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ABSTRACT

IMPROVING COLLECTION UNDERSTANDING FOR
WEB ARCHIVES WITH STORYTELLING:

SHINING LIGHT INTO
DARK AND STORMY ARCHIVES

Shawn M. Jones
Old Dominion University, 2021
Director: Dr. Michael L. Nelson

Collections are the tools that people use to make sense of an ever-increasing number of

archived web pages. As collections themselves grow, we need tools to make sense of them. Tools

that work on the general web, like search engines, are not a good fit for these collections because

search engines do not currently represent multiple document versions well. Web archive collec-

tions are vast, some containing hundreds of thousands of documents. Thousands of collections

exist, many of which cover the same topic. Few collections include standardized metadata. Too

many documents from too many collections with insufficient metadata makes collection under-

standing an expensive proposition.

This dissertation establishes a five-process model to assist with web archive collection under-

standing. This model aims to produce a social media story – a visualization with which most web

users are familiar. Each social media story contains surrogates which are summaries of individual

documents. These surrogates, when presented together, summarize the topic of the story. After

applying our storytelling model, they summarize the topic of a web archive collection.

We develop and test a framework to select the best exemplars that represent a collection. We

establish that algorithms produced from these primitives select exemplars that are otherwise undis-

coverable using conventional search engine methods. We generate story metadata to improve the

information scent of a story so users can understand it better. After an analysis showing that ex-

isting platforms perform poorly for web archives and a user study establishing the best surrogate

type, we generate document metadata for the exemplars with machine learning. We then visual-

ize the story and document metadata together and distribute it to satisfy the information needs of

multiple personas who benefit from our model.

Our tools serve as a reference implementation of our Dark and Stormy Archives storytelling

model. Hypercane selects exemplars and generates story metadata. MementoEmbed generates

document metadata. Raintale visualizes and distributes the story based on the story metadata and

the document metadata of these exemplars. By providing understanding immediately, our stories



save users the time and effort of reading thousands of documents and, most importantly, help them

understand web archive collections.
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“I rather think that archives exist to keep things safe, but not secret.”

– Kevin Young
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CHAPTER 1

INTRODUCTION

Natasha is a historian focusing on how disasters shape cultures. She is currently studying the South

Louisiana Flood of 2016. Even though resources, like Wikipedia [323], exist that summarize the

event, Natasha is more interested in the news reporting at the time of the event [100, 104, 235].

Attempting to discover contemporary news articles is difficult. Most authors update news articles

with the most current information. As articles age, they slide further down in search engine results

[246], becoming more challenging to discover. Fortunately, Natasha knows about web archives.

Web archives capture the content of web pages as they existed at a specific point in time. Natasha

could search these archives to find news stories about this flood, but others had the foresight to

create themed web archive collections of news articles and other web pages that existed at the time

of the flood. Archivists created these collections with Archive-It, a web archive collection service

initiated by the Internet Archive [217].

With Archive-It, a curator can select web pages, or seeds, and then instruct the system to cap-

ture versions of these seeds as mementos. These collections are a fantastic resource for Natasha.

Each memento is an observation from a specific time and hence is a version of the seed. There

can be many mementos per seed. As seen in Figure 1, Archive-It has two collections about the

South Louisiana Flood of 2016. Using Archive-It’s user interface, she sees that one collection has

26 seeds and the other has 68. Due to time constraints, she can only choose one for her research.

To understand the difference between these collections, she would need to review the hundreds of

mementos generated from these seeds. Hers is not the only case where multiple collections exist

for the same topic. As shown in Figure 2, there are at least 44 collections on Archive-It related

to “human rights”. Choosing the wrong collection will result in time wasted. Which should she

review?

Rustam is a journalist who needs to study the events of the Boston Marathon Bombing as

they unfolded. Rustam is working with an Archive-It collection specifically about the event. He is

interested in how specific pages changed throughout the event. Olayinka has a similar problem but

in a different dimension. She is reviewing news and wants to know what different news sources

discussed at a given date and time. Where Rustam wants to see how a page changed over time,

Olayinka wants to understand how news articles covered a specific timespan. How do they do

this? How do they not only select these items but also visualize them for themselves and others?
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(a) Archive-It collection 7755: South Louisiana Flood of 2016

Fig. 1. Archive-It has two collections – with identifiers 7755 and 7760 – about the Louisiana

Flood of 2016 - which one is right for Natasha? (Screenshots taken in June 2021.)
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(b) Archive-It collection 7760: South Louisiana Flood - 2016

Fig. 1. (Continued) Archive-It has two collections – with identifiers 7755 and 7760 – about the

Louisiana Flood of 2016 - which one is right for Natasha? (Screenshots taken in June 2021.)
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Fig. 2. There are 44 results (magnified for emphasis) for a search of “human rights” in

Archive-It, meaning that there are 44 collections, each consisting of many seeds and mementos,

to review for this query. (Screenshot taken May 2021.)
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These researchers are not the only ones who need to interpret web archive collections. Elbert

is an archivist who wants to promote his collection to help people like Natasha, Rustam, and

Olayinka notice it and use it for their research. He wants to create a visualization that is enticing

while ensuring that people understand the collection with minimal time and effort. Ling is an

archivist who has inherited a web archive collection from another archivist. Like the collection

shown in Figure 3, it contains thousands of documents, but no metadata. She needs to know what

it contains so she can make decisions about it. How can these archivists meet their goals?

All of these people require a faster method of conveying collection understanding. A user

could try to find individual pages on their topic in a general web archive, like the Internet Archive.

Curators provide the benefit of bounding a set of mementos into a themed collection, imbuing the

whole with meaning, thus saving these users time by reducing the number of potential resources

to review. The curator of a web archive collection is not necessarily the only user of a web archive

collection. The continued value of web archive collections comes when others like Natasha, Rus-

tam, Olayinka, Elbert, and Ling can reuse these same collections for their work. How do these

researchers and archivists process and present their collections so that they can meet their goals?

For other works, like books or museum pieces, metadata is a useful tool for evaluating an

item. Metadata exists for Archive-It collections as magnified in Figure 4. Different curators

create different web archive collections for different purposes. Some curators create collections to

fulfill regulatory requirements, while others are trying to document unfolding events in real-time.

The metadata is inconsistently applied, likely due to differences in content standards and rules of

interpretation among these curators. A user cannot reliably compare metadata fields to understand

the differences between collections. To provide context for each seed, a curator must generate

metadata for that seed. For collections with many seeds, manually generating this metadata is

a taxing and potentially unrealistic proposition. Archive-It reflects this. As shown in Figure 5,

collections consisting of hundreds of thousands of seeds often contain no seed level metadata. As

the need for metadata rises (i.e., more seeds), its availability falls, likely due to the effort needed

to create it manually.

If metadata is valuable, then why not have someone generate metadata for these collections

sometime later? In addition to the issues of scale within a collection, as of June 2021, there

were more than 14,000 collections on Archive-It. Furthermore, archivists create new Archive-It

collections every year, as shown in Figure 6, and the rate of creation is accelerating.

Natasha is faced with the problem of understanding if a single collection is worth her time.

Rustam and Olayinka want to view a specific aspect of interest to them. All are faced with collec-

tions consisting of thousands of documents and the vastness of Archive-It’s 14,000+ collections.
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Fig. 3. The Government of Canada Publications consists of 339,166 seeds (magnified for

emphasis) and some seeds have multiple mementos. There is also no metadata supplied on this

collection. Human review of this collection will require a lot of time. (Screenshot taken May

2021.)
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Fig. 4. This screenshot of Archive-It collection 4515 displays its collection-wide metadata,

magnified for emphasis. (Screenshot taken in 2018.)
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Fig. 5. A visualization of metadata field usage across all Archive-It seeds [165]. Generally, as the

number of seeds in a collection goes up, the amount of metadata available goes down. Thus, the

more metadata a reader needs to understand a collection, the less they have available.
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Fig. 7. Archive-It Collection 3649, Boston Marathon Bombing 2013, visualized using the now

defunct storytelling service Storify as part AlNoamany’s work [11]. (Screenshot taken in 2017.)
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Elbert wants to help people like Natasha find and understand his collections so that they can make

these decisions. Ling wants to understand the colossal collection that she has inherited. None

can rely upon existing metadata because it is inconsistently applied, and human review of the

mementos within a collection is an expensive proposition.

To assist web archive collection users, we desire to automatically generate summaries of col-

lections, similar to Luhn’s pioneering work on the automatic generation of abstracts [206]. In our

case, our summaries do not attempt to provide a text abstract but a visualization of the collection.

We aim to surface mementos that represent the collection, exemplar mementos, rather than just

sentences, as elements for our summarization. To borrow concepts from information foraging the-

ory [266], we aspire to maximize the value of the knowledge gained from our collection summary

while minimizing the cost of interacting with the collection. Users rely upon textual and visual

clues to determine if a resource fits their needs. A resource with textual and visual clues indicating

that it meets a user’s needs is said to have good information scent [56]. Thus, if the collection

meets a particular user’s needs, we want to ensure that the exemplar mementos chosen for our

summarization and their visualizations have good information scent.

Once we have the best mementos representing a collection, we apply social media storytelling
to provide a summary of the collection, as pioneered with web archives by AlNoamany [11].

Social media storytelling is a method developed by the now-defunct service Storify [289]. It

provides an interface that is familiar to most users of the web. With this form of storytelling, the

platform renders individual web pages as surrogates. Each surrogate provides a summary of a

given page. Groups of surrogates summarize a topic. We would represent a collection by a single

story that summarizes that collection using these surrogates, creating a summary of summaries.

For example, Figure 7 shows how a user reduced Archive-It Collection 3649 about the Boston

Marathon Bombing to a set of exemplar mementos which are themselves visualized as a set of

surrogates, providing a story from this collection. Researchers should be able to glance at these

stories and understand the collection that they represent.

Figure 8 displays our model of five processes that one must address to conduct storytelling

with corpora. According to AlNoamany et al. [9] popular stories contain a median of 28 doc-

uments. Thus, for a collection of more than 28 mementos, an automated process or a human

must select exemplars from the larger corpus. Additionally, to increase their information scent,

authors often augment their stories with metadata, so we generate story metadata for the story.

Story metadata can include general metadata from the overall collection (e.g., title, collection cre-

ator, creation date). It can also refer to metadata generated from the exemplars as a group (e.g.,

overall best story image, number of exemplars, most frequent terms). Storytelling relies heavily
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Fig. 8. Our five processes for storytelling with a corpus.

Fig. 9. A social card from Figure 7, annotated to indicate the metadata concepts applied to create

it.
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upon surrogates to convey the topic of the story, so we must generate document metadata (e.g.,

title, description, publisher) for each exemplar. Humans can supply this document metadata, or

an application might automatically generate it. For individual documents, we can visualize the

document metadata as a surrogate, like the social card shown in Figure 9 that contains a title,

description, publication date, source, source favicon, and striking image. With the story metadata

and individual exemplars’ metadata, we can then visualize the story. For an overall story, we

must visualize not just individual surrogates, but story metadata as well. For example, in Figure

7 we see that the author opted to visualize the story by placing the story metadata (i.e., title) at

the top of the page. The story author then formatted the exemplars’ metadata as a series of social

cards rendering the metadata of titles, descriptions, striking images, sources, and dates. Once vi-

sualized, a service or individual must distribute the story so that others can see the visualization

and get the gist of what is in the collection.

Web archive collections have multiple dimensions with which we can tell stories: pages and

times. These dimensions affect how we select our exemplars. For example, someone interested

in summarizing the collection as a whole is interested in a story with sliding pages and sliding
times (SPST). With SPST stories, any page from any time covered by the collection is a candidate

exemplar. We can also fix a particular aspect of the collection. For example, if we are only

interested in a given page, then our process for selecting exemplars is reduced to that one page but

may change in time. From here, we can tell a story with a fixed page, but sliding times (FPST).
Likewise, we can reduce our candidate exemplars to a specific time, but allow any page, telling

a story with a sliding page, but fixed time (SPFT). Table 1 lists our personas, their information

needs, their roles, their collection understanding needs, and the story type that will meet their

needs. Let us see how each of our storytelling processes and these storytelling types help the

personas we have introduced.

Natasha is trying to choose between collections. For each collection that she is considering,

someone must have created a story by following these processes. Exemplars save her from having

to review thousands of documents unnecessarily. Her exemplars come from the entire set of pages

and times; thus, an SPST story will meet her goals. Story metadata helps her better understand the

collection and the exemplars as a whole. Document metadata helps her understand each exemplar.

She has many collections to review, and a visualization of these components with good information

scent helps her quickly understand each collection with a glance, saving her time.

Rustam wants to understand how a specific page changes over time. By selecting his page, he

has reduced his exemplars. Now they can only slide in time, meaning an FPST story will satisfy

his needs. Even though Rustam knows which page he is interested in, he needs to select exemplars
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because he does not know which mementos exist. He needs story metadata so he can refer back

to the collection from which the exemplars originated. Rustam needs a visualization of this story

to understand all of this metadata. Finally, he wants to distribute his story in a manner that helps

other researchers review and repeat his work.

Olayinka wants to understand the topics reflected in a set of news articles during a specific

time. Her exemplars only come from a specific time period, but any page is acceptable, allowing

an SPFT story to meet her goals. She is only interested in the zeitgeist for that particular moment

in time. Even though she has chosen a time period, she still needs to select exemplars because

there are still many pages from that time. Story metadata helps her summarize this timespan, and

document metadata helps her understand the individual articles. Without a visualization, all of

this metadata is just text, and Olayinka needs to share this visualization with others to support her

work.

Elbert selects exemplars so he can promote his collection. He is not interested in a particular

aspect but wants to promote the collection as a whole; therefore, an SPST story will work best.

Elbert generates story and document metadata so that visitors will understand which collection

these exemplars represent. He wants a visualization that has good information scent because it

will help visitors like Natasha, and this metadata will help him get there. Finally, he needs to

distribute this story far, so visitors know that the collection exists.

Ling is also an archivist, but she wants to understand the collection she inherited; thus, an

SPST story will work best for her. She needs to select exemplars to have a small number of

documents to review to understand the collection. Ling needs story metadata to get an overview

of the collection from many angles. Ling requires document metadata so she can understand her

exemplars. To make sense of all of this, she also needs a visualization. Where Elbert and Rustam

are interested in sharing their stories with visitors, Ling is interested in sharing hers with other

archivists, so she also needs to be able to distribute it.

To help people like Natasha, Rustam, Olayinka, Elbert, and Ling, we evaluated how to auto-

mate and improve each of the processes outlined in Figure 8. This work is the focus on the Dark

and Stormy Archives (DSA) Project [148], an effort to combine storytelling with web archive

collections. In addition to the research cited by this dissertation, we developed the tools of Hyper-

cane [144, 145, 146, 149, 157, 166], MementoEmbed [156], and Raintale [156] not only to aid our

research but also for the community. Here we discuss four research questions, how they related

to our characters, and these tools. Figure 10 details how each process maps to a research question

and a tool from the Dark and Stormy Archives Project, leading us to the research questions of this

dissertation:
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Fig. 10. The five processes for storytelling with a corpus mapped to the research in this

dissertation.

RQ1: What types of web archive collections exist and what structural features do they
have?

We address this question in Chapter 4.1. Before analyzing any document text, we analyze the

different structural features that describe Archive-It collections. We can understand the collec-

tions through these structural features in terms of curatorial involvement, crawling behavior, and

seed analysis. Structural features help us understand how to select exemplars and generate story

metadata.

