688 research outputs found

    Lightly supervised acquisition of named entities and linguistic patterns for multilingual text mining

    Get PDF
    Named Entity Recognition and Classification (NERC) is an important component of applications like Opinion Tracking, Information Extraction, or Question Answering. When these applications require to work in several languages, NERC becomes a bottleneck because its development requires language-specific tools and resources like lists of names or annotated corpora. This paper presents a lightly supervised system that acquires lists of names and linguistic patterns from large raw text collections in western languages and starting with only a few seeds per class selected by a human expert. Experiments have been carried out with English and Spanish news collections and with the Spanish Wikipedia. Evaluation of NE classification on standard datasets shows that NE lists achieve high precision and reveals that contextual patterns increase recall significantly. Therefore, it would be helpful for applications where annotated NERC data are not available such as those that have to deal with several western languages or information from different domains.This researchwork has been supported by the Regional Government of Madrid under the Research Network MA2VICMR (S2009/TIC-1542), by the Spanish Ministry of Education under the project MULTIMEDICA (TIN2010-20644-C03-01) and by the Spanish Center for Industry Technological Development (CDTI, Ministry of Industry, Tourism and Trade), through the BUSCAMEDIA Project (CEN-20091026)

    Access to recorded interviews: A research agenda

    Get PDF
    Recorded interviews form a rich basis for scholarly inquiry. Examples include oral histories, community memory projects, and interviews conducted for broadcast media. Emerging technologies offer the potential to radically transform the way in which recorded interviews are made accessible, but this vision will demand substantial investments from a broad range of research communities. This article reviews the present state of practice for making recorded interviews available and the state-of-the-art for key component technologies. A large number of important research issues are identified, and from that set of issues, a coherent research agenda is proposed

    Contributions to information extraction for spanish written biomedical text

    Get PDF
    285 p.Healthcare practice and clinical research produce vast amounts of digitised, unstructured data in multiple languages that are currently underexploited, despite their potential applications in improving healthcare experiences, supporting trainee education, or enabling biomedical research, for example. To automatically transform those contents into relevant, structured information, advanced Natural Language Processing (NLP) mechanisms are required. In NLP, this task is known as Information Extraction. Our work takes place within this growing field of clinical NLP for the Spanish language, as we tackle three distinct problems. First, we compare several supervised machine learning approaches to the problem of sensitive data detection and classification. Specifically, we study the different approaches and their transferability in two corpora, one synthetic and the other authentic. Second, we present and evaluate UMLSmapper, a knowledge-intensive system for biomedical term identification based on the UMLS Metathesaurus. This system recognises and codifies terms without relying on annotated data nor external Named Entity Recognition tools. Although technically naive, it performs on par with more evolved systems, and does not exhibit a considerable deviation from other approaches that rely on oracle terms. Finally, we present and exploit a new corpus of real health records manually annotated with negation and uncertainty information: NUBes. This corpus is the basis for two sets of experiments, one on cue andscope detection, and the other on assertion classification. Throughout the thesis, we apply and compare techniques of varying levels of sophistication and novelty, which reflects the rapid advancement of the field

    Location Reference Recognition from Texts: A Survey and Comparison

    Full text link
    A vast amount of location information exists in unstructured texts, such as social media posts, news stories, scientific articles, web pages, travel blogs, and historical archives. Geoparsing refers to recognizing location references from texts and identifying their geospatial representations. While geoparsing can benefit many domains, a summary of its specific applications is still missing. Further, there is a lack of a comprehensive review and comparison of existing approaches for location reference recognition, which is the first and core step of geoparsing. To fill these research gaps, this review first summarizes seven typical application domains of geoparsing: geographic information retrieval, disaster management, disease surveillance, traffic management, spatial humanities, tourism management, and crime management. We then review existing approaches for location reference recognition by categorizing these approaches into four groups based on their underlying functional principle: rule-based, gazetteer matching–based, statistical learning-–based, and hybrid approaches. Next, we thoroughly evaluate the correctness and computational efficiency of the 27 most widely used approaches for location reference recognition based on 26 public datasets with different types of texts (e.g., social media posts and news stories) containing 39,736 location references worldwide. Results from this thorough evaluation can help inform future methodological developments and can help guide the selection of proper approaches based on application needs

    Personal Knowledge Models with Semantic Technologies

    Get PDF
    Conceptual Data Structures (CDS) is a unified meta-model for representing knowledge cues in varying degrees of granularity, structuredness, and formality. CDS consists of: (1) A simple, expressive data-model; (2) A relation ontology which unifies the relations found in cognitive models of personal knowledge management tools, e. g., documents, mind-maps, hypertext, or semantic wikis. (3) An interchange format for structured text. Implemented prototypes have been evaluated

    Can machines sense irony? : exploring automatic irony detection on social media

    Get PDF

    Ripple-down rules based open information extraction for the web documents

    Full text link
    The World Wide Web contains a massive amount of information in unstructured natural language and obtaining valuable information from informally written Web documents is a major research challenge. One research focus is Open Information Extraction (OIE) aimed at developing relation-independent information extraction. Open Information Extraction systems seek to extract all potential relations from the text rather than extracting few pre-defined relations. Previous machine learning-based Open Information Extraction systems require large volumes of labelled training examples and have trouble handling NLP tools errors caused by Web s informality. These systems used self-supervised learning that generates a labelled training dataset automatically using NLP tools with some heuristic rules. As the number of NLP tool errors increase because of the Web s informality, the self-supervised learning-based labelling technique produces noisy label and critical extraction errors. This thesis presents Ripple-Down Rules based Open Information Extraction (RDROIE) an approach to Open Information Extraction that uses Ripple-Down Rules (RDR) incremental learning technique. The key advantages of this approach are that it does not require labelled training dataset and can handle the freer writing style that occurs in Web documents and can correct errors introduced by NLP tools. The RDROIE system, with minimal low-cost rule addition, outperformed previous OIE systems on informal Web documents

    Improving Collection Understanding for Web Archives with Storytelling: Shining Light Into Dark and Stormy Archives

    Get PDF
    Collections are the tools that people use to make sense of an ever-increasing number of archived web pages. As collections themselves grow, we need tools to make sense of them. Tools that work on the general web, like search engines, are not a good fit for these collections because search engines do not currently represent multiple document versions well. Web archive collections are vast, some containing hundreds of thousands of documents. Thousands of collections exist, many of which cover the same topic. Few collections include standardized metadata. Too many documents from too many collections with insufficient metadata makes collection understanding an expensive proposition. This dissertation establishes a five-process model to assist with web archive collection understanding. This model aims to produce a social media story – a visualization with which most web users are familiar. Each social media story contains surrogates which are summaries of individual documents. These surrogates, when presented together, summarize the topic of the story. After applying our storytelling model, they summarize the topic of a web archive collection. We develop and test a framework to select the best exemplars that represent a collection. We establish that algorithms produced from these primitives select exemplars that are otherwise undiscoverable using conventional search engine methods. We generate story metadata to improve the information scent of a story so users can understand it better. After an analysis showing that existing platforms perform poorly for web archives and a user study establishing the best surrogate type, we generate document metadata for the exemplars with machine learning. We then visualize the story and document metadata together and distribute it to satisfy the information needs of multiple personas who benefit from our model. Our tools serve as a reference implementation of our Dark and Stormy Archives storytelling model. Hypercane selects exemplars and generates story metadata. MementoEmbed generates document metadata. Raintale visualizes and distributes the story based on the story metadata and the document metadata of these exemplars. By providing understanding immediately, our stories save users the time and effort of reading thousands of documents and, most importantly, help them understand web archive collections
    corecore