5,538 research outputs found

    Combining case-based reasoning systems and support vector regression to evaluate the atmosphere–ocean interaction

    Get PDF
    This work presents a system for automatically evaluating the interaction that exists between the atmosphere and the ocean’s surface. Monitoring and evaluating the ocean’s carbon exchange process is a function that requires working with a great amount of data: satellite images and in situ vessel’s data. The system presented in this study focuses on computational intelligence. The study presents an intelligent system based on the use of case-based reasoning (CBR) systems and offers a distributed model for such an interaction. Moreover, the system takes into account the fact that the working environment is dynamic and therefore it requires autonomous models that evolve over time. In order to resolve this problem, an intelligent environment has been developed, based on the use of CBR systems, which are capable of handling several goals, by constructing plans from the data obtained through satellite images and research vessels, acquiring knowledge and adapting to environmental changes. The artificial intelligence system has been successfully tested in the North Atlantic Ocean, and the results obtained will be presented in this study

    Hybrid system to analyze user's behaviour

    Get PDF
    The evolution of ambient intelligence systems has allowed for the development of adaptable systems. These systems trace user's habits in an automatic way and act accordingly, resulting in a context aware system. The goal is to make these systems adaptable to the user's environment, without the need for their direct interaction. This paper proposes a system that can learn from users' behavior. In order for the system to perform effectively, an adaptable multi agent system is proposed and the results are compared with the use of several classifiers

    Large-scale climatic teleconnection for predicting extreme hydro-climatic events in southern Japan

    Get PDF
    Coordinator: Sameh KantoushPrnicipial Invistegator: Vahid Nouran

    Automatic UAVs path planning

    Get PDF
    My work at the University of Salamanca took place between 14th September 2017 and 1st December 2017. During these months, I have had the opportunity to work with the BISITE Research Group, attend different congresses held in Spain and learn new computer techniques related to artificial intelligence. The work has been focused on the development of software that implements algorithms for the control of UAVs (Unmanned Aerial Vehicles) autonomously. The algorithms are capable of guiding each UAV in such a way that they make an optimal route when travelling the area covered by a perimeter introduced by the user. As an important part of the algorithms, it is emphasized that when calculating changes of direction in the route, it is necessary to take into account the type of camera and its opening. This ensures that the captured images do not overlap or overlap with the minimum required to avoid spaces in 3D reconstruction software. As part of the work, the bibliography indicated in the References section has been used

    Artificial Intelligence techniques for big data analysis

    Get PDF
    During my stay in Salamanca (Spain), I was fortunate enough to participate in the BISITE Research Group of the University of Salamanca. The University of Salamanca is the oldest university in Spain and in 2018 it celebrates its 8th centenary. As a computer science researcher, I participated in one of the many international projects that the research group has active, especially in big data analysis using Artificial Intelligence (AI) techniques. AI is one of BISITE's main lines of research, along with bioinformatics and robotics. In addition, they combine all these fields working with Internet of Things (IoT) in all its parts: sensors, communications, data analysis using Big Data techniques and visualization software with the latest technologies

    Discovering Causal Relations and Equations from Data

    Full text link
    Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws and principles that are invariant, robust and causal explanations of the world has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventional studies in the system under study. With the advent of big data and the use of data-driven methods, causal and equation discovery fields have grown and made progress in computer science, physics, statistics, philosophy, and many applied fields. All these domains are intertwined and can be used to discover causal relations, physical laws, and equations from observational data. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of Physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for observational causal and equation discovery, point out connections, and showcase a complete set of case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is being revolutionised with the efficient exploitation of observational data, modern machine learning algorithms and the interaction with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.Comment: 137 page

    Enhancing the usability of Satellite Earth Observations through Data Driven Models. An application to Sea Water Quality