In Chapter 4.1 we conduct a review of the same 3,382 Archive-It collections and divide them

into four different semantic categories. In addition, we discover that we can apply the structural

features to predict these categories via Random Forest. By understanding structural features,

we understand the nature of each collection both in terms of page and time, helping us select

exemplars. Furthermore, understanding the type of collection can help us create useful story

metadata. Prior work by AlNoamany et al. [11] only evaluated one type of collection stored in

Archive-It.

RQ2: Which approaches work best for selecting exemplars from web archive collections?
We have many possible methods for selecting exemplars. As defined by Lu [205], intelligent
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sampling aims “to reduce sampling cost without loss of accuracy by smartly designing sample

sizes.” Inspired by this definition, we apply the term intelligent sampling in this dissertation to

refer to sampling mementos from a collection to select exemplars. As part of intelligent sampling,

we filter the collection. Web archive collections can contain mementos that are not helpful to

our eventual summaries. Because of scale and automated crawling, web archive collections often

contain mementos that are not representative of the collection and are off-topic. In Chapter 4.2 we

analyze different text similarity methods such as Simhash [54] and Sørensen-Dice [69, 290] and

determine that differences in word count performs best for identifying off-topic mementos in a

collection. Filtering off-topic mementos from consideration helps us reduce our set of exemplars

for further analysis.

Existing corpora summarization techniques [12, 195, 286, 338] group documents by their com-

monalities and then select the highest scoring document from each group. How does one group

documents? Structural features, like the number of captures of a given page over time, help here.

Other concepts, like topic modeling, help us understand the nature of a collection during a specific

time period. Scoring is key to selecting exemplars from these groups. In Chapter 4.3 we develop a

general model of summarizing web archive collections inspired by this research. We develop four

algorithms and determine their effectiveness by comparing them against search engine results in

Chapter 4.4. We demonstrate that intelligent sampling surfaces mementos from the collection that

a user might otherwise miss if they do not examine thousands of search engine results.

We further realize this general model in the DSA tool Hypercane [166], introduced in Chapter

4.5. Both RQ1 and RQ2 feature work supporting the left column from Figure 10.

RQ3: What surrogates work best for understanding groups of mementos?
Search engines and social media platforms often visualize document metadata as a surrogate.

By analyzing surrogates, we indirectly determine which document metadata is best for helping

users to understand documents. Several options for surrogates and metadata exist. Are social

cards the best surrogate type? Browser thumbnails provide a screenshot of the web page in a

browser. Web archives have applied them to visualize pages in the past. Are they better than

social cards? In this chapter, we have seen screenshots of different Archive-It collections, each

applying the Archive-It surrogate type. Which surrogate type best assists understanding?

In Chapter 3.3 we discuss past studies of different surrogate types and their effectiveness for

evaluating search results. In our case, we are trying to solve a slightly different problem. Where

search result surrogates are trying to answer the question of “Does this meet my information

need?”, our story surrogates are trying to answer “What does the underlying page contain?” We

augment this work in Chapter 5.1 with a discussion of the surrogates produced by different web
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platforms and how they are not suitable for mementos. We present a user study in Chapter 5.2

where we show that 120 Mechanical Turkers perform best with social cards.

RQ4: What methods that automate the creation of surrogates produce results that best
match humans’ behavior?

Once we established that social cards were the best surrogate for understanding, we analyzed

their creation. Platforms that support social cards require that the author insert metadata in their

page to control the rendering of those social cards. In Chapter 5.3, we analyze the metadata

of 277,724 mementos and determine that 40% cannot generate a full card because they lack this

metadata. Facebook released the first set of these metadata standards in 2010, and many mementos

were captured before that year. The Internet Archive has roughly 150 billion pages captured before

2010. However, we find that once social card metadata existed, its adoption rate grew every year.

With this motivation in mind, we analyze existing web page author behavior to determine how best

to automatically generate social cards. Chapter 5.3 briefly discusses web page authors’ behavior

with respect to the text in their cards before focusing on the more complex problem of how to

automatically select the striking image representing a document for its card. From this work, we

address the process of generating document metadata.

We apply the knowledge from RQ3 and RQ4 in the DSA tool MementoEmbed [151, 156], in-

troduced in Chapter 5.4, which produces social cards and other types of surrogates for mementos.

Addressing RQ3 and RQ4 closes out our work on the middle column of Figure 10.

Chapter 6 covers the right column of Figure 10. Here we introduce the tool Raintale [143, 156]

which allows a user to visualize a story by rendering its story and document metadata through

templates. With Raintale introduced, we demonstrate the stories generated by the DSA tools,

but not just for mementos from Archive-It. We cover collections summarized by Archive-It, the

National Library of Australia, and groups of mementos from the Internet Archive. We provide

example stories that help Natasha, Rustam, Olayinka, Elbert, and Ling.

Our main contribution is the exploration of the automated summarization of collections by first

selecting exemplars and then rendering the result as a social media story. Chapter 2 introduces

the background concepts necessary to further understand the topics in this dissertation. In Chapter

3 we will show how AlNoamany’s proof-of-concept implementation satsifies the five processes

from Figure 8. Chapter 3 talks about the work similar to our research questions and how our

work differs. Chapter 4 focuses on the processes of selecting exemplars and generating collection

metadata. Chapter 5 focuses on generating document metadata. Chapter 6 ties all of these pro-

cesses together in a set of examples and use cases. With Chapter 7 we discuss potential future

applications of this work and Chapter 8 helps summarize this journey.
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CHAPTER 2

BACKGROUND

Web archive collections are complex entities. We provide a brief overview of some base concepts

before discussing the problems of collection understanding in web archive collections. We will

first cover the web and web archives to explain how preserving the web is different from other

forms of digital preservation. Because it contains more than 14,000 collections, we will focus on

Archive-It as the target of our research. In Chapter 6, however, we will show that our storytelling

processes can work not just for Archive-It, but other web archives as well.

We will cover web page surrogates and highlight why they are essential to our storytelling vi-

sualization. From there, we will discuss other forms of storytelling and fit ours into that spectrum.

The other part of our solution involves conveying aboutness for a collection. We will demonstrate

both human-led and machine methods of conveying aboutness for documents and corpora.

Finally, we will introduce some models of understanding. These models will be relevant to the

development of our solution and will also provide us some ideas for its evaluation. We finish by

discussing user studies and how they map our work in later chapters.

2.1 THE WEB, HTTP, AND HTML

It would be irresponsible to discuss web archiving without first introducing the concepts of the

World Wide Web, hereafter referred to as just the web. As part of the 1945 article “As We May

Think” Vannevar Bush [47] expressed many ideas later incorporated into the web. He mentioned

how people might read documents on screens and then easily reach documents on connected

topics. The concept of the interconnected documents has been brought to life numerous times

during the 20th Century as HyperCard [76, 169, 253], Intermedia [101], NLS [82, 329], FRESS

[28], and a variety of other systems [26, 27, 31, 38, 103, 113, 127, 215, 220, 252, 272, 278, 330].

The current web [33] created in 1989 by Sir Tim Berners Lee is the latest, and most widely used,

realization of Bush’s concept.

Interlinked collections of documents often existed on a single machine or within an organiza-

tion’s network. The web is different because it exists on the much larger Internet. Colloquially,

many users use the term Internet to mean the web, but we will keep them separate in this work

for clarity. The Internet consists of a set of protocols established so that different systems can

interact effectively. A protocol is analogous to a standardized language that allows one system to
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request information from a second system and the second system to respond to the first. Systems

on the web use the Hypertext Transfer Protocol [90, 91, 92, 93, 94, 95], or HTTP, to exchange

information. HTTPS [275], a more secure form of HTTP, is often used to protect information.

Curators build most web archive collections by acquiring documents using HTTP or HTTPS.

On the Internet, a numeric Internet Protocol address [248], or IP address identifies each con-

nected system. One system can serve many different protocols. The system does so by listening on

different channels, or ports, for each protocol. Thus a system with an IP address of 10.168.1.220

can listen for connections on port 80 for HTTP and port 21 for the file transfer protocol (FTP)

[270] at the same time. Because IP addresses are difficult to remember, most systems have a

registered hostname (e.g., xenon.cs.odu.edu) that users can employ to connect to a given

system. Each hostname contains a domain name corresponding to the organization that owns that

system (e.g., cs.odu.edu corresponds to the Old Dominion University Computer Science Depart-

ment). The Domain Name System (DNS) [224, 225, 226] uses specific systems to map hostnames

to IP addresses to provide this convenience. We use hostnames, protocols, and sometimes ports to

identify items on the web.

Items on the web do not need to be static documents. Consider a weather report. A physical

paper weather report cannot change. Users of a paper weather report only have access to the

information from the time of publication. If a storm changes direction, users of an out-of-date

paper weather report will not know to update their plans and may get rained on. In the electronic

world, a resource can change based on updated information. A web weather report can provide

updated and current information. A web weather report’s users can find shelter, knowing that

the storm is coming. Thus, the web consists of interconnected documents and interconnected

resources, where some are static, but all have the potential to be dynamic.

Figure 11 shows the relationship between the main concepts that allow the web to function.

Each resource on the web has a Uniform Resource Identifier [32, 33, 34], or URI. Each URI

identifies a single resource, but a single resource can be identified by multiple URIs. If one user

wants to help her friend have current weather information, she can share the URI for the weather

report. Her friend can then access that report using the URI. A subset of URIs, Uniform Resource

Locators, or URLs, is commonly used to share web resources. We use the more general term,

URI, in this work.

URIs can take different forms. A URI begins with a scheme which corresponds to the protocol

used to retrieve the resource. A colon and two slashes follow the scheme. Following the scheme

is the hostname of the system servicing the request. The path to the specific resource follows the

hostname. If no path component exists in the URI, it is assumed to be the character ‘/,’ referring to



21

Fig. 11. The Oaxaca Weather Report example borrowed from Berners-Lee, et al. [33] showing

the relationship between a URI, the resource it identifies, and a representation of that resource.
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TABLE 2

Some example HTTP methods.

Method Description
GET Request a resource

POST Update a resource with given information

PUT Create a new resource with the given information

DELETE Remove a resource

HEAD Request a response identical to GET, but without the content, just the metadata

OPTIONS Request the options for communicating with the resource

TRACE Test the connection

the default document available on the server. In the URI from Figure 11, the scheme is http, the

domain name is weather.example.com, and the path is /oaxaca. By employing this URI,

a user is asking a system with the hostname weather.example.com for the resource named

/oaxaca using protocol HTTP.

Each resource can have one or more representations. For example, a weather report for

Oaxaca, Mexico, will likely be published in Spanish. Non-Spanish speakers may not understand

words like lluvia and viento, indicating wind and rain. Thus, the storm may catch these users by

surprise. With multiple representations, the same resource can service multiple languages, so there

can be an English version of the same weather report at the same URI. Each URI is dereferenced
to acquire a representation of the resource at the current time and in the preferred language, file

format, and compression.

Users typically experience web resources in a software application known as a user-agent
– colloquially referred to as a “browser” because that is what most humans use for interactive

sessions – as shown in Figure 12. It is important to note that though other software programs also

explore the web, the browser is the most frequently employed class of software for experiencing

the web. To understand better how the web delivers representations to both users and machines,

we must provide an overview of HTTP.

2.1.1 HTTP AND CONTENT NEGOTIATION

The HyperText Transfer Protocol (HTTP) is a stateless protocol [90, 91, 92, 93, 94, 95]. Two

basic roles exist in HTTP. The client initiates a request as a standard message to a server, who
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Fig. 12. A screenshot of the Oaxaca Weather Report published by El Impartial, as rendered by

the Firefox Browser. (Screenshot was taken in 2019.)
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GET /publications/ HTTP/1.1

Host: www.shawnmjones.org

User-Agent: curl/7.54.0

Accept: text/html

Accept-Language: en-US

Fig. 13. An example HTTP request for

https://www.shawnmjones.org/publications/.

TABLE 3

Some example HTTP request headers.

Header Description
Accept Allows the client to request certain formats

Accept-Language Allows the client to request a representation in a particular lan-

guage

Content-Length Allows the client to indicate the length of the content sent in the

case of POST or PUT requests

Content-Type Allows the client to specify the format of the content sent in the

case of POST or PUT requests

Cookie Allows the client to inform the server of past state information

Host Allows the client to specify the domain name part of the URI, may

also include a port number

Referer Allows the client to inform the server of the URI of the previous

page that linked to the URI in the request

User-Agent Allows the client to identify its software to the server, sometimes

used to influence the representation returned

https://www.shawnmjones.org/publications/
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HTTP/1.1 200 OK

Date: Mon, 10 Sep 2018 15:47:54 GMT

Server: Apache/2.4.6 (CentOS) OpenSSL/1.0.2k-fips PHP/5.4.16

Content-Length: 15210

Content-Type: text/html; charset=utf-8

Vary: Accept-Encoding

Last-Modified: Thu, 06 Sep 2018 04:47:25 GMT

ETag: "3b6a-5752c965bd5c8"

... 15210 bytes of content follow and are omitted for brevity...

Fig. 14. An example HTTP response.

then provides another standard message back the the client as a response. The request indicates

the action to take on a resource. The response contains information about how the server handled

the request.

An HTTP request for https://www.shawnmjones.org/publications/ is shown

in Figure 13. The status line is the first line in each HTTP message. In this request, the status

line consists of the HTTP method GET, the URI path /publications/, and the HTTP version

that the client would like to use for this exchange, HTTP/1.1. Essentially, the client is asking

the server to return the resource at the URI path /publications/ using HTTP version 1.1.

Common HTTP methods are shown in Table 2.

After the status line, the request includes headers. Some headers are mandatory, like Host,

which the server needs to locate the appropriate resource. Additional headers are informational,

like User-Agent, which tells the server which client software issued the request. Moreover,

still others, like Accept, are used by the client to influence the server to return a specific repre-

sentation of a resource. In this case, Accept indicates that the client desires a representation in

the HTML file format. The Accept-Language header indicates that the client would like an

English (en-US) representation. Some HTTP request headers are shown in Table 3.

The server provides an HTTP response like the one shown in Figure 14. The status line of the

HTTP response starts with the version of HTTP used in the response, followed by a status code.

The value of 200 indicates a successful response to the client’s request. Some HTTP status codes

are shown in Table 4.

https://www.shawnmjones.org/publications/
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TABLE 4

Some example HTTP status codes.

Status Code Description
200 The request was successfully fulfilled

301 The resource has permanently moved and can be found at the URI in

the Location response header

307 The resource is temporarily located at another URI listed in the Loca-

tion response header

400 The client generated an improper request, either syntactically or logi-

cally, and the server cannot fulfill it due to the client’s error

401 The client needs to authenticate to access this resource

403 The client is not permitted to access this resource

404 The requested resource cannot be found on this server

405 The method used in the request is not supported for this resource

408 The server timed out while waiting for the client to finish the request

429 The server has received too many requests from this client and the client

needs to wait before making another request

500 The server experienced an error while fulfilling the client’s request

501 The server does not support the method in the request

503 The server is not ready to handle the request

505 The server does not support the version of HTTP requested by the client
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TABLE 5

Some example HTTP response headers.

