
 

Compositional semantics for real-time distributed computing

Citation for published version (APA):
Koymans, R. L. C., Shyamasundar, R. K., Roever, de, W. P., Gerth, R. T., & Arun-Kumar, S. (1986).
Compositional semantics for real-time distributed computing. (Computing science notes; Vol. 8608). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/1986

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/fdefd9d3-1214-4a17-a935-d0e2fc04a625


RRD 
01 

CSH 
fJ6.0d 

Compositional Semantics 
for 

Rea]~ Time Distributed Computing 

by 



Compositional Semantics 

for 

Real~ Time Distributed Computing 

by 

R. Koymans 
R.K. Shyamasundar 

W.P. de Roever 
R. Gerth 

S. Arun-Kumar 

October 1986 



COMPUTING SCIENCE NOTES 

This is a series of notes of the Computing 

Science Section of the Department of 

Mathematics and Computing Science of 

Eindhoven University of Technology. 

Since many of these notes are preliminary 

versions or may be published elsewhere, they 

have a limited distribution only and are not 

~. fOt;~Jview. 
'~~opte~ of these notes ~re available from the 

author or the editor. 

Eindhoven University of Technology 

Department of Mathematics and Computing Science 

P.O. Box 513 

5600 MB EINDHOVEN 

The Netherlands 

All rights reserved 

editor: F.A.J. van Neerven 

\ 
'. 



COMPOSITIONAL SEMANTICS 

FOR 

REAL-TIME DISTRIBUTED COMPUTI~G * 

R. Koymans J,3,4.5 

R.K. Shyamasundar2.b 

W.P. de Roever),4 

R. Gerth l , .. 

S. Arun-Kumar2 

October 1986 

ABSTRACT 

We give a compositional denotational semantics for a real-time distributed 

language. based on the linear history semantics for CSP of Francez et al. 

Concurrent execution is not modelled by interleaving but by an extension of 

the maximal parallelism model of Salwicki/Muldner. that allows for the 

modelling of transmission time for communications. The importance of 

constructing a semantics (and in general a proof theory) for real-time is 

stressed by such different sources as the problem of formalizing the real-time 

aspects of Ada and the elimination of errors in the real-time flight control 

software of the NASA space shuttle ([CACM 84]). 

* This paper is an extension of a preliminary version presented at the 1985 Logics of Programs 
Conference. Brooklyn. June ]7-19. 1985. 
This research was done as an activity in the Dutch National Project Concurrency (Dutch 
acronym LPC). 

1 Department of Mathematics and Computing Science. Eindhoven University of Technology. 
Den Dolech 2. P.O.Box 513. 5600 MB Eindhoven. The Netherlands. 

2 NCSDCT. Tata Institute for Fundamental Research. Homi Bhaba Road. Bombay - 400 005. 
India. ' 

3 Supported by the Foundation for Computer Science Research in the Netherlands (SION) with 
financial aid from the Netherlands Organization for the Advancement of Pure Researcb_ 
(ZWb) . 

.. The author is currently working in and partially supported by ESPRIT project 937: 
Debugging and Specification of Ada Real-Time Embedded Systems (DESCARTES). 

5 Electronic mail address: mcvax!eutrc3!wsinronk.UUCP or WSDCRONK@HEITHE5.BITNET. 
6 Supported by a visitors grant from the Netherlands Organization for the Advancement of 

Pure Research (ZWO). 

-1-

------·-T 



1. INTRODUcnON 

Although concurrency in programming has been seriously investigated for more than 25 years ([Dij 

59]). the specific problems of real-time have been the object of little theoretical reflection. Currently used 

real-time languages represent almost no evolution with respect to assembly language ([Cam 82]). 

Consequently no serious analysis of complexity. no design methodology. no standard for implementation 

and no concept of portability exist for real-time languages. 

The response to this has been the development of new real-time languages such as (1) Ada -

developed for the military -. (2) CHILL - within the context of telecommunication industries -. and (3) 

Occam - which is even chip-implemented - for those interested in experimenting with structure. All of 

these are claimed to have been rigorously defined ([Ada 83]. [BO 80]. [BLW 82]. [Occ 84]). Yet their 

official standards lack any acceptable characteriZltion of concurrency (with the exception of Occam). let 

alone of real-time (which is also lacking for Occam). 

All these arguments emphasize the need to develop formal models for real-time concurrency. and. 

what is more important. to discover structuring methods which lead to hierarchical and modular 

development of real-time concurrent systems. Obviously. models based on interleaving. such as [BH 81]. 

can be immediately discarded as being unrealistic. since such models allow unbounded delay to be 

incurred between any two actions .in .a concurrent component. 

A model such as sces ([Mil 83]). although an improvement by allowing truly concurrent activity. 

remains unsatisfactory because it either enforces complete synchronicity in executions (so that any 

communication must be performed immediately to circumvent deadlock) or does not exclude interleaving 

(by using delay-operations). Petri-net theory remains a viable direction for discovering structuring 

methods. yet is still unsatisfactory because it does not incorporate (1) satisfactory verification methods 

for liveness properties. such as temporal logic has. or (2) (machine checkable) formalisms for representing 

(concurrently implemented) data structures. And certainly none of these models apply to real-time 

features of realistic programming languages such as Ada. 

The present paper aims at providing a model of real-time concurrency which 

is realistic in the sense that concurrent actions can and will overlap in time unless prohibited by 

synchronization constraints. no unrealistic waiting of processors is modelled. and yet the many 

parameters involved in real-time behaviour are reflected by a corresponding parametrization of our 

models (see sections 9 and 10); it is based on Salwicki's notion of maximal concurrency ([SM 81]). 

discussed in section 3. 

applies to programming languages for distributed computing such as Ada and Occam which are based 

on synchronized communication ( for asynchronized communication as in CHILL. see [KVR 83]). 

- 2--



implies a sound and relatively complete method fOT verification since it is compositiono1: we base 

ourselves in this respect on the method developed ~y Misra & Chandy ([MC 81]) and Zwiers ([ZRB 

85]). and joint research together with Pnueli leading to the incorporation of maximal parallelism 

within the temporal framework of [BKP 84]. 

meets the standard of rigour as provided by denotational semantics. 

Some of these aspects are also covered by work of Zijlstra ([Zij 84]) and G. Jones ([Jon 82]). 

We have developed a real-time variant of CSP. ulled CSP-R. which allows the modelling of the 

essential Ada ([Ada 83]) real-time features (see Appendix A). Our study of real-time distributed 

computing is carried by a subset of this language. Mini CSP-R (see section 2). Extending our techniques to 

CSP-R introduces some notational complications. but is straightforward and is briefly discussed in 

Appendix A. In this paper we develop a denotational tremantics for Mini CSP-R On section 7). stressing 

compositionality. based on the linear history semantics for CSP of [FLP 84]: 

the basic domain consists of non-empty prefix-cZosed sets of pairs of states and (finite) histories of 

communication assumptions leading to that state. 

the ordering on this domain is simply set-inclusion. 

the denotation for the parallel execution of two processes yields a denotation in the same domain for 

a new combined process replacing the original two (this makes the approach applicable to nested 

parallelism) . 

the histories contain enough information to .detect deadlock. eliminating the expectation states of 

[FLP 84]. 

The basic domain and its interpretation is given in section 6. 

Histories are modelled as sequences of bags of communication assumption records as we allow truly 

concurrent actions: There is a clear operational difference between one process offering a particular 

communication capability and two (or more) processes. executing in parallel. each offering the same 

capability. It is to model this distinction that we have to use bags instead of sets (see also example 3 in 

section 8). 

The general notations and technical preliminaries for these ~oncepts are defined. in ~~c~o~ 5 :-V~!Cll __ 
serves as a general reference point. 

Real-time is modelled in the histories by relating the i-th element of a history with the i-th tick of a 

conceptual global clock (see section 4). 

-3-



There are two kinds of records for expressing communication assumptions in the histories: 

communication claims < i.j.v > . modelling the execution of an 1/0 command: < i.j.v > claims that the 

value v is passed from process i (the sender) to process j (the receiver). 

no-match claims < i.j>. modelling the absence of a possibility for the execution of an 1/0 command 

Q (this means that there is no matching 1/0 command Q such that Q and Q can be executed 

simultaneously): <i.j> claims that no value could be passed from process i (the sender) to process j 

(the receiver). 

The combination of the communication assumption records <i.j.v> and <i.j> can be used to 

describe all possible behaviours when executing an 1/0 command concerning communication from i to j: 

<i.j.v> claims that communication from ito j (transferring value v) is possible and <i,j> claims that a 

communication from i to j is impossible. 

Note that a no-match claim <i.j> implies the waiting for a possibility to communicate fromi to j. 

The constraint of no unrealistic waiting that the maximal parallelism model imposes on parallel 

execution. can now be formulated as: two processes may not make the same no-match claim. i.e .. waiting 

at both sides for the same communication between each other is prohibited. 

The communication claim record is the same as the communication record of [FLP 84]. Internal 

moves within a process (the 8-record of [FLP 84]) are modelled by empty bags. 

The no-match claim record is new and allows 

the checking of the maximal parallelism constraints. i.e .. no unnecessary waiting (see above). 

the detection of (established) deadlock (i.e .. waiting for a communication that will never come). 

rendering expectation states as in [FLP 84] unnecessary. 

Finally. section 11 contains conclusions and outlines some of the research going on. 

2. MINI CSP-R 

In this section we describe our language Mini CSP-R. Mini CSP-R consists of the programming 

constructs of our interest in their basic form without syntactic sugar. In appendix A we show how Mini 

CSP-R can easily be extended to a language CSP-R that can simulate the basic Ada real-time and 

communication primitives. 

-4-



Mini CSP-R essentially is CSP (see [Hoa 78]) with the addition of the real-time construct wait d. 

This construct can be used both as instruction and as guard in a selection or loop. As guard it functions as 

a time-out. revoking the willingness of a process to communicate (through one of the 1/0 guards). 

In the syntax we use the following conventions: 

a process identification is an element of {p}.P2 •••• }. 

a duration is an integer-valued expression. 

We assume that expressions e and boolean expressions b have some unspecified syntax. 

The primitive language elements are the instructions, notation Instr: 

1. ·x : .. e - assignment 

2. wait d - wait instruction (d is a duration) 

3.1 Pj!e - output (send) to process i the value of the expression e 

3.2 Pj?x - input (receive) from process i a value and assign this value to the variable x. 

Instructions of form 3 are called 1/0 commands: Pj!e is an output command and Pj?x an input command. 

The important notion of syntactic matching of two 1/0 commands in two processes is defined as follows: 

two pairs < Pj.a > and < Pj./3 > (a./3 1/0 commands) match syntactically iff (= stands for syntactical 

. equality ): (a = Pj!e and /3 == Pj?x) or (a == Pj?x and /3 == Pile). 

Communication between processes i and j takes place when < i.a > seTTlJ2ntica11y matclu!s < j./3 > : 
- < Pj.a > and < Pj.{3 > match syntactically. 

- control in Pj and P j is in front of a. respectively /3. 
The result of a semantic match is the simultaneous execution of the 1/0 commands as indicated by 3.1 

and 3.2. Its effect is the assignment of the value of the expression of the sending process to ~he variable of 

the receiving process. 

A guard is of one of the f ollowing forms: 

1. b 

2.1 a 

2.2 b; a 

- pure boolean guard 

- pure I/O guard 

- boolean 1/0 guard 

3.1 wait d - pure wait guard 

3.2 b; wait d - boolean wait guard. 

-- 5 --



In these clauses. b is a boolean expression. (e.g. x> 0). Q is an 1/0 command and d is a duration. For a 

guard g. its boolean part g is defined as: b = b. Q = true. b: Q = b. wait d = true. b: wait d = b. 

A guard g is called open if g evaluates to true. 

To complete the definition of Mini CSP-R. we define commands. notation Comm. together with 

parallel corn.maruis. notation ParComm. and the set of visible subprocesses of a command. notation vsp. 

inductively as follows: 

1. every instruction is a command; vsp(T) = 121 for every TE Instr. 

2. if T1. T2 E Comm. then T1: T2 is a (sequential composition) command with 

vsp(T1:T2) = vsp(T1) U vsp(T2). 

n 
3. if T1 ..... Tn E Comm and gl ..... gn are guards (n~t). then £'0 gJ. - T·l is an (alternative) command 

Fl j.I 

n 
and. £'0 gj - Tj] is a (repetitive) command with 

FI 
n n n 

vsp(LO gj - T)) = vsp( '*' [.0 gj - TjD = U vsp(Tj). 
J=1 J=1 J=1 

4.1 if T E Comm and i>O. then Pj::T is a (named) parallel command. 

4.2 if Tt . T2 E ParComm and the following two restrictions are satisfied: 

(rt) the variables occurring in T 1 are different from those occurring in T 2. 

{r2) the visible subprocesses of T1 are different from those of T2 

then (T1 I1T2) is a (composite) parallel command. 

5. a parallel command is also a command with 

vsp(Pj::T) = {i} and vsp«Tt IIT2)) = vsp(T1) U vsp(T2)· 

Note that in a composite paralle] command (Tt IlT2) all non-composite commands are of the form Pj::T. 

We further adopt the naming conventions of [Hoa 78. FLP84]: an I/O command within a (named) 

command Pj::T may address only one of Pj's sibling processes or one of its ancestor's sibling processes. 

