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SUMMARY 

 Stroke is a devastating condition that may cause upper limb paralysis. Robotic 

rehabilitation with self-initiated and assisted movements is a promising technology that 

could help restore upper limb function. The objective of this research is to develop and 

evaluate a tongue-operated exoskeleton that will harness the intention of stroke survivors 

with upper limb paralysis via tongue motion to control robotic exoskeleton during 

rehabilitation to achieve functional restoration and improve quality of life. Specifically, a 

tongue operated assistive technology called the Tongue Drive System is used to harness 

the tongue gesture to generate commands. And, the generated command is used to control 

rehabilitation robot such as wrist-based exoskeleton Hand Mentor ProTM (HM) and upper 

limb-based exoskeleton KINARMTM. Through a pilot experiment with 3 healthy 

participants, we have demonstrated the functionality of an enhanced TDS-HM with 

pressure-sensing capability. The system can add a programmable load force to increase the 

exercise intensity in isotonic mode. Through experiments with healthy and stroke subjects, 

we have demonstrated that the TDS-KINARM system could accurately translate tongue 

commands to exoskeleton arm movements, quantify function of the upper limb and 

perform rehabilitation training. Specifically, all healthy subjects and stroke survivors 

successfully performed target reaching and tracking tasks in all control modes. One of the 

stroke patients showed clinically significant improvement. We also analyzed the arm 

reaching kinematics of healthy subjects in 4 modes (active, active viscous, discrete tongue, 

and proportional tongue) of TDS-KINARM operation. The results indicated that the 

proportional tongue mode was a better candidate than the discrete tongue mode for the 
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tongue assisted rehabilitation. This study also provided initial insights into possible 

kinematic similarities between tongue-operated and voluntary arm movements. 

Furthermore, the results showed that the viscous resistance to arm motion did not affect 

kinematics of arm reaching movements significantly. Finally, through a 6 healthy subject 

experiment, we observed a tendency of a facilitatory effect of adding tongue movement to 

limb movement on event-related desynchronization in EEG, implying enhanced brain 

excitability. This effect may contribute to enhanced rehabilitation outcome in stroke 

survivors using TDS with motor rehabilitation. 
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CHAPTER 1 INTRODUCTION 

1.1  Background and Motivation 

Stroke is the leading cause of adult disability in the United States. Every year, 

around 795,000 people experience a new or recurrent stroke. An estimated 2.7% of the 

population in the U.S. is affected by stroke [1]. Between 2012 and 2030, total direct 

medical stroke-related costs are projected to triple, from $71.b billion to $184.1 billion [1]. 

Of all the stroke survivors, around three quarters experience different degrees of upper limb 

paresis, which reduce their quality of life severely [2]. 

Rehabilitation can help stroke survivors reduce disability and regain their 

independence [3]. Extensive research has been done to identify the most effective strategies 

for stroke rehabilitation ranging from movement therapy to complementary medicine [4]. 

Among promising rehabilitation strategies, robot-assisted rehabilitation has been 

developed to assist stroke rehabilitation [5]. Compared with traditional therapy, robotic 

based rehabilitation enables the clinician to deliver more consistent therapy with 

measurable result in real time [6].  

Literature suggests that robotic rehabilitation either has the same or better 

rehabilitation outcomes compared to traditional therapy [3]. A systematic robotic aided 

therapy review based on 8 clinical trials from 1975 to 2005 concludes that robot-aided 

therapy of the upper extremity improves motor control of shoulder and elbow in subacute 

and chronic patients [7]. However, no consistent influence on functional abilities was 

found. Further, the rehabilitation outcomes of robot-aided therapy appear to be greater than 
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conventional therapy. A Cochrane review that includes 34 clinical trials (1160 participants 

in total) concludes that electromechanical and robot-assisted arm and hand training 

improves activities of daily living, function and muscle strength in people after stroke [8]. 

However, the authors noted that the results must be interpreted with caution because the 

quality of evidence from the existing clinical trials conducted with robotic devices is low 

to very low, and there are variations between the trials in factors such as intervention 

intensity, duration, etc.  

While robotic rehabilitation that involves moving patients’ arm passively may 

provide some clinical benefits [9], the fact that such interventions have no significant 

effects on motor control outcome suggests that passive movement from robot alone is not 

enough, and active participation from patients may bring better clinical outcomes [10]. A 

robotic rehabilitation that requires active stroke survivor participation while adapting to the 

patients’ motor ability and providing constant challenge (performance-based progressive 

therapy) provides much better clinical outcome compared to passive robotic training [11]. 

These results are consistent with the current understanding of the neurobiology of recovery 

after neurological injury [12][13][14] as well as the current trends in robot-assisted upper-

limb stroke rehabilitation [15].  

Several human-computer interaction methods have been considered to detect and 

provide user intent to a rehabilitation robot. These methods include triggering robot 

assistance based on human arm mechanical variables (force or velocity), movement of the 

other limb, bioelectric signals via electromyographic (EMG) or electroencephalographic 

(EEG), or gaze tracking. However, these methods have different types of limitations. Intent 

detection method based on limb force or velocity is the most intuitive way to control 
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rehabilitation robot. However, approximately 30 percent of stroke patients have severe 

upper extremity paresis [2]. Thus, they would have difficulties initiating movement by their 

affected upper limb [10]. In theory, using the intact limb could promote functional recovery 

of the impaired limb through coupling effects [16]. However, a Cochrane review reported 

that there was no significant improvement of bilateral arm training using this method 

compared with usual care following stroke [17]. This result suggests that using another 

limb to provide user intent to robot might not produce positive clinical outcome. While 

EMG can capture electrical activity produced by skeletal muscles, the EMG pattern 

recognition approach might not be practical to decode movement intention of stroke 

survivors [18]. EEG-based brain-machine interface (BMI) methods have shown promise 

in restoring upper extremity motor function in stroke survivors [19][20]. However, the 

EEG-based BMI may be difficult to use in a rehabilitation setup due to a considerable 

amount of time and effort it takes for setting up and for training to be functional [21]. A 

recent study [22] has shown that healthy subjects can use a gaze tracking system to capture 

intention. However, eye-tracking-based solution needs further improvements and clinical 

evaluation to be a viable solution.  

 Tongue motion, if properly harnessed, could be used to communicate human intents 

to a rehabilitation robot or an assistive device [23][24]. It has several advantages compared 

with the other methods of intention detection described above. The tongue has a strong 

representation in the human motor cortex, a direct connection to the brain through cranial 

nerves, and numerous inherent and intuitive capabilities that can be tapped to overcome 

the above limitations [25][26]. The tongue can also move rapidly and accurately almost in 

any directions within the oral space with many degrees of freedom. Access to the tongue 
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is readily available noninvasively, and its muscle fibers are fatigue-resistant, allowing 

usage of a tongue-operated rehabilitation system over extended periods of time [27]. 

Although speech and language are often affected by stroke [28], survivors generally 

maintain their voluntary tongue control, which makes the tongue a potential vehicle for 

controlling robotic rehabilitation devices with the patient’s own intention. Perhaps the most 

important observation is that the topographical alterations of the sensorimotor cortex can 

shift the motor representation of the tongue into the cortical region of the hand 

representation due to their proximity for people with cervical SCI [29] and congenital 

absence of one hand [30]. Thus, by engaging both tongue and upper limbs in synchrony, 

their representations in the primary motor cortex may reorganize and the upper extremity 

function may improve, thanks to the brain neuroplasticity.  

 The objective of the proposed research is to develop and evaluate a tongue-operated 

exoskeleton that will harness the intention of stroke survivors with upper limb paralysis 

via tongue motion to control robotic exoskeleton during rehabilitation to achieve functional 

restoration and improve quality of life. Specifically, a tongue operated assistive technology 

is called the Tongue Drive System is used to control rehabilitation robot such as wrist-

based exoskeleton Hand Mentor ProTM and upper limb-based exoskeleton KINARMTM. In 

addition to standard clinical outcome measures such as Fugl-Meyer Assessment, we have 

obtained measurable kinematic result from robots as well as electrical activities of brain 

and relevant muscles from EEG and EMG, respectively. 
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1.2  Specific Aims 

1.2.1 Specific Aim 1: Enhancement and evaluation of a tongue-operated wrist robotic 

rehabilitation system 

A previous study has demonstrated that the Tongue Drive System could be combined 

with a wrist rehabilitation robot for stroke rehabilitation. We aim to develop and test an 

enhanced TDS-HM prototype that includes a BLE eTDS headset, HM ProTM, and a custom 

designed interface in the form of a USB dongle. The new TDS-HM has pressure-sensing 

capability that can add rehabilitation tasks based on isometric mode. The system can add a 

programmable load force to increase the exercise intensity in isotonic mode. A force 

protection mechanism was also added to reduce the risk of injury. The tongue-operated 

isotonic proportional control mode SSP algorithm was improved by adding PWM-based 

output to the HM motor.  

1.2.2 Specific Aim 2: Design and evaluation of a tongue-operated upper limb rehabilitation 

system 

We aim to develop and evaluate a tongue-operated exoskeleton system (TDS-

KINARM system) for upper limb rehabilitation. We enhanced a tongue-operated assistive 

technology called the Tongue Drive System (TDS) and interfaced it with the exoskeleton 

KINARMTM. We also developed unidirectional target reaching and target tracking tasks 

with different control modes and tested them in a group of 10 healthy participants (7 males 

and 3 females, age 23-60 years) and two female stroke survivors with upper extremity 

impairment (age 32 and 58 years, Fugl-Meyer upper extremity baseline score 35 and 13 

out of 66).   
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1.2.3 Specific Aim 3: Analysis of arm reaching movement controlled by a tongue-operated 

exoskeleton system: Implications for stroke rehabilitation 

In order to design appropriate rehabilitation interventions with the TDS-KINARM 

system, we examined the arm reaching kinematics (throughput, completion rate, 

conformity to Fitts’ Law, jerk cost, reaction time, and velocity profile) of healthy subjects 

in 4 modes (active, active viscous, discrete tongue, and proportional tongue) of TDS-

KINARM. 

1.2.4 Specific Aim 4: Analysis of brain excitability at the onset of wrist and tongue 

movement 

Initiation of voluntary movement accompanies a desynchronization of neural 

oscillations that are observed in EEG over the sensorimotor cortex (event-related 

desynchronization). We hypothesize that an addition of voluntary tongue movement 

enhances brain excitability that is associated with the initiation of limb movement.  We 

would like to examine if event-related desynchronization for the upper-limb area is 

enhanced with concurrent initiation of tongue and wrist movement in healthy adults. 
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CHAPTER 2 ENHANCEMENT AND EVALUATION OF A 

TONGUE-OPERATED WRIST ROBOTIC REHABILITATION 

SYSTEM 

2.1 Introduction 

Studies of neuroplasticity indicate that areas of the brain not injured by stroke are 

able to reorganize neural pathways when actively engaged [12][13][14]. In a previous study 

[23], we have developed a tongue-operated robotic rehabilitation system (TDS-HM) to 

harness the tongue voluntary motion through a wireless and wearable assistive technology, 

called the external Tongue Drive System (eTDS), in the form of a headset, which controls 

an existing rehabilitation robot, called Hand Mentor (HM).  

Through a small pilot study involving several healthy participants and three stroke 

survivors, we received clinically viable feedback for further improvements. Based on this 
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feedback, we have developed an enhanced version of the TDS-HM as shown in Figure 2.1. 

The new system combines a 2nd generation Hand Mentor ProTM (HM) with a new version 

of the eTDS that includes a Bluetooth Low Energy (BLE) transceiver. In addition to the 

existing capability of reaching the joint angle, the new TDS-HM interface is capable of 

reading pressure, which is proportional to the force exerted to the user’s wrist, from the 

sensors embedded in the pneumatic actuator of the HM upper limb exoskeleton, as shown 

in Figure 2.2. A combination of these two sensing modalities allows designing more 

elaborate tasks and better evaluation of the user performance. In addition to the hardware 

update, the control of the wrist exoskeleton was enhanced to include pulse width 

modulation (PWM) of the air pump and releasing valves. Preliminary results in 3 healthy 

subjects who performed a sinusoidal target tracking task demonstrated the TDS-HM 

system functionality in hand-operated isometric, hand-operated isotonic, tongue-operated 

isotonic discrete and tongue-operated isotonic proportional control modes.  

2.2 System Description 

 

Figure 2.1 TDS-HM system block diagram for external Tongue Drive System (eTDS) 

paired with the robotic Hand Mentor ProTM (HM) for upper extremity movement 

rehabilitation. The words in parenthesis describe how different signals propagate. 

The dashed arrows indicate visual feedback.  
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2.2.1 BLE Based eTDS Headset 

The eTDS is a headset with bilateral extensions that positions an array of four 3-

axis magnetic sensors (LSM303D, ST Microelectronics) near the user’s cheeks [31]. These 

sensors are used to locate the position of a magnetic tracer that is temporarily glued to the 

user’s tongue. All the magnetic sensor data, which is sampled at 50 Hz, is delivered to the 

headset’s MCU (CC2541, Texas Instruments) via serial peripheral interface (SPI). The 24-

byte packetized sensor data is then sent wirelessly to a PC via the TDS-HM interface for 

processing by a sensor signal processing (SSP) algorithm that ultimately enables the user 

to issue a set of predefined tongue commands from different tongue gestures [32]. The 

usability of the eTDS for computer access and wheelchair navigation had already been 

 
(a) 

 
(b) 

Figure 2.2 (a) HM Wrist Exoskeleton. (b) Block diagram of TDS-HM interface 

connecting the Hand Mentor (HM) rehabilitation robot to a PC and eTDS headset 

via USB and BLE, respectively.  
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established in clinical trials [33]. Compared with the previous eTDS headsets, which used 

a proprietary 2.4-GHz radio transceiver, the new BLE eTDS headset provides a more 

energy efficient, secure, and universal wireless connection between the eTDS and TDS-

HM USB dongle.  