Response
Header

Description

Cache-Control Used by the server to send caching information to the client

Content-

Encoding

The encoding used on the data, often for compression

Content-

Language

The language of the response body

Content-

Length

The length, in bytes, of the content

Content-Type The format of the content in the response

Date The date and time of the response

ETag An identifier for the version of the resource to be used to inform caches

Location Used in 300-series responses to indicate the URI that the client should

use for this redirect

Link Informs the client of other resources and their relationships to this re-

source

Set-Cookie Allows the server to give the client some stateful information for future

requests

Server Identifies the server’s software

Vary Used to indicate to the client which request headers can be used to

request a different representation of this resource

WWW-

Authenticate

In 401 responses, tells the client which authentication scheme to use
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TABLE 6

HTTP request and response headers used for content negotiation.

Request Header Corresponding
Response
Header

Description Standards

Accept Content-Type Format of the representation RFC 7231,

RFC 2616

(historical)

Accept-Charset Content-Type

(via the charset

attribute)

Character set of the represen-

tation

RFC 7231,

RFC 2616

(historical)

Accept-Datetime Memento-

Datetime

Client can influence the time

period of the representation

RFC 7089

Accept-Encoding Content-

Encoding

Medium, typically compres-

sion, that the entity has been

processed with and also what

will need to be done by the

user agent to return the entity

to its original form

RFC 7231,

RFC 2616

(historical)

Accept-Language Content-

Language

Language of the representa-

tion

RFC 7231,

RFC 2616

(historical)
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Table 5 displays some examples of response headers that follow the status line. Always in-

cluded in an HTTP response is the Date header, indicating the date and time of the response. In

the response shown in Figure 14, the server provides an informational Server header indicating

its software name and version. A final blank line indicates the end of the headers. If present in the

response, the actual content of the web resource follows this final blank line.

When the content is present, response headers instruct the client on how to handle the con-

tent returned. The Content-Length header tells the client how many bytes to read after the

blank line. The Content-Type header indicates the format of those bytes so that clients can

process the resulting content effectively. In Figure 14, the format is HTML (text/html) and

it is encoded with the UTF-8 character set. The URI and these headers are used to produce this

representation.

Browsers can avoid resending unnecessary requests through caching and instead display the

last version of a resource that they received. Different headers exist to assist with caching de-

cisions. The Last-Modified header contains the date and time that the resource was last

changed, and the ETag header provides an identifier for the specific version of this resource. The

Vary header informs the client which headers combined with a URI match a given representation.

A client can use these headers for its own caching algorithms to make decisions to save time and

network bandwidth.

Clients can influence the representation on behalf of the user through a process known as

content negotiation [118]. A user can request a representation in a particular language, format,

character set, encoding, and time period through content negotiation. Web archive collections

consist of captures (mementos) of resources as they existed at some point in the past; thus, the

ability to negotiate in time is key to accessing these mementos. In Figure 13, a user requested an

English representation using the Accept-Language header. Content negotiation is the unsung

hero of HTTP interactions, often working so well that many do not realize that it is present. In

Figure 14, the server respondes with a Vary: Accept-Encoding, indicating that it can

negotiate in that dimension. Most servers support content negotiation with Accept-Encoding

and Content-Encoding, but since the browsers hand this automatically, users do not notice.

Table 6 shows the dimensions of content negotiation supported by HTTP.
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<!DOCTYPE html>

<html>

<head>

<title>Simple document</title>

</head>

<body>

<p>This is some text in a paragraph that will be seen

by viewers.</p>

</body>

</html>

Fig. 15. A simple HTML document showing the use of opening and closing tags. Example from

Wikibooks [319].

TABLE 7

HTML tags and their attributes used to linking to external resources

HTML tag citing ex-
ternal resource

Attribute used to
specify URI

Description

img src Instructs the browser to download the image

at the URI specified by src and render it at

this place in the HTML page.

link href Used primarily for stylesheets, but may also

inform machine clients of relationships to

other documents.

video src Instructs the browser to download a video at

the URI specified by src and render it at this

place in the HTML page.

script src Instructs the URI to download a script spec-

ified by src and then execute it for use with

this web page.
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Fig. 16. A screenshot of a blog post by Ian Milligan with a section magnified (outlined in blue)

showing the corresponding HTML (outlined in red) emphasizing the syntax for creating links

using the a (for anchor) tag. Screenshot is from Milligan [222] taken on September 9, 2018.
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2.1.2 HTML AND CRAWLERS

Most of the content in web archive collections consists of representations in Hypertext
Markup Language (HTML) [89]. This file format consists of elements, or tags, that specify

the structure and appearance of the representation, often referred to as a web page. Figure 15

shows a simple HTML document consisting of html, head, title, body, and p (for para-

graph) tags. HTML documents support the concept of a Document Object Model [313] whereby

text is included within tags, and some tags can include other tags (e.g., title can only exist in

head).

The anchor tag, a, is key to giving the web its interconnected nature. With anchor tags, web

page authors can specify that a section of the page links to another resource on the web. Con-

sider the example in Figure 16, where historian Ian Milligan wishes to cite McMaster University

archives in an article and supplies the following HTML to do so:

<a href="http://library.mcmaster.ca/archives/">

McMaster University archives</a>

A user can link to a URI by specifying it in the href attribute of the anchor tag. The web

browser then renders the text McMaster University archives differently from the surrounding text

to indicate that it is a link.

Many other tags exist, and we will not repeat the HTML standard here, but it is important to

note that other forms of linking exist in HTML documents, listed in Table 7. Styles controlling the

appearance of a webpage can be imported from other sources using the link tag. Likewise, by

using the script tag, we can import external scripts that provide interactive elements for web

pages. Multimedia can be included using the img and video tags. These additional resources

mean that each web page is constructed of not one but many resources. The existence of these

additional resources has implications for web archiving because the software that captures a web

page needs to capture all of these resources as well.

A crawler [52] finds and captures these resources. The crawler starts with a single web page,

finds its linked resources, downloads them, and continues the cycle for each linked resource.

As shown in Figure 17, the crawler downloads web pages via a multi-threaded downloader that

extracts URIs from the links in these pages. The crawler then submits these URIs to a queue.

Once in the queue, the crawler schedules the URIs for further submission to the downloader, and

the cycle starts again. The system stores the text and metadata about the capture of each page.

Crawlers are what search engines use to discover pages. Search engines build indices on the latest

version of the page that they have crawled, whereas web archives store all previous versions of
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Fig. 17. The architecture of a simple web crawler. Image in the public domain, courtesy of

Castillo [52] and Wikimedia Commons [61].

a web that they have crawled. Crawlers make search engines and web archives possible because

they can capture many web pages by merely following the linked resources, just like humans do.

2.2 WEB ARCHIVES AND MEMENTO

We have covered the basics of HTML and how HTTP enables its links to interconnect. We

also discussed crawlers, which search engines primarily use to index the web. Web pages link to

other pages, but sometimes the linked page disappears. Web users often refer to this phenomena as

broken links, or link rot [183]. Because web archives allow users to revisit web pages that have

disappeared, addressing link rot is one of the use cases for web archives. Here we will describe

how to preserve web pages, who preserves them, and how we access these archived web pages,
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Fig. 18. Mementos are created by captures from the original resource at specific times, which

become their memento-datetimes.

also known as mementos.

The web exists in the “perpetual now.” Every resource returns a representation of its state at

this moment. A news reporter can update a story tomorrow, meaning that its content will not be

the same as it is today. A meteorologist can update a weather report with current information

within the next few minutes. These changes are referred to as content drift, and though a normal

function of the web, they also create problems for people trying to visit a resource from a specific

point in time [154, 162]. Mementos are observations of web resources at specific points in time

[159]. Because URIs point to resources and mementos are resources themselves, we formally

refer to the resource to be archived as an original resource. Figure 18 displays the relationship

between the original resource in the perpetual now and the captures made at some point in the

past, which become the observations we view in web archives as mementos. Their time of capture

is their memento-datetime.

Archiving an original resource typically involves capturing a web page via an HTTP request,

storing the HTML, scanning the HTML for links to embedded content, and then issuing requests

for this content so the archive can save it as well. Where search engines wish to index the web by

using the content of web pages, web archives seek to preserve what they find. Thus, web archives

record this data in a format named WARC (for Web ARChive) [128].

Web archives engage in two primary activities: capture (also called recording) and play-
back (also called replay). Capture involves crawling web pages and saving the crawl sessions

as WARC files. Playback allows users to view these captures using a web browser as one would

for any other web page. Remember that mementos have a temporal component not present in
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other web resources. For example, the web archive captured http://www.example.com

at the three datetimes shown in Figure 18. There are now three records in the WARC file for

http://www.example.com, requiring the playback system to ask the user which date and

time they wish to view for http://www.example.com. The playback system must take

these two pieces of information, the original resource (http://www.example.com) and the

memento-datetime (May 17, 2010, at 10:43:48 GMT), and search the WARC file to find the ap-

propriate record to present to the user in a browser. To quickly find this information, playback

engines require a CDX file [123] which is an index of one or more WARC files. Given an original

resource and a datetime, web archives use CDX files to locate the WARC file and the position in

that WARC containing the desired memento.

Many different web archives employ these techniques [63, 88, 106, 213, 299]. The Internet

Archive1 is the largest web archive. They use the Heritrix [193] and Brozzler [126] crawlers to

capture mementos and save them to WARCs. The Wayback playback system then makes these me-

mentos available to users. Other web archives include archive.is2 (also known as Archive.today),

Web Cite3, the UK Web Archive4, the Portuguese Web Archive5, the Icelandic Web Archive6,

the Web Archive Austria7, and Perma.cc8. There are also tools for users and organizations to

create their own web personal archives, such as WARCreate9, WAIL10, and Conifer11 (formerly

Webrecorder.io).

The existence of multiple web archives necessitated the development of standards. Most web

archives use WARC and CDX files, but these are not accessible via HTTP. Their playback rep-

resentation is accessible via HTTP, but we needed a standard method of access to facilitate the

development of tools that enable the discovery of mementos and the aggregation of resources.

The Memento Protocol [155, 312] provides this access.

Which memento for http://example.com is closest to April 25, 2010? What mementos

exist for http://example.com? The Memento Protocol allows one to make HTTP requests

in order to answer these questions. Without it, web archives would need to share WARC and CDX

files among them. The Memento Protocol formalizes several constructs from web archiving and

1https://archive.org/
2http://archive.is/
3http://webcitation.org/
4https://www.webarchive.org.uk/
5https://arquivo.pt/
6https://vefsafn.is/
7https://webarchiv.onb.ac.at/
8https://perma.cc/
9https://warcreate.com/

10https://machawk1.github.io/wail/
11https://conifer.rhizome.org/

https://archive.org/
http://archive.is/
http://webcitation.org/
https://www.webarchive.org.uk/
https://arquivo.pt/
https://vefsafn.is/
https://webarchiv.onb.ac.at/
https://perma.cc/
https://warcreate.com/
https://machawk1.github.io/wail/
https://conifer.rhizome.org/
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Fig. 19. This diagram by Jones [139] describes content negotiation in the dimension of datetime

with a Memento TimeGate.

introduces new resources to make this kind of access possible.

TimeGates are Memento Protocol resources that allow users to find the memento closest to a

given datetime. A TimeGate resource exists for each original resource in a web archive. Figure

19 shows an exchange of HTTP messages using a TimeGate. A client would contact the original

resource (URI-R), which would then respond with the URI of the TimeGate (URI-G) using the

Link response header. To acquire the memento closest to a given datetime, the client submits

their desired datetime as part of an HTTP request to the URI-G using the Accept-Datetime

header. The TimeGate then responds with a 302 redirect containing the appropriate memento URI

(URI-M) in the Location header of the response. The client then issues a last request to this

URI-M and processes it as any other web page. These three steps are called datetime negotiation,

content negotiation in the dimension of datetime.

Ideally, a response from an original resource would contain the URI-G in the Link header of
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URI-R: https://ianmilligan.ca/

URI-G: https://web.archive.org/web/https://ianmilligan.ca/

URI-T: https://web.archive.org/web/timemap/link/https://ianmilligan.ca/

Fig. 20. If a client cannot discover a URI-G or URI-T in the response headers for a URI-R, then

it can typically generate these values for a given web archive by prepending a known prefix to the

URI-R. These examples apply to the Internet Archive (archive.org).

its response. In reality, not all original resources support this feature, and thus clients must know

the URI-G beforehand. Most web archives allow a user to construct a URI-G by prepending a web

archive’s URI-G prefix to the URI-R; thus, clients can discover a URI-G this way. See Figure 20

for an example.

TimeMaps are web resources that contain a list of all mementos for a given original resource.

A client can discover the URI of a TimeMap (URI-T) in the Link header of an original resource’s

HTTP response. If the client cannot find the URI-T this way, they can construct it by prepending a

web archive’s URI-T prefix to the URI-R and discover it that way. See Figure 20 for an example.

This way, the Memento protocol allows users to employ TimeGates to browse the web as

if it were a given datetime in the past, allowing them to visit documents about specific historical

events or permitting them to avoid spoilers in TV shows [159]. The Memento Protocol also allows

researchers to get a list of mementos for a given resource using TimeMaps. TimeMaps can be used

to study the changes in a resource over time [162] or the availability of current resources [183].

2.3 ARCHIVE-IT

We now know how the web works, how authors construct web pages, how they are archived,

and how we can access those archived pages. Many web archives are collections of pages saved as

part of a massive general crawl or saved one at a time by users. As noted in Chapter 1, users create

themed web archive collections. Unlike general web crawls, these themed collections consist of

original resources (and hence mementos) that are all semantically linked. Collection capabilities

exist at different web archives, such as Conifer (Figure 21), the Croatian Web Archive (Figure

22), the Library of Congress (Figure 23), and Trove (Figure 24). We have designed our solution

to work with any web archive collection, and are are currently piloting our work with collections

from the National Library of Australia [234]. Archive-It is the most commonly used web archive

collection creation tool used by organizations, and thus it is the focus of this dissertation. Archive-

It provides a user-friendly interface allowing a curator to select original resources as seeds (Figure

https://ianmilligan.ca/
https://web.archive.org/web/https://ianmilligan.ca/
https://web.archive.org/web/timemap/link/https://ianmilligan.ca/
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Fig. 21. Examples of different web archive collection capabilities:

Conifer collection USA Today: The Wall.

URI: https://conifer.rhizome.org/despens/usa-today-the-wall

https://conifer.rhizome.org/despens/usa-today-the-wall
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Fig. 22. Examples of different web archive collection capabilities:

Croatian Web Archive (HAW) collection Mathematics.

URI: https://haw.nsk.hr/en/category/mathematics

https://haw.nsk.hr/en/category/mathematics
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Fig. 23. Examples of different web archive collection capabilities:

Library of Congress collection American Civil War Sesquicentennial Web Archive.

URI: https://www.loc.gov/collections/american-civil-war-

sesquicentennial-web-archive/about-this-collection/

https://www.loc.gov/collections/american-civil-war-sesquicentennial-web-archive/about-this-collection/
https://www.loc.gov/collections/american-civil-war-sesquicentennial-web-archive/about-this-collection/
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Fig. 24. Examples of different web archive collection capabilities:

Trove collection Climate Change.

URI: https://webarchive.nla.gov.au/collection/18199

https://webarchive.nla.gov.au/collection/18199
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25a). Using these seeds, a curator can then schedule crawls to record observations of these seeds

as mementos (Figure 25b). Curators can schedule crawls per seed to occur once, twice daily, daily,

weekly, monthly, bimonthly, quarterly, semiannually, or annually. Once captured, mementos are

then available for browsing as part of the collection.