Note that such a naming convention may result in a match with a subprocess of the named sibling (see 

example 5 in section 8). 

We can interpret Mini CSP-R informally as follows (this interpretation applies also to CSP-R): 

-6-



1.1 An assignment has its usual interpretation: the value of the expression e is assigned to the variable x. 

1.2 The wait instruction suspends execution of the process in which it occurs for the value of d (but at 

least one) time units. 

1.3 The interpretation of 1/0 commands was already indicated above: an 1/0 command Q' in process 

waits for a semantic match with an 1/0 command f3 in a process j. 

2 The interpretation of sequential composition is as usual: the execution of T 1 is followed by the 

execution of T 2' 

3.1 The interpretation of an alternative command is as follows: First check if none of the guards is open. 

If this is the case. execution aborts. Otherwise. check whether there is at least one open pure boolean 

guard. If this is the case select non-deterministically one of these guards. In the case that at least 

one of the guards is open but there are no open pure boolean guards. execution of an alternative 

command proceeds as follows. The waitvalue is defined to be infinite if there are no open wait guards 

and otherwise the maximum of 1 and the minimum of the values of the durations of the open wait 

guards. For waitvalue time units wait for a semantic match with one of the open 1/0 guards. As soon 

as a semantic match occurs within this time period. take it Cif more semantic matches occur at the 

same moment. non-deterministically choose one of them). If no semantic match occurs within 

waitvalue time units. after this time period one of the open wait guards with a minimal duration is 

selected. A selection of a guard 8J in all these cases is followed by the execution of the corresponding 

command T j . 

Observe that in this interpretation of an alternative command a choice has been made: viz .. commands 

guarded by open boolean guards have priority over commands guarded by open 1/0 guards for which 

an immediate semantic match is available. This choice is motivated by our aim to model Ada's real

time features (see Appendix A2). 

3.2 The interpretation of a repetitive command is the repeated execution of the alternative command 

contained in it. Now. however. execution terminates normally whenever in this repetition none of the 

8?ards is open. 

4.1 The interpretation of a named parallel command is as follows: 

-

Pj::T executes its body T. Furthermore. for a semantic match of any 1/0 command Q' in T with an 1/0 

command outside T. Q' is considered to be part of process i and process i only. Hence if Q' occurs in 

the body of some visible subprocess ofT. Q' is not_addressable by the name of that "isible subproJ:ess 

from outside T anymore. Even more. the visible subprocesses of T are no longer visible outside Pj::T. 

-7-



4.2 The interpretation of a composite parallel command involves the parallel execution of the parts TI 

and T 2' The underlying parallel execution semantics is not interleaving semantics. but a semantics 

based on the maximal parallelism model (see sections 3 and 9). For Mini CSP-R this means that 

whenever there is a choice between different semantic matches for some 1/0 command in a process. 

always one of the semantic matches that occurred earliest in time is non-deterministically chosen. 

3. ·THE MAXIMAL PARAI I ET ISM MODEL 

Under maximal parallelism. the number of instructions in concurrently executing processes that can 

be executed simultaneously without violating synchronization requirements. is maximalized (see [SM 81] 

for a formal definition). So. in the program [PI:: x := 1 II P2:: x := 3 II P3:: y := 2] either PI and P3 or P2 and 

P3 will execute their first move simultaneously. but not PI and P2: all this. under the assumption that 

multiple accesses to a single (shared) variable are mutually exclusive. 

Implementing maximal parallelism requires separate processors for the various processes. The 

connection with real-time behaviour is. that when execution speed is a critical factor. separate processors 

should be available to all processes. 

For distributed computing. we take maximal parallelism to mean "first-come first-served" (fefs) in 

some global time scale (see section 4). 

Consider the Mini CSP-R program (PI:: (Pll ::P2!O II (PI2::PI3!111 PI3::PI2?X: P2!x)) II P2 ::P1?y: P1?y). 

According to interleaving semantics two scenarios are possible: 

(1) Pu communicates with P2 while P12 communicates with P13: after that PI3 communicates with P2 

(2) Pl2 first communicates with P13: after that P13 communicates with P2: finally. Pu communicates with 

P2 • 

According to maximal parallelism semantics. only (1) is possible since Pll and P2 can im.rnediately become 

engaged in a rendezvous and hence do not wait for P12 and P13 to communicate earlier. 

The model is however not intended to maximize the amount of ongoing activity in a global way. 

What a process does is decided locally. partially based on the process' knowledge of communications that 

are being offered to it but otherwise independent of what goes on elsewhere. What the model does 

guarantee is that whenever a process wants to communicate it will do so at the earliest opportunity and 

that local noncommunicating actions are executed without any delay. 

As we shall reason in section 9. the maximal parallelism model has some unrealistic aspects for 

distributed systems in general. We shall develop a whole family of real-time models that range from 

interleaving to maximal parallelism semantics and that incorporate the transmission time for messages in 

-- 8-



a system. 

4. OUR VIEW OF TIME 

To express real-time properties such as ·the system responds to a certain request within a fixed 

number of seconds· there must be some measure of time to relate these properties to. When we talk about 

abstract. i.e .• implementation independent. properties of a system as II w1u:Jle. this measure must be 

relative to some global time scale. For distributed systemS this means that all events in the various 

processes are related to each other by means of one con.ceptual global clock. introduced at a metalevel of 

reasoning. 

Clearly. no physical reali7Jltion of such a global clock is possible: processors always drift from one 

time mutual synchronization as exemplified by the existence af clock synchronization algorithms. In our 

model. drifting can always be modelled by allowing (small) unpredictable variations in the execution 

time of basic actions. 

S. NOTATIONS AND TECHNICAL PRELIMINARIES 

This section is intended as a reference to our notation. 

5.1 Numbers. sets, cartesian product and finite sequences 

IN"'' { 0.1.2 .... } is the set of natural numbers ordered by 0 < 1 < 2 < ... 
N'" ... IN U {co}, inherits the ordering on 1N and is additionally ordered by n<co for all neJN. 

The empty set is denoted by 0. 

The powerset of a base set E. i.e .. the set of all subsets of E. is denoted by peE). 
n 

If E1 ..... En are sets. then X ~ denotes their cartesian product. 
i=1 

n 

If all ~·s are equal (to E). we write En for .X Ej. 
_ _ _ _ _ _ _ _ _ _ _1= 1 

n 
Wj. for 1 ~ i ~ n. denote the associated projection functions for elements of X Ej: 7Tj « e1 ..... en » = ej. 

1=1 
deL 

A finite sequence over a base set E is an element of SCE) = U En. denoted by < e1 •...• en > or < ej > j:; 1 
n(N . . 

Where ejeE. 1 ~ i ~ n. 

-9-



! I 

If all ej's are equal (to e). we write <e> n for <ei>j~l' 

A special case is n=O: it is called the empty sequence. notation X. 

The length of a sequence s = <el ..... en>. notation lsi. is n. 

For a sequence s = <el ....• en > and 1 ~ k ~ n we define the k-th element of s. notation s(k). as ek' 

For eE E and SE SeE). we say that e is an element of s. notation e -E: s. if there exists a k. 1 ~ k ~ lsi. such 

that s(k) = e. 

Given SI. s2ESCE). we can concatenate them. notation SI"S2: if SI = <el ..... en> and S2 II: <el' ..... e.m'>. then 

Sl"S2 .. <el.···.~. el' ..... em'>. Note that" is closed. associative and has identity element X: 

Sl' s2eS(E) => sts2eS(E). (SI"S2)"S3 ~ Sl"CS2"S3) and s"X = X "s ~ s. 

For s.s' E SeE) we say that s' is a prefix of s. notation s' ~ s. if there exists a s· E SeE) such that s ~ s' "s", 

5.2 Functions and partial functions 

The set of all functions from X (the domain) to Y (the range) is denoted by yX. The domain and range of 

a function f are denoted by dom(r). respectively ran(r). A partial function from X to Y is an element of 

yX' where X'eP(X). i.e .. a function from a subset of X to Y. 

For f a partial function from X to Y. xeX and yeY. fry/x] is the partial function with dom(f[y/xD =. 

dom(r) U {x} and ran(f[y/xD = Y defined by 

I y if x' = x, 
(f[y/x])(x') = f(x') if X'E dom(f)\{x}. 

5.3 Bags 

deC. 

A bag (or multiset) over a base set E is an element of B(E) = N E• i.e .. a function from E to N. 

For e E E and BE B(E) we say that e is an element of B. notation ee::B. if B(e) > O. 

For finite bags we often use the notation [e;l ..... e~"] where nEN. it ~ I, etEE. all ek different (1 ~ k ~ 
n) which corresponds to the bag BeB(E) defined by 

. I it if e = et· 1 ~ k ~ n. 
B(e) - 0 otherwise. 

If it .. 1. we just write ek instead of el· 
A special case is n=O. the empty bag. notation [ ]. 

-10-



6. THE SEMANTIC DOMAIN AND ITS INTERPRET A nON 

6.1 The semantic domain 

Because our basic domain consists of state-history pairs. we first explain what states and histories are. 

Let Id be a (fixed) set of identifiers (i.e .. a set of strings over some alphabet). Since we gave no syntax for 

expressions in Mini CSP-R. we assume furthermore the existence of a set V of expression values. 

S. the set of proper states. is defined to be the set of partial functions from Id to V. So a proper state se S 

maps certain identifiers to their value. 

t. the total set of states. can now be defined as S U (.l .e) where 1 denotes an incomplete computation 

and e denotes failure (both explained later). 

Let CAR = (1NxN)U (lNxNxV) be the set of communication assumption records (for the intuition. see 

the last part of the introduction). 

H. the set of histories. is. as was motivated in the introduction. S(B(CAR». It would in fact suffice to 

take H = S(P(lNxlN)xB(lNxNxV)). as bags are only needed to collect communication claims. 

Obviously. for claiming the absence of a communication possibility between process i and j. it suffices to 

do this only once. However. we prefer the first notationally simpler definition. 

The technical reason for using bags instead of sets is illustrated in example 3 of section 8. 

Our central domain is that of non-empty prefix-closed sets of state-history pairs. notation tHo 

Definition: A set X e P(tx H) is prefix-closed iff for all <cr.h > eX. if h' ~ h. then <.l.h· > eX. 

The prefix-closure of X. PFC(X). is defined as 

XU «.l.A» U {<.l.h·> 13cr3h «u.h>eX 1\ h' ~ h»). 

Note that PFC(X)etH. for all XeP(txH). 

tH can be turned into a complete lattice: 

the partial ordering is ~ . set-inclusion 

the least- upper bound is obtained by U .set-union;-

Its least element is ( <1. .A > ). 

-11-



The technical motivation for the introduction of 1. lies in the simplicity of the ordering of :tH: 

several proofs. in particular those for continuity of operators. become very simple. 

The introduction of a separate failure state. is needed for the detection of non-deterministic failure 

(see below. in section 6.2). 

We want elements of :tH to be non-empty. because otherwise the least element of :tH would be 0. 

Since 0 contains no history at all. and sequential composition is essentially modelled by concatenation of 

histories. this choice of least element would imply that the denotation of * [true- P2!5] would be empty. 

Although consistent with the view that a command is a transformation of initial states to final states 

when characterizing sequential constructs relationally. this does not capture our intuition that an 

unbounded set of communication possibilities may have been offered by * [true ..... P2!5] (cf. example 1 in 

section 8). 

R.emark.: As E.-R. Olderog observed in the context of the linear history semantics for CSP (see [FLP 84]). 

here too. we do not need to order our domain. This is a consequence of the fact that our 

recursions are always guarded (see loops) and that histories. once they have been generated. can 

not ·shrink·. i.e .. they remain the same or are extended to a longer history. For details. see the 

Appendix of [FLP 84]. 

6.2 interpretation of:tH 

We can interpret X E:tH as the set of all possible computations of a program P Ccf. [FLP84]): 

<s.h> EX with SES. models a computation of P producing history h that terminates in s. 

< •. h > E X models a failure of P after producing history h. 

< 1. .h> E X models an incomplete computation of P which is either an approximation of a 

computation <u .h·> with u¢ 1. and h~h' or an element in a chain of approximations 

<1..ho>.<1..hoAhl> •... (all hj¢A) which models an infinite computation of P with history 

hoAh1
A ... (this interpretation can be justified by an appeal to Konig's Lemma. based on an intuitive 

operational semantics). 

If only deterministic failure can occur. there is no need for a separate failure state. because 1. can 

be used for that purpose: deterministic failure of P after history h is then modelled by < 1. .h> E X such 

that there exists neither <s.h·> E X with seS. h ~ h' nor < 1. .h'> E X with h .~ h'. h ¢ h'. However. we 

have to include the possibility of non-deterministic failure as demonstrated by the following Mini CSP-R 

-12 -



program fragment: ( true .... [false .... x := 0] 0 true .... x := 1). 

Using the above interpretation of l:H. we can informally define a notion of observable behaviour. 

The observable entities are: a communication history. termination. failure and infinite computation. 

The observable behaviour of a communication history has already been given in the introduction. The 

other observable entities are given in the above interpretation of tH: 

termination: indicated by a proper state sE S. 

failure: indicated by •. 

infinite computation: indicated by an infinite chain of approximations. 

