possible. However, it typically results in a
very complex process; at the worst case, a scheduler process might have to explicitly
enumerate all valid execution sequences. We plan to investigate whether there are some
high-level operators, such as filtering undesirable execution sequences, that can be used
define a scheduler process succinctly. Once we better understand the implicit and explicit

October 26, 1988

scheduling issues, we also plan to investigate their relationship.

3.2.3 Clock Synchronization

All formal models, except DRTL [3], assume that there is a global clock. This, how-
ever, is an unrealistic assumption for the implementation model since local clocks are
not perfectly accurate. We have studied three different ways to implement deadlines
associated with communication primitives [43, 441. They assume that the maximum
drift between any two clocks can be bounded, the difference between any two clock
rates can be bounded and the maximum message delay between any two processors can
be bounded, respectively. Since time based on one clock cannot be converted exactly
to time based on another clock, it seems natural to represent a time value depending
on a remote clock as an interval, whose exact value is resolved nondeterrninistically.
However, the explicit representation of clock discrepancy results in convoluted timing
information, which makes the analysis difficult. We plan to study the exact effect of
clock synchronization on the timing behavior of an implementation, and develop a clean
way to represent clock discrepancy in the implementation model. Our current attempt is
to capture the clock discrepancy in the semantics of global parallel operator. In partic-
ular, we are investigating whether it is possible to define a parameterized global parallel
operator with respect to clock difference.

3.2.4 Verification

The verification of an implementation consists in showing that the timing constraints
are consistent, and that the temporal behaviors of the implementation satisfies the spec-
ification. To prove the correctness of an implementation, the language used to represent
the implementation must be well-founded. For this, we plan to develop appropriate
semantics for the implementation model. The consistency of the timing constraints can
then be shown by proving that the execution times of each process are guaranteed, and
that processes do not time deadlock. Techniques for proving them should be similar to
those described for the specification model. To show the latter, we need to know the
exact relation between the specification model and the implementation model.

3.3 Relations Between the Two Models

There are two ways to relate the specification model and the implementation model. The
first approach is to use the same semantic domain (of processes) for both the specification
model and the implementation model. Then, to show that an implementation satisfies a
specification, we use the process containment relation after implementation-dependent
events are hidden. Another approach is to define a different semantic domain for the
implementation model.

Let Imp and Spec denote the semantic domains of the implementation model and
the specification model, respectively. Since the implementation model allows a finer

October 26, 1988 18

distinction on process behaviors than the specification model, it should be possible
to find an embedding-projection (e ,p) pair of functions with e : Spec -+ I m p and
p : Imp t Spec. This pair should relate two semantic domains naturally in the following
sense [45]:

p o e = ID,,,, and e o p C ID;,,,

where ID,,,, and IDi,, denote the identify function on their respective domain. The
latter containment relation states that, for every x E Imp, e o p(x) should approximate
x .

In addition to relating their semantic domains, we also plan to investigate syntactic
transformations between the implement ation language and the specification language.
We believe that it should be possible to translate a representation in the implementation
model to a corresponding representation in the specification model, and vice versa,
through purely syntactic manipulations. For example, a (execution-time; next-event-
t ime) pair can be syntactically translated to an interval in the specification model as
follows:

a 9 STOP = a STOP
([1,21;3) 3 a + STOP = a STOP

(1 . ~ 31) ~ ~ 3 1 a '-i STOP = a -+ STOP

The embedding-projection pair should also induce syntactic translations of other oper-
ators.

Summary and Research Plan
The goal of the proposed research is to provide a formal framework for reasoning about
the temporal properties of real-time systems. We propose to develop two models, one
for specification and another for implementation, and to relate them mathematically.
More specifically, we plan to do the following:

1. Refine our specification model (the timed acceptances model) and develop a high-
level specification language that is natural to use and that supports modular spec-
ification.

2. Investigate various ways to automate analysis. Here, we plan to look at rewrite
systems, tactical theorem provers and probabilistic verification methods.

3. Develop the syntax of operators for the implementation model so that the execution
behavior and operational environment of real-time programs can be represented
explicitly. Also, we plan to develop the semantics of the implementation model
and the relations between the specification model and implementation model.

October 31, 1988 19

4. Evaluate our approach by modeling and analyzing the timing properties of a dis-
tributed robot system being developed at Penn [46].

These issues will be addressed over the next three years as follows:

Year 1 : Refine specification model and language; begin to develop implement at ion
model.

Year 2: Develop semantics of implementation model; relate specification and imple-
mentation models. Start looking at tools for automated analysis.