2.2.2 TDS-HM Interface Design 

The TDS-HM Interface and its associated firmware receive both angle and pressure 

sensor data from HM exoskeleton and magnetometer sensor data from the TDS headset. 

Figure 2.2 shows the system block diagram of the TDS-HM interface, which consists of a 

BLE USB dongle (CC2540) and a HM controller. The BLE USB dongle was designed to 

1) receive magnetic sensor data from eTDS via BLE wireless link, 2) receive analog angle 

and pressure signals from HM wrist exoskeleton sensors and digitize them, 3) send the 

acquired data from TDS and HM as well as the wireless connection status to the PC, 4) 

receive custom designed connection or reading request from PC, and 5) send PC commands 

to the HM pump controller. We used a customized communication protocol that included 

three commands to control the BLE USB Dongle from the LabVIEW based GUI: 1) 

handshake routine that connects BLE USB Dongle to TDS, 2) data receiving routine that 

reads magnetic pressure, and angle sensors, and 3) data transmitting routine that sends 

commands to control HM Wrist Exoskeleton.  

The magnetic sensor data from eTDS was received using the notification method 

as multiple characteristics under one BLE service. Notification was required to be enabled 

in the handshake stage between the BLE USB dongle and eTDS headset in addition to 

device discovery, linking device, BLE service/characteristic discovery, and BLE 
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connection parameter update routines. Since CC2540 had built-in USB communication 

capability, the UART to USB converter used in the previous TDS-HM Interface was no 

longer needed. 

 The HM data acquisition printed circuit board contained the HM controller. We 

routed the control inputs of the HM to receive commands from BLE USB Dongle. The 

general purpose input/output (GPIO) pins of the BLE USB dongle were used to drive the 

MOSFETs that controled the air pump and valves in the HM controller. The wrist angle 

data was captured by a potentiometer, while the pressure data was acquired by MPX5700 

(Freescale). Both angle and pressure sensor data were displayed on the graphical user 

interface (GUI) that provided the patient with visual feedback.   

2.2.3 TDS-HM Control Modes 

With the addition of pressure sensor data, TDS-HM could operate in both isotonic 

and isometric modes. In the isotonic mode, the HM valves were open, and the wrist moves 

freely while the TDS-HM recorded the corresponding joint angle as the user tracked the 

target on the GUI. The TDS-HM system could also provide a programmable constant force 

to the wrist by modulating the valves to increase the intensity of the exercise and wrist 

workload of the isotonic mode. In the isometric mode, one the other hand, the HM valves 

were closed and the wrist did not move considerably while the TDS-HM recorded the 

pressure changes in the actuator bladder, which was proportional to the force applied by 

the user’s wrist, as he/she tracked the target on the GUI. Clinical studies have indicated 

that both Isometric and Isotonic exercises within active ROM provide valuable 

rehabilitation outcome [34]. 
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2.2.4 Tasks and Graphic User Interface 

A sinusoidal target tracking task was used to evaluate the new TDS-HM. The user 

needed to move his/her paretic wrist to track the target produced by the GUI. When the 

user was moving within his/her active range of motion (ROM), the TDS-HM was operated 

based on the wrist flexion and extension as shown in Figure 2.2(a). When the user needed 

to move outside his/her active ROM, i.e. within the user’s passive ROM, the TDS-HM was 

operated using the tongue motion, via eTDS commands [23]. 

TDS-HM GUI was designed to calibrate both eTDS and HM and perform 

sinusoidal target tracking tasks for all aforementioned modes and controls methods. The 

minimum and maximum force that the users could apply to the wrist exoskeleton within 

their active ROM were measured from pressure sensor during calibration. Further, the 

pressure sensor provided a protection mechanism for the users. In all modes of operation, 

if the sensed pressure exceeded the maximum pressure recorded in the calibration stage, 

the system would open the pump outflow valve to reduce the risk of injury. 

2.3 Performance Evaluation 

A pilot study was conducted with 3 able-bodied volunteers, two male and one female, 

with ages from 23 to 31 years old. The institutional review board (IRB) approval and 

informed consent form were received. Figure 2.3 shows the experimental setup. 

Participants wore the eTDS headset, and a permanent-type magnetic tracer (∅3 mm × 1.1 

mm) was attached to their tongues using tissue adhesive, followed by the eTDS calibration 

and training procedure, similar to [31]. First, the hand-operated isometric and isotonic 

modes tracking tasks were performed. For hand-operated isometric task, the pressure level 
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was calibrated based on the strength of each participant. For hand-operated isotonic task, 

the joint angle was calibrated based on the active ROM of each participant. Then, the 

tongue-operated isotonic discrete control and the tongue-operated isotonic proportional 

control tasks were performed. For each tongue-operated task, the participants were required 

to only use their tongue motion to control the HM. Each participant completed one trial for 

all tasks. Each task took ~5 minutes to complete, and the entire session took 60 to 70 

minutes for each participant including magnetic tracer attachment, eTDS/HM calibrations, 

and four sinusoidal target tracking tasks.  

All participants successfully completed the assigned tasks and their performances 

were measured using root mean square error (RMSE) in target tracking, 

 

Figure 2.3 TDS-HM experiment setup with example sinusoidal target tracking GUI. 

The green line in the GUI is the user input angle or pressure, and the user is asking 

to track the green line within the light blue color region.  
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𝑅𝑀𝑆𝐸𝑗 =
√∑ (

𝐼𝑖𝑗 − 𝑇𝑖𝑗
max(𝑇𝑗) − min⁡(𝑇𝑗)

)

2

𝑛
𝑖=1

𝑛
 

(1) 

where 𝑛 is the number of samples per section, 𝐼𝑖𝑗 is the input joint angle or pressure data, 

𝑇𝑖𝑗 is the target joint angle or pressure data, 𝑖 is the index of the input and target data for a 

particular section, and 𝑗 is the index of each section.  

P-1 had used the TDS-HM system a few times before. P-2 had used the eTDS once, 

but not the TDS-HM combination. P-3 had neither used the eTDS nor HM before. For each 

trial, the first 10 s of data were eliminated to account for initial error introduced by the 

system startup. The remaining data was divided into five sections of 2000 samples each, 

equivalent to ~40 s. The performance in each task for all participants was evaluated by the 

mean and standard deviation of the 𝑅𝑀𝑆𝐸𝑗  values over all the sections. Table 2.1 

summarizes the RMSE results. Figure 2.4a is a tracking example of hand-operated 

isometric task for P-1 and deviation from the sinusoidal target. Figure 2.4b-d show the 

RMSE results for each participant. In addition, we were able to program a loaded force in 

isotonic mode task. 

 Table 2.1 RMSE Results of Participants in Different Modes 

Participant 

ID 

Participant 

Prior Experience with TDS-HM 

RMSE 

Isometric Mode Isotonic Mode 

Hand-Operated Hand-Operated 

Tongue-Operated 

Discrete Control Proportional Control 

1 Expert 0.022 ± 0.003 0.036 ± 0.010 0.100 ± 0.023 0.094 ± 0.019 

2 Novice 0.104 ± 0.034 0.063 ± 0.011 0.227 ± 0.170 0.217 ± 0.183 

3 Novice 0.048 ± 0.032 0.031 ± 0.010 0.224 ± 0.068 0.132 ± 0.023 
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2.4 Conclusion 

We have developed and tested an enhanced TDS-HM prototype that includes a BLE 

eTDS headset, HM ProTM, and a custom designed interface in the form of a USB dongle. 

The new TDS-HM has pressure-sensing capability that can add rehabilitation tasks based 

on isometric mode. The system can add a programmable load force to increase the exercise 

intensity in isotonic mode. A force protection mechanism was also added to reduce the risk 

 

(a)                                                                  (b)   

  

                                 (c)                                                                  (d) 

Figure 2.4 (a) An example performance of the pressure sensor readout (solid black 

line) and the target (dashed blue line). (b) P-1 performance. (c) P-2 performance. (d) 

P-3 performance. 
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of injury. The tongue-operated isotonic proportional control mode SSP algorithm was 

improved by adding PWM-based output to the HM motor. While this pilot study shows 

performance improvement for tongue-operated isotonic proportional control mode 

compared to [23], clinical data from patients with severe hemiparesis is required to 

determine the real rehabilitative effects of this control mechanism. We also observed that 

the hand-operated isometric and isotonic modes had comparable performance, and the 

improved tongue-operated isotonic proportional control mode outperformed the tongue-

operated isotonic discrete control mode, in healthy participants.  
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CHAPTER 3 DESIGN AND EVALUATION OF A TONGUE-

OPERATED UPPER LIMB REHABILITATION SYSTEM 

3.1 Introduction 

In the previous studies, a tongue-operated rehabilitation robot was developed to 

translate tongue motion to commands via the Tongue Drive system (TDS) 

[31][35][33][36]. Commands were used to control a wrist-based rehabilitation robot called 

the Hand MentorTM [23][37]. This device was shown to elicit improvements in moderate 

to severely impaired stroke survivors[38][39].  

However, the aforementioned study has several shortcomings that could potentially 

limit clinical outcomes. The Hand Mentor contains only one pneumatic pump that operates 

one DoF. In addition, it is controlled by an on/off discrete signal. As a result, the robot 

produces assistive force in only one direction (wrist extension). Due to the on/off switch 

control, natural and proportionally graded hand movements are not possible.  

Thus, it is important to find a more capable rehabilitation robot that can guide stroke 

patients to move like a healthy person. Furthermore, the potential rehabilitation robot 

should let stroke patients utilize the Tongue Drive System fully to control their paralyzed 

upper limb for better rehabilitation outcome. Studies in [40] and [41] provide thorough 

review on upper limb rehabilitation robots. Of all the options, KINARM is identified as a 

potential rehabilitation robot to pair with the Tongue Drive System. KINARMTM (BKIN 

Technologies, Canada) is an exoskeleton that can record kinematics and apply external 

torques to shoulder and elbow joints in the horizontal plane while providing support against 
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gravity for both arms [42]. This device has been used in neuroscience research to quantify 

motor deficits and rehabilitation strategies [43].  

The goal of this work is to develop and evaluate a novel tongue-operated upper 

extremity robotic rehabilitation system (TDS-KINARM) that integrates the TDS and a 

commercially available bimanual upper extremity exoskeleton KINARMTM (BIKIN 

Technologies, Canada) as shown in Figure 3.1. An advantage of the KINARM over the 

Hand MentorTM is that the KINARM can support weight of the arm and provides 

movements with two DoF (shoulder and elbow flexion and extension) in a horizontal plane. 

Here, we present the design of the TDS-KINARM system and preliminary results of its 

use. We demonstrate the functionality and feasibility of the system using two custom 

developed tasks with different control modes. We tested these tasks in 10 healthy 

 

Figure 3.1 Conceptual diagram of the tongue-operated exoskeleton for post-stroke 

upper limb function recovery. Arm function may potentially be regained through 

movement initiation of the affected arm by volitional tongue motion under control of 

the Tongue Drive System (TDS) via KINARMTM exoskeleton, while the patient 

receives audiovisual feedback. 
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participants. In addition, we tested a suitable rehabilitation protocol with two stroke 

survivors.  

3.2 Methods 

3.2.1 System Description 

Our novel paradigm is to actively engage participants by using their own intention 

via tongue motion to move their upper limb. This device allows us to exam the feasibility 

of tongue-operated upper limb stroke rehabilitation. In our setup, TDS is used to convert 

tongue motion to either discrete (rest, left, right, up, or down) [36] or proportional 

commands (a continuous number from -1 to 1) [44] . These commands are fed into 

KINARM to control the exoskeleton to complete rehabilitation tasks accordingly. 

The TDS consists of a disk-shaped magnetic tracer (D21B-N52, K&J Magnetics, Inc.), a 

headset with magnetic sensors and transmitter, and a Windows-based PC with an attached 

USB receiver dongle, as shown on the left side of Figure 3.2. To use TDS, the tracer needs 

to be attached ~1 cm posterior to the tip of user’s tongue via tissue adhesive (Vetbond 

 

Figure 3.2 Functional block diagram of the TDS-KINARM system 
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1469Sb, 3M). A LabVIEW (National Instruments) based GUI was developed to control 

the TDS. Prior to TDS use, external magnetic field (EMF) attenuation procedure should be 

performed. Subsequently, a pattern recognition algorithm is trained to map tongue gestures 

and their corresponding magnet flux density fields captured by sensors to discrete or 

continuous commands. The tongue commands are sampled by KINARM in 200Hz.    

Compared to the published description of the system [36], we have made a number 

of enhancements that makes TDS more robust. We have developed a preprocessing 

algorithm to eliminate the effects of EMF. Specifically, we have added an additional 

magnetic sensor in TDS (top sensor) that is away from the magnetic tracer. During the 

EMF algorithm calibration, we collect data when magnetic tracer is relatively further away 

from all sensors. In this scenario, all sensors are measuring EMF effectively. Using this 

data, we can find a transformation matrix that maps the sensor reading of the top magnetic 

sensor to other magnetic sensors. During normal TDS operation, magnetic sensor reading 

is subtracted by the transformed top magnetic sensor reading to eliminate unwanted EMF. 