Both divergence and established deadlock are viewed as infinite computations: divergence is making 

internal steps while time passes. established deadlock is waiting for a communication that will not come. 

while time passes. This means that divergence and established internalized deadlock are observed in the 

same way. and hence can not be distinguished. In our view this is a perfectly reasonable standpoint: the 

only observation that can be made from the outside is the ticking of the global clock while no 

communication with the environment can occur. In other words: there is no context that can distinguish a 

diverging process from such a deadlocked one ecf. example 2 in section 8). 

7. MAXIMAL PARALLELISM SEMANTICS FOR MINI CSP-R 

7.1 Introduction 

The meaning of Mini CSP-R commands is defined denotationaUy by giving for all commands T. an 

equation which relates the meaning of T. notation M[T], to the meaning of T's constituents in a 

compositional way. In section 7.2 we show that it suffices to define M[T] as a function from S to l:H. 
n 

To define the alternative command [.0 gJ' .... T·' compositionally. we use an auxiliary semantic 
J= 1 j.J 

function Gffg.A] from S to l:H which gives the meaning of guard g in the context of a set A of alternative 

guards (the other guards in the alternative command). We use the context A in a compositional way. i.e .. 

. A depencfs only ci-ri the aIternative command in which goccurs. Gis·furthermore usedin.defining .. the 

meaning of guards that occur as instructions (these are the pure waitguards and pure 1/0 guards). The 

!!leaning of such an instruction is simply the meaning of the guard in an empty context. 

-13 -

II 
r 
'I : 
il 
\ 

I 

I 
[: 
, 



Since we gave no syntax for (boolean) expressions in Mini CSP-R. we assume the existence of 

semantic functions V and W. such that V[e] for e an expression is a function from S to V. and W[b] for 

b a boolean expression is a predicate on S. i.e .. for sE S W[b]s is either true or false. 

To define the meaning of constructs like P1::P2!5 compositionally. we have to give a meaning for P2!5 

separately. i.e .. in a context where it is not known that this construct belongs to the process with 

identification 1. In order to do so. we introduce as semantic entity the 'unknown process', with process 

identification O. and use this e.g. to generate records <0.2.5> in the meaning for P2!5 and later. in the 

meaning for PI ::P2!5. replace 0 by 1. 

Therefore. we identify process identifications with natural numbers. 

Just as for the syntax we need a notion of visible subprocesses of a command T. VS(T). The 

difference with the definition in section 2 is the use of to} instead of 0: 

VS(T) .. to} for T an instruction. 

VS(T1:T2) .. VS«T1 II T 2 )) ..; VS(Tl) U VS(T2). 

n n n 
VS([.O gj - TjD = VS( * [.0 gj - TjD = to} U .U VS(Tj). 

pi pI FI 

VS(Pj::T) = {iI. 

In the third line. the zero is needed to account for 1/0 guards as e.g. in P1::[P2!0- P3::x:= 0]. 

To keep the semantics simple. we assume that the evaluation of expressions takes no time. However .. 

this restriction can easily be relaxed by introducing time-parameters that represent evaluation times of 

expressions. Furthermore. we make the realistic assumption that the execution of commands takes at least 

one unit of time unless failure occurs (this can only occur if an a1ternative command which has no open 

guard is executed). The idea behind this decision is that we want to exclude the unrealistic possibility of 

an infinite loop taking zero time. Such a loop is possible in Ada. as shown in Appendix A2. and obviously 

this possibility must be excluded. Appendix A2 contains a discussion how to do so. 

7.2 Extending the meaning functwn 

M[T]. the meaning of a construct T. only depends on a proper state SES: M[T]se1:H represents all 

possible state changes and computational histories produced by T starting from s. It therefore seems 

sufficient to let M[T] be a function from S to 1:H. However. to define sequential composition we have to 

extend the meaning function to a function from 1:H to ~H (this situation is analogous to that for a purely 

sequential non-deterministic language where the meaning function is generalized to sets of states). This 

extension shall be defined uniformly for all functions from S to kH, so we can still use M[T] as a 

function from S to kH keeping in mind that this extension must be used when composing meaning 

functions. We first extend a function cp from S to 1:H to a function cp+ from 1: to kH and next to a 

function cp* from 1:H to 1:H. 

-14-



pefinition: Let ¢ be a function from S to tHo Then ¢+ is the function from t to tH defined by 

!
¢(U) ifueS, 

¢+(u)= PFC({<u,X>)) otherwise. 

Furthermore. ¢* is the function from tH to tH defined by 

¢*(X) ... «u·.hAh'>I<u.h> eX 1\ <u·.h'> e¢+(u)l. 

¢* e.xtends ¢ in a canonical way: for XetH it takes <u.h> eX and extends h with an additional history 

h' formed by applying ¢+ to u; ¢+ behaves like ¢ on S but takes care that histories of pairs <u .h> eX 

with uE S are not extended; the new state u' is the state after applying ¢ + to u. 

The histories h represent communication assumptions that have been made and can only be 

supplemented with additional communication assumptions. In other words: the extension of histories is 

independent of their contents. The meaning function should certainly have this property. A property of 

¢* is that it is always strict and continuous, as proved below. This means that we do not have to worry 

about the continuity of operators in our semantics! 

Proposition: For all ¢ from S to tHo ¢* is a strict and continuous function from tH to tHo 

Proof: ¢*«( < 1.., X> l) = «u',XAh'> I<u',h'> e¢+(J..)1 = ¢+CJ..) = « 1.. ,X> 1 and 

¢*(U X) = «u',hAh'> I<u ,h> e U Xi 1\ <u',h'> e¢+(u)1 
iEI iO 

= U «u',hAh'>I<u,h> eXi 1\ <u',h'> e¢+(u)l 
iEI 

= U ¢*CX). • 
iEI 

7.3 . Definition of G 

In the definition of G we use the following two auxiliary notions for guards: 

Defmition 1: For a set of guards G and seS. define RTA(G,s)eBCCAR). the bag of real-time assumptions 

concerning the open 1/0 guards of Gin state s,as follows:- - -

1 if ret <O,i> l3ge G(g ==Pj!e V (g == b;Pj!e 1\ W[b]s»1 

RTA(G,s)(r)= U «i,O> l3geG(g = Pj?x v (g == b;Pi?x 1\ W[b]s»l. 

o otherwise. 

-15 -

",1', 

UG:~c'., 



Remark: If e.g. P2!4 and P2!6 occur in G one might expect a multiplicity 2 (instead of 1) for the record 

< 0.2 > in the above definition. This is unnecessary (see the discussion of bags versus sets in 

section 6.1). 

Defmition 2: For a guard g and SE S. define wllitvalue(g.s)e Nco as follows: 

o if g= b 1\ W[b]s. 
waitvalue(g.s) = max (V[d]s.l) if g = wait d V (g == b: wait d 1\ W[b]s), 

co otherwise. 

Furthermore. for a set of guards G and SES. define minwait(G.s)e Nco as 

min (waitvalue(g.s) I geG) (where by convention min'" = co). 

Note that the guard true has wllitvalue 0 while tM ~uards wait 0 and wait 1 have waitvalue 1. The 

decision to let wait 0 have waitvalue 1 is explained in Appendix A'),. 

The equations for G are (see section 7.1 for its use and 'motivation): 

[ ] _I PFC ({ <s.>. >)) if W[b]s. 
G b.A s - { < 1. .>' » otherwise. . 

A boolean acts as a filter: s is maintafned only if b evaluates to true in s. 

[ ] ] 
def. 

G wait d.A s = PFC(l <s.<RTA(A.s» T> I max{V[d s.l) = minwaitCA U {wait d).s) = T\). 

A pure wait guard in the context A can be select-ed after its waitvalue time units elapsed provided 

this value equals the minimal waitvalue T (note that Te N) and no semantic match for an open I/O 

guard in A occurred in this period. If there is at least one open boolean guard in A. then T=O and no 

wait guard can be selected. 

G[Pj!e.A]s .. PFC«( <s.<RTA(GRDS.s)> t'" < [<O.j.v][e]s>]> > I 0 ~ t < minwait(A.s)\). 

where GRDS = A U {Pj!e}. 

A pure I/O guard in the context A can be selected (indicated by the last triple of the history above) 

within the minimum waitvalue of A (the bound on t above) under the condition that no semantic 

match for any open I/O guard in GRDS occurnd earlier (indicated by the first t elements of the 

history above). If there is at least one open boolean guard in A. then minwait(A.s) = 0 and no 

-16-



output guard (in fact. no I/O guard) can be selected. The possibility that no guard at all is selected 

can only occur if there are no open boolean guards and no open wait guards (hence minwait(A.s) = 

co) and furthermore no semantic match for an open I/O guard ever occurs. This case is represented 

by the subset 1<1... <RTA(GRDS.s»\> I teN} of G[Pj!e.A]s (remember. this is a prefix-closed 

set). 

G[P?x.A]s-PFC(I<s[v/x].<RTA(GRDS.s»\A <[<j.O.v>]» IveV.O ~ t < minwait(A.s)}). 

where GRDS .. A U {P?xL 

The same remarks as for G[Pj!e.A]s apply here. In comparison with G[Pj!e.A]s we see that in the 

last triple of the history sender and receiver are reversed. Furthermore. for an input command P?x 

we have to 'guess' the value v that will be assigned to x. When binding the inputting process with 

the oqtputting process we check that the values correspond (see the last three examples in section 

8). This 'guessing' models Beki~'s and Milner's concept of renewal (see [Mil 73]). 

The meaning of a sequential composition of guards is the functional composition (using the 

extension operator '*') of the meanings of the separate guards. 

7.4 Definition of M 

7.4.1 M[T] for TeComm \ ParComm 

In this subsection we give the meaning of the non-parallel commands of Mini CSP-R. 

M[x := e]s = PFC (I <s[V[e]s/x].<[ ]> > n. 

To keep the semantics simple. an assignment takes exactly one time unit (indicated by the empty 

bag). 

M[iDs .. G[g.0]s for g = wait d or g == Pj!e or g == Pj?x. 

- -- - - -

This use of G was already discussed in section 7.1. 

-17-

--



[[ 
n ]] \.U M[ T JI*(G[gj.lgk I 1 ~ k~ n. k;e j}]s) if.V W[gJls. 

M 0 g ..... T· s = J= 1 J= 1 
'-1 J J 
J- PFC «( <e.A >}) otherwise. 

The meaning of the alternative command depends on the presence of an open guard: if no such 

guard is present this means failure. otherwise one guard is selected where each guard is considered 

in the context of the remaining guards (gj is the boolean part of gj. see section 2). 

n 
Let C abbreviate Co gj"" Tjl. 

J= 1 

where the c!>i (i e IN) are functions from S to kH defined inductively by 

c!>o(s) = « .1.>. > ) for all se S. 

n 

J= 1 I 
c!>i*(M[C]s) if V W[gJls. 

c!>i+l(S) = PFC«( <S.<[]> > D otherwise. 

The c!>i'S represent as usual the i-th iteration step of the loopbody. If at some point of iteration 

there are no open guards anymore. the loop terminates (this last iteration is indicated by the empty 

bag because the execution of commands takes at least one time unit). 

For an illustration of the loop equation see the first two examples in section 8 {these give also a 

demonstration why « .l.A > ) and not 0 should be t~e least element of kH). 

The loop equation can alternatively be written as a fixed-point equation over the complete partial 

order of functions from S to kH with the usual ordering on function domains: 

n 
M[*C] = p.(>..c!>.>.s. if Y W[gJls then c!>*(M[C]s) else PFC«( <s.<[]> > D Ii). 

J= 1 

where p. is the least fixed-point operator. 

-18 -



7.4.2 The meaning of Pj::T 

The effect caused by Pj::T is the renaming of the visible subprocesses of T by i. To this end. we need a 

definition for substitution of a certain process. in this case i. in place of a collection of processes 1. in this 

case VS(T). both for bags over CAR as for elements of LH. Although the substitution for bags over CAR 

is intuitively clear. the technical definition is rather awkward and is therefore given in Appendix B. So. 

assuming we have defined B[I-i]eB(CAR) for BeB(CAR). leP(N) and ieN. we can extend this 

componentwise to elements of LH: 

Lemma: x[I- ile~H for all XeLH. IeP()\J) and ie)\J. 

Proof: x[I- i] non-empty: Xe ~H implies < 1..A > e X and hence < .l.A > e X[I- i]. 

x[I- i] prefix-closed: 

Let <cr.h>eX and h' ~ <hCk)[I - i]>k':l. 

Then I h' I ~ I hi. so there exists a h" ~ h with Ih"l = I h' I. 

Because Xe ~H it follows that < .l.h"> e X and hence < l.h·> = 
< 1..< h(k)[I- i]> kl,.h~1 > = < .l.<hCk)[I- i]> kl~~1 > = < .l.<h"Ck)[I- i]> k':~1 > e X[I- i]. • 

Now we can define 

7.4.3 The meaning of (T1 II T2 ) 

7.4.3.1 Intuition for parallel compositiat 

It remains to define the meaning of the most important construct. the parallel composition. 

Intuitively. when binding two processes. the information of the states is combined. the histories are 

checked for consistency. and then are merged. Actually this consistency check can be split into two 
. independent parts-to be applied at each installt of-time:· .. ---- --- .. ------. 

(cl) Check that histories have matching communication claims. i.e .. that histories agree on the 

communications that occur between the two processes (their internal communications). 

-19-

r 
Ii 

I: 
i 
! 

I 



(c2) Check that there is no unnecessary waiting. i.e .. that histories do not indicate a situation where 

both processes are waiting for a communication that the other process can provide (in other words: 

two processes do not wait if there is a semantic match between them). 