Year 3: Finalize the models, and evaluate by modeling and analyzing distributed robot
systems. Complete tools for automate analysis.

Acknowledgements

We wish to thank A. Zwarico for her assistance in evaluating related work and for
her valuable suggestions throughout the preparation of this paper.

References

[I] I?. Jahanian and A. Mok, "Safety analysis of timing properties in real-time systems,"
IEEE Transactions on Software Engineering, vol. SE- 12, pp. 890-904, September
1986.

[2] F. Jahanian and A. Mok, "A Graph-Theoretic Approach for Timing Analysis and
its Implementation," IEEE Transactions on Computers, vol. C-36, pp. 961-975,
August 1987.

[3] G. MacEwen and T. Montgomery, "The RNet Programming System: Distributed
Real-Time Logic," Tech. Rep. Report 87-3, Dept. of Computing and Information
Science, Queen's University, Kingston, Ontario, November 198 7.

[4] N. Rescher and A. Urquhart , Temporal Logic. Springer-Verlag, 19 71.

[5] C. Ramchandani, "Analysis of Asynchronous Concurrent Systems by Petri Nets,"
Tech. Rep. Project MAC, TR-120, M.I.T., Cambridge, MA, 1974.

[6] C. Ramamoort hy and G . Ho, "Performance Evaluation of Asynchronous Concurrent
Systems Using Petri Nets," IEEE Trans. on Software Eng., vol. SE-6, pp. 440-449,
September 1980.

[7] J. C. Jr. and N. Roussopoulos, "Timing Requirements for Time- Driven Systems
Using Augmented Petri Nets," IEEE Trans. Software Eng., vol. SE-9, pp. 603-616,
September 1983.

October 31, 1988 20

[8] R. Milner, "Calculi for synchrony and asynchrony," Theoretical Computer Science,
vol. 25, pp. 267-310, 1983.

[9] G. Milne, "CIRCAL and the Representation of Communication, Concurrency,
and Time," ACM Transactions on Programming Languages and Systems, vol. 7,
pp. 270-298, April 1985.

[lo] G. Reed and A. Roscoe, "A Timed Model for Communicating Sequential Processes,"
in Proceedings of ICALP '86, LNCS 226, 1986.

[ll] R. Gerth and A. Boucher, "A Timed Failure Semantics for Extended Communicat-
ing Processes," Tech. Rep. TR. 4-4(1), Department of Mathematics and Computing
Science, Eindhoven University of Technology, March 1987.

[I21 S. Brookes, "A Model for Communicating Sequential Processes," Tech. Rep. CMU-
CS-83- 149, Department of Computer Science, Carnegie-Mellon University, 1983.

[13] R. Koymans, R. Shyaqasundar, W. de Roever, R. Gerth, and S. Arun-Kumar,
"Compositional Semantics for Real-Time Distributed Computing," in Logic of Pro-
grams Workshop '85, LNCS 193, 1985.

[14] R. G. C. Huizing and W. de Roever, "Full Abstraction of a Denotational Seman-
tics for Real-time Concurrency," in Proc. 1 4 ~ ~ ACM Symposium on Principles of
Programming Languages, pp. 223-237, 1987.

[15] K. Ramamritham and J. Stankovic, "Dynamic task scheduling in distributed hard
real-time system," IEEE Software, vol. 1, July 1984.

[16] C. Liu and J. Layland, "Scheduling algorithms for multi-programming in a hard-
real-time environment," J. ACM, pp. 46 - 61, Jan. 1973.

[17] T. Martin, "Real-time programming language pearl - concept and characteristics,"
in Proc. COMPSAC, Chicago, pp. 301-306, 1978.

[18] E. Klingerman and A. Stoyenko, "Real-time euclid: a language for reliable real-time
systems," IEEE Transactions on Software Engineering, vol. SE-12, Sep. 1986.

[19] U.S. Department of Defense, "Ada Programming Language," 1983. ANSIIMIL-
STD-1815A-1983.

[20] N. Wirth, Programming in Modula-2. New York: Springer-Verlag, 1983.

[21] A. Zwarico, Timed Acceptance: An Algebra of Time Dependent Computing. PhD
thesis, Department of Computer and Information Science, University of Pennsylva-
nia, 1988.

October 31, 1988 21

[22] I. Lee, S. Davidson, and V. Wolfe, "Motivating time as a first class entity," Tech.
Rep. MS-CIS-87-54, Dept. of Computer and Information Science, University of
Pennsylvania, July 1987.

[23] W. de Roever, "Questions to Robin Milner - A Responder's Commentary," Infor-
mation Processing 86, pp. 515-518, 1986.