The TDS training procedure was improved by recording tongue movements while subject 

is speaking for 10 s. This procedure makes the TDS discrete command robust against 

activating commands accidentally while speaking. Additional post processing algorithm 

was added to TDS command output. For discrete commands, the TDS result will only 

update if the past 10 prediction results are the same. For continuous commands, the TDS 

result is the average of the past 10 prediction results. This modification makes the TDS 

output more stable for further robotic control. 

KINARMTM (BKIN Technologies Ltd., Canada) is an exoskeleton that can record 

kinematics and apply external torques to shoulder and elbow joints in the horizontal plane 
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while providing support against gravity for both arms[42]. This device has been used in 

neuroscience research to quantify motor deficits and rehabilitation strategies[43]. In our 

setup, KINARM receive TDS commands via serial to parallel port with a sampling rate of 

200Hz. In addition to the standard setup, a speaker is also connected to the analog output 

port of the data acquisition system to provide audio feedback for the task. 

3.2.2 Tasks 

Two widely accepted tasks in the human-computer interaction (HCI) and 

rehabilitation research were adopted and implemented for the TDS-KINARM system. 

These tasks are unidirectional reaching task (UR) and tracking task (T). 

The unidirectional reaching task is based on Fitts’ Law [45]. During each trial, the 

robot brings the participant’s hand to initial position. Then, the participant needs to reach 

any part of a new target (a line of a given width at a given distance) as quickly and 

accurately as possible using a specific mode. The participant’s hand needs to remain on the 

new target for 1s to register the attempt.  

The performance of unidirectional reaching task can be quantified using completion 

rate (CR) and throughput (TP). CR is defined as the percentage of trials that the participant 

completed within a certain period (10 s in our case). TP is calculated as [46], 

 

𝑇𝑃 =
𝐼𝐷

𝑀𝑇
=
log2 (

𝐷
𝑊 + 1)

𝑀𝑇
 

(2) 

where 𝐼𝐷 is the index of difficulty, 𝑀𝑇 is the average time to complete movement, 𝐷 is the 

distance to the target, and 𝑊 is the target width. 



 22 

The tracking task is based on the previous studies in stroke rehabilitation to evaluate 

the accuracy of following a moving target [38]. The robot first brings the participant’s hand 

to an initial stationary target. Then, the target starts to move in the left-right direction with 

a beep. The participant is asked to trace the target as accurately as possible. The position 

profile of the target is determined by, 

 𝑥𝑖 = 𝑥 + 𝑟 ∙ 𝑠𝑖𝑛(𝜔 ∙ 𝑡) (3) 

where 𝑥 is the stationary target position in cm, 𝑥𝑖 is the position of the moving target, 𝑟 = 

12 𝑐𝑚 is the target displacement radius, 𝜔 is an adjustable parameter that determine the 

speed of movement, 𝑡 is time in milliseconds. 

The performance of the tracking task can be quantified using the root mean square 

error (RMSE), 

 

𝑅𝑀𝑆𝐸 = ⁡√
1

𝑛
∑ (𝑥𝑖 − 𝑥̂𝑖)2

𝑛

𝑖=1
 (4) 

where 𝑛 is the number of samples, and 𝑥̂𝑖 is the horizontal position of the hand. 
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3.2.3 Control Modes 

As shown in Table 3.1, 7 different control modes were developed to move the upper 

limbs. In the active mode (A, 1), the robot does not provide any resistance or assistance, 

and the user needs to perform movements using his/her arm. In the active with viscous field 

mode (AV, 2), the robot provides resistive force as a function of the speed of the upper 

limb endpoint with an adjustable gain. In the passive mode (P, 3), the robot controls all the 

movements with an adjustable average movement velocity. In the present experiments, the 

velocity magnitude was set to 𝑣=0.1 𝑚/𝑠. In discrete tongue mode (DT, 4), the robot moves 

the upper arm in a direction of the tongue command (left, right, forward, backward, or rest) 

with an adjustable average movement velocity like in the passive mode. The proportional 

tongue mode (PT, 5) regulates the amount of force applied to the endpoint of the arm with 

an adjustable gain factor of the tongue command in either the left-right or anterior-posterior 

direction. 

Table 3.1 The TDS-KINARM system control modes 

Control Mode Description 
Active (A) No robot load 
Active with viscous field (AV) Robot provides resistive load 
Passive (P) Robot controls all movements 
Discrete tongue control (DT) Use discrete tongue commands to control robot 
Proportional tongue (PT) Use proportional tongue commands to control robot 
Discrete tongue hybrid (DTH) Use discrete tongue commands to control robot based on hand position 
Proportional tongue hybrid (PTH) Use proportional tongue commands to control robot based on hand position 
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If participants have a limited range of motion, the rehabilitation robot should ideally 

assist only when needed to maximize rehabilitation outcome [15]. We have developed 

hybrid modes for both discrete (DT_H, 6) and proportional (PT_H, 7) controls to activate 

the motors when participants need assistance from the robot outside their active range of 

motion. In these modes, the participant is instructed to use both arm and tongue control to 

reach targets for each task. At the same time, the viscous resistive force can be applied to 

make the task more challenging. For the all healthy subjects’ experiments, hybrid region 

was set to a fixed 6-cm interval. For the stroke participants, the region was set based on the 

user’s range of motion measured before the experiment. 

3.2.4 Experimental Protocol 

The goal of this study is to perform preliminary evaluation of the tongue-operated 

upper limb robotic device to study stroke rehabilitation. We demonstrated the functionality 

and feasibility of the system using two custom developed tasks with different control 

modes. Specifically, we tested these tasks in 10 healthy right-handed participants (7 males 

and 3 females between age 23 to 60 years). This experiment with healthy subjects was 

meant to help us obtain a baseline performance for each task. The setup of the system is 

shown in Figure 3.3. 

During each session, researchers first helped each participant calibrate the TDS. All 

participants were instructed to perform some baseline TDS related tasks to ensure that they 

can operate the device. Then, the KINARM was calibrated based on the physical build of 

each participant. Finally, the participant was asked to perform the custom-made tasks using 

different control modes.  
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We evaluated different control modes through task specific outcome measurement, 

NASA Task Load Index [47], and user feedback. The NASA task load index (NASA TLX) 

is a tool for measuring and conducting a subjective mental workload assessment. It rates 

performance across six dimensions (mental demand, physical demand, temporal demand, 

effort, performance, and frustration level) to determine an overall workload rating. For this 

experiment, the score is simplified to a scale of 1 to 5. At the end of each task and control 

mode combination, we asked questions from NASA TLX, if participant experienced any 

discomfort, and additional comments. 

We characterized each task specific outcome measurement with different control 

modes by performing Wech’s one-way ANOVA and post-hoc Games-Howell test with 

statistical significance level set to 0.05. 

 

Figure 3.3 TDS-KINARM Setup 
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Based on the healthy participants’ results, we performed another experiment with 

two female stroke survivors over six sessions (3 hours each) within two weeks (age 32 and 

58 years, Fugl-Meyer upper extremity score 35 and 13). In our experiment, stroke subject 

#1 had extensive active range of motion for both elbow and shoulder joints. However, 

stroke subject #2 had almost no active range of motion for elbow joint and limited range 

of motion for shoulder joint. For the stroke patient experiment, we performed Fugl-Meyer 

Assessment [48] two weeks before the experiment, right before the experiment, and two 

weeks after the experiment started.  

Both experiments were approved by the institutional Review Board of the Georgia 

Institute of Technology. Informed consent was obtained to publish the 

information/image(s) in an online open access publication. 

3.3 Results 

Each healthy participant performed the unidirectional reaching task with control 

modes A, AV, P, DT, PT, DT_H, and PT_H (Table 3.1). Reaching distance was 24 cm and 

target width was 3 cm.  Each reaching task was repeated 18 times. Figure 3.4 (panels a-d) 

displays examples of arm endpoint trajectories of one subject during reaching using control 

modes A, AV, DT, and PT, respectively. The regions between the red lines indicate the 

targets. Figure 3.4 (e) and (f) show the completion rate (CR) and throughput (TP). The 

throughput of DT and DT_H control modes is significantly smaller than the throughput of 

P, PT, and PT_H control modes (p = 0.002 – 0.049). The throughput of P, PT, and PT_H 

control mode is significantly smaller than throughput of A and AV control modes (p = 

0.002 - 0.006). 
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

Figure 3.4 Unidirectional reaching task performance outcome in active (A), active 

with viscous force field (AV), passive (P), discrete tongue control (DT), proportional 

tongue control (PT), discrete tongue hybrid control (DT_H), and proportional tongue 

hybrid control (PT_H) modes for the target distance-width pair of 24 cm – 3 cm across 

10 healthy subjects. (a)-(d) An examples of arm endpoint trajectories of one subject 

during reaching using control modes A, AV, DT, and PT, respectively. The regions 

between the red lines indicate the targets. (e) Completion Rate (CR). (f) Throughput 

(TP). (e) and (f) bar plots show the mean±SD. The asterisks show significant (p<0.05) 

differences between control modes. 
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(a)      (b) 

 
(c)      (d) 

 
(e)    

Figure 3.5 Tracking task performance outcome (RMSE) for active (A), active with 

viscous force field (AV), proportional tongue control (PT), and proportional tongue 

hybrid control (PT_H) modes across 10 healthy subjects. (a) and (b) show examples 

of the tracking end point location of one healthy subject using A and PT_H control 

modes with moving target speed of 𝝎 = 𝟎. 𝟏 . (c) and (d) show examples of the 

mapping of the horizontal end-point position versus time using A and PT_H control 

modes respectively with moving target speed of 𝝎 = 𝟎. 𝟏. The blue line indicates the 

virtual reality mapping of the horizontal endpoint position; the red line indicates the 

location of the moving target. The region between the green lines indicates the active 

range of motion without robot assistance. (e) shows the RMSE of each mode with two 

different speeds calculated across all healthy subjects (mean±SD). The asterisks show 

significant (p<0.05) differences between control modes. 
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Each healthy participant also performed the tracking task with two different speeds: 

𝜔 = 0.1⁡(mean⁡speed⁡of⁡5.3⁡cm/s)⁡and⁡𝜔 = 0.15⁡(mean⁡speed⁡of⁡8⁡cm/s)   using 

control modes A, AV, PT, and PT_H . Figure 3.5 (panels a-b) show examples of the 

tracking end point location of one healthy subject using A and PT_H control modes with 

moving target speed of 𝜔 = 0.1. Although the tongue control mode PT_H demonstrated 

some undershoot and overshoot compared to the active arm mode A, the tracking errors 

were rather small. Figure 3.5 (panels c and d) show the examples of mapping of the 

horizontal end-point position versus using A and PT_H control modes respectively with 

moving target speed of 𝜔 = 0.1. Figure 3.5 (e) shows the RMSE of each mode with two 

different speeds calculated across all healthy subjects. It can be seen that the higher speed 

had higher RMSE values, on average. And PT and PT_H modes have higher RMSE values 

than A and AV modes (p = 0.003-0.016 for 𝜔 = 0.1 and p=0.011 – 0.056 for 𝜔 = 0.15).  

All participants reported a good acceptance of the system. Figure 3.6 shows the 

average score of NASA Task Load Index with all control modes. Physical demand and 

perceived performance of tongue based operating control modes (DT, PT, DT_H, PT_H) 

are less than for the active control mode (A, AV), on average. 

Table 3.2 Stroke subject demographics and Fugl-Meyer Assessment (FMA) for Upper 

Extremity 

Subject Stroke Type Gender Affected 

Arm 

Time since 

stroke 

(month) 

Age Baseline 

FMA  

Start 

Experiment 

FMA 

End 

Experiment 

FMA 

1 Hermorrhagic Female Right 27 32 35/66 38/66 37/66 

2 Hermorrhagic Female Left 62 58 13/66 12/66 20/66 
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The effectiveness of the tongue-operated upper limb robotic device was evaluated 

in two chronic stroke patients with moderate (stroke subject #1) and severe (stroke subject 

#2) paralysis. Both participants reported a good acceptance of the system. Table 3.2 shows 

relevant patient demographics and clinical outcome. During the control period which was  

two weeks before the experiment, both participants did not have clinically significant 

changes in their FMA score [49]. During the experiment period, stroke subject #2 had 

clinically significant FMA score increase from 12 to 20. Panels a-b in Figure 3.7 shows 

examples of end-point displacements of both stroke subjects during target tracking with 

moving target speed of 𝜔 = 0.1. Panels c-d in Figure 3.7 show end-point position as a  

 
  

Figure 3.6 NASA Task Load Index score for unidirectional reaching task in control 

mode active (A), active with viscous field (AV), discrete tongue (DT), proportional 

tongue (PT), discrete tongue hybrid (DT_H), and proportional tongue hybrid (PT_H) 

across all healthy participants (mean±SD). 
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  (a)      (b) 

 
  (c)      (d) 

 
  (e)      (f)   

Figure 3.7 Tracking task performance outcome (RMSE) for proportional tongue 

hybrid control (PT_H) for stroke subjects. (a) and (b) shows examples of end-point 

displacements of both stroke subjects during target tracking using proportional 

tongue hybrid (PT_H) control mode with moving target speed of ω=0.1. (c) and (d) 

show end-point position as a function of time for stroke subjects #1 and #2, 

respectively, with moving target speed of ω=0.1 during target tracking. (e) and (f) 

show the RMSE of both stroke participants for each session with target speed of 

ω=0.1 and 0.15 respectively. 
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function of time for stroke subjects 1 and 2, respectively, with moving target speed 

of 𝜔 = 0.1. Panels e-f in Figure 3.7 show the RMSE of both stroke participants for each 

session with target speed of 𝜔 = 0.1 and 0.15 respectively. We can also observe that the 

performance of tracking slower target is better. Also, the performance of stroke subject #1 

is higher.  