Check (c1) is the communication consistency check for CSP as in [FLP84]. We call (c2) the real-time 

consistency check because it enforces maximal parallelism (see the end of section 1). Since the equation 

for M[(TJ IIT2)]s is rather complex. we give the intuition behind its steps below. and postpone its formal 

definition till section 7.4.3.6. 

To combine the meanings of M[T1]s and M[T2]s to M[(T1 IIT2)]s. first the states of M[TJ]s and 

M[ T2]s should be combined. Although trivial at first sight. this raises problems since we can not always 

assume that such states have disjoint domains. as illustrated by the program x:= 0; (P1::x:= II1P2::y:= 2). 

This is solved in section 7.4.3.2. 

Next consistency checks (cl) and (c2) must be applied to the communication assumption records in 

M[TJ]s and M[T2]s. Note that for (c1) it is desired to have a comnwn communication claim record in 

both histories while. on the contrary. (c2) checks that there is no comnwn no-match claim record in both 

histories. Moreover. our semantics is such that in the records in the generated histories of a command 

always at least one of the processes involved is a visible subprocess of that command (see the History 

Property in section 7.5). Consequently. for (c2) it is sufficient to check for the absence of identical no

match claims. For (c1). however. one first must establish the visible subprocesses of TJ and T2 prior to 

checking whether a communication claim record in one history should be complemented by an identical 

record in the other history (since a visible subprocess of T J may address a process outside of T2). 

Therefore. it would be nice if we could first merge the histories that are consistent according to (c2) and 

after that check (c1). Unfortunately this is unfeasible. as is illustrated by the programs 

(PJ::P2!0 II P2::PI?X) and (P I::(Pll ::P2!0 II PI2::P2!0) II P2::x:=0). 

When following the above approach. the semantics of both these programs would contain the history 

< [ < 1.2.0> 2] >. Now. this history should represent both a successful communication (the first program) 

and deadlock (the second program): an impossibility. We solve this problem through first subtracting 

equal communication claim records from each other. and after that check whether any internal 

communication claims are left. Together with the definition of the real-time consistency check (c2). this 

is worked out in detail in section 7.4.3.3. 

Thirdly. not all histories should be compared when merging. When combining state-history pairs 

with 1. as state component(s). representing incomplete computation. special care should be taken to 

guarantee that indeed all the events occurring at a particular time are collected in the resulting history. 

E.g .• < 1.). > eM[P1::P3!S]s should not be merged with <s[O/x].<[]> > eM[P2::x:= O]s. because the 

result < 1. .<[]> > will not represent the attempt of PI to communicate with P3 at time 1. This is 

treated in section 7.4.3.4. 

-20-



As last step. when giving the meaning of (T. II T 2) in terms of its components. the real-time 

assumptions (represented by the no-match claim records) concerning the visible subprocesses of T. and T 2 

should be checked and removed. This is illustrated by the program (PI::P2!5 II P2::P.!5). Some histories 

of PI contain the no-match claim < 1.2>. and some of P2 the no-match claim <2.1>. After binding PI 

and P2 • the real-time assumptions concerning the collection of processes h.2} should be checked: in this 

case. exactly < 1.2> and < 2.1>. After this check they are not needed anymore and can be removed. 

since it has been established that no communication will occur. 

These four steps correspond with those of the definition of M[(T. IIT2)]s. in that order. 

7.4.3.2 Combining states 

For M[(T. IIT2)]s. the states of M[T.]s and M[T2]s should be combined. Because of the syntactic 

restriction that the variables of T1 and T2 are disjoint (see section 2. definition of commands). it seems 

that one can simply form the disjoint union of such states. This is however not the case: the state s of the 

computation up till now can cause problems. For example. in the program x:= 0: (P.::x:= 111 P2::y:= 2). x is 

defined both in p. and P2. Fortunately. this is only the case for variables that were defined earlier in the 

program. or in other words: variables that belong to the domain of s. Variables outside the domain of s 

belong either to p. or P2 (because of the above mentioned syntactic restriction). The union of states of 

M[ T 1]S and M[ T 2]S can now be defined relative to SE S: 

Let for 1~ i~ 2. SjES belong to M[T]s (then domes)!: domes)). 

Define the union of s. and S2 relative to s. notation s1 U s s2. as follows: . 

domes. US S2) = dom(s1) U dom(s2) and 
de!. 

(S. US S2)(X) = Sj(X) if xe dom(s)\dom(s) or XE domes). sex) = S3_j(X). 

As remarked above. if xe dom(s)\dom(s) then xl dom(s3_)' In that case. x is a new variable of Tj and the 

value of that variable in the combined state is Sj(x). For example. for 

t:=O: (PI::y:= II1P2::z:=2). domes) = (d.dom(s.) = h.yl. and dom(s2) = (t.zl. 

On the other hand. if xedom(s). then at most one of T. and T2 can use x. hence Sj(x) = sex) for i= 1 or 

i= 2. In this case. the value of x in the combined state is S3-j(X). For example. for 

t:= 0: (p.::t:= 111 P2::z:= 2). domes) = ftl.dom(s.) = ftl.dom(s2) = {t.zl and the value of t after this 

program is 1. 

Note that Us (for all seS) is commutative and associative. 

It remains to extend Us for Sj that belong to M[Tj]s but with s. or S2 (or both) not in S. The idea is 

that whenever one of the Sj represents an incomplete computation t~e combination represents the same: 

otherwise~when oIle-or the statesrepresentsfai11.lre. the combination represents failu-re:- -- -

1. Us u .. u Us 1. ... 1. for all sE S. u e t and 

• Us u ... u Us. =. for all se S. u e t \{ 1. }. 

- 21-

- --- ----- --------'ft. 



Note that this extension maintains commutativity and associativity. 

7.4.3.3 The consistency check 

There is a direct correspondence between the two parts of the consistency check and the two types of 

communication assumption records: 

(ct) concerns triples < i.j.v> such that i and j are internal processes. i.e .. processes that belong to the 

collection of processes represented by the two histories whose consistency is checked; check (cl) 

corresponds to: each such triple in one history should also occur in the other history at the same 

time and vice versa 

(c2) concerns pairs < i.j>; it corresponds to: no pair < i.j> in one history may occur at the same time in 

the other history. 

Note that for (cl) we need to know the set of internal processes while this is not necessary for (c2). The 

reason for this is that in all records in the histories generated by our semantics one of the processes i and j 

refers to the process that generated this record (this history property is proved in section 7.5). Because 

(c2) checks that two histories representing different processes do not contain at the same time a common 

record < i.j>. this means that i and j must be internal processes anyway. 

The real-time consistency check (c2) is formulated by 

deL 
hI ¢RT h2 = .,3 i.j.ke 11'\ (1 ~ k ~ min (lhll. Ih21) A < i.j> e: hl(k) A <i.j> e: h2(k)). 

Of course. the consistency cheek as a whole (and similarly for its part (cl)) could be applied pairwise 

to histories with the set of internal processes. say I. as parameter: hI ¢I h2. However. we prefer to pair 

histories without such a parameter. Ideally. we would like to combine state-history pairs (states are 

united. histories merged) for which the histories are real-time consistent and after that apply the check 

(ct). This approach is unfeas~ble. as is shown by the programs 

(PI::P2!0 II P2::PI?X) and (P1::(PU ::P2!0 II P12::P2!0) II P2::x:=O). 

If we would follow the strategy above. the meanings of these programs would both contain the history 

<[<1.2.0>2]>. The problem is. that we somehow must remove this history from the meaning of the 

second program (it deadlocks). but reduce the same history to <[ ]> in the meaning of the first one 

(showing a successful internal communication); this is clearly an impossibility. 

There is. however. an easy trick to circumvent this problem. The above example suggests that we 

should subtract equal communication claim records from each other while merging: for the first program 

this would result in no < 1.2.0> -records at all while for the second program the two < 1.2.0> -records 

would still be maintained. Check (el) can then be completed by testing whether after this special merging 

-22-



there are any 'internal communications' left. i.e., communication claims < i.j.v> with i and j internal. 

formally, for XE tH and IEP(N) we define 

¢lC(X) = X \ {<(1" ,h> 13B-E h 3i,jE I 3vE V < i.j.v> e:::BI. 

Lemma: ¢IIC(X)etH for all XEtH and IEP(l'J). 

Proof: tIIC(X) non-empty: XE tH implies < 1..X > E X and because there does not exist a B-E X it 

follows that < 1. .X > e t.IC(X). 

¢lC(X) prefix-closed: 

tlC(X) deletes pairs from X for which the history has a certain property. Immediately from the 

definition it follows that all extensions of a history with this property also have this property. 

Reversing this we get: if a history does not have this property. then none of its prefixes can have 

this property. This is used in the last step of the chain of implications 

<(1" .h> EtlC(X) => <(1" .h> EX => <1..h·> eX => <1. .h'> etlC(X) for all h'~h. • 

The above mentioned special merge is denoted by # and does the following. Up to the length of the 

shortest history. # subtracts equal records (of course taking the absolute value). It is unnecessary to 

check especially for communication claim records because his~ories with equal < i.j> -pairs were 

previously removed in the real-time consistency check. After the length of the shortest history, the longer 

history is just copied. 

Formally: 

Let hI.h2E H. 

T # B
bl·b2 maxllbll.lb211 

hen hI hz = <" >"=1 • 

where B:1•
b2 eB(CAR) are defined as follows: 

In general # is commutative but not associative. However, in the context of «T1 II Tz) II T3 ) and (TIll (T2 II 

T3)) we may assume because of the syntactic restriction that the visible subprocesses must be disjoint in a 

parallel cOMposition -Gritnat casevsp and VS coincide): VS(Ti) n VS(T j) == 0 for 1 ~i <j~-3.ln-that-ease. --------+ 

for se S. < (1" j, h j> e M[ Tj]s (t ~ i ~ 3) , it always holds that (hI 1# h2) # h3 = hI # (h2 # h3) (see the 

CorOllary in section 7.5). This is used to prove the important property that M[«T1 11 T2) II T3) ] equals 

M[(TIII (Tz II T3))], see the theorem in section 7.5. 

-23-



7.4.3.4 An additional condition for ccmbining state-history pairs 

When combining state-history pairs < C1 i. hi> . 1 ~ i ~ 2. in the parallel composition of two processes. 

we should take care that the condition <T i = .1 => Ihii ~ Ih3- ii. 1 ~ i ~2. is satisfied. i.e .. that neither 

. history that can be extended (u i = 1.) is shorter than the other one. Here is why: 

Consider the program fragment (Pl::P3!5 II P2::x:=O). 

For seS. <.l.A> eM[P1::P3!5]s and <s[O/x].<[ ]> > eM[P2::x:=O]s. If we combine these two state

history pairs without the extra condition above. we get the combined pair < .1.<[ ]> >. However. this 

pair should not belong to the parallel composition of processes 1 and 2. because only the internal step (the 

assignment) of P2 is represented and not the attempt of PI to communicate with P3 that occurs at the same 

time. 

7.4.3.5 The removal of real-time assumptions 

When giving the meaning of (TI II T2 ) the real-time assumptions (represented by the no-match claim 

records) concerning the visible subprocesses of Tl and T2 should be checked. It is our policy to do this as 

soon as possible. that is in the first context in which the processes i and j of a no-match claim < i.j> can 

be identified. The follOWing program fragment illustrates this: (PI::P2!5 II P2::P1!5). In this case some 

histories of process 1 contain the .no-match claim < 1.2 > and some of process 2 < 2.1>. After binding 

processes 1 and 2. the real-tim~ assumptions concerning the collection of processes 1l,2} should be 

checked: in this case. exactly < 1.2> and < 2.1> . After this check they are not needed anymore and will 

be removed. 

In general. for BeB(CAR) and a collection of processes leP(N). we can define RTA1(B)eB(CAR) which 

removes from B the no-match claims concerning I: 

1 
0 if r == < i.j> with i.je I. 

RTA1(B)(r) '"" B(r) otherwise. 

We have to extend this operator to elements of tH in the same way as we extended B[I- i] to x[I- i] (see 

section 7.4.2): 

Lemma: RTA1(X)etH for all XetH and leP(N). 

Proof: The same as for the lemma in section 7.4.2. • 

-24-



7.4.3.6 Putting it altogether: the meaning of (T I " T2) 

M[(TI II T2)]s = RTAtvs(¢t~~({ <U IUs U2. hI # h2>I<Uj. hi> eM[TJs 1\ hl¢RTh2 

1\ U i = 1. => Ihjl ~ Ih3_ jl. 1 ~ i ~21)) 

where tvs = VS«TIII T2)) = VS(TI) U VS(T2). the total visible sUbprocesses. 

Proof: Abbreviate the above set to X. 

X non-empty: M[TJse1:H implies <.1.,).> e M[Tj]s (1~i~2). ).¢RT). and 1),1 ~ 1).1 are 

satisfied. hence <.1. U s .1., ). # ). > = <.1. ,). > eX. 

X prefix-closed: 

Let <ulU s U2. h l :# h2> eX and h' ~ hI # h2· 

The proof splits into two cases. dependent on the length of h': 

case 1: Ih'l ~ min Uhll. Ih21}· 

Take h'j ~ hi' Ih'jl = Ih'l (l ~ i~2). 