    Get PDF
    Earth Observation from satellites has the potential to provide comprehensive, rapid and inexpensive information about land and water bodies. Marine monitoring could gain in effectiveness if integrated with approaches that are able to collect data from wide geographic areas, such as satellite observation. Integrated with in situ measurements, satellite observations enable to extend the punctual information of sampling campaigns to a synoptic view, increase the spatial and temporal coverage, and thus increase the representativeness of the natural diversity of the monitored water bodies, their inter-annual variability and water quality trends, providing information to support EU Member States’ action plans. Turbidity is one of the optically active water quality parameters that can be derived from satellite data, and is one of the environmental indicator considered by EU directives monitoring programmes. Turbidity is a visual property of water, related to the amount of light scattered by particles in water, and it can act as simple and convenient indirect measure of the concentration of suspended solids and other particulate material. A review of the state-of-the-art shows that most traditional methods to estimate turbidity from optical satellite images are based on semi-empirical models relying on few spectral bands. The choice of the most suitable bands to be used is often site and season specific, as it is related to the type and concentration of suspended particles. When investigating wide areas or long time series that include different optical water types, the application of machine learning algorithms seems to be promising due to their flexibility, responding to the need of a model that can adapt to varying water conditions with smooth transition, and their ability to exploit the wealth of spectral information. Moreover, machine learning models have shown to be less affected by atmospheric and other background factors. Atmospheric correction for water leaving reflectance, in fact, still remains one of the major challenges in aquatic remote sensing. The use of machine learning for remotely sensed water quality estimation has spread in recent years thanks to the advances in algorithm development, computing power, and availability of higher spatial resolution data. Among all existing algorithms, the choice of the complexity of the model derives from the nature and number of available data. The present study explores the use of Sentinel-2 MultiSpectral Instrument (MSI) Level-1C Top of Atmosphere spectral radiance to derive water turbidity, through application of a Polynomial Kernel Regularized Least Squares regression. This algorithms is characterized by a simple model structure, good generalization, global optimal solution, especially suitable for non-linear and high dimension problems. The study area is located in the North Tyrrhenian Sea (Italy), covering a coastline of about 100 km, characterized by a varied shoreline, embracing environments worthy of protection and valuable biodiversity, but also relevant ports, and three main river flow and sediment discharge. The coastal environment in this area has been monitored since 2001, according to the 2000/60/EC Water Framework Directive, and in 2008 EU Marine Strategy Framework Directive 2008/56/EC further strengthened the investigation in the area. A dataset of combination of turbidity measurements, expressed in nephelometric turbidity units (NTU), and values of the 13 spectral bands in the pixel corresponding to the sample location was used to calibrate and validate the model. The developed turbidity model shows good agreement of the estimated satellite-derived surface turbidity with the measured one, confirming that the use of ML techniques allows to reach a good accuracy in turbidity estimation from satellite Top of Atmosphere reflectance. Comparison between turbidity estimates obtained from the model with turbidity data from Copernicus CMEMS dataset named ’Mediterranean Sea, Bio-Geo-Chemical, L3, daily observation’, which was used as benchmark, produced consistent results. A band importance analysis revealed the contribution of the different spectral bands and the main role of the red-edge range. Finally, turbidity maps from satellite imagery were produced for the study area, showing the ability of the model to catch extreme events and, overall, how it represents an important tool to improve our understanding of the complex factors that influence water quality in our oceans

    Estimation of Forest Biomass and Faraday Rotation using Ultra High Frequency Synthetic Aperture Radar

    Get PDF
    Synthetic Aperture Radar (SAR) data in the Ultra High Frequency (UHF; 300 MHz – 3 GHz)) band have been shown to be strongly dependent of forest biomass, which is a poorly estimated variable in the global carbon cycle. In this thesis UHF-band SAR data from the fairly flat hemiboreal test site Remningstorp in southern Sweden were analysed. The data were collected on several occasions with different moisture conditions during the spring of 2007. Regression models for biomass estimation on stand level (0.5-9 ha) were developed for each date on which SAR data were acquired. For L-band (centre frequency 1.3 GHz) the best estimation model was based on HV-polarized backscatter, giving a root mean squared error (rmse) between 31% and 46% of the mean biomass. For P-band (centre frequency 340 MHz), regression models including HH, HV or HH and HV backscatter gave an rmse between 18% and 27%. Little or no saturation effects were observed up to 290 t/ha for P-band. A model based on physical-optics has been developed and was used to predict HH-polarized SAR data with frequencies from 20 MHz to 500 MHz from a set of vertical trunks standing on an undulating ground surface. The model shows that ground topography is a critical issue in SAR imaging for these frequencies. A regression model for biomass estimation which includes a correction for ground slope was developed using multi-polarized P-band SAR data from Remningstorp as well as from the boreal test site Krycklan in northern Sweden. The latter test site has pronounced topographic variability. It was shown that the model was able to partly compensate for moisture variability, and that the model gave an rmse of 22-33% when trained using data from Krycklan and evaluated using data from Remningstorp. Regression modelling based on P-band backscatter was also used to estimate biomass change using data acquired in Remningstorp during the spring 2007 and during the fall 2010. The results show that biomass change can be measured with an rmse of about 15% or 20 tons/ha. This suggests that not only deforestation, but also forest growth and degradation (e.g. thinning) can be measured using P-band SAR data. The thesis also includes result on Faraday rotation, which is an ionospheric effect which can have a significant impact on spaceborne UHF-band SAR images. Faraday rotation angles are estimated in spaceborne L-band SAR data. Estimates based on distributed targets and calibration targets with high signal to clutter ratios are found to be in very good agreement. Moreover, a strong correlation with independent measurements of Total Electron Content is found, further validating the estimates

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF
    • 

    corecore