1.1 Discussion and Conclusion 

In this study, we presented a novel tongue-operated exoskeleton system to study 

upper limb rehabilitation. We have evaluated the system with two custom made tasks in 10 

healthy participants and 2 stroke participants.  

The significant performance difference between the active and tongue-operated 

control modes indicates that the existing tongue control is still limited. One possibility 

could be that the participants have not learned fully to use the tongue to control the upper 

limb. We need to perform a longer-term study in the future. Another possibility could be 

caused by the maximum force limit set for safety reasons.  

We also note that the performance of proportional tongue control mode was 

significantly better than the performance of discrete tongue control mode. This suggests 

that the current control outputs offered by the discrete tongue control are limited. For 

discrete control, the tongue can only issue commands to move the upper limb endpoint 

with a fixed average velocity. In contrast, the proportional tongue control mode regulates 

the amount of force applied to the endpoint of the arm proportional to the tongue’s relative 

position.  
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Although the performance of active and active with viscosity control mode was not 

significantly different as shown in Figure 3.4 (e), we noted through upper limb end-point 

position that the applied viscous resistance force has made the movement more precise 

with less overshoot at the expanse of movement speed as shown in Figure 3.4 (a) and (b).  

Based on the questionnaire of subjective perception of the performance (NASA 

TLX), majority of the subjective performance metrics were comparable, and no statistical 

significance was found. This result suggests that the active and tongue control modes may 

be comparable. However, the physical demands and perceived performance of the tongue 

based operating control modes (DT, PT, DT_H, PT_H) were evaluated to be lower than 

for the active control modes (A, AV), on average. The physical demand difference is 

expected because in the tongue control modes, KINARMTM robot is assisting with upper 

limb movement. Since each participant was more familiar with active control mode, the 

perceived performance for the active control modes were higher.  

We observed that only stroke subject #2 had a clinically significant improvement 

after the six three-hour experiment sessions. This result suggests that the tongue-operated 

upper limb rehabilitation paradigm may be beneficial for participants with limited shoulder 

and elbow active range of motion.  

Overall, the developed tongue-operated robotic system has several novel features. 

First, the system is the first to offer a way to assist in elbow and shoulder joint movements 

and rehabilitation via the tongue control. Additionally, this study included several practical 

and reliability improvements for the Tongue Drive System. Prior to this study, the TDS 

could not reliably provide stable control output especially in proportional control mode. 
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Although the system has demonstrated some promise for improving therapeutic outcomes 

in one stroke survivor, more patient data are necessary to fully evaluate the impact of 

training with this system. Furthermore, monitoring of brain activity can be added to 

investigate the effects of tongue-controlled upper limb movements on possible neuroplastic 

changes in the brain. The tongue control currently provided only discrete and 1D 

proportional control. By expanding the capability of TDS to 2D proportional control, the 

system can perform more complex tasks. 
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CHAPTER 4 ANALYSIS OF ARM REACHING MOVEMENT 

CONTROLLED BY A TONGUE-OPERATED EXOSKELETON 

SYSTEM: IMPLICATIONS FOR STROKE REHABILITATION 

4.1 Introduction 

Overcoming kinematic and muscle redundancy of the musculoskeletal system has 

been considered the central problem of motor control [50]-[54]. In a single upper extremity, 

there are 30 kinematic degrees of freedom (DOF), including major 7 DOF – 3 in the 

shoulder (flexion-extension, abduction-adduction, supination-pronation), 2 in the elbow 

(flexion-extension, supination-pronation) and 2 in the wrist (flexion-extension, supination-

pronation), as well as over 66 muscles and muscle compartments that act on these DOF 

(e.g., [55]). It has been suggested that the central nervous system simplifies motor control 

by combining individual kinematic DOFs and muscles into groups called kinematic and 

muscle synergies [50], [51], [56], [57]. Examples of kinematic synergies of arm reaching 

movements include a straight-line trajectory and bell-shaped velocity profile of the hand 

[58], a strong association of hand velocity and path curvature [59], and Fitts’s law [60] – a 

strong correlation between the reaching task difficulty and movement time. However, it is 

unknown if the kinematics movement of the upper limb controlled by the tongue follows 

similar kinematics synergies.  

In Chapter 3, I have described the design and evaluation of a tongue-operated upper 

limb rehabilitation system. Our working hypothesis is that the voluntary initiation and 

control of movement in the paretic arm by the normally functioning tongue may help 
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improve arm motor function. The close proximity of brain representations of the tongue 

and arm may also contribute to arm functional recovery [29][30]. In order to design 

appropriate rehabilitation interventions with the TDS-KINARM system, we need to 

understand more about the kinematic movement of upper limb controlled by the tongue. 

This chapter closely examines the arm reaching kinematics of healthy subjects in 4 modes 

(active, active viscous, discrete tongue, and proportional tongue) of TDS-KINARM. 

4.2 Methods 

 All experimental procedures were approved by the Georgia Tech Institutional 

Review Board. Informed consent was obtained to publish the information/image(s) in an 

online open access publication. A group of healthy participants (n=10) of both sexes (23-

60 years old, 7 males and 3 females) were instructed to perform multiple accurate and fast 

unidirectional left-right reaching movements between two anterior-posterior lines of 

different width and distance as shown in Figure 4.1.  

 

Figure 4.1 Graphic User Interface of Unidirectional Reaching Task. Each participant 

is asked to move the hand position from initial position to target position with various 

distance (D) and width (W) pair as quickly and accurately as possible.  
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 Four movement modes were tested: (A) the dominant right arm movement (active 

control), (AV) active control with viscous resistance, (DT) the relaxed arm moved by the 

TDS-KINARM system via the tongue motion (discrete tongue control) and (PT) 

proportional tongue control. Mode A corresponds to a normal arm movement. In mode 

AV, the robot generates resistive force as a function of the arm endpoint velocity. In mode 

DT, a discrete command (left or right) is issued by the tongue and the robot moves the arm 

endpoint in the corresponding direction with an average velocity of 0.1 m/s and bell shaped 

velocity profile to the end of movement range. When the command is interrupted, the robot 

will come to a stop as velocity decreases linearly. In mode PT, the instantaneous tongue 

position is mapped to the force applied to the endpoint of exoskeleton arm. More details 

can be found in 3.2.3 . 

 During each session, researchers first helped each participant calibrate the TDS. 

Then, the KINARMTM was calibrated based on the physical build of each participant. We 

recorded tongue tip kinematics using a disk-shaped magnetic tracer glued to the tongue tip 

and magnetic sensors mounted on a headset.  

 For each subject, a total of 18 trials were collected for each of 4 modes and each 

reaching distance-target width pair: 24 cm-3 cm, 24 cm-1.5 cm, 12 cm-3 cm, and 12 cm-

1.5 cm. Hand kinematics were characterized by completion rate, throughput , reaction time, 

arm endpoint jerk cost, conformity to Fitts’ Law [46] and symmetry of the arm endpoint 

velocity profile.  
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 Throughput was computed using equation (2) in 3.2.2 . This quantification 

measurement was developed to measure or quantify human performance of target reaching 

tasks using an information metaphor.  

 Fitts' law is a predictive model of human movement primarily used in human–

computer interaction and ergonomics. This scientific law predicts that the time required to 

rapidly move to a target is a function of the ratio between the distance to the target and the 

width of the target. Index of difficulty shown in equation (2) is function of ratio between 

the distance to the target and the width of the target. It is used to quantify the difficulty of 

a specific reaching task. Index of difficulty is higher if the distance to the target is large 

and the width of the target is small. Conformity of Fitts’ Law can be computed using 

Pearson correlation coefficient between index of difficulty and average movement time. 

For each participant and mode, the Pearson correlation coefficient is computed as the 

average of all trials within 1 standard deviation. Then, the Person correlation coefficient 

for each mode is quantified by computing the mean and standard deviation across all 

subjects.  

 Jerk cost has been used to quantify the smoothness of movement [61]. For each trial 

with different modes and distance width pair, jerk cost is computed using the following 

formula over the time when the robotic endpoint is moving: 

 Jerk⁡Cost = log10
1

2
∑𝑗𝑥

2 + 𝑗𝑦
2 (5) 

where 𝑗𝑥 and 𝑗𝑦 are jerks in x and y direction, respectively. For each participant and mode, 

jerk cost is computed as the average of all trials within 1 standard deviation. Then, the jerk 
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cost for each mode is quantified by computing the mean and standard deviation across all 

subjects. 

 Since the end-point position data fluctuate slightly due to noise, some pre-

processing steps are necessary to obtain jerk measurement. I used residual analysis 

described in [62] to find the optimal cut off frequency. First, the filtered position data were 

obtained using different cut off frequency from 1 to 20 Hz. I used 2nd order Butterworth 

filter. The filter was applied both forward and backward to achieve zero phase distortion. 

Then, the residual value was computed with the equation below: 

 

𝑅(𝑓𝑐) = √
1

𝑁
∑(𝑋𝑖 − 𝑋̂𝑖)

2
𝑁

𝑖=1

 (6) 

where 𝑓𝑐 is the cut off frequency for the filter, 𝑋𝑖 is the raw position data, 𝑋̂𝑖 is the filtered 

data. After viewing residual for all modes of operation as shown in Figure 4.2, I decided to 

use 6 Hz as cut off frequency. Once the end-point position data were filtered with optimal 

cut off frequency, velocity was computed as the derivative of position. Acceleration as 

computed as the derivative of velocity. And, jerk was computed as the derivative of 

acceleration.  

 Previous study has found that unrestrained human arm movement between point 

targets has an invariant tangential velocity profile when normalized for speed and distance 

[63]. The velocity profile invariance of speed and load is interpreted as simplification of 

the underlying arm dynamics [54]. Endpoint velocity symmetry can be used to capture the 

velocity profile invariance. Specifically, endpoint velocity symmetry was computed as the 
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ratio between the time of movement to the peak magnitude of velocity and the time of 

movement onset (5% of peak magnitude of velocity). The same pre-processing filtering 

step for end point position data was done to calculating velocity. For each mode and 

distance width pair, endpoint velocity symmetry was computed as the average of all trials 

within 1 standard deviation. Then, the endpoint velocity symmetry for each mode was 

quantified by computing the mean and standard deviation across all subjects. 

 The endpoint velocity symmetry of the tongue movement was also captured during 

proportional tongue control mode (PT_T). In proportional mode, the tongue generated 

command from -1 to 1. The tongue command went through the same processing step as the 

end point position data.  

Previous study [64] has found that simple reaction time averaged 220 ms. In this 

study, reaction time was measured between time of the audio cue to the time the speed of 

 

Figure 4.2 Residual Analysis of end point position in x axis for active control mode. 

The horizontal axis is the cut off frequency of 2nd order low pass filter apply forward 

and backward. The vertical axis is the residual in meter.   
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movement reaching 5% of peak magnitude of velocity. For each mode and distance width 

pair, reaction time was computed as the average of all trials within 1 standard deviation. 

Then, the reaction time for each mode was quantified by computing the mean and standard 

deviation across all subjects. 

We characterized each kinematic outcome measurement with different control 

modes across all participants by performing Wech’s one-way ANOVA and post-hoc 

Games-Howell test with statistical significance level set to 0.05. 

4.3 Results 

Nearly all trials were completed within allocated time (10 s) (Figure 4.3 a). The 

throughput and jerk cost in PT mode were greater than in DT mode and closer to those in 

A and AV modes although still smaller (p<0.05, Figure 4.3 b, e). The lower jerk cost in 

DT mode compared with other modes could be explained by the fact that the hand velocity 

profile in DT mode is programmed to have bell shape. And, the speed will change gradually 

if a command change is detected. This design allows the movement to move smoothly 

which translates to lower jerk cost.  

The Pearson coefficients of correlation between indexes of difficulty and average 

movement times  were  between  0.86  and  0.93  for  all  modes  of  operation, conforming 

Fitts’ Law (Figure 4.3c). This result confirms that all four control modes conform with the 

Fitts’ Law. 

The reaction time for A, AV, and PT modes were similar to the previous study 

(around 220 ms). However, the reaction time for DT mode is significantly higher (660ms 
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±137ms, p<0.05, Figure 4.3 d). This discrepancy can be partially explained by the fact that 

it takes around 200 ms to change a command for the Tongue Drive System.  

Velocity profile of PT mode was comparable to A and AV modes with symmetry 

relatively close to 0.5 (equal times of the velocity increase and decrease), whereas DT 

profile was highly assymetric (p<0.05, Figure 4.3f). This discrepancy can also be explained 

by the design of DT mode. Specifically, the movement speed will change once a command 

change is detected. In a simple case of reaching to a target on the right, the participant will 

first issue a right command. At this time, the robot begins to bring the arm to the right edge 

of the augmented reality screen. Once the target is about to reach, the participant will issue 

rest command which will cause the robot to reduce speed to rest. As a result, the final speed 

profile will change from bell shaped velocity profile to a skewed velocity profile towards 

the end which is reflected in the velocity symmetry skewed towards 1.   