Then <.1. .h\> eM[Tj]s and h'l ¢RTh'2 and Ih'jl ~ Ih'3- jl (t ~ j~2) and h'l # h'2 = h'. 

hence <.1. U s.1.. h'l # h'2> = <.1. .h'> eX. 

case 2: Ih'l > min Uhll. Ih21l· 

From h' ~ hI # h2 it follows that Ih'l ~ I "hI # h21 = max Ilh}I, Ih21}· 

Taking these two conditions on Ih'l together we" see that Ihll ¢ Ih21. Without loss of 

generality we can suppose Ihll > Ih21. 

Take h'l ~ hI with Ih'll = Ih'l. 

Then <.1.. h'l> eM[TI]s and <U2' h2> eM[T2]s and h'l¢RTh2 and Ih'}1 ~ Ih21 

(and U2¢.1. because Ihll > Ih21) and h'l # h2 = h', 

hence <.1. US U2. h'l # h2> = <.1., h'> EX. • 

Proposition: For all seS. M[( Tl II T2 )]s e1:H. 

Proof: Immediate by the lemma and the fact that both ¢lc and RTAJ map elements of 1:H to elements 

"" "of tH (see-the -iemm-a in section 7.43:3~ respectively 7.4.3.5)..~-

-25-

Ii 

Iii 



7.5 Properties of the semantics 

In this section we derive some general properties of the semantics and use them to prove 

commutativity and associativity of parallel composition. 

We start with a property concerning the records in the histories generated by our semantics: in the 

. records in the histories of the semantics of a command at least one of the processes involved is a visible 

subprocess of that command. 

History Property: For all commands T. s e S. < CT .h > e M[ T]s the following holds: 

YB-E: h YrEB ('7Tl(r)e VS(T) V '7T2(r)e VS(T». 

Proof: From the definition of M[T], by an easy structural induction on T. • 

The following lemma and its corollary concern properties in the context of the parallel composition 

of Tl . T2 and T3 (cf. the end of section 7.4.3.3). The lemma states that under certain conditions (which 

are met in the case of a parallel composition) three histories can not contain a common communication 

assumption record. The corollary then says that under the same conditions the special merge # of section 

7.4.3.3 is associative. 

Main Lemma: Let seS. <CTj.hj> eM[Tj]s (1 ~j~3) and suppose VS(T)() VS(Tj ) - " for all i.j. 

1~i<j~3. 

Then for all reCAR. all k such that 1~k~min{lhjlll~i~3} there exists an j.1~i~3. 

with hj(k)(r) = O. 

Proof: From the History Property and the condition VS(Tj)() VS(Tj ) =" (1~i<j~3) it easily follows 

that there cannot exist reCAR and k. l~k~min{lhjll 1~i~3}. such that rEhj(k) for all i. 

1~i~3 .• 

Corollary: Let seS. <CTj.hj> eM[T]s (1~i~3) and suppose VS(T)n VS(T) = 0 for all i.j.l~i<j~3. 
Then (h l # h2) # h3 = hl # (h2 # h3). 

Proof: From the Main Lemma observing that Ilk-mi - nl = Ik - 1m-nil for all k.m.ne N such that k=O or 

m=O or n=O .• 

The preceding properties enable us to prove that pairwise binding of processes is independent of the 

order in which the processes are bound. E.g. for three processes M[«TllI T2) IIT3)] equals 

M[(Tl " (T2 " T3»]. This associativity property together with commutativity M[(T1 II T2)] = 

M[(T2 II Tl )] justifies the writing of M[(Tl II T2 II T3)] for any order of binding Tl. T2 and T3· This 

-26-



immediately generalizes to M[(T) II .,. II Tn)] for any order of binding T ) ..... Tn (n ~ 2). 

Theorem: M[(T) 1\ T2)] = M[(T211 T))] and 

M[«T) II T2) II T3)] = M[CT) 1\ (T2 11 T3))]. 

Proof: Commutativity: immediately from the commutativity of Us .# and ¢RT. 

Associativity: 

We shall give a meaning to 'M[(T1 II T211 T3 )]s' and show that M[«T11I T2) II T3)]s and 

M[CT11I (T2 11 T3))]s both are equal to it. 

Note that in the context of the parallel composition of T1. T2 and T3 (in both orders above). we 

may assume (see the end of section 7.4.3.3) 

Hence for seS. <crj.hi> eM[TJs (1~i~3) we can apply both the Main Lemma and the 

Corollary. 

Because of associativity of U s and the Corollary we can define M[ (T) II T 2 II T 3)]S = 
RTA 3 (¢ If ({ <cr 1 Us cr2U s cr3. hI # h2 # h3>I<crj. hi> eM[TJs (1 ~ i~3) 

U VS(T1) U VS(T1) 
1=1 1=1 

A hi~Thj(l~i<j~3) A (7'i=.1=>lhil~ Ihjl(l~i.j~3)D). 

Now. for all se S. 

M[«T11I T2) II T3)]s = 

RTA3 (¢'f ({<crU s cr 3. h #h3>1 
U VS(T1) U VS(T1) 

1= 1 1=1 

<cr.h>eRTA2 (¢'f ({<crlUscr2.hl#h2>1 
U VS(T j ) U VS(T j ) 

1=1 1=1 

<crl. hI> eM[T1]s 1\ <(7'2. h2>eM[T2]s 1\ h) ¢RTh2 

1\ crl =.1=> thlt ~ Ih21 A cr2 =.1::::;:. Ih21 ~ Ih)t})) 

1\ < C7' 3' h3> e M[ T 3]S 1\ h ~Th3 A cr = .1:::;. Ihl ~ th31 1\ C7' 3 = .1:::;. th31 ~ IhlD) 

(0 ) 

= RTA3 (¢'f ((«cr1Uscr2) U s 0"3.(hl#h2)#h3>t 
U VS(T j ) U VS(T j ) 

1= 1 1=1 

<0"). h» eM[TJs 1\ <cr2' h2> eM[T2]s 1\ <0"3' h3> eM[T3]s 

1\ h)¢RTh2 1\ (h) # h2) ¢RTh3 A (7'1 -= .1:::;. fhlt ~ Ih21 1\ 0"2 = .1:::;. Ih21 ~ fh)1 

1\ cr 1 U s cr 2 = .1 => Ih) # h2f ~ Ih31 A 0" 3 ... 1..::::;:. Ih31 ~ Ihl # h21})) 

( .. ) (0") 

-: M[(Ti II Ti IIT3)]s' == M[(Ti II(T2 II T3 ))]s" 

where the three crucial steps are explained by 

-27-

", 
" 

II r 
II 
1[' 

II 

I: 
I; 
I' II , 
I 

I 
I 
I 
I 
I 



(*) we can leave out the operators RTA 2 and It If because they only concern records 
U VS(Tj ) U VS(T1) 

;=1 1=1 

2 2 
with ?TI(r)e U VS(T) and ?T2(r)e U VS(TJ Because of the History Property and (a) it 

j= I j= I 

follows that such records r cannot occur in h3. This implies that such records do not 

interfere with records of h3. e.g .. such records are maintained in the merge h # h3. The 

effect of the two above operators is then contained in the effect of RTA 3 and 
U VS(Tj ) 

1=1 

2 3 
It If since U VS(Tj) ~ U VS(TJ 

U VS(T,) i= 1 i= 1 
1=1 

(**) this holds because of 

(1) associativity of U s and the Corollary. 

<=: easy because rE:(h l # h2)(k) implies that rE:hj(k) for i=l or i=2 

:::;.: according to the Main Lemma rE:h3(k) and rE:hj(k) (1 ~ i~2) implies that k> Ih3_jl 

or that h3-i(k)(r) = 0; in both cases rE(h l # h2)(k). 

(***) the previous equations hold as well when hI. h2 and h3 are interchanged. • 

7.6 Concluding remarks 

The proposition in section 7.2 shows that we do not have to worry about continuity of the meaning 

function. 

After all these technicalities the next section gives some examples which illustrate the basic ideas. 

and illustrate what is observable. 

-28-



8. EXAMPLES 

In the examples below En abbreviates the program (fragment) of example nand s is an arbitrary 

element of S. 

Example 1: EI == P1::* [ true - P2!5]. 

First we compute 
1 (.) 

M[ [true - P2!5]]s = U M[P2!5]*(G[true.0]s) = M[P2!5]* (PFC({<S.A > D) = M[P2!5]s 
j= 1 I 

= G[P2!5.0]s = PFC({ <s.<[ <0.2>]> t A <[ <0.2.5>]> >1 tEND. 

(*) in general. by writing out the definitions of section 7.2. we see that 

tI>*(PFC( (< S.A > m = tI>(s). 

Then 

M[*[true-P2!5]]s = U tl>j(s) where tl>o(s) - «1..A>},tI>i+I(S) =tI>i* (M[[true-P2!5]]s). 
i€N 

By induction we can prove for all n E N 

tl>n(s) = PFC({ < 1. .<[ <0.2>]> 'I A <[ <0.2.5>]> A ••• A <[ <0.2>]> 'n A <[ <0.2.5>]> > 1 

tl.·.·.tnEND. 

Hence 

M[E1]s=PFC({<1..<[<1.2>]>" A <[<1.2.5>]> A ••• A<[<1.2>]>'n
A 

<[<1.2.5>]» 1 nE1!'\.tl ..... tnENl). 

Remark: This example shows why elements of ~H should be non-empty. Otherwise 0 would be the least 

element of tH and for the tl>i above we would then get tl>n(s) = 0 for all n EN and hence 

M[Et]s = 0. This is caused by the fact that we should have a starting point for the histories 

and 0 contains no histories at all. 

Example 2: E2 == P1::(PU ::*[P2!5 - wait 1 0 wait 1 - wait 1] II 

P12::wait 1: * [P2!5 - wait 1 0 wait 1 - wait 1]). 
We should have M[EJ = M[E2]! - . 

El and E2 have indeed the same observable behaviour: they both continuously try to output 

value 5 to process 2. 

Let C abbreviate [P2!5 - wait 1 0 wait 1 - wait 1] 
- --- - -- - -- -- --- --

(then E2 = P1::(Pn::*C II P12::wait 1: *C)). 

We first compute 
M[C]s = M[wait 1]* (G[P2!5.{wait 1}]s) U M[wait 1]* (G[wait 1.{P2!5}]s) 

-29-



Then 

... M[ wait 1]* (PFC( ( < s. < [ < 0.2 > ] > t A < [ < 0.2.5 > ] > > I 0 ~ t < 1 D) 
U M[wait 1]* (PFC({<s.<[<0.2>]> I>})) 

= PFC ({ <s.<[ <0.2.5> l.[]> >)) U PFC ({ <s.<[ <0.2> l.[]> > D. 

M[ '* C]s = U ¢i(S) where ¢o(s) = {< 1..X >}. ¢i+l(S) = ¢j* (M[C]s). 
iE t.: 

By induction we can prove for all nE N 

¢n(s)= PFC({<1..<[rd.[]>A ... A<[rn].[]» IVi.l~i~n.rj" <0.2.5> V rj= <0.2>}). 

Hence M[Pu::*C]s = 

PFC«(<.l...<[rl].[ ]>" ..... <[rn].[ ]» I nEN. Vi. l~i~n. rj" <11.2.5> V rj'" <11.2> D 
and 

M[P12::wait 1:* C]s = (M[ '* C]* (M[ wait 1]s»)[{0}-12] = 

PFC«( <1..<[]> A <[rl]'[ ] > ....... <[rn].[]> > I 

nEN. Vi. 1 ~ i~n. ri ... < 12.2.5> V rj == < 12.2> D. 
Next we compute the parallel composition of P u ::* C and P 12 :: wait 1: * C : 

M[(Pu::*C II PI2::wait 1: *C)]s = RTAtll .121 (¢,'ii,121 ({ <0'1 Us 0'2. hi # h2> I 

<O' 1.h1> EM[Pu::*C]s /\ <O'2.h2> EM[PI2::wait 1:,*C]s 

/\ hl ttRT h2 /\ 0' j= 1. ~ I hi I ~ 1 h3- j I . 1 ~ i ~2}» 

= «.1.. .<[rjl> i~ 1> 1 nE N. Yi. 1 ~i~n. oddCi) ~ (ri=< 11.2.5> V rj=< 11.2» 

/\ even(i)::;. (rj= < 12.2.5> V rj= < 12.2> )}. 

That M[E1] = M[E2] holds. can be easily seen by an analogy with formal language theory: 

Prefixes«b·ar) ... (aU br. 

Remark: These two examples illustrate that established deadlock is just a special case of an infinite 

computation (and is not distinguishable from other infinite computations such as divergence: see 

the end of section 6.2): El deadlocks when process 2 from some point on does not ask for a 

value to be input from process 1: in the same context E2 behaves more or less as 'busy waiting' 

which is another form of infinite computation. 

~ i Example 3: E3 == (P1::(PU::P2!3 II PI2::P2!7) II P2::P1?X). 

I I 
, I 

I 

We should get an infinite computation. in this case an established deadlock of either Pu or P12 
after the succesful communication of the other with P2. 

First compute 

M[pU ::P2!3]s .. PFC «( <s.< [<11.2>]> t .. <[ <11.2.3>]> >1 tEND. 

M[P12::P2!7]s = PFC ({ <s.< [< 12.2>]> t .. <[ < 12.2.7>]> >1 tE N}) and 

-30-



M[P2::Pl?X]S = PFC (I <s[v/xl.<[ < 1.2>]> t A <[ < 1.2.v>]> > 1 VE V. tE I\J}). 