Archive-It supports private collections, an example of which is seen in Figure 26. In our

work, we focus on public collections for study because their data is available. It is possible for a

collection to start private and then become publicly available or vice versa.

Archive-It allows the user to describe a collection via metadata, shown in Figure 27, using

fields from the Dublin Core [19] standard. The system also allows users to create their metadata

fields. Unlike the metadata applied to standard library records for published work, there is no

standard entity establishing or enforcing content standards or rules of interpretation for Archive-It

metadata. This lack of enforcement allows curators to grow collections quickly, but as mentioned

in Chapter 1, this lack of enforcement makes it difficult to use the metadata to compare two

collections or tell one collection apart from another.

The Archive-It user interface allows a user to search in order to match seed metadata (Figure

28a), or memento content (Figure 28b). For this to be effective, a user needs to know what they

are looking for a priori and there are more than 14,000 Archive-It collections to view. In Chapter

4.4, we show how our intelligent sampling algorithms surface mementos that the search engine

does not return to the user.

We can access Archive-It collections by appending the collection number to the URI https:

//archive-it.org/collections/, so collection 366 would be https://archive-

it.org/collections/366. Throughout this work, we identify these collections by numbers

rather than repeating the same URI prefix.

Figure 29 displays a hierarchical view of an Archive-It collection. The curator provides seeds

and seed metadata. Crawls produce mementos from seeds. The seeds at the start of each crawl

are seed mementos. There may be multiple crawls for each collection, and hence multiple seed

mementos. The curator specifies crawling rules and can change them at any time. As noted in

Section 2.2, crawling often follows links from the crawled pages, leading to deep mementos. In

our work, we rely upon the semantic meaning imparted to the collection by the curator; thus, we

know that the curator intended to add metadata, seeds, and seed mementos to the collection. Due

to the nature of crawling rules, we do not know which deep mementos the curator intended to be

part of the collection; hence we do not consider them in our analysis. The term mementos in the

rest of this work will refer to seed mementos.

In Chapter 4.1 we will describe the structural features present in an Archive-It collection. In

https://archive-it.org/collections/
https://archive-it.org/collections/
https://archive-it.org/collections/366
https://archive-it.org/collections/366
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(a) adding seeds

Fig. 25. Archive-It provides an easy interface for users to perform operations.

(Screenshots taken in 2019.)
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(b) specifying crawling settings

Fig. 25. (Continued) Archive-It provides an easy interface for users to perform operations.

(Screenshots taken in 2019.)
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Fig. 26. Not all Archive-It collections are public. This is private collection 197: Weekly by the

Library of Virginia. (Screenshot taken in 2019.)
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(a) Adding a metadata field

(b) Viewing added metadata field

Fig. 27. Archive-It allows a user to add metadata fields to seeds. In this case, the metadata fields

added were “Title” and “Description.” (Screenshots taken in 2019.)
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(a) matching queries to seed metadata

Fig. 28. Archive-It’s search engine provides different search targets. (Screenshots taken in 2019.)
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(b) matching queries to memento content

Fig. 28. (Continued) Archive-It’s search engine provides different search targets. (Screenshots

taken in 2019.)
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Chapter 4.2 we will discuss the problem of seeds changing their content over time, resulting in

seed mementos that are off-topic. Detecting these off-topic mementos is a necessary first step to

selecting exemplars.

2.4 WEB PAGE SURROGATES

The web standard intends for URIs to be opaque [32]: the URI does not need to contain text

from the underlying web resource. For example, the URI of a CNN news article about Tropical

Storm Barry is https://www.cnn.com/us/live-news/tropical-storm-barry-

saturday-2019-intl/index.html and the URI to a YouTube video from CNN on the

same topic is https://www.youtube.com/watch?v=x8EPX35dOjQ. While the first

URI contains the terms “tropical”, “storm”, and “barry”, the second does not indicate the content

behind the URI. Opaqueness frees the generation of URIs from their underlying content, allowing

the content to change while the URI continues to link to the same resource. Opaqueness also

presents an issue with viewing URIs themselves, as we do not know what exists in the referenced

resource. Surrogates give the user some idea of the content of the underlying resource. Surrogates

fill this role by providing a summary of the resource. For information retrieval (IR), surrogates

individually help the user answer the question of “Will this link meet my information need?” For

our storytelling purposes, surrogates as a group help answer the question of “Will this collection

meet my information need?”

Consider the URI in Figure 30a. Even though the ability to copy and paste mitigates many

issues with having to type this URI, it is still difficult to comprehend. There is also very little

information in the URI indicating to what document it will lead the end-user. Different types of

surrogates help users understand what is behind the URI. Figure 30b shows a browser thumbnail

produced by taking a screenshot of the page with this URI. Figure 30c shows a social card gen-

erated by Facebook for that same URI. Each type of surrogate contains different information and

thus provides the user with a different perspective on the URI.

As shown in Figure 31, full social cards consist of a page title, striking image, domain name,

and description. To allow authors to supply their own values for these units, both Facebook

and Twitter have developed the respective Open Graph Protocol (OGP) [87] and Twitter card

[306] standards. To supply a value for a social card unit, a web page author inserts the key-

value pairs into the attributes of an HTML META element (e.g., <META property="og:image"

content="http://example/image.png">). Table 8 lists the standard fields to be used with

each social card unit. Most fields are optional, and cards will omit missing data, as seen in Fig-

ure 32. From our experience, Twitter requires that twitter:card and twitter:title or

https://www.cnn.com/us/live-news/tropical-storm-barry-saturday-2019-intl/index.html
https://www.cnn.com/us/live-news/tropical-storm-barry-saturday-2019-intl/index.html
https://www.youtube.com/watch?v=x8EPX35dOjQ
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https://www.google.com/maps/dir/Old+Dominion+University,+

Norfolk,+VA/Los+Alamos+National+Laboratory,+New+Mexico/

@35.3644614,-109.356967,4z/data=!3m1!4b1!4m13!4m12!1m5!1

m1!1s0x89ba99ad24ba3945:0xcd2bdc432c4e4bac!2m2!1d

-76.3067676!2d36.8855515!1m5!1m1!1s0x87181246af22e765:0

x7f5a90170c5df1b4!2m2!1d-106.287162!2d35.8440582

(a) A long URI

(b) The same URI rendered as a browser thumbnail surrogate.

(c) The same URI rendered as a social card surrogate.

Fig. 30. Web page surrogates give a view into the content behind the URI.

(Screenshots taken in May 2018.)
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Fig. 31. An annotated social card from Twitter for the URI https://covid19.who.int/

identifying its social card units. (Screenshot taken in January 2021.)

TABLE 8

Social card units and their associated cards standards field keys.

Social Card Unit OGP (Facebook) Twitter Card

title og:title twitter:title

description og:description twitter:description

striking image og:image twitter:image

identify the resource og:url N/A

specify the type of resource og:type twitter:card

https://covid19.who.int/
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Fig. 32. A social card from Twitter for the Nature article URI

https://www.nature.com/articles/s41586-021-03275-y, showing a lack of

description or image.

(Screenshot taken in January 2021.)

og:title exist or it will not create a card. Facebook is more forgiving, generating a card con-

sisting only of the content of a page’s HTML title element and domain name if no metadata

fields are specified. With the exception of twitter:card, if any other twitter:* fields are

missing, Twitter will use the values of a corresponding og:* field if present [306]. Deprecated

or undocumented equivalents, such as twitter:image:url, may also be interpreted by the

corresponding social media service. If present, Facebook favors the value of og:title over the

content of the page’s title element. The OGP specification states that Facebook should gener-

ate a card containing a description if og:description is present, but based on our experience,

Facebook will provide a description in its card only if both og:description and og:image

are present.

When visualized as a group, social cards work for social media storytelling because they have

the same content elements in the same locations on each card. Each social card is a visualization.

Because they contain the same metadata in the same location, a group of social cards is an instance

of small multiples, as defined by Tufte [303]. Figure 33 displays an example of a small multiple

for line graphs.

Social cards and browser thumbnails are just two types of surrogates. In Chapter 5.1 we will

summarize the results of an evaluation of 55 platforms that perform one or more of our storytelling

processes with more detail available in Jones et al. [140, 156]. In Chapter 5.2, we conduct a

user study to determine which surrogate is best for collection understanding. We will discuss

how to automatically create surrogates when we have no document metadata in Chapter 5.3. In

Chapter 5.4 we will introduce our own surrogate service, MementoEmbed, and in Chapter 6.1, its

https://www.nature.com/articles/s41586-021-03275-y
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Fig. 33. An example of small multiples using line charts. Image courtesy of Wikipedia [326].
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companion storytelling application, Raintale.

2.5 FORMS OF STORYTELLING

“Storytelling” is a word applied to many different concepts. We focus on the concept of so-

cial media storytelling as conveyed by services such as Wakelet12 and the now-defunct Storify.

These social media stories are micro-collections using text, images, and web page surrogates. In

all cases, the images and text provide a way for the author to clarify the narrative. The example in

Figure 34a shows how cards and text are used with Wakelet to describe the crisis of the Rohingya

minority in India. Figure 34b shows a story built with Storify as preserved by the Internet Archive.

The web page surrogates provide links to supporting evidence, but they also give the reader a sum-

mary of that evidence. The surrogates allow the end-user to consume the story without clicking

on the links until they are ready.

According to Wikipedia [327], stories “involve plot, characters, and a narrative point of view.”

Social media stories contain characters as named entities displayed in surrogates. The ordering

and choice of resources define the plot. The narrative point of view comes as a result of the

resources that the storyteller chooses.

Librarians use interviews to elicit stories from people who have lived through a historical event

or have esoteric knowledge. In this case, the listener is asking the participant to be the storyteller.

From the storyteller’s information, the listener can then synthesize a micro-collection of resources

such as interview responses (text), photographs (images), and summaries of personal writings

(surrogates). Storied13 and StoryKit14 are tools that help libraries with this form of storytelling.

Businesses and other organizations use stories to help the organization retain knowledge and

move employees to future projects. After a team completes a project, it is common for team mem-

bers to meet and discuss what worked and what did not. These retrospectives or debriefings allow

the business to consolidate metrics, personal accounts, and other information into a single (typi-

cally internal) narrative about the project. The business will document this single narrative, and the

employees will carry this narrative to future projects. Agile Cockpit15, Retrium16, RetroDesk17,

RetroTime18, Scatterspoke19, and Sensei20 are all tools that facilitate information gathering and

12https://wakelet.com/
13https://www.getstoried.com
14https://californialistens.org/projects/story-tool-kit-and-storyfaire/
15https://www.agilecockpit.com/
16https://www.retrium.com/
17https://www.scrumdesk.com/retrodesk/
18https://retroti.me/
19https://www.scatterspoke.com/
20https://www.senseitool.com/

https://wakelet.com/
https://www.getstoried.com
https://californialistens.org/projects/story-tool-kit-and-storyfaire/
https://www.agilecockpit.com/
https://www.retrium.com/
https://www.scrumdesk.com/retrodesk/
https://retroti.me/
https://www.scatterspoke.com/
https://www.senseitool.com/
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(a) Wakelet Story

URI: https://wakelet.com/wake/6d4f8614-4581-4657-a616-f0c381ef2127

Fig. 34. Stories created by humans using the format we intend to emulate.

https://wakelet.com/wake/6d4f8614-4581-4657-a616-f0c381ef2127
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(b) Storify Story (from Internet Archive)

URI: https://web.archive.org/web/20180517174727/https:

//storify.com/abc/abc-news-1

Fig. 34. (Continued) Stories created by humans using the format we intend to emulate.

https://web.archive.org/web/20180517174727/https://storify.com/abc/abc-news-1
https://web.archive.org/web/20180517174727/https://storify.com/abc/abc-news-1
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help an organization build the resulting narrative.

Marketers use storytelling to make brands seem favorable to customers. The company telling

the story will synthesize metrics, corporate history, competitor history, and more into a single

public narrative. This narrative typically conveys how well their brand serves the community, is

better than the competition, and why it should be a part of the listener’s life.

In all of these cases, information is gathered and then summarized into a smaller account of

what occurred. Our social media stories are no different. We have the mementos present in a web

archive collection rather than using diverse information sources like the actors mentioned above.

Our algorithms will interrogate the collection and select exemplars that convey as much aboutness

as possible. We then generate document metadata and visualize these mementos as surrogates just

like users once did with Storify.

2.6 ABOUTNESS

To select exemplars and generate story metadata for a collection, we must cover the vague

and inexact concept of aboutness. Aboutness conveys the topics, ideas, concepts, people, places,

organizations, time periods, and other information about a document or an entire collection. By

applying different aspects of aboutness to a resource, a system can help a user locate the item for

which they are searching, or it can summarize an item.

2.6.1 TRADITIONAL METHODS OF CONVEYING ABOUTNESS

Understanding the difference between two items, whether they be collections or research pa-

pers, is usually handled by a record containing metadata about the item. Information scientists

and librarians apply metadata to individual works within a collection, through a process known

as cataloging. This metadata exists to answer specific questions about a given work, such as its

author, the topics the work covers, and its publication date. For each item, its metadata is used to

generate a surrogate representing that item. Historically surrogates took the form of cards sorted

in drawers as part of a card catalog cabinet, as shown in Figure 35. Cataloging standards, such as

the AACR2 [136], exist to ensure that metadata is gathered consistently between individuals and

organizations. Once the metadata is collected, it is shared between systems using a digital format

such as MAchine-Readable Cataloguing (MARC) [17]. A user can compare two surrogates to

determine which item to retrieve.

The physical cards in a library card catalog are analogous to the surrogates used in search

engines and social media to represent a web resource. With the physical card, a user examines

the card to determine if it meets their information needs. There is often an identifier on the card
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(a) A physical paper card as a surrogate for a book by Hermann Kesser, from the Harvard College Library.

Image courtesy of Wikipedia [320].

(b) A card catalog cabinet at the Library of Congress. Image courtesy of Wikipedia [60].

Fig. 35. Photographs of physical library cards as surrogates representing resources in a library.
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Fig. 36. A visualization of metadata field usage across all Archive-It seeds [165]. Generally, as

the number of seeds in a collection goes up, the amount of metadata available goes down. Thus,

the more metadata a reader needs to understand a collection, the less they have available.

(e.g., a call number) that corresponds to a physical item that the user can retrieve from a library

location. Likewise, the web surrogates we introduced earlier present the user with the information

needed to determine if the resource represented by the card meets their information needs. If the

user wants to view the item, they no longer need to record a call number and walk to a location

to retrieve it; instead, the card itself is a link, and they click on it to ask HTTP to retrieve the

document for them.

As we cover in Chapter 3.2, efforts exist to provide metadata for web archive collections and

provide this same level of aboutness, but all of these methods require manual application and

review. For example, Archive-It provides metadata fields based on Dublin Core [19]. Unfor-

tunately, curators do not consistently use these fields. In addition, many Archive-It collections

contain hundreds of thousands of mementos for which curators would need to create metadata.

Human generation of this metadata is quite a costly proposition in terms of both time and person-

nel. We analyzed all of the seeds from all Archive-It collections in 2019 [165] and determined that

as the number of seeds increases, the amount of metadata per seed decreases, as shown in Figure

36. Thus, the more a reader needs metadata from an Archive-It collection, the less metadata there

is.
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2.6.2 MACHINE METHODS OF DISCOVERING ABOUTNESS

Humans can process content semantically to discover aboutness but are limited in how fast

they can process the content. Machines are far faster, but their inability to understand content

limits them. The sheer size of the web has necessitated the development of machine methods of

processing documents. This section details some different problems and machine solutions for

evaluating documents.