4.4 Conclusion 

In this study, we have characterized arm reaching kinematics in 4 modes of TDS-

KINARM operation. We found that the PT mode is more similar to A and AV modes 

compared to DT. This result indicates that the PT control strategy is a better candidate than 

the DT for the tongue assisted rehabilitation. This study also provides initial insights into 

possible kinematic similarities between tongue-operated and voluntary arm movements. 

Furthermore, the results show that the viscous resistance to arm motion does not affect 

kinematics of arm reaching movements significantly.  
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(a)      (b) 

 2  

(c)      (d) 

  
(e)      (f) 

Figure 4.3 Hand kinematics during reaching movements generated by four control 

modes of the TDS-KA system (A: active control mode, AV: active with viscous field 

control mode, DT: discrete tongue control mode, PT: proportional tongue control 

mode, and PT_T: tongue kinematics in proportional tongue control mode). (a) 

completion rate with distance-target width pair 24cm-3cm, (b) throughput with 

distance-target width pair 24cm-3cm, (c) Pearson correlation coefficient between 

index of difficulty and average movement times, (d) reaction time with distance-target 

width pair 24cm-3cm (e) jerk cost with distance-target width pair 24cm-3cm, and (f) 

hand velocity profile symmetry with distance-target width pair 24cm-3cm. The 

asterisks show significant (p<0.05) differences between control modes.  
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CHAPTER 5 ANALYSIS OF BRAIN EXCITABILITY AT THE 

ONSET OF WRIST AND TONGUE MOVEMENT 

5.1 Introduction 

Electroencephalography (EEG) is an electrophysiological monitoring method to 

record electrical activity of the brain. It has been used for functional assessment of chronic 

hemiparetic patients [65]. Specifically, the amplitude of motor potential, event-related 

desynchronization (ERD) level has been associated with function improvement 

measurements such as efficiency, number of peaks in velocity profile, and force mean. To 

quantify ERD, a number of event-triggered EEG trials are necessary, including some 

seconds before and some seconds after the event. Electromyography (EMG) is an 

electrodiagnostic medicine technique for evaluating and recording the electrical activity 

produced by skeletal muscles. It has been used to monitor muscle synergy changes as an 

alternative way to measure impairment level [66]. It can be used as an event trigger to study 

ERD [67].  

Voluntary movement results in a circumscribed desynchronization in the upper 

alpha and lower beta bands, localized over sensorimotor areas.  This desynchronization 

may reflect a mechanism responsible for selective attention focused to a motor subsystem. 

This effect of focal attention may be accentuated when other cortical areas, not directly 

involved in the specific motor task, are “inhibited.” In this process, the interplay between 

thalamocortical modules and the corresponding reticular nucleus neurons that forms a 
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chain of inhibitory neurons that project not only to the thalamocortical relay neurons, but 

also to neighboring inhibitory neurons may play an important role [68]. 

As described in the Chapter 3, a tongue-operated rehabilitation robotic system was 

developed, in which limb movement is assisted by an exoskeleton that is commanded by 

voluntary tongue motion (Tongue Drive System, TDS).  The engagement with this system 

involves intention of initiating a concurrent motion with the tongue and limb.  We 

hypothesized that an addition of voluntary tongue movement enhances brain excitability 

that is associated with the initiation of limb movement.  The purpose of this chapter was to 

examine if event-related desynchronization for the upper-limb area is enhanced with 

concurrent initiation of tongue and wrist movement in healthy adults. 

5.2 Methods 

5.2.1 Subjects 

 All experimental procedures were approved by the Georgia Tech Institutional 

Review Board. Informed consent was obtained to publish the information/image(s) in an 

online open access publication. Six healthy participants (20-26 years old, 2 males and 4 

females) participated in this study.  

5.2.2 Tasks  

 Each participant performed three different motor tasks: tongue protrusion, wrist 

extension with the right arm, and concurrent initiation of the tongue protrusion and wrist 

extension as shown in Figure 5.1.  Each task had 50 trials, and the tasks were performed in 

pseudo random order across subjects.   
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 The onset of wrist and tongue movements was detected from EMG recorded from 

the wrist extensor muscle and the above and below opposite corners of the mouth, 

respectively. The brain activity was monitored with 16 electrodes as shown in Figure 5.2. 

Please note that majority of the electrodes were placed in the motor cortex area except the 

electrode in FP2 position. FP2 electrode was used to capture eye blinking artifact. Both 

EMG and EEG signals were captured using ActiveTwoTM in 2048 Hz (BioSemi 

Instrumentation, Netherland). 

 During each session, researchers first obtained consent from each participant. Then, 

researchers placed appropriate EEG cap on based on the participant’s head circumference. 

Then, the cap was adjusted to the proper position. Specifically, researcher measured the 

nasion-inion and LPA-to-RPA distance and adjusted the vertex (Cz) to be the intercept 

between two measurements. Then, all electrodes were attached to the corresponding 

           

Figure 5.1 Left,  Wrist in rest and flexed position on an arm rest with EMG electrode 

placed in wrist extensor muscle. Middle, Wrist in extended position. Right, Tongue 

protrusion with EMG electrode placed above and below opposite corner of the mouth. 
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location described above after applying gel for electrical contact. Before the experiment 

started, researcher ensured that all electrodes had stable offsets across channels (< 40 mV).  

 Once the system setup was complete, each participant was asked to perform the 

motor tasks in pseudo random order. That is, each participant performed 3 sets of tasks in 

different orders. At the beginning of each trial, the participant had their right forearm rested 

with the flexed wrist on an arm rest as shown in Figure 5.1. During each trial, the 

researchers started recording when the participant indicated he or she was ready with a 

thumb up gesture. The participant was instructed to perform the motion voluntarily after at 

least 4 seconds and up to 10 seconds. Once the motor task was completed, both EEG and 

EMG would be recorded for at least 4 more seconds. Then, the researchers would stop 

recording and asked the participant to relax and prepare for the next recording.  

 

 

           

Figure 5.2 Location of EEG electrodes.  
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5.2.3 Movement onset detection 

 The movement onset was first extracted using a series of steps as shown in Figure 

5.3. Once the raw EMG data was extracted and converted to unit in uV, it would first be 

high pass filtered with a 6th order Butterworth filter with 20 Hz cut off frequency. This 

processing step was necessary to remove low frequency noise and eliminate the baseline 

wandering effect [69]. The filter was applied again backwards to eliminate phase distortion. 

Then, the first and last 512 samples (250ms) were truncated to eliminate the artifact 

introduced by the filter at the edge. Then, the signal was transformed using Teager-Kaiser 

operation [67]: 

 𝑦𝑖 = 𝑥𝑖
2 − 𝑥𝑖+1𝑥𝑖−1 (7) 

This step amplified the movement onset signals significantly. Once the signal was rectified, 

it was passed through a median filter (256 samples for wrist movement detection electrodes 

and 512 samples for tongue movement detection electrodes, these numbers are determined 

empirically).  

 Then, the movement onset was determined for each motor task. For wrist extension 

movement, the differential signal between two electrodes were used for the preprocessing 

steps above to eliminate common noise. The movement onset was determined to be the 

first data point that has crossed the 12th standard deviation for 1024 samples. The threshold 

and hold period were determined empirically. For tongue protrusion movement, data from 

both electrodes were processed separately for the preprocessing steps above. The 

movement onset was determined to be the average of movement onset time from both  
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Figure 5.3 Example of wrist EMG onset detection starting from differential signal (top 

left) with the following processing steps: 1. 6th order Butterworth filter with cutoff 

frequency of 20Hz (use backward and forward filter to avoid phase distortion) 2. Cut 

of some samples in the beginning to avoid unwanted noise. 3. Perform Teager-Kaiser 

operation:  𝑦(𝑖)=𝑥(𝑖)^2−𝑥(𝑖+1)∗𝑥(𝑖−1). Full wave rectification. 5. Median filter (256 

samples for wrist and 512 samples for tongue). Use the first 2 seconds data as baseline 

and find the first data point that has crossed the 12th standard deviation for 1024 

samples for wrist EMG data. (or the 4th standard deviation for 512 samples for 

tongue EMG data). The tongue EMG onset time is determined by the average of 

results from two electrodes. 

 

 

 

3 4 
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electrodes. For each electrode, the movement onset was determined to be the first data 

point that has crossed the 4th standard deviation for 512 samples. The threshold and hold 

period were determined empirically. For concurrent initiation of the tongue protrusion and 

wrist extension, the movement onset was determined using the wrist extension movement. 

Finally, trials with unclear movement onset were excluded through visual inspection.  

5.2.4  Event related desynchronization (ERD) 

 A series of steps were necessary to determine ERD using EEG and EMG data. Once 

the raw EEG data was extracted and converted to unit in uV, it was first resampled from 

2048 Hz to 256 Hz to reduce processing time. Then, it was band pass filtered from 10 to 

12 Hz using recommended filter option provided by EEGLAB [70]. Then, all EEG 

channels were referenced to the average of the following electrodes (F3, Fz, F4, C3, Cz, 

C4, P3, Pz, P4). Once the EEG signal was epoched based on the movement onset obtained 

in the previous step, the signal was then baselined to the data from -2.5 to -1.5 s to the 

movement onset. At this time, the researchers would visually inspect each epoch and 

remove any epochs that contains artifacts (eye blinking, electrode shifting etc.). The power 

of the passing epoch was averaged and fed through a moving average filter (32 samples 

which is determined empirically). Then, the degree of desynchronization around the 

movement onset was quantified by the power reduction of the sensorimotor area for the 

right arm electrode  (C3) compared with the baseline (from -2.5 to -1.5 s in reference to 

the onset of movement) as shown in Figure 5.4. 
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5.3 Results 

The ERD for wrist extension (w), tongue protrusion (t), and concurrent tongue 

protrusion and wrist extension (c) for pre-movement (-1.5 to 0 s) and post-movement (0 to 

2 s) is shown in Figure 5.5. Reductions in 10-12 Hz power around the movement onset 

were observed in all three tasks across subjects.  On average, the largest reductions were 

observed around 0-1 s in reference to the movement onset.  The greater reductions with the 

concurrent movement compared with the independent wrist or tongue movement were 

observed before and/or after the onset of movement in all subjects.  When the reductions 

before the onset were summated, ERD during the concurrent wrist and tongue movement 

(26.8%) was greater than the wrist (21.2%) and tongue (2.7%) movement, on average. 

 

Figure 5.4 Example of event related potential change in EEG for tongue protrusion 

(t), wrist extension (w), and concurrent tongue protrusion and wrist extension (c) in 

10-12 Hz compared with the baseline (from -2.5 to -1.5 s) across trials. 
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Similarly, ERD after the onset (from 0 to 2.0 s) was greater during the concurrent 

movement (76.9%) than the wrist (62.7%) and tongue (29.0%) movement, on average. 

5.4 Discussion and Conclusion 

The preliminary observation of a tendency for a greater event-related 

desynchronization with concurrent tongue movement implies facilitation of brain 

excitability for limb movement, which may contribute to enhanced rehabilitation outcome 

in stroke survivors using TDS with motor rehabilitation. In conclusion, the preliminary 

results showed a tendency of a facilitatory effect of adding tongue movement to limb 

movement on event-related desynchronization in EEG, implying enhanced brain 

excitability. 
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Figure 5.5 ERD for wrist extension (w), tongue protrusion (t), and concurrent tongue 

protrusion and wrist extension (c) for pre-movement (-1.5 to 0 s) and post-movement 

(0 to 2 s) 
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CHAPTER 6 CONCLUSION AND FUTURE WORK  

6.1 Conclusion 

 Stroke is a devastating condition that may cause upper limb paralysis. Robotic 

rehabilitation with self-initiated and assisted movements is a promising technology that 

could help restore upper limb function. We have developed and evaluated a tongue-

operated exoskeleton that will harness the intention of stroke survivors with upper limb 

paralysis via tongue motion to control robotic exoskeleton during rehabilitation to achieve 

functional restoration and improve quality of life. Specifically, a tongue operated assistive 

technology is called the Tongue Drive System is used to control rehabilitation robot such 

as wrist based exoskeleton Hand Mentor ProTM and upper limb based exoskeleton 

KINARMTM.  

 Through a pilot trial from 3 healthy participants, we have demonstrated the 

functionality of an enhanced TDS-HM prototype that includes a BLE eTDS headset, HM 

ProTM, and a custom designed interface in the form of a USB dongle. The new TDS-HM 

has pressure-sensing capability that can add rehabilitation tasks based on isometric mode. 

The system can add a programmable load force to increase the exercise intensity in isotonic 

mode. A force protection mechanism was also added to reduce the risk of injury. The 

tongue-operated isotonic proportional control mode SSP algorithm was improved by 

adding PWM-based output to the HM motor. 

 Through a healthy subject experiment (7 males and 3 females, age 23-60 years) and 

a stroke subject experiment (age 32 and 58 years, Fugl-Meyer upper extremity baseline 
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score 35 and 13), we have demonstrated that the TDS-KINARM system could accurately 

translate tongue commands to exoskeleton arm movements, quantify function of the upper 

limb and perform rehabilitation training. Specifically, all healthy subjects and the stroke 

survivor successfully performed target reaching and tracking tasks in all control modes. 

One of the stroke patients shows clinically significant improvement. 

We also found through a 10 healthy subject experiment that the PT mode is similar 

to A and AV modes compared to DT. This result indicates that the PT control strategy is a 

better candidate than the DT for the tongue assisted rehabilitation. This study also provides 

initial insights into possible kinematic similarities between tongue-operated and voluntary 

arm movements. Furthermore, the results show that the viscous resistance to arm motion 

does not affect kinematics of arm reaching movements significantly.  