[24] G. MacEwen and T. Montgomery, "The RNet Programming System: Requirements
Language Definition," Tech. Rep. Report 87- 1, Dept . of Computing and Information
Science, Queen's University, Kingston, Ontario, November 1987.

1251 A. Bernstein and P. H. Jr., "Proving Real-Time Properties of Programs with Tem-
poral Logic," in Proc. Symposium on Operating Systems Principles, 1981.

(261 C. Hoare, Communicating Sequential Processes. Prentice-Hall, 1985.

[27] N. Francez, D. Lehmann, and A. Pnueli, "A Linear History Semantics for Dis-
tributed Programming," Theoretical Computer Science, vol. 32, pp. 25-46, 1984.

[28] A. Salwicki and T. Miildner, "On the Algorithmic Properties of Concurrent Pro-
grams," in Proceedings of Logic of Programs, LNCS 125, 1979.

[29] H. Berg, W. Boebert, W. Franta, and T. Moher, Formal Methods of Program Ver-
ification and Specification. Prentice-Hall, Inc., 1982.

[30] C. Belzile, G. MacEwen, and G. Marquis, "RNet: A Hard Real-Time Distributed
Programming System," IEEE Transaction on Computers, vol. C-36, pp. 917-932,
August 1987.

[31] E. Kligerman and A. Stoyenko, "Real-Time Euclid: A Language for Reliable Real-
Time Systems," IEEE Transactions on Software Engineering, vol. se- 12, pp. 941-
949, September 1986.

[32] S. Yang, Timing Specification and VeriJication for Fault- ToIerant Distributed Com-
puting Systems. PhD thesis, Department of Computer Science and Engineering,
University of South Florida, 1986.

[33] M. Hennessy, "Acceptance Trees," J. ACM, vol. 32, pp. 896-928, October 1985.

[34] E. Olderog and C. Hoare, "Specification-Oriented Semantics for Communicating
Processes," Acta Informatica, vol. 23, pp. 9-66, 1986.

[35] I. Guessarian, Algebraic Semantics. Vol. 99 of Lecture Notes in Computer Science,
Springer-Verlag, 1981.

[36] N. Dershowitz, "Orderings for Term-Rewriting Systems," Theoretical Computer Sci-
ence, vol. 17, pp. 279-301, 1982.

October 31, 1988 22

[37] R. Constable, S. Allen, H. Bromley, W. Cleaveland, J. Cremer, R. Harper, D. Howe,
T. Knoblock, N. Mendler, P. Panangaden, J . Sasaki, and S. Smity, Implementing
Mathematics with the Nuprl Proof Development System. Prentice-Hall, 1986.

[38] M. J. Gordon, A. J. Milner, and C. P. Wadsworth, Edinburgh LCF: A Mechanised
Logic of Computation. Vol. 78 of Lecture Notes in Computer Science, Springer-
Verlag, 1979.

[39] N. Maxemchuk and K. Sabnani, "Probabilistic Verification of Communication Pro-
tocols," in Protocol Specification, Testing and Verification, North-Holland, 1987.

[40] R. Oberg, "Performance Modeling of High End Processors in the Evaluation of
Real-Time Operating Systems," in Proc. 2nd Workshop on Real-Time Operating
Systems, pp. 79-85, November 1984.

[41] A. Shaw, "Reasoning About Time in Higher-Level Language Software," Tech.
Rep. 87-08-05, Department of Computer Science, University of Washington, Au-
gust 1987.

[42] I. Lee, R. Gerber, and A. Zwarico, "Specifying Scheduling Paradigms for Time
Dependent Processes," in Submitted to 5th Workshop on ReabTime Software and
Operating Systems, 1988.

[43] I. Lee and S. Davidson, "Adding Time to Synchronous Process Communications,"
IEEE Trans. on Comp., vol. c-36, pp. 941-948, August 1987.

[44] I. Lee and S. Davidson, "A Performance Analysis of Timed Synchronous Com-
munication Primitives," Tech. Rep. MS-CIS-87-101, Dept. of CIS, University of
Pennsylvania, November 1987.

[45] C. Gunter and D. Scott, "Semantic Domains," 1988. To appear in Handbook of
Theoretical Computer Science.

[46] I. Lee, R. King, and X. Yun, "A Real-Time Kernel for Distributed Multi-Robot
Systems," in To appear in Proc. American Control Conf., June 1988.

	Formally Integrating Real-Time Specification: A Research Proposal
	Recommended Citation

	Formally Integrating Real-Time Specification: A Research Proposal
	Abstract
	Comments

	tmp.1196887901.pdf.F1Rcf