Humans perceive characters and words; machines only see bytes and hence are limited to

processing the values of these bytes. In order to facilitate this processing, semantic models have

given way to other concepts, such as the bag of words [65] model. A system splits the text

into individual words. The text is typically preprocessed with processes like stemming and stop
word removal. Stemming removes suffixes from words to reduce them to their root form (e.g.,

stemming would reduce bake, baking, and baked to the same word). Stemming improves the

results of document and query comparison. Stop words (e.g., the, a, of) are common connecting

words in sentences but create noise in the bag of words, so algorithms typically remove them. By

using the bag of words model, a machine can leverage different techniques to deliver information

about a document or corpus.

As a first step to converting an HTML document into a bag of words, a system must first

remove the tags and excess content, a process referred to as boilerplate removal. Boilerplate

removal is handled by many different software packages, [244, 264] with justext [269] as one

example.

Measuring the Similarity of Two Documents

The Jaccard Index (sometimes called Jaccard Coefficient) compares two sets [129]. Jaccard orig-

inally developed this similarity measure to evaluate the differences between the features of plant

species. The Jaccard distance can provide a comparable distance measurement to compare the

two sets of words making up the documents. Jaccard distance calculates the percentage of overlap

between the words in both documents, as shown in Equation 1,

dJ(a,b) =
|t(a)∪ t(b)|− |t(a)∩ t(b)|

|t(a)∪ t(b)|
(1)

where t(a) is the set of terms from document a and t(b) is the set of terms from document b.

The Sørensen-Dice Coefficient is another method of comparing two sets [69, 290]. Like

the Jaccard coefficient, it was also developed to compare the differences between species. The
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Sørensen-Dice distance, shown in Equation 2 can provide a score measuring the difference be-

tween the two documents:

dS(a,b) = 1− 2|t(a)∩ t(b)|
|t(a)|+ |t(b)|

(2)

where t(a) is the set of terms from document a and t(b) is the set of terms from document b.

Both distance measures have scores ranging from 0.0, meaning that the documents are the

same, to 1.0, meaning that the documents are entirely dissimilar.

Further exploiting the bag of words model, we can construct a data structure of a document

consisting of each word and how often it occurs in the text, its term frequency. Simhash is a

piecewise hashing algorithm that can generate an identifier for a document based on a mathemati-

cal hash function [54]. A simplified version is shown in Figure 37. Simhash works by computing

the term frequencies of each word in the document and then hashing each word. A vector is

then formed by summing the term frequencies. The Simash algorithm then computes a document

fingerprint based on these pieces. The number of bits different between two document finger-

prints is the measurement of how different the documents are from one another. Simhash has been

evaluated with web pages to enhance crawling, and indexing [209].

Building on the data structure of terms and term frequencies, we can produce a vector rep-

resenting a document. Consider the two documents in Figure 38. Using these vectors, we can

measure the cosine between their two lines in multidimensional space to measure how different

two documents are from each other. The score from this cosine similarity [314] can be used to

rank how similar a document is to a query.

The equation for cosine similarity is:

s(q,d) =

n
∑

i=1
qidi√

n
∑

i=1
q2

i

√
n
∑

i=1
d2

i

(3)

where qi and di are components of the document vectors of query q and document d.

To ensure that unique terms are scored more highly in such measures, we can normalize term

frequency scores with Inverse Document Frequency (IDF) [137], shown in Equation 4, where the

IDF for term t in document D is the logarithm of the total number of documents N divided by d,

number of documents containing term t:

id f (t,D) = log
N
d

(4)
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original text = "Tropical fish include fish found in tropical

environments around the world, including both freshwater and

salt water species."

Converting to words with weights:

tropical 2 fish 2

include 1 found 1

environments 1 around 1

world 1 including 1

both 1 freshwater 1

salt 1 water 1

species 1

8-bit hash values

tropical 01100001 fish 10101011 include 11100110

found 00011110 environments 00101101 around 10001011

world 00101010 including 11000000 both 10101110

freshwater 00111111 salt 10110101 water 00100101

species 11101110

Vector formed by summing weights:

1 -5 9 -9 3 1 3 3

8-bit fingerprint formed from vector

1 0 1 0 1 1 1 1

Fig. 37. An example of Simhash generation.
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document 1 = "Web archives are archives of web resources."

document 2 = "Web archive collections are archives of some web

resources."

Converting the documents to terms and term frequencies:

web 2 2

archives 2 1

are 1 1

archive 0 1

of 1 1

resources 1 1

collections 0 1

some 0 1

produces the following vectors:

document 1 vector = [ 2, 2, 1, 0, 1, 1, 0, 0 ]

document 2 vector = [ 2, 1, 1, 1, 1, 1, 1, 1 ]

Fig. 38. Conversion of two simple documents into document vectors.
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Fig. 39. An image of a decision tree courtesy of Wikipedia [324].

The resulting normalization is known as TF-IDF, where a high term frequency coupled with

a low inverse document frequency weights a given word more heavily. TF-IDF can give us more

precise cosine similarity measurements.

Machine Learning

Machine learning is an umbrella term for a set of techniques for discovering meaning in data.

Chollet [58] points out that classical computing involves humans submitting rules and data to a

computer to arrive at answers. Machine learning accepts answers and data and produces rules.

One form of machine learning is the decision tree. Assume that we also have the passenger

manifest from the HMS Titanic and a listing of who did survive that disaster. We could use the

results from the Titanic dataset to estimate the survivors in the disaster. If we submit the Titanic

data to a decision tree algorithm, like CART [203], then it will produce a tree like the one shown

in Figure 39. In this example, each data record refers to a passenger on the Titanic. The answer

corresponding to each data record falls into either the class died or survived. Each branch of the

tree reflects a conditional statement about the input data, and following several conditions helps us
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arrive at a prediction. For example, based on the tree in Figure 39, if an input record represented

a male younger than 9.5 years, then there was a 61% chance that they died. Information like the

age and sex of the passenger are the features of the record that the decision tree uses to make its

prediction. We can apply this decision tree to a different passenger manifest from a ship disaster

from the same time period to predict who may have died.

Ho [171], and later Breiman [41] extended the concepts of decision trees into a new algorithm

named Random Forest. Random Forest averages results over multiple decision trees by building

many possible trees and then selecting the class predicted by the most trees. It includes additional

capabilities for selecting features (e.g., bagging) that we will not cover here. The Random For-

est implementation provided by scikit-learn [261] provides a probability based on this “voting”

process, and we can apply the probability scores to rank results, as we do with striking image

candidates in Chapter 5.3.

These are not the only machine learning algorithms. Gaussian Naïve Bayes and Linear Dis-

criminant Analysis employ statistics to predict to what class an input record belongs. AdaBoost

optimizes the feature set to determine which features will work best for prediction and passes these

features to other classifiers before aggregating their predictions. Multilayer Perceptrons attempt

to model the interactions of biological neurons. These machine learning algorithms all implement

supervised learning because they require the answers and data so they can generate rules. We

evaluate different supervised learning methods in Chapter 4.1 and Chapter 5.3. Because these

specific supervised learning methods predict the class to which a record belongs, we refer to these

machine learning algorithms as classifiers.

We have two metrics for selecting the machine learning method that performs best for our

problem space. Our first metric for evaluating supervised learning is the F-measure or F1 score
as shown in Equation 5. Here T P is the number of true positive responses – those records that

the classifier correctly predicted to belong to a given class. FP is the number of false positive
responses – those records that the classifier incorrectly predicted to belong to a given class. T N

represents the number of true negative responses – those records that the classifier correctly

predicted as not belonging to a given class.

F1 =
2T P

2T P+FP+FN
(5)

Accuracy, shown in Equation 6 is an additional measure we can use to evaluate classifiers. In

addition to the measures applied by the F1 score, Accuracy also incorporates the number of false
negative responses – those records that do belong to the class, but that the classifier incorrectly

predicted as not belonging to that class. We apply Equations 5 and 6 in Chapters 4.1 and 4.2.
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Accuracy =
(T P+T N)

(T P+FP+FN +T N)
(6)

Alternatively, methods exist to discover structure in data, referred to as unsupervised learn-
ing. The unsupervised learning technique we employ in this dissertation is clustering, with such

algorithms as k-means clustering and DBSCAN. K-means clustering converts the features of each

record into a set of coordinates and calculates the center coordinates (centroid) of each group of

records. It assigns all records to k clusters depending on their distances from these centroids.

DBSCAN also converts each record into a set of coordinates. It establishes some records as

core points and applies a minimum distance (ε) to consider other records as belonging to the same

cluster as that point. DBSCAN considers points that are too distant from any core point as noise
points and does not assign them to a cluster. Thus, DBSCAN could help identify outliers when

clustering our data.

We apply clustering in the algorithms we detail in Chapter 4.3 and then compared those algo-

rithms’ performance to search engine results in Chapter 4.4.

Topic Modeling

Topic modeling produces clusters of documents from a corpus. Through topic modeling, users can

find related documents in a corpus. The top-ranked words and their weights within each cluster

typically identify the cluster. Here we introduce two topic modeling techniques, both based on the

bag-of-words model.

Latent Semantic Analysis (LSA) [75], also known as Latent Semantic Indexing (LSI),
provides a method of clustering documents in a collection based on their topics. LSI takes the

documents in a collection and converts them into a matrix of document vectors. It then uses

singular value decomposition [105] on that matrix to generate three new matrices. The last of

these matrices contains a set of documents with coordinates. Using these coordinates and some

desired threshold, we can identify clusters of documents and thus establish topics of related words

for the corpus. LSI assumes that each word corresponds to a single topic, which is often not the

case.

Latent Dirichlet Allocation (LDA) [36] provides an alternative. LDA assumes that docu-

ments are distributions of topics. It also assumes that each topic is a distribution of words. LDA

starts with a matrix of document vectors. It then generates two additional matrices, one matrix

associating topics with words and a second matrix associating topics with documents. LDA tries

to adjust the values in these matrices through a series of iterations. Unlike LSI, we do not get
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The continued value of web archive collections comes when others like Natasha, Rustam,

Olayinka, Elbert, and Ling can reuse these same collections for their work.

Fig. 40. An example sentence from Chapter 1 with the named entities colored blue.

separate, distinct clusters for each document set, but we do get a better match of documents to

topics.

Both LSI and LDA require that the end-user supply the number of topics desired before start-

ing. Different corpora may require different numbers of topics to be specified. As we show in

Chapter 4.2, we have used LSI to find off-topic mementos in a collection, and we had to try with

a range of values for the number of topics. Each topic is a cluster of documents. In Chapter

4.4 we apply LDA to cluster the documents in a collection. We apply the python library gensim

[341, 342] for its implementations of LSI and LDA.

Named Entities

An important part of understanding an event or topic is knowing what people, places, and or-

ganizations are involved. Figure 40 contains a sentence from Chapter 1 with the named entities

colored blue. Named-entity Recognition (NER) extracts named entities from documents. NER

works by breaking a document into tokens. These tokens are then processed to discover specific

concepts like people, places, organizations, datetimes, monetary amounts, and percentages. These

tokens may consist of single words (unigrams) or multiple words (n-grams). Using the n-grams

from these tokens, we can infer meaning about a document or a collection that is not possible by

merely evaluating its bag of words. For example, Nanni et al. [232] have used Wikipedia to learn

relationships between entities and predefined aspects in order to understand a topic.

We are not attempting to improve NER. It can be accomplished via work by hand-crafted rules

[175], and machine learning methods [97]. In our work, we will rely upon existing NER systems

such as spaCy21.

Generating Queries for Search Engines

In our previous examples, we started with a document and derived aboutness from it so humans

could understand some aspect of the document or determine if two documents were similar. We

21https://github.com/explosion/spaCy

https://github.com/explosion/spaCy
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can also use the document’s aboutness to evaluate other systems, like search engines. If we gen-

erate a good enough query, not only does it convey some aboutness for the document, but we can

apply it to evaluate how easy a document is to retrieve from information retrieval system, that

document’s retrievability. We measure retrievability, as defined by Azzopardi and Vinay [25],

with equation the following equation:

r(d) = ∑
q∈Q

oq · f (kdq,c) (7)

where r(d) is the retrievability of document d, q is a query from the set of queries Q, oq is a weight

placed on q, kdq is the rank of document d for query q, and f (kdq,c) is a cost function that returns

1 if kdq ≤ c and 0 otherwise.

A document’s retrievability tells us how easy a user can find it given a set of queries, but how

do we generate queries? Efforts like doc2query-T5 [236] apply neural networking to approximate

which queries a naive user would submit to a search engine to find a given document. This

method generates queries like “What happened at Virginia Tech on April 16?” Alternatively,

power users have a better understanding of how search engines respond, and we can approximate

their queries through lexical signatures initially developed by Phelps and Wilensky [265]. If we

remove stop words, then the words with the highest TF-IDF score become our lexical signature.

Phelps and Wilensky noted that a lexical signature of five words was sufficient to find a known

document with a search engine. Park et al. [258] later verified this result while examining several

different methods of generating lexical signatures, with TF-IDF performing best. Klein et al.

[182] explored lexical signatures of length seven and found that they worked slightly better with

the now-defunct Yahoo BOSS search API22. In that same work, Klein et al. also discovered that

titles work remarkably well as search terms, retrieving a given document as well or better than

lexical signatures.

These three concepts simulate different types of users searching for a document. The

doc2query-T5 method tries to simulate a naive user searching for information through questions.

The lexical signatures can simulate a power user searching for information by keywords. Finally,

titles as queries can simulate a user searching for a specific document. We apply these methods in

an experiment in Chapter 4.4.

2.7 EVALUATING UNDERSTANDING

RQ3 centers on which visualization is best for understanding. In this section we cover different

22http://boss.yahoo.com/

http://boss.yahoo.com/
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models of understanding and discuss how user studies have been employed in the past to evaluate

understanding.

2.7.1 MODELS OF UNDERSTANDING

News stories, legal investigations, and researchers try to answer various questions about events

and concepts by using a basic set of questions. Originally developed by Aristotle [287] in 340

BCE, they have been known throughout the years as “elements of circumstances”, “the Circum-

stances”, Septem Circumstantiae, or “Five Ws”. This concept of understanding of an event or

concept relies upon addressing the questions of

• who

• what

• when

• where

• why

• (sometimes) how

The Circumstances are of interest to us because the questions of who, when, where, and, to

some degree, what correspond to named entities that we can extract using natural language pro-

cessing. This model of conveying understanding for a concept gives us some ideas on how we

might build our stories and how we might evaluate them. For automated evaluations of under-

standing, named entities are thus more important to our work than “normal” words because named

entities can help us detect when documents address the Circumstances. We apply named entities

in Chapters 4.3, 4.4, and 5.2.

More recently, Pirolli and Card [266] developed information foraging theory to describe how

users seek information on the web. Information foraging draws parallels between how humans

search for information and how animals search for food. Those looking for information are drawn

to visual cues that allow them to choose one resource over another. If these visual cues help the

user find the information they are looking for, the cues are said to have a good information scent.

As part of this work, we are not providing the user with a search interface. Archive-It already has

this. Information foraging provides us with exciting ideas on how users select the items they view,

which helps us better select our exemplars and visualize them as surrogates.
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Bloom et al. [37] developed a model for classifying objectives of learning. This model was

updated in 2001 by Anderson et al. [18] in 2001. It was designed for educators to help them

discuss and understand the processes by which students acquire knowledge. With these concepts

in mind, an educator can develop ideas for evaluating the student. Kelly et al. [178] has success-

fully applied this taxonomy by Anderson et al. in evaluations of information retrieval systems.