 Finally, through a 6 healthy subject experiment, we observed a tendency of a 

facilitatory effect of adding tongue movement to limb movement on event-related 

desynchronization in EEG, implying enhanced brain excitability. This effect may 

contribute to enhanced rehabilitation outcome in stroke survivors using TDS with motor 

rehabilitation. 

6.2 Future Work 

6.2.1 Analysis of brain excitability at the onset of limb and tongue movement 

A similar experiment similar in Chapter 5 was conducted. In this experiment, the 

wrist extension motion was replaced to elbow extension motion. In the future, we would 
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like to determine if similar faciliatory effect of adding tongue movement for event-related 

desynchronization in EEG holds for limb movement.  

6.2.2 TDS-KINARM experiment with EEG and EMG recording 

The experiment similar in Chapter 3 was conducted with 3 healthy participants for 

one 3-hour session and 1 stroke participant for six 3-hour sessions (the same stroke subject 

#2 in Chapter 3). In addition to KINARM and TDS, ActiveTwoTM was added for EEG and 

EMG signal acquisition as shown in Figure 6.1. 

During this experiment, we collected EEG signal in the motor cortex area and EMG 

signal for elbow and shoulder flexor and extensor as shown in Figure 6.2. In the future, we 

would like to evaluate the effect of tongue movement to brain activity while performing 

rehabilitation tasks.   

 

Figure 6.1 System Block Diagram for TDS-KINARM experiment with EEG and 

EMG recording. 
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6.2.3 Improved Design and Evaluation of Tongue Drive System optimized for capturing 

precise tongue movement 

Ideally, the Tongue Drive System should capture the precise kinematics of tongue 

movement. However, the currently existing TDS could only issue discrete or 1D 

proportional command. This is caused by the construction of the existing system. 

Specifically, all four magnetic sensors are in the same 2D plane with limited spacing 

between anterior and posterior direction.  

An improved Tongue Drive System optimized for capturing precise tongue 

movement was developed (Figure 6.3). A laser printed structure made from medium-

density fibreboard (MDF) with 3 mm thickness was constructed to hold the sensor in the 

location and orientation relative to the surface of the corner mark on the bottom right from 

user’s perspective. The rough estimation can be found in Table 6.1. Adafruit Feature 

 

(a)    (b)    (c) 

Figure 6.2 TDS-KINARM experiment with EEG and EMG recording. (a) shows the 

participant sitting in KINARM wearing both EEG cap and TDS system. (b) shows 

the EMG electrode placement for elbow flexor and extensor. (c) shows the EMG 

electrode placement for shoulder extensor.  
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nRF52840 Express board was used as part of the TDS hardware. This board provides 

hardware for both wired and wireless communication, Li battery power management, and 

sensor data acquisition via a star SPI configuration. An additional cape was designed to 

connect the nRF52840 board to the top sensor (LSM9DS1) and six sensors around user’s 

cheek (LSM3MDLTR).  

A 3D positioning system with 0.1mm accuracy was built based on Creality3D 

Ender-3 3D printer as shown in Figure 6.5. This device was used to develop and evaluate 

the Tongue Drive System by collecting magnet sensor data while precisely placing the 

magnet in different locations.  

Magnetic sensor data was collected with magnet location from 5 to 65 mm in x 

axis, from 10 to 70 mm in y axis, and from 5 to 65 mm in z axis with 5 mm apart. Each 

position contained 50 data point.  

Table 6.1 Approximate location and orientation of all magnet sensors. All sensor 

rotation procedure is using right hand rule. After applying rotation z, y, and x (order 

matters), the sensor will be in the same coordinate as the global coordinate as shown 

in Figure 6.4. The rotation angle is positive if the rotation is in the counter-clockwise 

direction when viewed by an observer looking along the y-axis towards the origin. 

Name x rotation 

(degree) 

y rotation 

(degree) 

z rotation 

(degree) 

x pos 

(mm) 

y pos 

(mm) 

z pos 

(mm) 

L1 0 90 180 97 50 35 

L2 -90 0 90 75 -2 35 

L3 -90 0 0 35 -2 75 

R1 0 -90 180 -27 50 35 

R2 -90 0 90 -5 -2 35 

R3 -90 0 0 35 -2 05 
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A preliminary version of the enhanced algorithm based on [71] was developed. 

Instead of transforming the dipole model to raw magnetic sensor using different sensor 

parameters such as gain, offset, position, rotation, magnetic tracer’s residual flux density, 

rotation, and EMF, the proposed method transforms the raw magnetic sensor data to the 

model. This will resolve issue in the previous method where certain sensor data has more 

weight than the others due to sensor parameter variation. In addition, the system could 

adapt to rotation with the addition of top sensor as long as the relative position among the 

sensors are fixed. The analysis is all done in the right-hand coordinate system.  

Previous study has shown that the static magnetic flux density of a cylindrical 

magnet with thickness 𝑙, diameter 𝑑, and residual magnetic strength 𝐵𝑟  at location 𝒂 =

 

Figure 6.3 Enhanced Tongue Drive System Prototype.  
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[𝑎𝑥⁡𝑎𝑦⁡𝑎𝑧] with magnetic dipole moment pointed 𝜃 away from z axis and 𝜙 away from x 

axis measured at location 𝑠 = [𝑠𝑥⁡𝑠𝑦⁡𝑠𝑧] can be expressed by the following: 

 
𝐵𝑚𝑜𝑑𝑒𝑙 =

𝜇0
4𝜋

3[𝒎 ∙ (𝒔 − 𝒂)](𝒔 − 𝒂) − ‖𝒔 − 𝒂‖2𝒎

‖𝒔 − 𝒂‖5
 (8) 

where 𝒎 = 𝑚∙[sin(θ)∙cos(ϕ),⁡sin(θ)∙sin(ϕ),⁡cos(θ)] is the magnetic moment vector of 

the dipole, and 𝑚 = 𝜋𝐵𝑟𝑑
2𝑙 (4𝜇0)⁄ . 

 

Figure 6.4 Orientation and location of all sensors are relative to the front surface of 

the alignment mark on the bottom right corner from user’ perspective 
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 If the sensor is ideal, share the same coordinate system as the global coordination 

system, and there is no other magnetic field, we can estimate the location and orientation 

of the magnet if the sensor location is given by minimize the fitness function below using 

different optimization algorithms: 

 
𝐹 =

1

𝑛
∑‖𝑩𝑖 − 𝑩𝑚𝑜𝑑𝑒𝑙‖

2

𝑛

𝑖=1

 (9) 

where 𝑛 is the total number of observation sensors.  

 In order to consider the practical issues, 𝐵𝑖 can be expressed as 

𝑩𝑖 = [𝐶(𝑩𝑟𝑎𝑤,𝑖 − 𝑩𝑂,𝑖).∗ 𝒈𝑖]𝑹𝑖 −𝑩𝐸𝑀𝐹  

 

Figure 6.5 3D magnet positioning platform. 
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where .∗ means element wise multiplication, C is a scalar that convert the digital reading 

from sensors to SI unit, 𝑩𝑟𝑎𝑤,𝑖 = [𝐵𝑟𝑎𝑤,𝑖,𝑥⁡𝐵𝑟𝑎𝑤,𝑖,𝑦⁡𝐵𝑟𝑎𝑤,𝑖,𝑧] is the direct digital readings 

from sensor i, 𝑩0,𝑖 = [𝐵0,𝑖,𝑥⁡𝐵0,𝑖,𝑦⁡𝐵0,𝑖,𝑧] is the sensor i reading offset in SI unit, 𝒈𝑖 =

[𝑔𝑖,𝑥⁡𝑔𝑖,𝑦⁡𝑔𝑖,𝑧] is the sensor I gain offset. 𝑹𝑖  is the rotational matrix that transform the 

sensor i coordinate to global coordinate, and 𝑩𝐸𝑀𝐹  is the external magnetic field in global 

coordinate system.  

 In order to utilize the system and predict the location and orientation of the magnet, 

we have approximated all parameters with known magnet location and orientation. Then, 

we could predict the magnet location and orientation by solving the optimization problem 

using the parameters obtained in the calibration step. In the future, we need to evaluate the 

system further with human subject trial.   
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APPENDIX B. TONGUE DRIVE SYSTEM DEVELOPMENT 

B.1  Bluetooth based TDS design for KINARM interface 

Multiple enhancements were made on TDS to obtain better performance and 

reliability for KINARM interface described in Chapter 3. The updated headset contains 

two magnetic sensor modules, a control module, a Li-ion battery, a commercially available 

headgear, two 3D printed arms that provide support for magnetic sensors, and one 3D 

printed box that stores the battery and control module. Each magnetic sensor module 

contains two magnetic sensors (LSM303D, ST) that are 3.1 cm apart from each other. The 

control module contains the Bluetooth low energy (BLE) wireless MCU (CC2541, TI), a 

magnetic sensor (LSM9DS1, ST), Li-ion battery charging circuits (LTS4054, ADI), power 

management circuits (TPS71733, PS61220, TI), a switch, and all the supporting circuitry 

for the components above. An nRF52 based TDS headset was also developed with 

additional wired connectivity. 

After the headset is turned on, the MCU performs a self-check routine to ensure 

that all the sensors are functional. Then, it initializes all the sensors to have dynamic range 

of ±8 gauss and sampling rate of 100 Hz for LSM303D and 80 Hz for LSM9DS1. 

Subsequently, it starts advertising indefinitely after setting up custom designed BLE 

service and characteristics. After connecting to USB dongle, the headset either enters active 

mode or sleep mode. In the active mode, all data are transferred to eTDS’s MCU via serial 

peripheral interface bus (SPI), and then to a receiver dongle via BLE, and to PC via UART 

serial communication at 50 Hz. The PC processes the raw magnetic sensor data to either 
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discrete commands or 1D continuous command. In the sleep mode, all the sensors are put 

to sleep, and the headset maintains connectivity with the receiver dongle. 

A LabVIEW based GUI was developed to control the receiver dongle to 

establish/terminate BLE wireless connection based on headset’s MCU MAC address. The 

GUI can also switch the headset between sleep and active mode.  

Several sub GUIs were developed to convert the raw magnetic sensor data to 

commands for KINARMTM. These sub GUIs visualize and store raw magnetic sensor data, 

perform earth magnetic field (EMF) cancellation, train the pattern recognition algorithm to 

map tongue gestures to either five discrete commands or one-dimensional continuous 

command, as well as perform the classification in real time and feed the results to 

KINARMTM via RS-232 serial communication (Figure 0.1).  

           

Figure 0.1 Flow Chart for TDS sensory signal processing algorithm. 
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Ideally, the magnetic sensor should sense only the magnetic flux density from the 

magnet attached in the tongue (between 0.1 and 8 gauss). However, the magnetic sensor 

also senses signals from other sources such as the earth magnetic field (0.25 to 0.65 gauss). 

The performance of the TDS would decrease without an effective preprocessing algorithm 

that removes or reduces irrelevant magnetic signals. We have developed a preprocessing 

algorithm to eliminate the effect of the unwanted magnetic fields.  

The magnetic flux density sensed by each sensor in the sensor module (𝑩𝟏,  , 𝑩 ∈

ℝ ×𝟑) is from both the unwanted magnetic field (𝑩𝟏𝑬,  , 𝑩 𝑬 ∈ ℝ ×𝟑) and the desired 

magnetic field (𝑩𝟏 ,  , 𝑩  ∈ ℝ ×𝟑), where  

 𝑩𝟏 = 𝑩𝟏𝑬 + 𝑩𝟏  

  

𝑩 = 𝑩 𝑬 + 𝑩   

(10) 

 In the EMF cancelation sub GUI, 𝑛 = 500 samples are collected while asking the 

participant to keep their tongue still in resting position in the center of the mouth and to 

rotate his/her head around. Since the relative position between the magnet and each sensor 

are more than 5 cm in the above data collection method, 𝑩𝟏 ,  , 𝑩   are relatively small 

(<0.1 gauss). Ideally however, this step should be done without magnet attached in the 

tongue. We can approximate the magnetic flux density sensed by the sensors in the sensor 

module in the calibration stage (𝑩 𝟏,  , 𝑩  ) as  

 𝑩 𝟏 ≈ 𝑩𝟏𝑬 

  

𝑩  ≈ 𝑩 𝑬 

(11) 
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    The magnetic field exerted to the sensors in the control module (𝑩 ∈ ℝ ×𝟑 ) 

contains mainly the EMF component (𝑩 𝑬 ∈ ℝ ×𝟑) because it is far away (>20 cm) from 

the desired magnetic field.  

 𝑩 = 𝑩  = 𝑩 𝑬 (12) 

 Unlike the magnetic field from the magnet attached to the tongue, the magnitude of 

most unwanted magnetic fields exerts the same magnetic flux density to the sensors.  

 ‖𝑩𝟏𝑬‖ = ‖𝑩𝟐𝑬‖ = ‖𝑩𝟑𝑬‖ = ‖𝑩 𝑬‖ = ‖𝑩 𝑬‖ (13) 

Thus, we can use these samples to find the transformation matrix  ( 𝟏,  𝟐,  𝟑,   ∈ ℝ4×3) 

to map magnetic flux density sensed by the sensors from the control module  (𝑩  ∈ ℝ𝑛×3) 

to each sensor from the sensor module (𝑩 𝟏, 𝑩 𝟐, 𝑩 𝟑, 𝑩  ∈ ℝ𝑛×3). 