Next 

M[(P l1 ::P2!3 II PI2::P2!7)]s'" RTAlll.121 (¢Ni.l21 (I <0'1 U s CT 2. h1 # h2> 1 
<CT1.h1> EM[Pll ::P2!3]s 1\ <CT2.h2> eM[P12::P2!7]s 

1\ h1 ~Th2 1\ CTi=.l. => Ihjl ~ Ih3-il.1~i~2})) 

= PFC ({ <s.<[ < 11.2> .<12.2>]> 11 A <[ < 11.2.3>.< 12.2>]> '" 

<[<12.2>]>12 ", <[<12.2.7>]»ltl.t2 eN) 

U (<s.<[ < 11.2>.< 12.2>]> t '" <[ < 11.2.3>.< 12.2.7>]> > 1 tEN) 

U (<s.<[<11.2>.<12.2>]>11 '" <[<11.2>.<12.2.7>]> '" 

<[<11.2>]>12
", <[<11.2.3>]» Itl.t2 END. 

Hence 
M[P1::(Pll ::P2!3 II PI2::P2!7)]s = 

PFC({<s.<[<1.2>2]>11", <[<1.2.3>.<1.2>]> ... 

<[<1.2>]>12
", <[<1.2.7>]»lt1.t2EN) 

U (<s.<[ < 1.2> 2]> 1'" <[ < 1.2.3>.< 1.2.7>]> >1 teN) 

U (<so <[<1.2>2]>11 ", <[<1.2>.<1.2.7>]> ... 

<[ <1.2>]> 12
", <[ < 1.2.3>]> > 1 t1.t2EN}). 

Note that here the use of bags instead of sets is essential. especially if we replace 3 arid 7 both 

by the same value. 

Then 
M[E3]s= RTAu.21 (¢IIE21({ < 0'1 Us 0'2. h1 # h2> 1 <O'I.hl> eM[P1::(Pll ::P2!311 PI2 ::P2!7)]s 

1\ <0'2.h2> EM[P2::P1?X]S 1\ h1 ¢RT h2 1\ O'j=.l. => 1 hi 1 ~ 1 h3- j 1 .1 ~ i ~2))) 

= RTAI1.2I(PFC(I<.l..<[<1.2>]>'" <[<1.2>]>12>lt2EN})) . 

... (<.l. .<[ ]>1>1 teN). 

Example 4:E4 == (P1::(P11 ::P2!3 II P12::P2!7) II P2::P1?X: P1?x). 
In this example one of the processes 11 and 12 first communicates with P2 and then the other. 

The total program terminates in two time units: For M[P1::(Pl1 ::P2!3 II P12::P2!7)]s see 

example 3. 

Furthermore 

M[P2::P1?X: P1?x]s = 

PFC(I<s[V2/X].<[<I.2>]>11", <[<1.2.Vl>]>'" 

< [< 1.2>]> 12 ", <[ < 1.2'V2>]> >1 Vl,v2E V. tl.t2E N)). 

Then 
M[EJs';" - RTA'-;.21 (PFe(1 <s[7/x].<[ < 1.2> ].n> > ) uf<s[3/i].<-[<i.2>]T]»lJ) ~ -------

PFC (I <s[v/x].<[ ]>2>1 VEI3.7))). 

-31-



i 
I' 

I 

Example 5: E5 == (P1::(Pll ::P2!3 II P12::P2!7) II P2::(P21 ::P1?X II P22::P1?y )). 

In this example processes 11 and 12 communicate simultaneously with processes 21 and 22. 

The total program terminates in one time unit. 

For M[P1::(PU ::P2!3 II P12::P2!7)]s see example 3. 

Similarly we can compute 

M[P2::(P21 ::P1?X II P22::P1?y)]s = 

PFC ({ <s[v1/x][V2/y ].< [< 1.2> 2]> \J ~ <[ < 1.2.Vl >.< 1.2>]> " 

<[ <1.2>]> t2 ~ <[ < 1.2.V2>]> > 1 VI.V2EV. tl.t2 EN) 

U {<s[v1/x][V2/y].<[<1.2>2]>\" <[<1.2,Vl>.<1.2,V2>]»lvl,V2EV.tEN} 

U (<s[v1/x][V2/y].<[<1.2>2]>tJ" <[<1.2>.<1.2,V2>]> " 

<[<1.2>J>t2~ <[<1.2,VI>]>> 1 VI.V2EV.tl.t2EN}). 

;Then 

M[EJs= 

RTAll.21 (PFC ({ <s[VlX][V2/y].<[ ]> >1 (VI" 3 A V2'" 7) V (VI" 7 A v2 = 3)})) = 
PFC({<s[v1/x][V2/y].<[]»I(Vl=3 A v2=7) V (VI'" 7 A v2"",,3)}). 

9. REAL-TIME MODELS 

9.1 Introduction 

The maximal parallelism model as used here. is flawed by some conceptual problems. We illustrate 

these problems with an example. 

Consider a network with distributed control. and two processes A 

and B in different nodes that want to communicate with a process C 

in a third node. If A wants to communicate at an earlier time than 

B. relative to some global time scale. then according to the fefs

principle. indeed. A should communicate first. Whether A's message 

arrives in C before B's message or not. depends on the topology of the network. So. imposing a fcfs

principle upon the order of communications induces non-trivial requirements upon an underlying 

communication layer; requirements that we would like not to make. Similar problems occur if processors 

communicate. e.g .. via a common bus where assumptions about bus-arbitration have to be taken into 

account. 

The lesson that should be drawn from this example is. that whereas our current model applies the 

fefs-principle to the order of initiations of requests. the principle should rather be applied to the order in 

which a process becomes aware of requests. In doing so. we create the freedom to relax the stringent 

-32 -



---------

impositions of the original model on the behaviour of a communication layer. Specifically. in this way it 

beComes possible to vary the time gap (0 in the original mode]) between the initiation and receipt of a 

communication request. which reflects the uncertainties about the communication layer. 

This variation of the time gap is the essential feature of the MA..X./S .E) model of distributed 

concurrency. The parameters Sand E function as lower and upper bound on the above time gaps which 

are allowed to take on any value inbetween these bounds. As a consequence. communications that are 

initiated too close in time (relative to a global clock) cannot be temporally ordered anymore. These time 

bounds may be interpreted as an abstraction of the propagation delays within some communication layer. 

The third parameter . .". of the model is used to extend communications in time and denotes the number 

of time units it takes. 

9.2 MAX.,.(8 .E) model of concurrency 

The model is based on the SalwickilMUldner maximal parallelism model: there is no unnecessary 

waiting between the execution of actions. Communication between processes is served on a first-come 

first-served basis. 

Additionally. the following model pertains to process-communication: 

processes communicate via a medium. 

it takes between 8 and E time units (E rwt included) for the 

medium to become aware of a process expressing its willingness 

to communicate or withdrawing its willingness (time-out). 

communication between two processes only occurs after the 

medium has become aware of both processes' willingness. 

communication medium 

a communication takes an additional ." time units during which period the processes remain 

synchron ized. 

a communication that ,is in progress at a time when the medium receives a time-out from one of the 

participating processes. will be completed: a communication that might be started at such a time. will 

not be executed. 

- 33-



Remark.s: 

Communication always takes at least ~+')' time units. 

MA~(O.2) ~ {true} (Pl::P2?X:P2?y II P2::(P21 ::P1!111 P22::wait 1:P1!2» {x=1}. and 

MAXo(O.t) F {true} (P1::P2?X:P2?y II P2::(P21 ::P1!111 P22::wait 1:P1!2)) {x=1}. 

In other words. there is an uncertainty interval of E-8: if requests for communication are initiated 

E-8 or more time units apart. the first request will indeed be served first: if. on the other hand. these 

requests are initiated within this interval. the order in which these requests are served is undefined. 

MA~(O.t) gives rise to pure maximal parallelism: 

MA~(O.co ) to pure interleaving semantics (with respect to the communication actions). It is to have 

the latter correspondence that the medium has to become aware of requests within E time units. 

Otherwise. MAXo(O.co) would allow infinite delays. 

10. REAL-TIME SEMANTICS FOR MINI CSP-R 

The MAX')'(~ .e) model only influences the semantics of communication actions. So. the definition of 

the auxiliary function G has to change. but no additional Changes are needed in the definition of M. The 

intention of these changes is to have G "generate" any history that is consistent with the parameters of the 

model. As these (additional) consistency-requirements are a purely local affair. the parallel composition 

of processes requires no additional effort. 

Consider an 1/0 command. The changes in the sets of generated histories that MAX')'(~.e) induces are 

three-fold: 

1. histories must be generated in which the first waiting-action (i.e .• the first no-match claim record) 

occurs" time units later than the time at which communication was requested: and this for any" 

such that ~,,, <E. 

2. in no history can communication or waiting start within 8 time units of the request. 

3. communication takes ')' time units: this is modelled by having the associated communication claim 

record mark the time. in a history. at which communication starts and by appending empty bags to 

trace out ')' time units. 

-34-



The changes to G are complicated by the necessity of applying the above considerations to every 1/0 

command in the environment (i.e .. in the selection or repetition). 

Hence. to take care of the first point above. the basic idea is to associate with an environment {gl ..... gnl a 

set of times {tl ..... tnl such that 8~ tj<e. These times represent the delays of the first waiting action for 

the corresponding guards. i.e .• the delays until the medium becomes aware of the corresponding requests. 

One such choice corresponds to one possible history. To generate the corresponding sequences of bags of 

no-match claim records. we introduce two auxiliary functions: 

Defmition: For sets of guards G and times (i.e .. natural numbers) T. time t and state SE S. define 

A(G.T.t)= {gjEGltj<t.l~i~n}. 

where {gl ..... &n} s: G are the 1/0 guards in G and T = (tl ..... tn). 

Ext(G.T.t.s) = <RTA(A(G.T.k).s» i= l' 

Ext({Ql ..... Qn},{tl ..... tnl.t.s) yields a sequence of bags of no-match claim records for the 1/0 commands 

Ql ..... Qn. The time tj represents the delay of the first waiting action (i.e .. no-match claim record) for Qj: 

t is the time at which communication or a time-out occurs. The function A is auxiliary to Ext. 

Now. we are ready to define G (terminology as in section 7): 

[ ] 
_IPFC({<S'A») ifW[b]s. 

G b.A s - { < 1. .X > } otherwise. 

deL 
G[wait d.A]s = PFC({ <s.Ext(A.T.t+T.S» I max{V[d]s.l) = minwait(AU {wait d}.s) = t. 

deL 
T = (tl ..... tnI.8~tj<e (l~i~n). 6~'T<E)). 

where n is the number of 1/0 guards in A. 

G[P}e.A]s = PFC(I <s.Ext(GRDS.T.t.s)" <[ <O.j.V[e]s>]>· <[]»> I 

---

deL 
8~ t< minwait(A.s)+e-l. T = (tl ..... tn). 8~ tj<E (1~ i~ n)}). 

- where GRDS == AU (Pj!el andniS thenumbet6f1/0 guards inGRDS~ 

The upperbound on t takes the delay of the arrival of the time-out message in the medium into 

account. The '-1' factor corresponds to the fact that the medium becomes aware of requests before E 

time units have elapsed. 

- 35-



G[P?x.A]s = PFC({ <s[v/x1.Ext(GRDS.T.t.sY <[<j.O.v>]>· <[]> Y> I 
def. 

vEV.B~t<JIlinwait(A.s)+E-1. T = hl ..... tn},8~ti<E (l~i~n)D. 

where GRDS = AU {P?x} and n is the number of I/O guards in GRDS. 

G[b:g.A]s = G[g.A]* (G[b.A]s). where g is either a pure I/O guard or a pure wait guard. 

We illustrate these equations by the example in the second remark of section 9.2. 

Let P = (P l::P2?X:P2?y II P2::(P21 ::P1!111 P22::wait: 1:P1!2)). 

We claim that MAXo(0.2) ~ {true} P {x= I} but MAXo(O.t) 1= {true} P {x= I}. In other words. we claim 

that MAXo(0.2) allows computations in which P22 communicates first. that are disallowed by MAXo(O.l). 

So. assume y= O. B= O. E= 2: 

M[P1!2]s = G[P1!2.0]s = PFC({ <s.Ext({P1!2}.(tl},t.S)" <[ <0.1.2>]> > I tEN. O~ tl~ I}). 

Now. Ext({P1!2},{0},t.s) = <RTA«(P1!2}.s» t = <[<0.1»> t. tEN. 

Ext({P1!2},{1},0.s) = X. and 

Ext({P1!2},(tl.t.s) = <RTA(0.s»· < RTA({P I 12l.s»t-l = <[]>' <[<0.1>]>t-1.t >0. 

Hence 

M[P1!2]s = PFC({ <s.<[]> T . <[ <0.1>]> t . <[ <0.1.2>]> > I O~ 1~ 1. tE N}). 

Analogously. we obtain the semantics of P1!1 and of the input commands of Pl' Moreover. 

M[wait l]s = PFC({ <s.<[]> T > 11~ 1~ 2}). hence 

M[P21::Pl!1]s = PFC(! <so < []> T21 . < [<21.1>]> t21 . < [<21.1.1>]> > I O~ 721~ 1. t21 E N}) 

M[P22::wait 1:P1!2]s = PFC(! <s.<[]> T22 . <[ < 22.1 >]> t22 . < [<22.1.2>]> > 11~ 1'22~ 3. t22E N}) 

M[P1::P2?X:P2?y]s = PFC({ <s[v1/x][V2/Y)' <[]> Tn . < [<2.1»> t11 . <[ <2.1.vl »> . <[]> T12 . 