Because we are evaluating our systems for understanding, our user study in Chapter 5.2 applies

these methods.

2.7.2 STUDYING USERS

Kelly [177] performed extensive work evaluating information systems with user studies. They

focused on evaluating interactive information retrieval (IIR) systems, but her work has applications

for other user studies. We must solve several problems when trying to conduct user studies. We

must identify the variables to be measured. These variables are a method of providing us a proxy

for some aspect of a user’s understanding. In aggregate, the values of these measurements help

us address a hypothesis. To extract our measurements, we will need a battery of targets against

which to evaluate our participants. User tasks fill this role. In IR experiments, the researcher gives

a participant a search query or a general search question as a task. The researcher then evaluates

the participant’s actions to determine the performance of the system under test.

User Tasks

Tasks have several definitions. According to Vakkari et al. [310], a task is an “activity to be

performed in order to accomplish a goal”. Byström and Hansen [48] define different aspects of

tasks. They identify two views of tasks — the task description, which specifies the goal of the

task, and the task process, which focuses on the steps necessary to complete an item of work.

According to them, “a task is seen as a set of (physical, affective, or cognitive) actions in pursuit

of a certain, but not unchangeable goal.”

In Kelly’s work [177], she applied Anderson and Krathwohl’s taxonomy of learning objectives

[18, 37] to the evaluation of IIR systems. This analysis derived five different cognitive processes,

target outcomes, and mental activities that apply to those using search engines. We list them here

in order from least to most cognitively challenging.

Remember - Remember tasks involve the user learning a specific fact. It involves “retrieving,

recognizing, and recalling relevant knowledge from long-term memory”. With a remember task,

the participant learns a specific fact, which requires the participant to identify particular items

during the review of their search results. With the remember task, the participant only needs to
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recognize the fact if they encounter it in the results. Remember tasks are considered to be the least

cognitively challenging.

Understand - Understand tasks requires that the participant “provide an exhaustive list of

items”. Understanding involves “constructing meaning” by “summarizing, inferring, comparing,

and explaining”. In this case, the participant gathers several different factors relevant to their query

together, generating a new list of items from multiple sources, if necessary.

Analyze - To complete these tasks, a participant must not only compile a list, as with un-

derstand tasks, but also describe how the elements of these lists are similar to, different from, or

otherwise related to each other. The relationships between the facts gathered during their search

become a new body of knowledge due to their analysis.

Evaluate - Remember tasks establish facts, understand tasks provide a list of items to convey

knowledge about the query, and analyze tasks describe these items, their relationships, and their

similarities and differences. In contrast, evaluate tasks build upon the analysis by having the

participant form a recommendation based on the knowledge they gained.

Create - After establishing facts, generating a list of items to establish knowledge, understand-

ing the relationship between these items, and forming recommendations, the user then creates a

plan of how to tackle a particular problem. Create is the most cognitively challenging process on

Kelly’s list.

In Chapter 5.2, we report the results of a user study that evaluates a user’s ability to learn

specific facts (remember) and construct meaning (understand) with different surrogate types.

Recruiting Participants

Once we have our user tasks and our methods of measurement, we must recruit participants. Many

studies have solved the problem of recruitment by using Amazon’s Mechanical Turk (MT)23.

MT is a service provided by Amazon which allows participants to apply to complete tasks in

exchange for money. It has become a popular online location for recruiting subjects for research

studies. Its success has led to the development of additional crowdwork platforms like Figure-

Eight (formerly Crowdflower)24, and Prolific Academic25 [262]. MT is by far the largest source

of study participants, with Amazon reporting over 500,000 available participants.

MT is an automated system that facilitates the interaction of two actors: the requester and the

worker. A worker signs up for an Amazon account and must wait a few days to be approved.

23https://www.mturk.com
24https://www.figure-eight.com
25https://prolific.ac

https://www.mturk.com
https://www.figure-eight.com
https://prolific.ac


73

Once approved, MT displays the work available to be performed to the worker. Workers are the

equivalents of subjects or participants found in research studies. A Human Interface Task (HIT)

is an MT assignment. Workers perform HITs for anywhere from $0.01 up to $5.00 or more. They

earn as much as $50 per week from these HITs. Unless discussing the internals of MT specifically,

we will use the term participant to refer to those who evaluate our visualizations.

Requesters are the creators of HITs. When a worker completes a HIT, the requester decides

whether or not to accept the HIT. If they accept the HIT, then the requestor pays the worker.

Requesters use the MT interface to specify the amount to be paid for a HIT, how many unique

workers per HIT, how much time to allot to workers, and when the HIT will no longer be available

for work (expire). Also, requesters can specify that they only want workers with specific qualifica-

tions. The Master Qualification is assigned automatically by the MT system based on the behavior

of the workers. Requesters can also specify that they only want workers with certain acceptance

levels.

The HITs themselves are HTML forms entered into the MT system. Requesters have much

freedom within the interface to design HITs to meet their needs, even including JavaScript for

form validation, if necessary. Once the requester has entered the HTML into the system, they

can preview the HIT to ensure that it looks and responds as expected. Once the requester is

done creating the HIT, they can then save it for use. HITs may also contain variables for links to

visualizations or other external information.

When the requester is ready to publish a HIT for workers to perform, they can submit a CSV

file containing the values for these variables. MT will create one HIT per row in the CSV file.

Amazon will require that the requester put enough money into their account to pay for the number

of HITs they have specified. Once the requester pays for the HITs, workers can see the HIT and

then begin their submissions. The requester then reviews the submissions as they come in and

pays workers. We serve as a requester in the user study we detail in Chapter 5.2.

2.8 SUMMARY

In this chapter, we identified core concepts to understanding the problem space and our so-

lution in social media storytelling. We gave an introduction to the web and web archives. We

highlighted Archive-It, the web archive collection platform we will focus on in this research, but

also note that our work is not oly applicable to Archive-It. From there we introduced how web

page surrogates help users understand the content of web pages without having to load them.

We built upon this by detailing the different forms of storytelling and how our visualization of

surrogates fits in with those forms.



74

The latter part of the chapter discussed traditional methods of conveying aboutness in libraries.

We highlighted some of the ways machines might provide aboutness for documents and corpora.

We discussed some models of understanding and how we can make use of these models for both

the development and evaluation of our approaches. We identified some fundamental concepts of

user studies because they play a role in evaluating which surrogate is best for understanding web

archive collections.

The next chapter discusses the work others have done on different processes in our storytelling

model.
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CHAPTER 3

RELATED WORK

Fig. 41. How the related work in this chapter maps to our storytelling model.

Here we highlight work similar to ours (Figure 41), identifying how our work is different

or how our work can build upon existing efforts. There have been many attempts to address

different parts of our storytelling model. Selecting exemplars is a problem reaching into areas

of text summarization and computer vision. Generating story and document metadata has been

addressed by librarians for centuries, and we will highlight how they have tried to bring these

processes to web archives. As mentioned in the last chapter, surrogates are also an old concept
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Fig. 42. Other work on selecting exemplars inspires methods for addressing this process in our

storytelling model.

now rendered electronically by the web. Here we will discuss the work done since the dawn of

the web to evaluate different surrogates’ effectiveness. From there, we move to the process of

visualizing collections of web resources and eventually web archive collections. We close this

chapter with AlNoamany’s work, the first to combine web archives and social media storytelling

to summarize web archive collections and the first to use our entire storytelling model.

3.1 SELECTING EXEMPLARS

Storytelling with web archives involves several layers of selecting exemplars. In the story-

telling process outlined in Chapter 1, we are referring to choosing exemplar mementos from a

web archive collection. However, it does not end there. In Chapter 5.3 we cover creating social

cards when no metadata exists to help us. There we select exemplar sentences from text to gener-

ate descriptions, and we select exemplar images from the document to generate a striking image.

This section – summarized by Figure 42 – covers the work related to selecting exemplars and

connects it to work in upcoming chapters.

3.1.1 AUTOMATIC TEXTUAL SUMMARIZATION

We start with text summarization. Most summarization algorithms fall into two categories:

abstractive and extractive, with examples of each in Figure 43. Abstractive summaries contain
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extractive summary

------------------

Open title with a straight-sets victory over American Donald

Young on Monday, joining Olympic Champion Andy Murray in round

two.

abstractive summary

-------------------

Andy Murray will be growing since the world cup 2010

Fig. 43. Examples of Extractive (top) vs. Abstractive (bottom) summaries from Mathur et al.

[214].

some text from the source document(s) but may differ by word choice to produce text that reads

better to the user. Abstractive summaries are typically used to generate headlines rather than com-

plete summaries. Extractive summaries are produced by analyzing text, extracting sentences, and

generating a summary based on these sentences. From there, a system generates a smaller docu-

ment from the larger one. Our problem of selecting exemplars is most similar to these extractive

summaries.

Luhn [206] pioneered the idea of automatic “literature abstracts” in 1958. With stop words

removed and stemming in place, his algorithm computes the term frequency for each word in the

text. Sentences are scored based on how many frequently occurring words they contain, based

on the distance of the words from each other. Silva et al. [281] used Luhn’s ideas to generate

graphs of individual documents, as seen in Figure 44. Other sentence scoring algorithms include

LexRank [83], Edmundson’s algorithm [79], SumBasic [315] and TextRank [221].

TextRank is an algorithm developed by Mihalcea et al. [221] for keyword extraction and sum-

marization. Brin and Page developed the PageRank algorithm [42] for ranking web page search

results, and the PageRank algorithm inspired the authors to create TextRank. For summarization,

TextRank breaks a document into its component sentences. These sentences are then compared

to each other using a similarity metric such as cosine similarity. The algorithm then builds a

weighted graph for the document where the sentences are the nodes, and the similarity scores are
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Fig. 44. An example word graph generated by the work of Silva et al. [281] derived from Lunh’s

algorithm [206]. (Licensed under the Creative Commons Attribution License.)

the weights of the edges. The nodes on the graph are then ranked using Equation 8.

WS(Vi) = (1−d)+d ∗ ∑
V j∈In(Vi)

w ji

∑Vk∈Out(V j)w jk
WS(Vj) (8)

The TextRank equation is different from PageRank because it takes into account edge weights.

In the equation Vi and Vj are nodes, In represents the set of all nodes with edges connecting to a

given node, Out represents the set of all nodes reach from a given node, and w ji is the weight of the

edge from node Vi to Vj. Once sentences are ranked using this equation, the top n (typically 5≤ n≤
20) are chosen for the summarization. TextRank is one of many algorithms that choose exemplar

sentences by scoring sentences, but this concept of scoring can be applied to documents as well.

We are inspired by this concept and apply various scoring techniques to select exemplar mementos

our algorithmic primitives discussed in Chapter 4.3 and realized in the tool Hypercane in Chapter

4.5. Our memento metadata application, MementoEmbed, will be introduced in Chapter 5.4. It

can apply TextRank to generate a memento’s description if the user requests it. In Chapter 5.3

we mention how many words a human generates when creating descriptions, which is a necessary

argument to TextRank implementations, like summa [29].
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Summarization efforts have produced several datasets consisting of documents and human-

generated summaries for testing. Most recently, Grusky et al. [110] created NEWSROOM which

contains 1,321,995 mementos from the Internet Archive with textual summaries extracted from the

description, og:description, and twitter:description metadata fields present

in online news articles. We apply Grusky’s dataset in Chapter 5.3, but we do not repeat their

experiments with text summarization. We do, however, apply the metadata from a sample of the

NEWSROOM dataset toward the problem of selecting striking images.

Dolan, Quirk, and Brockett [72] evaluated different techniques for acquiring paraphrases from

news articles from thousands of news sources. They compare two datasets generated from pre-

clustered news articles. The first consists of sentences drawn from articles that have high similarity

because they have short Levenshtein distances [192]. The second consists of phrases drawn from

the first one or two sentences from each article in a cluster. The system then pairs these phrases

with similar phrases in other documents within the cluster. The second dataset uses a common

property of news articles: that the first one or two sentences paraphrase the article. We also apply

these base concepts of clustering and scoring in Chapters 4.3, 4.4, and 4.5 to select exemplar

mementos from a collection.

Choosing the first few sentences seems to perform well for news stories. This simple algorithm

is named Lead-3 by Nallapati et al. [231] and Lede-3 by Gruskey et al. [110]. MementoEmbed

(Chapter 5.4) applies Lede-3 by default when creating a description for a memento. In Chapter 5.3

we note how many characters, words, or sentences that a human typically selects when producing

these descriptions, which is a necessary input for Lede-3.

Carbonell and Goldstein [51] introduced the concept of Maximal Marginal Relevance (MMR)

for improving relevance scores for search results. MMR (Equation 9) works by comparing a

document to a user-issued query as well as other documents in the results.

MMR def
= Arg max

Di∈R\S
[λ (Sim1(Di,Q)− (l−λ )max

D j∈S
Sim2(Di,D j))] (9)

This equation is iteratively executed across all documents and produces ranked results. It

works on two sets of documents: R, the set of ranked documents retrieved by the system, and

S, the set of documents that the MMR equation has already ranked. The terms D and Q are the

document and query. This equation can use any similarity method for Sim1 and Sim2, meaning

that its ranking method is helpful for systems that employ the Jaccard Index, Cosine Similarity,

or other similarity measures. Also important to note: Sim1 and Sim2 do not need to be the same

similarity measure. Finally, setting the value of λ allows one to optimize further the ranking of

documents for their diversity and their relevance to a query. If we set λ to 1, then MMR operates
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like a standard ranking function. If we set λ to 0, we have approached maximum diversity, where

all documents have equal ranking.

Carbonell and Goldstein suggest that MMR has applications in document and corpus summa-

rization because it compares documents to each other. However, it requires a query in order to

function. Xie and Liu [333] note how MMR can be used to rank sentences for meeting summa-

rization. They adapt Carbonell and Goldstein’s equation such that each sentence is a document in

itself. In the equation, the sentence takes the role of the document, and a document vector takes

the role of the query. Again, these concepts inspire us. Scoring lexical units (e.g., sentences,

documents) and then selecting the highest scoring as exemplars is employed in the algorithms we

discuss in Chapter 4.3.

3.1.2 SELECTING IMAGES

In Chapter 5.3 we address the problem of selecting the striking image (i.e., the exemplar image)

that best summarizes a given memento. Our work differs in scale and methods from that covered

in this section.

Automatic image selection has been applied to the reduction of a large set of images to a small

set for building photo albums [255], selecting representative pages from historical manuscripts

[62], choosing the best key frame to represent a video [70, 274], generating collages [291] and

general image collection summarization [301]. Individual image selection has been applied to

detecting specific categories of images, such as spam [202], advertisements [53], or landscapes

[115], and coarsely identifying specific principal image subjects, such as vehicle or pet [170].

None of these solutions attempt to find the striking image that summarizes a single web page.

In 2004, Hu and Bragga [122] analyzed the front page of 25 randomly selected news sites

and classified the images into seven categories. A story image provides a striking image for a

set of news articles covering a specific story. Preview images provide striking images for specific

articles. Commercial images are advertisements. Host images provide a photograph of an author.