  𝟏 = [𝑱 ,𝟏⁡𝑩  ]
−𝟏
𝑩 𝟏 

  

  = [𝑱 ,𝟏⁡𝑩  ]
−𝟏
𝑩   

(14) 

 𝑱 ,𝟏 is a vector of 1s with n rows and 1 column.  

 After finding the transformation matrix  𝟏   , we can find magnetic flux density 

without the earth magnetic field:  

 𝑩𝟏 = 𝑩𝟏 − 𝑩𝟏𝑬 ≈ 𝑩𝟏 − 𝑩 𝟏 ≈ 𝑩𝟏 − [𝑱 ,𝟏⁡𝑩  ] 𝟏 ≈ 𝑩𝟏 − [𝑱 ,𝟏⁡𝑩 ] 𝟏 

  

(15) 
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𝑩  = 𝑩 − 𝑩 𝑬 ≈ 𝑩 − 𝑩  ≈ 𝑩 − [𝑱 ,𝟏⁡𝑩  ]  ≈ 𝑩 − [𝑱 ,𝟏⁡𝑩 ]   

 Several algorithms have been developed to translate magnetic sensor data to 

discrete commands. Support vector machine (SVM) with radial basis function (RBF) 

kernel performs the best [72]. We have developed the discrete command pattern 

recognition algorithm based on LabVIEW LIBSVM library [73].  

 In the training sub GUI, users associate their tongue position to each command (up, 

down, left, right, and rest) three times in random order. A total of 𝑛 = 50 sample points of 

magnetic sensor data needs to be recorded for each tongue position and repetition. Then, a 

model is generated with 𝛾 = 10−7, 𝐶 = 1  with 5-fold validation where 𝛾  controls the 

weight of training sample and 𝐶 controls the amount of regularization for the model. To 

reduce the effect of speech accidentally triggering the command, the operator instructs the 

users to associate the location of the tongue command to places that are generally not used 

for speech. Further, sensor data are recorded while instructing the users to speak briefly 

(500 samples). These data are included in the model as the rest command.  

 In the predicting sub SUI, the algorithm performs classification using 10 past EMF 

cancelled data. If all the classification results are the same, the command to KINARMTM 

will be updated.  

 The 1D continuous command algorithm translates the raw magnetic sensor data to 

a continuous number between -1 and 1 to indicate the position of the tongue between left 

most and right most positions.  
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 In the training sub GUI, 𝑛 = 50 samples are collected for three tongue positions 

each (left, center, right). Then, we calculate and record the mean magnitude of the EMF 

cancelled front magnetic sensor (sensor 1) in the left sensor module when tongue is on the 

left corner of the inner lip (‖𝑩  ‖), and front magnetic sensor in the right sensor module 

(sensor 3) when tongue is on the right corner of the inner lip (‖𝑩  ‖). In the 

predicting sub GUI, the algorithm outputs are obtained every 10 ms based on the average 

results of past 𝑚 = 10 samples. Specifically, it first calculates the magnitude of the EMF 

cancelled left front (‖𝑩 ‖)  and right front sensors (‖𝑩 ‖). If  ‖𝑩 ‖ > ‖𝑩 ‖, scaling factor 

𝑆 would be set to ‖𝑩  ‖. Otherwise, 𝑆 = ||𝑩  ||. Each individual result is calculated with 

the following equation:  

𝑅𝑒𝑠𝑢𝑙𝑡 = ⁡𝑠𝑖𝑔𝑛(‖𝑩 ‖ − ‖𝑩 ‖) ∗ (
𝑎𝑏𝑠(‖𝑩 ‖ − ‖𝑩 ‖)

𝑆
)

1
2

 

B.2  Initial development of embedded algorithm for Tongue Drive System 

A preliminary prototype as shown in Figure 0.2 is developed to move all the sensory 

signal processing algorithm in the TDS used for KA system on the embedded system. Mbed 

LPC1768 Development Board was used as the main embedded processor. A microSD 

reader and microSD card were used to store necessary training data and generated SVM 

model. Four LSM303D Breakout Board were used to sense magnetic flux. All components 

were built in a breadboard as shown in Figure 0.3. A customized C# based GUI was also 

developed to control the prototype from PC. A request-response Serial library from the 

ARM® MbedTM IoT Device Platform was used to communicate with PC. This study shows 

that it is feasible to run sensory signal processing algorithm with microcontroller. However, 
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only limited training data could be collected, and the EMF cancelation algorithm was not 

included because the matrix inversion operation is not supported. A more capable 

microcontroller such as nRF52 could solve this problem with large on-board flash memory 

and floating-point computation capability.  

B.3  Design of Assistive Manipulation Framework Using Augmented Reality and 

Tongue Drive System 

TDS can also be used for collaborative manipulation task for person with physical 

disabilities. Specifically, the system consists of Tongue Drive System, a 7 DoF robotic 

arm, and an augmented reality interface. The system interprets user’s environment and 

provide context based visual feedback to the augmented reality interface. The Bluetooth 

based TDS design for KA interface provides user input for triggering the robotic arm to 

execute the selected manipulation task from the augmented reality interface [74]. In this 

case, the tongue command is relayed to the robot by constantly updating a shared text 

document with the most updated command.  

 

Figure 0.2 System Block Diagram of TDS with sensory signal processing algorithm 

in Mbed MCU. 
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Figure 0.3 Setup of TDS with sensory signal processing algorithm in MbedTM MCU. 

 

 



 72 

REFERENCES 

[1] E.J. Benjamin et al., “Heart Disease and Stroke Statistics – 2017 Update,” Circulation, 

vol. 136. No. 8, e229-e277, Mar. 2017. 

 

[2] H. Nakayama, H. S. JØrgensen, H. O. Raaschou, T. S. Olsen, “Recovery of Upper 

Extremity Function in Stroke Patients: The Copenhagen Stroke Study,” Arch. Phys. 

Med. Rehabil., vol. 75, no. 4, pp. 394-398, Apr. 1994.  

 

[3] N. Foley et al., (2016, September). Evidence-Based Review of Stroke Rehabilitation, 

Chapter 10: Upper Extremity Interventions [Online]. Available: 

http://www.ebrsr.com/evidence-review/10-upper-extremity-interventions 

 

[4] R.W. Teasell, N.C. Foley, S.K. Bhogal, M.R. Speechley, “An evidence-based review 

of stroke rehabilitation,” Topics in Stroke Rehabilitation, vol. 10, no. 1, pp. 29-58, 

2003.  

 

[5] H.I. Krebs and N. Hogan, “Robotic therapy: the tipping point,” American Journal of 

Physical Medicine & Rehabilitation, 91 (11 Suppl 3): S290-7, Nov. 2012. 

 

[6] P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar, and M. V. Loos, “Robot-assisted 

movement training compared with conventional therapy techniques for the 

rehabilitation of upper-limb motor function after stroke,” Archives of Physical 

medicine and Rehabilitation, vol. 83, no. 7, pp. 952-959, Jul. 2002. 

 

[7] G.B. Prange, M.J. Jannink, C.G. Groothuis-Ousdshoorn, H.J. Hermens, and M.J. 

Ijzerman, “Systematic review of the effect of robot-aided therapy on recovery of the 

hemiparetic arm after stroke, J. Rehabil. Res. Dev., vol. 43, no. 2, pp. 171-184, Mar. 

2006.  

 

[8] J. Mehrholz, M. Pohl, T. Platz, J. Kugler, and B. Elsner, “Electromechanical and 

robot-assisted arm training for improving activities of daily living, arm function, and 

arm muscle strength after stroke,” Cochrane Database Syst Rev, vol. 11, no. 

cd006876, Nov. 2015.  

 

[9] D. Lynch, M. Ferraro, J. Krol, C.M. Trudell, P. Christos, B.T. Volpe, “Continuous 

passive motion improves shoulder joint integrity following stroke,” Clinical 

Rehabilitation, vol. 19, no. 6, pp. 594-599, 2005. 

 

[10] N. Hogan, H.I. Krebs, B. Rohrer, J.J. Palazzolo, L. Dipietro, S.E. Fasoli, J. Stein, R. 

Hughes, W. R. Frontera, D. Lynch, and B.T. Volpe, “Motions or muscles? Some 

behavioral factors underlying robotic assistance of motor recovery,” Journal of 

Rehabilitation Research & Development, vol. 43, no. 5, pp. 605-618, Aug. 2006.   

 



 73 

[11] M. Ferraro, J.J. Palazzolo, J. Krol, H.I. Krebs, N. Hogan, B.T. Volpe, “Robot-aided 

sensorimotor arm training improves outcome in patients with chronic stroke,” 

Neurology, vol. 61, no. 11, pp. 1604-1607, 2003. 

 

[12] M.A. Dimyan and L.G. Cohen, “Neuroplasticity in the context of motor rehabilitation 

after stroke,” Nature Reviews, Neurology, vol. 7, no. 2, pp. 76-85, Feb. 2011.  

 

[13] R.J. Nudo, B.M. Wise, F. SiFuentes, and G.W. Milliken, “Neural Substrates for the 

Effects of Rehabilitative Training on Motor Recovery After Ischemic Infarct,” 

Science, vol. 272, pp.1791-1794, Jun. 1996.  

 

[14] H.I. Krebs, V. Volpe, and N. Hogan, “A working model of stroke recovery from 

rehabilitation robotics practitioners,” Journal of NeuroEngineering and 

Rehabilitation, Feb. 2009. 

 

[15] A.A. Blank, J.A. French, A.U. Pehlivan, and M.K. O’Malley, “Current Trends in 

Robot Assisted Upper-Limb Stroke Rehabilitation: Promoting Patient Engagement in 

Therapy,” Curr. Phys. Med. Rehabil. Rep., vol. 2, no. 3, pp. 184-195, Sept. 2014. 

 

[16] J.H. Morris, W.F. van, S. Joice, S.A. Ogston, I. Cole, and R.S. MacWalter, “A 

comparison of bilateral and unilateral upper-limb task training in early poststroke 

rehabilitation: a randomized control trial,” Archives of Physical Medicine 

Rehabilitation, vol. 89, no. 7, pp. 1237-1245, Jul. 2008. 

 

[17] F. Coupar, A. Pollock, F. van Wijck, J. Morris, and P. Langhorne, “Simultaneous 

bilateral training for improving arm function after stroke,” Cochrane Database Syst. 

Rev. (4): CD006432, Apr. 2010.  

 

[18] B. Cesqui, P. Tropea, S. Micera, and H.I. Krebs, “EMG-based pattern recognition 

approach in post stroke robot-aided rehabilitation: a feasibility study,” Journal of 

NeuroEngineering and Rehabilitation, vol. 10, no. 75, Jul. 2013.  

 

[19] A. Ramos-Murguialday, D. Broetz, M. Rea, L. Läer, O. Yilmaz, F.L. Brasil, G. 

Liberati, M.R. Curado, E. Garcia-Cossio, A. Vyziotis, W. Cho, M. Agostini, E. Soares, 

S. Soekadar, A. Caria, L.G. Cohen, N. Birbaumer, “Brain-machine interface in chronic 

stroke rehabilitation: a controlled study,” Annals of Neurology, vol. 74, no. 1, pp. 100-

108, Jul. 2013. 

 

[20] J.L. Sullivan, N.A. Bhagat, N. Yozbatiran, R. Paranjape, C.G. Losey, R.G. Grossman, 

J.L. Contreras-Vidal, G.E. Francisco, and M.K. O’Malley, “Improving Robotic Stroke 

Rehabilitation by Incorporating Neural Intent Detection: Preliminary Results from a 

Clinical Trial,” 2017 International Conference on Rehabilitation Robotics, pp. 122-

127, Jul. 2017.  

 



 74 

[21] E. Niedermeyer, and F.L. da Silva, Eds., Electroencephalography: basic principles, 

clinical applications, and related fields, Philadelphia, Pennsylvania: Lippincott 

Williams & Wilkins, 2005. 

 

[22] D. Novak and R. Riener, “Enhancing patient freedom in rehabilitation robotics using 

gaze-based intention detection,” IEEE Int. Conf. Rehabil. Robot, Jun. 2013.  

 

[23] J. Kim, C. Bulach, K.M. Richards, D. Wu, A.J. Butler, and M. Ghovanloo, “An 

Apparatuss for improving upper limb function by engaging synchronous tongue 

motion,” Proc. IEEE Neural Eng. Conf., pp. 1574-1577, Nov. 2013. 

 

[24] S. Ostadabbas, S. N. Housley, N. Sebkhi, K. Richards, D. Wu, Z. Zhang, M. G. 

Rodriguez, L. Warthen, C. Yarbrough, S. Balagaje, A. J. Butler, and M. Ghovanloo, 

“A Tongue-Controlled Robotic Rehabilitation: Preliminary Evidence for Function and 

Quality of Life Improvement in Stroke Survivors,” Journal of Rehabilitation Research 

& Development (JRRD), Jan. 2016.  

 

[25] E. Kandel, T. Jessel, J. Schwartz, S. Siegelbaum, and A. Hudsepeth, Principles of 

Neural Science, 5th ed., McGraw-Hill Education, 2012. 

 

[26]  Y. Danilov, K. Kaczmarek, K. Skinner, and M. Tyler, “Cranial Nerve Noninvasive 

Neuromodulation: New Approach to Neurorehabilitation,” Frontiers in 

Neuroengineering, Chapter 44, 2015. 