<[ <2.1>]> t12 . <[ <2.1.V2>]> > I O~ 111.1'12~ 1. t11.t12EN. Vl.V2EVD. 

Consider the histories for P21 and P22 in which 721 = 722 = t21 = 1. t22 = O. In particular consider P21 'S 

history <[J.[<21.1>J.[<21.1.1>]> and P22 'S history <[].[<22.1.2»>. These compatible histories 

yield the following history for P2:<[J.[<2.1>.<2.1.2>].[<2.1.1»>. This is compatible with P1's 

history <[].[ < 2.1.2> ).[ <2.1.1 »>. obtained by taking 1'11 = 1.112 = t11 = t12 = O.Vl = 2.V2 = 1. From 

these two histories we can compute the following element in the denotation for P:<s[2/x][lIy].<[]>3>. 

To show that this computation cannot be generated by the MAXo(O.t)-model (i.e .. the maximal 

parallelism model. as used in section 7) is straightforward: now. choosing 711 = 121 = 1 is illegal (cf. 

example 4 in section 8). 

-36-



11. CONCLUSIONS 

We have given a denotational semantics for real-time distributed computing stressing: 

(l) compositionality. thus supplying a basis for compositional specification and verification techniques. 

(2) a model of concurrency that is realistic. in contrast with interleaving. in the context of real-time: 

the maximal parallelism model. 

(3) simplicity by basing our techniques upon the linear history semantics for CSP of Francez et a1. 

We feel that our way of dealing with real-time is particularly simple. Timing aspects of programs relate 

to the length of the histories. Maximal parallelism constraints are made explicit by recording not only 

the occurrence of communications but also the act of waiting for one. When binding two processes. these 

constraints imply that at no instant of time both processes are waiting for a mutual communication. 

Exact clocking of instructions is unrealistic because then all actions can be exactly determined in 

time. In a shared variables context. this would imply that mutual exclusion. for example. could be 

programmed without any additional means such as semaphores. This is resolved in Milner's secs by 

introducing the nondeterministic but bounded wait synchronization primitive 8 which may violate the 

maximal parallelism constraints. In our set-up. however. shared variables are excluded. so the mutual 

exclusion anomaly above does not occur. Additionally. by extending the maximal parallelism model by 

introducing non-deterministic intervals modelling synchronization delays. again this anomaly disappears. 

Joe Halpern et a1. arrived independently at· the same extended model. in their case to achieve coordinated 

actions in a real-time distributed system [HMM85]. This extension furthermore shows that our 

techniques can easily accomodate more detailed real-time features. Another example of this is modelling 

the drifting of local clocks. Since only initial and final states and histories are observable. we hope that 

exact clocking of instructions together with the extension of the maximal parallelism model result in a 

realistic Simplification of the phenomena inherent in the description of real-time distributed computing. 

We based our research on CSP-R.·a language that captures the essential real-time features of Ada. as 

supported by the simulation of Ada by CSP-R in Appendix A2. In fact. we had to solve three problems: 

Firstly. how to model maximal concurrency in a compositional way. Secondly. how to deal with CSP's 

particular form of naming communication partners. i.e. of process-naming. The latter is a non-trivial 

prOblem and its solution definitely complicates our semantics: the use of bags instead of sets in our 

histories and many of the complications in parallel composition are a direct consequence of it. Thirdly. 

the rather peculiar semantics of Ada's delay guards. _as occurrirl.g jlL~.g, _s~le~tjye~~ts ~itb _delay __ _ 

statement delay O. Our ideas about modelling maximal parallelism are independent of this and. we 

claim. are of general applicability. This is illustrated by [Ger 85] in which a formal semantics for 

(recursive) Occam is given. that is surprisingly simple because of the much cleaner communication 

mechanism of Occam. using communication channels between pairs of processes. 

-37-



...... : 

There is a clear correspondence between the readiness semantics of CSP (see [HH 83]) and ours: our 

sets of no-match claim records - like the ready sets - record the disposition to participate in certain 

communications. There is also a clear difference. since unlike ready sets. a no-match claim record 

witnesses such a disposition at only one time instant and does not imply anything about future 

,behaviour. Since dispositions change over time this means that we have to record such dispositions at 

every time instant. There is also a difference in use since apart from detecting deadlock. no-match claim 

records are also used to enforce maximal parallelism. 

Certain aspects which cause the readiness model to be not fully abstract. thus leading to the failure 

set model (see [BHR 84]). are also present in our model: 

Our semantics differentiates the two program fragments 

[true - PlIO: wait 1 0 true - P2!O: wait 1] and 

[true - PlIO: wait 1 0 true - P2!O: wait 1 0 true - [PlfO - wait 1 0 P2fO - wait 1]]. 

although their observable behaviour is the same. 

In [GHR 86] the authors develop a fully abstract version of our semantics for an Qccam-like language and 

give a proof of full abstractness. Like for the ready set semantics. full abstraction is attained by an 

"upward closure" operation on the no-match claim records. In [BG 86] the resulting model is investigated 

and developed as an extension of the failure set model. In fact. independently from us. Andy Boucher ([B 

86]) developed quite similar techniques to give denotational semantics to Occam. 

Having discovered on a semantic level how to reason compositionally about maximal parallelism we 

now have a firm basis for developing compositional specification and verification methods. In fact. the 

present paper laid the foundation for our participation in ESPRIT project 937: Debugging and Specification 

of Ada Real-Time Embedded Systems (DESCARTES). Some of the topics that will be addressed in that 

context are: 

developing a syntax-directed specification language and corresponding proof system based on the 

fully abstract semantics of [GHR 86]. 

developing a fully abstract temporal logic for real-time distributed computing. 

specializing these specification languages and proof systems to a real-time fragment of Ada and to 

Occam (through incorporating local clocks). 

A first result to use our compositional semantics to get a compositional proof system. generalizing the 

work of Zwiers et al. ([ZRB 85]) to real-time. is represented by [Hoo 86]. 

-38-



ACKNOWLEDGEMENTS 

We are indebted to the second author. who. during a four-month visit to the universities of Nijmegen and 

Utrecht in the fall of 1983. started this research by writing [SR 83]. 

Our thanks goes to Amir Pnueli. who assisted at several occasions in correcting and improving previous 

versions of this paper. and to the two referees for their comments and improvements. 

The Netherlands Organization for the Advancement of Pure Research (ZWO) is thanked for support of 

three of the authors. 

Finally. we thank Mijem Tosendjojo and Edme van Thiel-Niekoop for their assistance with the typing of 

this paper. 

REFERENCES 

[Ada 83] 

[B 86] 

lBG 86] 

[BH 81] 

[BHR 84] 

[BKP 84] 

[BLW 82] 

[BO 80] 

Tlu! programming language Ada. Reference TTUlnum.. LNCS 155. Springer. 1983. 

A. Boucher. D. Phil. thesis. Department of Computer Science. University of Oxford. 1986. 

A. Boucher. R. Gerth. A Timed Failures Model for Communicating Sequential Processes. 

Draft. 1986. 

A. Bernstein. P.K. Harter jr. Proving Real-time Properties of Programs with Temporal Logic. 

8th ACM SOSP. pp. 1-11.1981. 

S.D. Brookes. C.A.R. Hoare. A.W. Roscoe. A tlu!ory of Communicating Sequential Processes. 

JACM 31-3. pp. 560-599. July 1984. 

H. Barringer. R. Kuiper. A. Pnueli. Now You May Compose Temporal Logic Specifications. 

16th ACM STOC. pp. 51-63. 1984. 

P. Branquart. G. Louis. P. Wodon. An Analytical Desa-iption of CHILL, tlu! CCITT High 

Level Language VI, LNCS 128. Springer. 1982. 

--- - - -- - -- -- -- --------------------

D. Bj0rner. O.N. Oest (eds.). Towards a Fornwl DesO"iption of Ada. LNCS 98. Springer. 

1980. 

-39-



/.. 
: .~ 

, 

L 

[CACM 84] A Case Study: The Space Shuttle Software System. CACM 27-9.1984. 

[Cam 82] J. Camerini. Semantique Mathematique de Primitives Temps Reel. These de 3 erne cycle. 

IMA. Universite de Nice. 1982. 

[Dij 59] E.W. Dijkstra. Communication with an automatic computer. Ph.D. thesis. Mathematical 

Centre. Amsterdam. 1959. 

[FLP 84] N. Francez. D. Lehmann. A. Pnueli. A linear-history semantics for languages for distributed 

programming. TCS 32. pp. 25-46.1984. 

[Ger 85] R. Gerth. A Maximal Parallelism Semantics for Occam.. Notes. 1985. 

[GHR 86] R. Gerth. C. Huizing. W.P. de Roever. Full Abstraction of a Real-Time Denotational 

Semantics for an OCCAM-like Language. Department of Mathematics and Computing 

Science. Eindhoven University of Technology. August 1986 (accepted for POPL·87). 

[HH 83] 

[HMM85] 

[Hoa 78] 

[Hoo 86] 

[Jon 82] 

[Koy 84] 

[KVR 83] 

[MC 81] 

E.C.R. Hehner. C.A.R. Hoare. A mare complete model of communicating processes. TCS 26. 

pp. 105-120. 1983. 

J.Y. Halpern. N. Megiddo. A.A. Munshi. Optimal Precision in the Presence of Uncertainty. 

IBM Research Lab .. San Jose. 1985. 

c.A.R. Hoare. Communicating Sequential Processes. CACM 21-8.1978. 

J. Hooman. A compositional proof theory for real'-time distributed message passing. Draft. 

Department of Mathematics and Computing Science. Eindhoven University of Technology. 

October 1986. 

G. Jones. D. Phil. thesis. Oxford. unpublished. 1982. 

R. Koymans. Denotational semantics for real-time programming constructs in concurrent 

languages. Notes. 1984. 

R. Koymans. J. Vytopil. W.P. de Roever. Real-time Programming and Asynchronous 

Message Passing. 2nd ACM PODC. pp. 187-197. 1983. 

J. Misra. K.M. Chandy. Proofs of Networks of Processes. IEEE TOSE. Vol. SE-7. No.4. pp. 

417-426. July 1981. 

-40-



[Mil 73] 

[Mil 83] 

[Oee 84] 

[SM 81] 

[SR 83] 

[ZRB 85] 

[Zij 84] 

R. Milner. An approach to the semantics of parallel programs. Proe. of the Convegno di 
Informatica Teorica. Pisa. 1973. 

R. Milner. Calculi for Synchrony and Asynchrony. TCS 25. pp. 267-310. 1983. 

The Occam language reference manual. Prentice Hall. 1984. 

A. Salwicki. T. MUldner. On the algorithmic properties of concurrent programs. LNCS 125. 

pp. 169-197. Springer. 1981. 

R.K. Shyamasundar. W.P. de Roever. Semantics of real-time Ada. Notes. 1983. 

J. Zwiers. W.P. de Roever. P. van Emde Boas. Compositionalityand Concurrent Networks: 

Soundness and Completeness of a Proofsystem. 12th ICALP. LNCS 194. pp. 509-519. 

Springer. 1985. 

E. Zijlstra. Real-time semantics. Master thesis. University of Amsterdam. 1984. 

- 41 --



I·: 

APPENDIX A: CSP-R. AND 11IE SIMULA nON OF ADA 

Al. CSP-R 

The only difference between Mini CSP-R (see section 2) and CSP-R lies in the definition of 110 

commands. CSP-R extends Mini CSP-R in the following ways: 

communication takes place via (a form of) channels. 

the expressions in output commands and the variables in input commands are vectors. 

process identifiers can be communicated and can be used in SUbsequent communications to 

determine the target process. 

communication with an arbitrary process can be requested instead of only addressing a 

particular process. 

The syntax of Mini CSP-R is changed in the following way: 

Replace forms 3.1 and 3.2 of instructions by 

3.1.2 id.cre 

3.1.3 .cre[ #id] 

- output to process i via channel c the values of the expressions in the list e. 
together with the identification of the sending process 

- as 3.1.1. but now the target process is determined by the value of the 

identification variable id 

- output via channel c to any process the values of the expressions in the list e. 
together with the identification of the sender: record the identity of the receiving 

process in the identification variable id (the brackets [ and ] indicate that the 

identification variable is optional. i.e ... cre is allowed. too) 

- the analogon of 3.1:1'. but now values are received and are assigned to the 

variables in the list x 

3.2.2 id.cTx - the analogon of 3.1.2 

3.2.3 .c?i[#id] - the analogon of 3.1.3. 

-42-



An identification variable is a variable ranging over \P1.P2•• • .\. It can only be assigned to using an 
instruction of the form 3.1.3 or 3.2.3. 

The notions of syntactic and semantic matching of 1/0 commands have to be reformulated. 

<Pi.a> and <Pj.13 > match syntactically iff: 

1. a and 13 specify the same channel. 

2. the vectors have equal length. 

3. if 0 is an input command. then 13 is an output command and vice versa. and 

4. if 0(13) is of the form 3.1.1 or 3.2.1 then the specified target process should be Pj(P j ). 

< i.a > and < j.13 > match semantically iff: 

1. <Pi.a> and <Pj.l3> match syntactically. 