Heading images are navigational elements consisting of stylized text. Icon logos provide branding

for the whole news source or a specific feature of the publication. Formatting images perform the

function of shaping or arranging a page, and examples include transparent spacing images or

graphical horizontal rules, largely an artifact of the limited formatting abilities of the HTML of

that era. The authors manually annotated 899 images across these 25 front pages. Their SVM

classifier achieved an accuracy of 92.5% when combining the discrete cosine transforms of each

image with the values of its color bands and the surrounding text’s properties.

In 2006, Maekawa, Hara, and Nishio [208] analyzed forty websites and categorized 3,901
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images into eleven categories. They then applied a custom classifier to the problem and achieved

an accuracy rate of 83.1% across categories. Maekawa’s goal was to classify images so that

mobile browsers could avoid the unnecessary download of images that would not display nicely

on the smaller displays of mobile devices. Many of their categories are similar to Hu’s. Their

solution relies on easy-to-calculate features like width, height, byte size, number of colors, content

type, and aspect ratio. However, they also include the number of images on the page with similar

features and textual information. While their overall accuracy is 83.1%, they do poorly for specific

categories, such as an F1 score of 0.458 for identifying buttons and 0.694 for advertisements.

Li, Shi, and Zhang [197] ran an experiment in 2008 that is more similar to our work. They

were interested in identifying striking images for search results. Their dominant image is similar

to our concept of a striking image. For ground truth, they randomly sampled 3,000 documents

from a dataset of pages from msn.com, mit.edu, and cnn.com. They then asked three participants

to label each image as dominant or non-dominant. With this training data, they applied a custom

classifier to predict the class of each image on a page. They used the features of pixel size, aspect

ratio, sharpness, contrast, number of colors, categorization of photo or graphic with or without a

human face, content-type, position on the page, size of image compared to the size of the page

rendered in a browser, number of images larger than this image on a page, if the image came

from an external site, and if the image repeats across the same web site. Finally, their classifier

calculates a relevance score for each image on the page based on the user’s query with an accuracy

of 0.85.

Koh and Kerne [184] took a different approach. It starts by analyzing the HTML document’s

DOM. Next, it finds the deepest nodes in the DOM and works its way back up to discover the node

that most likely contains the article’s content. From the images found in this node, they choose the

largest image with the smallest aspect ratio based on empirically determined thresholds. Based on

human labeling, their algorithm achieves an accuracy of 0.898 and an F1 of 0.921 across datasets

of web pages consisting of 239 news pages and 254 research pages.

In Chapter 5.3, we evaluate 37,522 mementos of news articles whose authors have specified a

striking image in their metadata (e.g., in the og:image or twitter:image field). Our goal is

to automate selecting the same image that the author would have selected for their own page. We

evaluate far more articles (37,522) than this existing work, and our ground truth comes directly

from each web page’s author.
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3.1.3 SUMMARIZING CORPORA

Sipos et al. [286] provide an algorithm for summarizing a corpus over time by selecting the

most influential documents overall, documents for each era of the corpus, authors within each

era, and key phrases within each era. For their purposes, the citation structure within a corpus

determines influence. Their work is similar to ours because it selects exemplar documents from a

corpus and considers the corpus’s temporal dimension, much like we do with web archives. Their

work differs, however, because they only focused on scholarly publications.

NIST organized the Text Analysis Conference (TAC). In 2010, TAC established a guided sum-

marization task whereby a system would accept ten news articles and generate a 100 word sum-

mary from them based on a set of predefined categories [233]. This task required that the resulting

summary for each category of articles contain a set of predefined aspects. For example: the

category Accidents and Natural Disasters contained aspects such as what happened, reasons for

accident/disaster, who was affected, and why did it occur; and the category investigations and

trials contained aspects such as who is the defendant, who is the prosecution, how did the defen-

dant plead, and what was the outcome, including sentencing. The concept of aspects maps to the

Septem Circumstantiae mentioned in Chapter 2.7.1 as a model of understanding. Here we present

two studies that used the dataset that came out of that workshop.

Li et al. [194] developed an unsupervised approach to mine document collections for these

aspects. Their goal was to help generate summaries using these subtopics to answer specific

questions about a named entity. Much like our situation, they had existing document collections

built around a central theme. They extend LDA (Chapter 2) in order to cluster sentences and

words into aspects, creating the entity-aspect model. The entity-aspect model develops probability

distributions to assign words to three categories: background word, document word, or aspect

word. At the end of this process, the system clusters sentences into aspects of the collection.

They later extended their work [195] and developed an approach to surface aspects of a docu-

ment collection. Their updated approach has the following steps:

1. identify the aspects of the corpus using an improved version of the entity-aspect model

named the event-aspect model

2. cluster the sentences of the corpus around these aspects

3. rank the sentences using the LexRank algorithm [83]

4. compress the sentences to improve their quality
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5. select sentences from each cluster

Zhang et al. [338] sought to create an algorithm that provides an improvement over the work

presented by Li et al. [195]. They break a given corpus into sentences. The system processes each

sentence using part-of-speech tagging and named entity recognition to produce a set of syntactico-

semantic patterns. These patterns are then classified into aspects using binary decomposition [302]

and semi-supervised learning via a transductive SVM classifier [135]. After this, the authors

cluster the sentences by expressing the topics as states and the sentences as observed sequences

in a Hidden Markov Model [30]. Sentences are then ranked based on their frequency in the

corpus and their aspect score, based on the value calculated by the decision function trained from

transductive SVM. The authors annotated the TAC 2010 and TAC 2011 datasets for training and

development to train their system.

Hong and Nenkova [120] evaluated different methods of weighting words in a corpus in order

to produce better summaries. They consider the following weighting metrics for words:

• word probability, a normalized term frequency based on the total number of words in the

input

• log-likelihood ratio, using a large background corpus to identify how likely a word is to

occur in a single document or sub-corpus

• a process using the TextRank equation, but where the edges are weighted based on the

syntactic dependency between two words, as determined by the Stanford dependency parser

[67]

They then introduce a greedy algorithm that weighs all sentences based on the weights of the

words. This algorithm chooses the highest ranked sentences and removes highly similar sen-

tences. Comparatively, they use a logistic regression model trained on the DUC 2003 and DUC

2004 datasets [71] for selecting the highest ranked sentences using all of these weights for each

word as features. Based on Rouge-N [199] scores on DUC 2003 and DUC 2004 and compari-

son with other summarizing systems, they determine that their logistic regression model system

is comparable, even though it applies relatively simple techniques. The greedy algorithm scored

highest when using the TextRank solution alone. Their work implies that even simple techniques

may be sufficient for selecting exemplars.

There are key concepts of clustering, scoring, and filtering in each of these cases to acquire the

highest scoring documents or sentences from each collection. While we are selecting exemplar

mementos and applying the structural features of collections (Chapter 4.1) to do so, we recognize
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that the repetition of these same algorithmic primitives across solutions indicates a set of possibil-

ities that should work well with web archive collections. We discuss and implement algorithms

applying these primitives of filtering, clustering, scoring in Chapter 4.3, 4.4, and 4.5. To support

different types of stories (e.g., fixed page sliding time (FPST), sliding page fixed time (SPFT)), we

provide users like Rustam and Olayinka with the ability to inform the exemplar selection process

with their own aspects (e.g., original resource, time period, keywords).

3.1.4 SELECTING EXEMPLARS FROM WEB ARCHIVE COLLECTIONS

For those users who have access to the WARCs of their collections, a few options exist for

exploring those collections and extracting data from them. Holzmann et al. [119] developed the

Scala application ArchiveSpark1. Rather than reading all WARCs for every query, ArchiveSpark

optimizes the ability to query WARCs by first running user queries through CDX files. Users can

write their own applications to use the ArchiveSpark API, query the data directly from within the

interactive terminal interface offered by Scala, or interact with the data using a Jupyter notebook

as shown in Figure 45.

ArchiveSpark offers a variety of operations for extracting data from a web archive corpus.

Some examples include:

• extracting titles from mementos

• calculating term distributions from the collection

• discovering named entities

• building a graph of outgoing hyperlinks

• removing duplicate mementos

• extracting and saving all images from the collection

ArchiveSpark is a framework supporting many different operations that can be combined; for

example, one can filter a collection by the domain name and then calculate term distributions.

ArchiveSpark typically outputs a JSON file consisting of the desired data. It is up to the end-

user to further process this data in the desired way. Natively, ArchiveSpark has no visualization

capability, but it allows users to filter and explore their WARCs to produce their visualizations

with a third-party tool.

1https://github.com/helgeho/ArchiveSpark

https://github.com/helgeho/ArchiveSpark
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Fig. 45. An example Jupyter Notebook using ArchiveSpark, rendered by GitHub and Firefox.

This notebook evaluates the terms discovered in a subset of WARCs from Archive-It Collection

2950: Occupy Movement 2011/2012. (Screenshot taken in July 2018.)
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The Archives Unleashed Project2 [68] provides several tools for exploring collections of

WARCs. It provides three applications: the Archives Unleashed Toolkit (AUT), Archives Un-

leashed Cloud (AUK), and Warclight.

AUT is built upon Warcbase [200], by Lin et al. Warcbase is an earlier tool that provides

users with the ability to query WARCs directly. Based on their work with scholars who work with

web archives, Lin et al. developed guidance for those trying to work with web archives. This

guidance takes the form of four main steps: filter, analyze, aggregate, and visualize (FAAV). AUT

helps a user iterate through FAAV. Initially, a scholar with a web archive collection starts with a

research question. From there, the scholar would proceed to filter the collection of unnecessary

documents, removing duplicates and discovering pages that contain a given search term. This

process creates a subcollection that the user can then analyze for named entities, frequent terms,

and link graphs. Next, they need to aggregate the data from this analysis to produce statistics and

relationships. Finally, the scholar can visualize these relationships to discover other concepts not

visible by merely looking at the documents or statistics.

Some examples of AUT’s capabilities include:

• filtering by original resource URI, search term, memento-datetime, language, domain, or

URI pattern

• listing top-level domains

• extracting all boilerplate from documents

• discovering named entities

• analyzing the link structure of the collection using outgoing links between mementos

• aggregation by domain or memento-datetime

• analysis of images by domain name or MD5 hash

• processing of Tweets from Twitter

Like with ArchiveSpark, operations can be combined. Also, like ArchiveSpark, AUT does not

produce visualizations, instead relying upon the user to post-process the data with a third-party

tool.
2https://archivesunleashed.org/

https://archivesunleashed.org/
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Fig. 46. Archives Unleashed Cloud (AUK) run on Archive-It Collection 7760: South Louisiana

Flood – 2016. (Screenshot taken in July 2018.)
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AUK3 was a cloud platform developed by the Archives Unleashed Team [99]. As seen in Fig-

ure 46, end users could import their Archive-It collection and view a Hyperlink Diagram showing

the link structure of the collection. AUK provided an easy way for users to generate derivative

data for common research questions. The first file provided a link graph for use with Gephi4.

Gephi allows the end-user to manipulate the nodes and edges in graphs. The second file was a link

graph but saved to the standard GraphML file format5. The third file contained a distribution of

all domain names in the collection. The final file contained the full text of all mementos, allow-

ing further analysis with third-party text analysis tools, like grep or Voyant Tools6. Armed with

AUK and additional tools, like the Archives Unleashed Notebooks7, a user could answer many

questions about a web archive collection if they had access to the WARCs. As of June 2021, AUK

has been integrated into Archive-It [297].

Warclight8 allows a user to query a web archive collection that they previously indexed with

the Web Archive Discovery tools’ warc-indexer [132] from the UK Web Archive. As seen in

Figure 47, Warclight allows the user to drill down into a collection by content type, year of crawl,

domain, language, resource name, collecting institution, and collection name. From here, a user

can view the pages that match their search terms. For each page, information such as the page title

and the domains of outgoing links are available. The titles in the results link to a page providing

metadata for the corresponding memento.

We outline primitives in Chapter 4.3 that are inspired by these tools. However, our approach

differs by working with publicly accessible mementos, not WARCs. Social media storytelling

requires public access to content; thus, WARC filenames and offsets are not suitable for sharing

with the public because the public does not typically have access to the WARCs that make up a web

archive collection. Moreover, we cannot apply ArchiveSpark, Archives Unleashed, or Warclight

to the problem of selecting exemplars because we do not have access to the WARCs that make up

the web archive collections we want to summarize. Additionally, because our tools are free from

the constraint of WARCs and apply the Memento protocol, users like Rustam and Olayinka can

create stories for public web archive collections for which they also cannot access the WARCs.

3http://cloud.archivesunleashed.org/
4https://gephi.org/
5http://graphml.graphdrawing.org/
6https://voyant-tools.org
7https://archivesunleashed.org/notebooks/
8https://github.com/archivesunleashed/warclight

http://cloud.archivesunleashed.org/
https://gephi.org/
http://graphml.graphdrawing.org/
https://voyant-tools.org
https://archivesunleashed.org/notebooks/
https://github.com/archivesunleashed/warclight
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(a) Filtering Mementos

Fig. 47. Warclight allows users to explore a web archive collection.

Examples from: https://warclight.archivesunleashed.org

https://warclight.archivesunleashed.org
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(b) Viewing Memento Metadata

Fig. 47. (Continued) Warclight allows users to explore a web archive collection.

Examples from: https://warclight.archivesunleashed.org

https://warclight.archivesunleashed.org
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Fig. 48. Others have worked on generating story metadata, which is important to our storytelling

model.

3.2 GENERATING STORY METADATA

We are not the first to try to generate metadata from collections (Figure 48). As noted in

Chapter 2, librarians have been applying metadata to collections for centuries. We need it for our

storytelling processes because it may help us select exemplars and it improves the information

scent of the stories we produce.

At first glance, Encoded Archival Description (EAD) [40] appears to be a good fit for providing

metadata for web archive collections. EAD provides a finding aid, or an index of the resources

within a collection [308]. The creators of EAD originally conceived of it for use with special

collections consisting of all kinds of documents, including personal correspondence, charts, maps,

and electronic records [268]. EAD attempts to provide metadata describing the whole collection

as well as each item within the collection. Figure 49 shows an example of an EAD record for a

single item.

Similar solutions to EAD include the IASC Web Archiving Metadata Application Profile

[223], the University of Virginia Library Web Archiving Metadata Application Profile [309],

OCLC’s Web Archiving Metadata Working Group9 Descriptive Metadata for Web Archiving [73],

9https://www.oclc.org/research/themes/research-collections/wam.html

https://www.oclc.org/research/themes/research-collections/wam.html
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< a r c h d e s c l e v e l =" c o l l e c t i o n " t y p e =" i n v e n t o r y " r e l a t e d e n c o d i n g ="

MARC21">

< d i d >

<head >Overview of t h e C o l l e c t i o n < / head >

< r e p o s i t o r y e n c o d i n g a n a l o g =" 852$ a " l a b e l =" R e p o s i t o r y : ">

Blank U n i v e r s i t y < / r e p o s i t o r y >

< o r i g i n a t i o n l a b e l =" C r e a t o r : ">

<persname e n c o d i n g a n a l o g =" 100 ">Brightman , Samuel C . (

Samuel C h a r l e s ) , 1911 −1992< / persname >

< / o r i g i n a t i o n >

< u n i t t i t l e e n c o d i n g a n a l o g =" 245$ a " l a b e l =" T i t l e : ">Samuel C .