 

[27] R.D. Kent, “The uniqueness of speech among motor systems,” Clin. Linguit Phon. 

vol. 18, no. 6-8, pp. 495-505, 2004. 

 

[28] T. Uapathi, N. Venketasubramanian, K.J. Leck, C.B. Tan, W.L. Lee, H. Tjia, “Tongue 

deviation in acute ischaemic stroke: a study of supranuclear twelfth cranial nerve palsy 

in 300 stroke patients,” Cerebrovasc Dis. vol. 10, no. 6, pp. 462-465, 2000.  

 

[29] D.J. Mikulis, M.T. Jurkiewicz, W.E. Mcllroy, W.R. Staines, L. Rickards, S. Kalsi-

Ryan, A.P. Crawley, M.G. Fehlings, and M.C. Verrier, “Adaptation in the motor 

cortex following cervical spinal cord injury,” Neurology, vol. 58, no. 5, pp. 794-801, 

March 2002. 

 

[30] M. Funk, K. Lutz, S. Hotz-Boendermaker, M. Roos, P. Summer, P. Brugger, M.-C. 

Hepp-Reymond, and S.S. Kollias, “Sensorimotor tongue representation in individuals 

with unilateral upper limb amelia,” NeuroImage, vol. 43, no. 1, pp. 121-127, Oct. 

2008.  

 

[31] X. Huo, J. Wang, and M. Ghovanloo, “A Magneto-inductive sensor based wireless 

tongue-computer interface,” IEEE Trans Neural Systems and Rehab. Eng., vol. 16, 

no. 5, pp. 497-504, 2008.  

 



 75 

[32] E. Sadeghian, X. Huo, and M. Ghovanloo, “Command detection and classification in 

tongue drive assistive technology,” Proc. IEEE Eng. in Medicine and Biology 

Society, pp. 5465-5468, 2011.  

 

[33] J. Kim et al., “The Computer and Wheelchair Control for People with Spinal Cord 

Injury,” Sci Transl Med, vol. 5, no. 213, p. 213ra166, Nov. 2013, doi: 

10.1126/scitranslmed.3006296. 

 

[34] J. Harris and J. Eng, “Strength Training Improves Upper-Limb Function in 

Individuals with Stroke,” Stroke, [Online]. Available: 

https://stroke.ahajournals.org/content/41/1/136.full#ref-list-1, 2009.  

 

[35] X. Huo and M. Ghovanloo, “Evaluation of a wireless wearable tongue–computer 

interface by individuals with high-level spinal cord injuries,” J Neural Eng, vol. 7, 

no. 2, p. 26008, Apr. 2010, doi: 10.1088/1741-2560/7/2/026008. 

 

[36] X. Huo and M. Ghovanloo, “Tongue drive: a wireless tongue- operated means for 

people with severe disabilities to communicate their intentions,” IEEE 

Communications Magazine, vol. 50, no. 10, pp. 128–135, Oct. 2012, doi: 

10.1109/MCOM.2012.6316786. 

[37] Z. Zhang, S. Ostadabbas, M.N. Sahadat, N. Sebkhi, D. Wu, A.J. Butler, and M. 

Ghovanloo, “Enhancements of A Tongue-Operated Robotic Rehabilitation System,” 

Proc. IEEE Biomedical Circuits and Systems Conf., Atlanta, GA, 2015, pp. 25-28. 

 

[38] S. Ostadabbas et al., “Tongue-controlled robotic rehabilitation: A feasibility study in 

people with stroke,” J Rehabil Res Dev, vol. 53, no. 6, pp. 989–1006, 2016, doi: 

10.1682/JRRD.2015.06.0122. 

 

[39] S.N. Housely, D. Wu, K. Richards, S. Belagaje, M. Ghovanloo, and A.J. Butler, 

“Improving Upper Extremity Function and Quality of Life with a Tongue Driven 

Exoskeleton: A Pilot Study Quantifying Stroke Rehabilitation,” Stroke Research and 

Treatment, pp.13, 2017. 

 

[40] N. Nordin, S.Q. Xie, and B. Wünsche, “Assessment of movement quality in robot-

assisted upper limb rehabilitation after stroke: a review,” Journal of Neuroeng. 

Rehabil., vol. 11, no. 137, Sept. 2014. 

 

[41] P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt, “A 

survey on robotic devices for upper limb rehabilitation,” Journal of Neuroeng. 

Rehabil., vol. 11, no. 3, Jan. 2014.  

 

[42] S. Scott, “Apparatus for measuring and perturbing shoulder and elbow joint positions 

and torques during reaching,” Journal of Neuroscience Methods, vol. 89, no. 2, pp. 

119-127, Jul. 1999. 

 

https://stroke.ahajournals.org/content/41/1/136.full#ref-list-1
https://doi.org/10.1088/1741-2560/7/2/026008
https://doi.org/10.1109/MCOM.2012.6316786


 76 

[43] S.P. Dukelow, T.M. Herter, S.D. Bagg, and S.H. Scott, “The independence of 

deficits in position sense and visually guided reaching following stroke,” Journal of 

Neuroeng. Rehabil., vol. 9, no. 72, Oct. 2012.  

 

[44] J. Kim, X. Huo, J. Minocha, J. Holbrook, A. Laumann, and M. Ghovanloo, 

“Evaluation of a Smartphone Platform as a Wireless Interface Between Tongue 

Drive System and Electric-Powered Wheelchairs,” IEEE Transactions on 

Biomedical Engineering, vol. 59, no. 6, pp. 1787–1796, Jun. 2012, doi: 

10.1109/TBME.2012.2194713. 

 

[45] P.M. Fitts and J.R. Peterson, “Information Capacity of Discrete Motor Responses,” 

Journal of Experimental Psychology, vol. 67, no. 2, pp. 103-112, Feb. 1964.  

 

[46] I. S. MacKenzie, “Fitts’ law as a research and design tool in human-computer 

interaction,” Hum.-Comput. Interact., vol. 7, no. 1, pp. 91–139, Mar. 1992, doi: 

10.1207/s15327051hci0701_3. 

 

[47] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (Task Load Index): 

Results of Empirical and Theoretical Research,” in Advances in Psychology, vol. 52, 

P. A. Hancock and N. Meshkati, Eds. North-Holland, 1988, pp. 139–183. 

 

[48] A.R. Fugl-Meyer, L. Jääskö, I. Leyman, S. Olsson, and S. Steglind, “The post-stroke 

hemiplegic patient. 1. a method for evaluation of physical performance,” 

Scandinavian Journal of Rehabilitation Medicine, vol. 7, no. 1, pp. 13-31, Jan. 1975.   

 

[49] S. J. Page, G. D. Fulk, and P. Boyne, “Clinically Important Differences for the 

Upper-Extremity Fugl-Meyer Scale in People With Minimal to Moderate 

Impairment Due to Chronic Stroke,” Phys Ther, vol. 92, no. 6, pp. 791–798, Jun. 

2012, doi: 10.2522/ptj.20110009. 

 

[50] N. A. Bernstein, The Coordination and Regulation of Movements. Pergamon Press, 

1967. 

 

[51] N. A. Bernstein, Bernstein’s construction of movement. M. L. Latash Ed, Routledge, 

in press.  

 

[52] D. J. Berger and A. d’Avella, “Effective force control by muscle synergies,” Front 

Comput Neurosci, vol. 8, Apr. 2014, doi: 10.3389/fncom.2014.00046. 

 

[53] F. Lacquaniti and J. Soechting, “Coordination of arm and wrist motion during a 

reaching task,” J Neurosci, vol. 2, no. 4, pp. 399–408, Apr. 1982, doi: 

10.1523/JNEUROSCI.02-04-00399.1982. 

 

[54] T. Flash and N. Hogan, “The coordination of arm movements: an experimentally 

confirmed mathematical model,” J. Neurosci., vol. 5, no. 7, pp. 1688–1703, Jul. 

1985, doi: 10.1523/JNEUROSCI.05-07-01688.1985. 



 77 

 

[55] B. Prilutsky, D. Ashley, L. VanHiel, L. Harley, J. Tidwell, and D. Backus, “Motor 

Control and Motor Redundancy in the Upper Extremity: Implications for 

Neurorehabilitation,” Topics in Spinal Cord Injury Rehabilitation, vol. 17, no. 1, pp. 

7–15, Jul. 2011, doi: 10.1310/sci1701-07. 

 

[56] Y. P. Ivanenko, G. Cappellini, N. Dominici, R. E. Poppele, and F. Lacquaniti, 

“Coordination of Locomotion with Voluntary Movements in Humans,” J Neurosci, 

vol. 25, no. 31, pp. 7238–7253, Aug. 2005, doi: 10.1523/JNEUROSCI.1327-

05.2005. 

 

[57] S. F. Giszter, “MOTOR PRIMITIVES - New Data and Future Questions,” Curr Opin 

Neurobiol, vol. 33, pp. 156–165, Aug. 2015, doi: 10.1016/j.conb.2015.04.004. 

 

[58] M. P, “Spatial control of arm movements.,” Exp Brain Res, vol. 42, no. 2, pp. 223–

227, Jan. 1981, doi: 10.1007/bf00236911. 

 

[59] F. Lacquaniti, C. Terzuolo, and P. Viviani, “The law relating the kinematic and 

figural aspects of drawing movements,” Acta Psychologica, vol. 54, no. 1, pp. 115–

130, Oct. 1983, doi: 10.1016/0001-6918(83)90027-6. 

 

[60] P. M. Fitts, “The information capacity of the human motor system in controlling the 

amplitude of movement,” Journal of Experimental Psychology, vol. 47, no. 6, pp. 

381–391, 1954, doi: 10.1037/h0055392. 

 

[61] M. J. E. Richardson and T. Flash, “Comparing Smooth Arm Movements with the 

Two-Thirds Power Law and the Related Segmented-Control Hypothesis,” J. 

Neurosci., vol. 22, no. 18, pp. 8201–8211, Sep. 2002, doi: 10.1523/JNEUROSCI.22-

18-08201.2002. 

 

[62] D. A. Winter, Biomechanics and motor control of human movement, 4th ed. 

Hoboken, N.J: Wiley, 2009. 

 

[63] C. G. Atkeson and J. M. Hollerbach, “Kinematic features of unrestrained vertical 

arm movements,” J. Neurosci., vol. 5, no. 9, pp. 2318–2330, Sep. 1985, doi: 

10.1523/JNEUROSCI.05-09-02318.1985. 

 

[64] “Reaction time - Human Homo sapiens - BNID 110799.” 

https://bionumbers.hms.harvard.edu/bionumber.aspx?s=n&v=2&id=110799 

(accessed Jul. 07, 2020). 

 

[65] S. Mazzoleni, M. Coscia, G. Rossi, S. Aliboni, F. Posteraro, and M.C. Carrozza, 

“Effects of upper limb robot-mediated therapy on paretic upper limb in chronic 

hemiparetic subjects: a biomechanical and EEG-based approach for functional 

assessment,” 11th International Conference on Rehabilitation Robotics, Kyoto, 

Japan, June 23-26, 2009. 



 78 

 

[66] J. Roh, W.Z. Rymer, and R.F. Beer, “Evidence for altered upper extremity muscle 

synergies in chronic stroke survivors with mild and moderate impairment,” Frontiers 

in Human Neuroscience, vol. 9, no. 6, Feb. 2011. 

 

[67] S. Solnik, P. DeVita, P. Rider, B. Long, and T. Hortobágyi, “Teager–Kaiser 

Operator improves the accuracy of EMG onset detection independent of signal-to-

noise ratio,” Acta Bioeng Biomech, vol. 10, no. 2, pp. 65–68, 2008. 

 

[68] G. Pfurtscheller and F. H. Lopes Da Silva, “EEG Event-Related Desynchronization 

(ERD) and Event-Related Synchronization (ERS),” in Niedermeyer’s 

Electroencephalography: Basic Principles, Clinical Applications, and Related 

Fields, 6th ed., 2010, pp. 935–948. 

 

[69] William Rose, Electromyogram analysis, 

https://www1.udel.edu/biology/rosewc/kaap686/notes/EMG%20analysis.pdf 

(accessed Jun. 27, 2020) 

 

[70] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of 

single-trial EEG dynamics including independent component analysis,” J. Neurosci. 

Methods, vol. 134, no. 1, pp. 9–21, Mar. 2004, doi: 10.1016/j.jneumeth.2003.10.009. 

 

[71] A. Farajidavar, J. M. Block, and M. Ghovanloo, “A comprehensive method for 

magnetic sensor calibration: A precise system for 3-D tracking of the tongue 

movements,” in 2012 Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society, Aug. 2012, pp. 1153–1156, doi: 

10.1109/EMBC.2012.6346140. 

 

[72] A. Ayala-Acevedo and M. Ghovanloo, “Smartphone-Compatible Robust 

Classification Algorithm for the Tongue Drive System,” Proc. IEEE Biomedical 

Circuits and Systems Conf., Lausanne, 2014, pp. 161-164.  

 

[73] C. Chang and C. Lin, “LIBSVM: A library for Support Vector Machines,” ACM 

Transactions on Intelligent System and Technology (TST), vol. 2, no. 27, Apr. 2011.  

 

[74] F. Chu, R. Xu, Z. Zhang, P.A. Vela, and M. Ghovanloo, “The Helping Hand: An 

Assistive Manipulation Framework Using Augmented Reality and Tongue-Drive 

Interfaces,” 2018 40th Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC), Honolulu, HI, USA, pp. 2158-2161, July 18-

21, 2018.  

 


