5 research outputs found

    Qualitative assessment of Tongue Drive System by people with high-level spinal cord injury

    Get PDF
    The Tongue Drive System (TDS) is a minimally invasive, wireless, and wearable assistive technology (AT) that enables people with severe disabilities to control their environments using tongue motion. TDS translates specific tongue gestures into commands by sensing the magnetic field created by a small magnetic tracer applied to the user’s tongue. We have previously quantitatively evaluated the TDS for accessing computers and powered wheelchairs, demonstrating its usability. In this study, we focused on its qualitative evaluation by people with high-level spinal cord injury who each received a magnetic tongue piercing and used the TDS for 6 wk. We used two questionnaires, an after-scenario and a poststudy, designed to evaluate the tongue-piercing experience and the TDS usability compared with that of the sip-and-puff and the users’ current ATs. After study completion, 73% of the participants were positive about keeping the magnetic tongue-barbell in order to use the TDS. All were satisfied with the TDS performance and most said that they were able to do more things using TDS than their current ATs (4.22/5)

    The Tongue Enables Computer and Wheelchair Control for People with Spinal Cord Injury

    Get PDF
    The Tongue Drive System (TDS) is a wireless and wearable assistive technology, designed to allow individuals with severe motor impairments such as tetraplegia to access their environment using voluntary tongue motion. Previous TDS trials used a magnetic tracer temporarily attached to the top surface of the tongue with tissue adhesive. We investigated TDS efficacy for controlling a computer and driving a powered wheelchair in two groups of able-bodied subjects and a group of volunteers with spinal cord injury (SCI) at C6 or above. All participants received a magnetic tongue barbell and used the TDS for five to six consecutive sessions. The performance of the group was compared for TDS versus keypad and TDS versus a sip-and-puff device (SnP) using accepted measures of speed and accuracy. All performance measures improved over the course of the trial. The gap between keypad and TDS performance narrowed for able-bodied subjects. Despite participants with SCI already having familiarity with the SnP, their performance measures were up to three times better with the TDS than with the SnP and continued to improve. TDS flexibility and the inherent characteristics of the human tongue enabled individuals with high-level motor impairments to access computers and drive wheelchairs at speeds that were faster than traditional assistive technologies but with comparable accuracy

    Development and Evaluation of Tongue Operated Robotic Rehabilitation Paradigm for Stroke Survivors with Upper Limb Paralysis

    Get PDF
    Stroke is a devastating condition that may cause upper limb paralysis. Robotic rehabilitation with self-initiated and assisted movements is a promising technology that could help restore upper limb function. The objective of this research is to develop and evaluate a tongue-operated exoskeleton that will harness the intention of stroke survivors with upper limb paralysis via tongue motion to control robotic exoskeleton during rehabilitation to achieve functional restoration and improve quality of life. Specifically, a tongue operated assistive technology called the Tongue Drive System is used to harness the tongue gesture to generate commands. And, the generated command is used to control rehabilitation robot such as wrist-based exoskeleton Hand Mentor ProTM (HM) and upper limb-based exoskeleton KINARMTM. Through a pilot experiment with 3 healthy participants, we have demonstrated the functionality of an enhanced TDS-HM with pressure-sensing capability. The system can add a programmable load force to increase the exercise intensity in isotonic mode. Through experiments with healthy and stroke subjects, we have demonstrated that the TDS-KINARM system could accurately translate tongue commands to exoskeleton arm movements, quantify function of the upper limb and perform rehabilitation training. Specifically, all healthy subjects and stroke survivors successfully performed target reaching and tracking tasks in all control modes. One of the stroke patients showed clinically significant improvement. We also analyzed the arm reaching kinematics of healthy subjects in 4 modes (active, active viscous, discrete tongue, and proportional tongue) of TDS-KINARM operation. The results indicated that the proportional tongue mode was a better candidate than the discrete tongue mode for the tongue assisted rehabilitation. This study also provided initial insights into possible kinematic similarities between tongue-operated and voluntary arm movements. Furthermore, the results showed that the viscous resistance to arm motion did not affect kinematics of arm reaching movements significantly. Finally, through a 6 healthy subject experiment, we observed a tendency of a facilitatory effect of adding tongue movement to limb movement on event-related desynchronization in EEG, implying enhanced brain excitability. This effect may contribute to enhanced rehabilitation outcome in stroke survivors using TDS with motor rehabilitation.Ph.D

    Command detection and classification in tongue drive assistive technology

    No full text
    corecore