2. control in Pi and Pj is in front of both a and 13. and 

3. if 0(13) is of the form 3.1.2 or 3.2.2. then the identification variable must have the value Pj(P} 

The result of two semantically matching 110 commands is the simultaneous execution of those 

commands as indicated by 3.1.1 - 3.2.3 above. Its effect is the assignment of the expression values to 

the variables and. possibly. the assignment to identification variables. Because of form 3.1.3 and 

3.2.3 it is possible that <i.a> has more than one semantic match <j.13 >. In that case. one of these 

l3's is non-deterministically chosen and executed simultaneously with a. 

The remaining syntax and interpretation of CSP-R is the same as~?r Mini CSP-R. 

As for the extension of our denotational semantics to CSP-R; like the assumptions we have to 

record about values in the denotations for input commands. we now additionally record assumptions 

about the communication target in the denotations for I/O commands of the form 3.1.3 and 3.2.3. 

Of course. the communication assumption records have to Change. The communication claim records 

now have to record the communication channel and the communicated vector of values (instead of a 

single value). The no-match claim records now record the communication channel and the length of 

the communicated vector of values. Additionally. because of the 1/0 commands of the form 3.1.3 and 

3.2.3. no-match claim records have to indicate with which set of processes a match is impossible (a 

single process for the forms 3.1.1. 3.1.2. 3.2.1 and 3.2.2. and all processes for the forms 3.1.3 and 
_3.~.3) ___ _ 

The denotations and techniques such as the consistency check have to be adapted corresponding to the 

above changes. These adaptations are straightforward except for a slight complication in the meaning 

of Pi::T: Because any communication target is assumed in the denotations for 110 commands of the 

form 3.1.3 and 3.2.3. now constructs like Pi:: .cre generate communication claim records in which 

process i communicates with itself. This is clearly impossible and such records should be removed by 

-43-



an additional operator. (Notice that this problem did not occur for Mini CSP-R. because constructs 

like Pj::Pj!e were prohibited syntactically by the naming conventions. see section 2.) The resulting 

semantics can be found in [Koy 84]. 

A2. Simulating Ada 

To illustrate the power of CSP-R we translate the basic Ada communication primitives into 

CSP-R. This translation is denoted by 7'. The Ada rendezvous is assumed to be understood. 

I.the timed entry call ([Ada 83. § 9.7.3]). 

select Tj.aCe.'i); SI or delay t; S2 end select; 

The semantics of this statement prescribes that if a rendezvous can be started within the 

specified duration t (or immediately). then it is performed and SI is executed afterwards. 

Otherwise. when the duration has expired. S2 is executed. 

We offer as translation: 

[Tj.a!(e.l) ..... Tj.a?i; 7'(SI) 0 wait t ..... 7'(S2)]· 

2.the selective wait (without terminate alternative)([Ada 83. § 9.7.1]). 

select or(i=l..n)when bj=>Sj or(j=1..m)when bj=>delay Ej; sj end select; 

. where Sj = accept aj(uj # v) do Sjl end; Sj2 (i=l..n). 

The semantics is. that first the minimum value MIN. of those Ej whose guard. bj. is open is 

evaluated. If a rendezvous with one of the aj's whose guard. bj. is open. can be started either 

immediately or within duration MIN. then it is performed and Si
2 

is executed afterwards. 

Otherwise. when MIl\' time units have elapsed. one of the delay alternatives sj for which Ej = MIN 

(and whose associated guard is open) is executed. 

Our translation: 
n 

[0 bj:.8.j?(Uj.v)# id ..... T(Sj ); id.ajR\: T(Sj2) 
~1 1 

o 
m 
o hi: wait Ej ..... T(sj)]. 

j=1 

-44-



We quote [Ada 83, § 9.7.1] for the semantics of a delay alternative in a selective wait: 'an open delay 

alternative will be selected if no accept alternative can be selected before the specified delay has 

elapsed (immediately, for a negative or zero delay in the absence of queued entry calls)'. This means 

that a delay alternative delay 0 is selected im.m2diately , although it should be checked whether there 

are no queued entry calls. Not only is this unrealistic, it also gives rise to the following anomaly: 

Consider a call of the recursive procedure P declared by 

procedure P = begin select accept A; or delay 0; P; end select end; in a context where entry A is 

not called immediately. According to [Ada 83] there need not pass any time between the calling of P 

and any inner call of p, i.e .. an infinite execution sequence takes no execution time! 

Note that we could incorporate recursion easily into CSP-R on account of the structure of our 

semantic domain. Anyway. even in CSP-R without recursion, we can expand the calling of P 

arbitrarily deep. Keeping the same semantics as in [Ada 83] would then mean that an arbitrarily 

long execution sequence would take no execution time. 

We removed this anomaly in our semantics by making 'Wait 0 equivalent to 'Wait 1 (that is. a 

wait guard has a waitvalue of at least 1. see sections 2 and 7). thus reflecting the fact that it takes 

time to check whether immediate communication is possible or not. Now we get the desired 

semantics by simply translating Ada's delay t into CSP-R's wait t. 

It is interesting to note that our techniques are in fact not capable to model the anomaly above: In 

our semantics the assumptions on the impossibility of communication are incorporated within the 

history. in fact within the mechanism that describes the passage of time. If we would have 

formulated these assumptions as independent conditions on the history (which would then contain 

only communication claim records). the modelling of the above anomaly would have been possible. 

E.g .. when calling procedure P above an empty communication history is produced under the condition 

that entry A is not called immediately. Such independent conditions. however, would disturb the 

simple structure of our semantic domain and for such an unrealistic possibility in the Ada semantics 

this is certainly not worth the trouble. 

I: 

_. - -------t 
i' 

-45-



I 
! I 

! ~ 

: 
i 

I I 

APPENDIX B: DEFINITION OF B[I - i] 

Deftnition 1: For I.JeP(N) define R(J.J)eP(CAR) as RCI.J) = !r'eCAR I '7Tl(r')eI 1\ '7T2(r')eJ}. 

RO.J) restricts the first and second component of pairs and triples in CAR. 

Deftnition 2: For re CAR define ETC(r)e P(CAR) as 

ETC(r) m !r'eCAR I Ir'l ... Irl 1\ Irl m 3 :::;>'7T3(r') .. '7T3(r)}. 

Equal Third Component of r selects pairs r' if r is a pair (and hence contains no third 

component) and otherwise triples r' with the same third component as r. 

Deftnition 3: For BeB(CAR). IePON) and ieN we define B[I- i]eB(CAR) as follows: 

o 
B(r) + 1:B(r') 

r'E ETC(r)n R(I\lil.hr2(r)l) 

B[I- i](r) = BCr) + 1:B(r') 
r'E ETC(r) n R( 1"'1 (r )U\liJ) 

BCr) + 1:B(r') 
r·E ETC(r) n (R(lil.I\lil) U R(I\lil.IiJ)U R(I\lil.l\liJ)) 

if '7Tl(r)eI\1i} V '7T2(r)eI\!il 

if '7Tl(r)= i 1\ '7T2(r)~ I U Ii} 

otherwise. 

When substituting i for the elements of I in B. the components in the records that get changed are:the 

elements of I\Ii}: these components are replaced by i. With this in mind. the second line is concerned with 

records before the substitution of the form <j.k> or <j.k.v>. the third line with <k.j> or <k.j.v> 

and the fourth line with <i.j> or <i.j.v> or <j.i> or <j.i.v> or <j.m> or <j.m.v>. where j.meI\Ii} 

and k~ IU (j). 

When r. the record after substitution. has a third compo~ent only records r' before the substitution 

should be considered above that have a third component with the same value. This is taken care of in the 

equation by ETC. 

..- 46-



COMPUTING SCIENCE NOTES 

In this series appeared 

No. 
85/01 

85/02 

85/03 

85/04 

86/01 

86/02 

86/03 

86/04 

86/05 

86/06 

86/07 

Author(s) 
R.H. Mak 

W.M.C.J. van Overveld 

W.J.M. Lemmens 

T. Verhoeff 
H.M.J.L. Schols 

R. Koymans 

G.A. Bussing 
K.M. van Hee 
M. Voorhoeve 

Rob Hoogerwoord 

G.J. Houben 
J. Paredaens 
K.M. van Hee 

Jan L.G. Dietz 
Kees M. van Hee 

Tom Verhoeff 

R.. Gerth 
- ~-- - -

L. Shira 

Title 
The formal specification and 
derivation of CMOS-circuits 

On arithmetic operations with 
M-out-of-N-codes 

Use of a computer for evaluation 
of flow films 

Delay insensitive directed trace 
structures satisfy the foam 
rubber wrapper postulate 

Specifying message passing and 
real-time systems 

ELISA, A language for formal 
specifications of information 
systems 

Some reflections on the implementation 
of trace structures 

The partition of an information 
system in several parallel systems 

A framework for the conceptual 
modeling of discrete dynamic systems 

Nondeterminism and divergence 
created by concealment in CSP 

On proving communication 
- - --- - ----- --------- ----------- -----------

closedness of distributed layers 



86/08 

86/09 

86/10 

86/11 

86/12 

86/13 

86/14 

87/01 

87/02 

" 
.f 

'i 
87/03 

87/04 

R. Koymans 
RoK. Shyamasundar 
W. P. de Roever 
R. Gerth 
S. Arun Kumar 

C. Huizing 
R. Gerth 
W.P. de Roever 

J. Hooman 

W. P. de RoeH~r 

A. Boucher 
R. Gerth 

Ro Gerth 
W.P. de Roever 

Ro Koymans 

Ro Gerth 

Simon J. Klaver 
Chris F.M. Verberne 

G.J. Houben 
J.Paredaens 

T.Verhoeff 

Compositional semantics for 
real-time distributed 
computing (Inf.&Control 1987) 

Full abstraction of a real-time 
denotational semantics for an 
OCCAM-like language 

A compositional proof theory 
for real-time distributed 
message passing 

Questions to Robin Milner - A 
responder's commentary (IFIP86) 

A timed failure semantics for 
communicating processes 

Proving monitors revisited: a' 
first step towards' verifying 
object oriented systems (Fund. 
Informatica IX-4) 

Specifying passing systems 
requires extending temporal logic 

On the existence of sound and 
complete axiomatizations of 
the monitor concept 

Federatieve Databases 

A formal approach distri
buted information systems 

Delay-insensitive codes -
An overview 



L 

Available Reports from the Theofttical Computing Science Group 

Author(s) . 

TIR83.1 R. Koymans, 
1. Vytopil, 
W P. de Roever 

TIR84.1 R Gerth, 
W.P. de Roever 

TIR84.2 R. Gerth 

TIR85.1 WP. de Roever 

TIR85.2 O. Grunberg, 
N. Francez, 
1. Makowsky, 
W.P. de Roever 

TIR85.3 F.A. Stomp, 
W.P. de Roever, 
R. Gerth 

TIR85.4 R Koymans, 
W.P. de Roever 

TIR86.1 R. Koymans 

TIR86.2 1. Hooman, 
W P. de Roever 

Title 

Real-Time Programming and Synchronous 
Message passing (2nd ACM PODe) 

A Proof System for· Concurrent Ada Pr0-
grams (SCP4) 

Transition Logic - how to reason about tem
poral properties in a compositional way 
(16th ACM FOeS) 

The Quest for Compositionality - a survey 
of assertion-based proof systems for con
current progams, Part I: Concurrency based 
on shared variables (lFIP8S) 

A proof-rule for fair termination of guarded 
commands (Inf.&: Control 1986) 

The J.1.-calculus as an assenion language for 
fairness arguments (Inf.& Conttol 1987) 

Examples of a Real-Time Temporal Logic 
Specification (LNCS207) 

Classification 
EUT DESCARTES 

Specifying Message ]»assing and Real-Time CSN86101 
Systems (extended abstract) 

The Quest goes on: A Survey of Proof Sys- ElIT-Report 
terns for PaniaI Correctness of CSP 86-WSK-Ol 
(LNCS227) 



TIR86.3 R. Gerth, 
L. Shira 

TIR86.4 R. Koymans, 
RK. Shyamasundar, 
W~. de Roever, 
R.Genh, 
S. Arun Kumar 

TIR86.S C. Huizing, 
R. Gerth, 
W ~. de Roever 

TIR86.6 J. Hooman 

TIR86.7 W~. de Roever 

TIR86.8 A. Boucher, 
R. Genh 

TIR86.9 R. Gerth, 
W~. de Roever 

TIR86.10 RKoymans 

TIR87.1 R. Genh 

On Proving Communication Closcdness of CSN86107 
Distributed Layers (LNCS236) 

Compositional Semantics for Real-Time 
Distributed Computing (lnfAConuol 1987) 

CSN86108 

Full Abstraction of a Real-Time Denota- CSN86109 PE.Ol 
tiona] Semantics for an OCCAM-like 
Language 

A Compositional Proof Theory for Real- CSN86/l0 TRA-l-l(l) 

Time Distributed Message Passing 

Questions to Robin Milner - A Responder's CSN86/11 
Commentary (lFIP86) 

A Timed Failure Semantics for Communi- CSN86/12 TR.4-4(l) 

c:atin~ Processes 

Proving Monitors Revisited: a first step CSN86/13 
towards verifying object oriented syste!'l8 
(Fund. Infonnatica IX-4) 

Specifying Message Passing Systems CSN86/14 PE.02 
Requires Ex&cnding Tempcn1 Logic 

On !be existence of sound and complete CSN87101 
axiomarizations of abe monitor concept 