Br igh tman P a p e r s < / u n i t t i t l e >

< u n i t d a t e e n c o d i n g a n a l o g =" 245$ f " normal =" 1932/1992 " t y p e ="

i n c l u s i v e " l a b e l =" I n c l u s i v e D a t e s : ">1932 −1992< / u n i t d a t e

>

< p h y s d e s c e n c o d i n g a n a l o g =" 300$ a " l a b e l =" Q u a n t i t y : ">

< e x t e n t >6 l i n e a r f t . < / e x t e n t >

< / p h y s d e s c >

< a b s t r a c t e n c o d i n g a n a l o g =" 520$ a " l a b e l =" A b s t r a c t : ">

P a p e r s o f t h e American j o u r n a l i s t i n c l u d i n g some war

c o r r e s p o n d e n c e ,

p o l i t i c a l and p o l i t i c a l humor w r i t i n g s , and a d u l t

e d u c a t i o n m a t e r i a l

< / a b s t r a c t >

< u n i t i d e n c o d i n g a n a l o g =" 099 " l a b e l =" I d e n t i f i c a t i o n : "

c o u n t r y c o d e =" us " r e p o s i t o r y c o d e ="NSyU">2458163< / u n i t i d >

< l a n g m a t e r i a l l a b e l =" Language : " e n c o d i n g a n a l o g =" 546 ">

< l a n g u a g e l a n g c o d e =" eng "> E n g l i s h < / l a n g u a g e >

< / l a n g m a t e r i a l >

< / d i d >

< / a r c h d e s c >

Fig. 49. An example from Wikipedia [325] of an archdesc record in EAD.
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Fig. 50. Studying document metadata on the web through surrogates.

and Metadata Application Profile for Description of Websites with Archived Versions [111].

Scale is the greatest challenge to implementing solutions like these for web archive collections.

These standards were designed with the intention that humans would carefully review each item

in the collection, gather that item’s metadata using some cataloging standard, and then manually

produce its record. As noted, web archive collections can consist of thousands of documents, and

manually applying this metadata is an expensive proposition. In Chapter 4.5 we show how Hy-

percane can automatically acquire human-created metadata while also generating some metadata

that can provide statistics and aboutness for a collection.

3.3 GENERATING DOCUMENT METADATA AND VISUALIZING
DOCUMENTS AS SURROGATES

As we covered in Chapter 2.4 and will further discuss in Chapter 5, document metadata for

a web page is often visualized as a surrogate. Through studying the different types of surrogates

created for web pages, we get an idea of the possibilities of the type of document metadata to

generate for storytelling. The studies in this section – visualized in Figure 50 – try to determine

which surrogate works best for a user selecting a search engine result. We have a slightly different

use case. Surrogates for both search engines and social media try to answer the question of “Will

this meet my information need?”, but search engine surrogates work to differentiate themselves

from their neighbors on the same page whereas social media surrogates focus on encouraging
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readers to visit their page. Search engine surrogates for the same document can change with

respect to a query. Social media surrogates have no query as input and are only informed by their

document’s contents. With this in mind, we cover the history of surrogate studies here.

3.3.1 TEXT SNIPPETS

Text snippets were one of the earliest surrogates. They require fetching a given web page and

selecting the text to be used in the snippet. Many different methods exist for text selection, like

those employed by El-Beltagy and Rafea [81] and Chen et al. [55]. Search engines typically use

text snippets for displaying results. Figure 51 displays different search engine results for the URI

https://www.cs.odu.edu/~mweigle. Most text snippets extract the title and some of

the text of the underlying page, displaying it with the URI. Some text snippets, like the Google10

surrogate shown in Figure 51a provide a date estimating the last modification date of the page.

Bing11 surrogates may not contain the date, but they display menu links from the page, as seen in

Figure 51b. As Figure 51c shows, DuckDuckGo12 surrogates only show the title and text, along

with the URI and favicon.

Despite their age, text snippets are still undergoing research. In 2017, Maxwell et al. [216]

evaluated snippet length for search queries. In Maxwell’s experiment, as snippet length increased,

participants “issued fewer queries, examined fewer pages; but clicked more documents, i.e., they

spent more of their time assessing documents at higher ranks.” Even though users preferred longer

snippets, their accuracy did not improve. In Chapter 5.3 we establish the sizes of the descriptions

that human authors create, indicating a desired length for text snippets independent of queries.

As a group, text snippets are listed one per row on a web page. This visualization is optimal

for search results, as the position of the result conveys its relevancy. However, this format affects

how many surrogates a user can view at once. Systems typically display one text snippet per row,

whereas more thumbnails can fit into the same amount of space. In social media storytelling,

surrogates are ordered not to convey relevance but often to convey the order of events in time.

Thus, though the concept of arrangement is similar, the meaning is quite different.

3.3.2 THUMBNAILS

A thumbnail is produced by loading a given web page in a browser and taking a screenshot

of the contents of the browser window. Different systems use thumbnails in different ways. For

10https://www.google.com/
11https://www.bing.com/
12https://duckduckgo.com/

https://www.cs.odu.edu/~mweigle
https://www.google.com/
https://www.bing.com/
https://duckduckgo.com/
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(a) Google Search Engine Result

(b) Bing Search Engine Result

(c) DuckDuckGo Search Engine Result

Fig. 51. Text snippet surrogates provided by different search engines for

https://www.cs.odu.edu/~mweigle collected on April 9, 2019. All were collected on

the same date at around the same time, yet they have different content.

https://www.cs.odu.edu/~mweigle
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Fig. 52. The Safari web browser uses thumbnails to show surrogates for web pages that are

currently loaded in its tabs. (Screenshot taken in April 2018.)
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Fig. 53. macOS Finder displaying thumbnails of file contents. (Screenshot taken in April 2018.)
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example, as seen in Figure 52, the Safari web browser uses them to display the content of tabs.

Kopetzky and Mühlhäuser [186] demonstrated that systems could use thumbnails to provide

a preview of a linked page via a mouseover effect so that users could decide if a link was worth

clicking. We create a similar surrogate with thumbnails and social cards in 5.2. Robertson et al.

[279] proposed using a 3D virtual environment for organizing a corpus of web pages where they

visualize each page as a thumbnail. Outside of the web, file management tools, such as macOS’s

Finder, seen in Figure 53, use thumbnails to provide visual previews of documents.

In the web archiving world, the UK Web Archive uses thumbnails (Figure 54) to show a series

of mementos so one can compare the content of each memento, viewing the content drift over time.

Nwala’s “What Did It Look Like?” [243] is a platform that animates thumbnails so one can watch

the changes to a web page over the years. Even though systems can automate their generation

with tools like Puppeteer13, browser thumbnails require significant resources to create. Generation

involves launching a browser, loading the page, including all images and scripts, and then taking a

screenshot of that page. In addition to the memory and processing needed, thumbnails also require

multiple network connections to retrieve all resources for a page. Individually, thumbnails may

not require a lot of processing or storage, but browser thumbnails can also be costly to produce

and store for thousands of pages. This cost in time and resources has led to research by AlSum

et al. [16] later implemented in the TMVis project [207] that focuses on optimizing the selection

of mementos worthy of thumbnails. The UK Web Archive stores thumbnails in its WARCs [131],

but only for seed mementos and not the deep mementos of its crawls.

The size of thumbnails has a severe effect on their utility. If the thumbnail is too large, it does

not provide room for the comparison of surrogates. If the thumbnail is too small, users cannot

see what is in the image. Thumbnails are also difficult for users to understand if a page consists

mostly of text or has no unique features. Kaasten and Greenberg [168] established that the optimal

thumbnail size is 208x208 pixels.

The viewport of a thumbnail is also an essential part of its construction. Depending on what

we want to emphasize on a web page, we may need to generate a thumbnail from content “below

the fold”. For example, Aula et al. [24] evaluated the use of thumbnails that were the same size

but had magnified a portion of a web page at 20% versus 38%. She found that users performed

better with thumbnails at a magnification of 20%.

In Chapter 5.2 we evaluate if thumbnails work well for understanding web archive collections.

13https://pptr.dev

https://pptr.dev
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Fig. 54. The UK Web Archive uses thumbnails to show different mementos for the same

resource, allowing the user to view web page changes over time. (Screenshot taken in April

2018.)
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3.3.3 SOCIAL CARDS

The social card goes by many names: rich link, snippet [109], social snippet, social media card

[254], Twitter card [304], embedded representation [117], rich object [87], or social card [230].

The social card typically consists of an image, a title, and a text snippet from the web page it

visualizes.

Social media is not the only place where social cards are employed. As seen in Figure 55,

Wikipedia uses social cards to provide a preview of links if the user hovers over the link, similar

to what Kopetzky had envisioned with thumbnails. Google News14 (Figure 56) often uses social

cards for individual stories. Social cards sometimes include additional information beyond text

snippets and images. Alonso et al. [15] used social cards in a prototype for Bing search results.

Those cards also incorporated lists of users who shared the target web page as well as associated

hashtags.

There are similar concepts that are not instances of the social card. As shown in Figure 57,

some of the cards used by Google News are not social cards because each is a surrogate for a

news story spanning multiple resources, rather than a single resource. Likewise, search engines

use entity cards to display information about a specific entity drawn from multiple sources (Figure

58). Bota et al. [39] established that entity cards are useful to search engine users. We do not

consider entity cards to be social cards because each social card is a surrogate for a single web

resource. An entity card is a surrogate for a conceptual entity, and a system can construct it from

multiple sources.

In Chapter 5.2 we evaluate if social cards or a combination of social cards and thumbnails

work well for understanding web archive collections.

3.3.4 SURROGATE EVALUATION

Web page surrogates have been of great interest to those studying search engine result pages.

Here we detail eight studies on web surrogates, most of which we already mentioned above. Table

9 displays the different surrogates evaluated by these studies.

14https://news.google.com

https://news.google.com
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Fig. 55. When a user hovers over an internal link, Wikipedia uses social cards to display a

preview of the linked web page [322]. (Screenshot taken in April 2018.)
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Fig. 56. Google News uses other types of cards to group news articles. (Screenshot taken in April

2018.)
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Fig. 57. This card used by Google News is not a surrogate for a single web resource, and hence

we do not consider it a social card. (Screenshot taken in April 2018.)
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Fig. 58. This card format, used by Google Search is also not a surrogate for a single web

resource. This is an entity card, drawing from multiple web resources. (Screenshot taken in April

2018.)
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Woodruff et al. [331, 332] introduced the concept of enhanced thumbnails. These thumbnails

are a snapshot of the page in a browser, but only after a system has increased the font size of

keywords to make them more visible in the thumbnail. To evaluate their effectiveness, she gen-

erated questions based on work by Morrison et al. [227] about tasks users commonly perform on

the web. The authors divided the questions into four categories, and three questions per category

were each given to 18 participants. The authors presented the participants with search engine re-

sult pages consisting of 100 text snippets, thumbnails, or enhanced thumbnails. In their attempt

to find web resources that would address their assigned questions, participants were evaluated

based on their response times. The results indicated that enhanced thumbnails provided the fastest

response times overall, but the results varied depending on the type of task. For example, for lo-

cating an entity’s homepage, text snippets and enhanced thumbnails performed roughly the same.

Likewise, finding the picture of an entity performed roughly the same between thumbnails and

enhanced thumbnails. All three surrogate types performed just as well for e-commerce or medical

side-effect questions.

Dziadosz and Chandrasekar [77] tested the concept of text snippets combined with thumbnails.

In this study of 35 participants, the authors gave each of them two queries and two tasks. The

authors gave each participant a different surrogate type. The participant’s first task was to identify

all search engine results on the page they assumed to be relevant to their query. Their second

task was to visit the pages being the surrogates and identify which were relevant. The number

of correct decisions for text snippets combined with thumbnails was higher than just for text or

just for thumbnails. Aula et al. [24] also evaluated the results of 223 participants viewing text

snippets, thumbnails, or a combination. In their study they discovered that a combination was

more effective in making relevance judgments.

Teevan et al. [293] evaluated the effectiveness of visual snippets — single images combining

a striking image with a page’s site logo and title text. Her study consisted of 276 participants who

were each given 12 search tasks and a set of 20 search results, with 4 of the 12 tasks completed

with different surrogates. She discovered that text snippets required the fewest clicks compared

to thumbnails, which required the most. This result indicates a lot of false-positive matches for

participants when using thumbnails. Participants preferred visual snippets or text snippets equally

over thumbnails and preferred visual snippets for shopping tasks. Most participants found thumb-

nails to be too small to be helpful.

Jiao et al. [134] introduced the concept of using external images generated by search results

as a surrogate. He compared the use of internal images, external images, thumbnails, and visual

snippets by 51 participants. Like Dziadosz’s study, they asked participants to guess the web page’s
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relevance behind the surrogate and then later evaluate if their earlier guess was correct. To generate

search results, they randomly sampled 100 queries from the KDD CUP ’05 dataset [196] and

submitted them to Bing. His results show that none of the surrogates works for all types of pages.

For example, overall, internal images were best for pages that contained a dominant image. In

contrast, thumbnails or external images were best for understanding pages that did not contain a

dominant image.

Li et al. [197] was interested in identifying dominant images in web pages. We focus here

on the second study in their work which compares text snippets and social cards. First, the au-

thors randomly sampled 100 queries from the KDD CUP ’05 dataset [196] and submitted them to

Google. Next, the authors evaluated the search engine results and reformatted them into either text

snippets or social cards. Then, the authors gave two groups of 12 students the queries either clas-

sified by their functionalities or semantic categories. Finally, the authors evaluated participants

based on the number of clicks of relevant results and also on the amount of time they took with

each search. Social cards were the clear winner over text snippets in terms of time and clicks.

Loumakis [204] attempted to compare the performance of images, text snippets, and social

cards. Using pre-selected queries and 81 participants, Loumakis also reformatted Google search

results. Unfortunately, he did not get the same level of performance in his study, noting “Adding

an image to a SERP result will not significantly help users in identifying correct results, but neither

will it significantly hinder them if an image is placed with text cues where the scents may conflict.”

Al Maqbali [4] explored the use of different image augmentations for visual snippets, text +

thumbnail, social card, text + visual snippet, and a text + tag cloud/thumbnail combination. Al

Maqbali had 65 participants evaluate the relevance of search engine result pages as in the prior

studies. This study reached the same conclusion as Loumakis: adding images to text snippets did

not make a difference in search engine users’ performance.

To further understand the disagreement between the results of Loumakis [204], Al Maqbali [4],

and Li [197], Capra [50] explored the effectiveness of text snippets and social cards. He wanted

to determine if the quality or relevance of the image used in the social card affected performance.

Before any relevance study, he had the participants rate individual internal images for a social card

as good, bad, and mixed. Capra discovered that text snippets with good images have a slightly

higher statistically significant accuracy score than just text snippets alone, at the cost of judgment

duration for each surrogate. The accuracy for text snippets was 0.864, the accuracy for social

cards with bad images was also 0.864, and the accuracy for social cards with good images was

0.884. From the perspective of search engine result pages overall, there was evidence that good

images showed improvement in accuracy with ambiguous queries (e.g., jaguar the car or the cat?).
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Fig. 59. Others have tried to make sense of web page collections.

However, in this case, the improvements were not statistically significant.

Where these studies focused on whether or not users selected relevant search engine results

with different surrogate types, in Chapter 5.2 we evaluate how well users understand collections

through different types of surrogates. We find, much like Capra, that social cards are better for

understanding collections than the existing Archive-It surrogate.

3.4 VISUALIZING WEB ARCHIVE COLLECTIONS AS A WHOLE

Several projects – visualized in Figure 59 – have worked on visualizing web archive collections

as a whole. They do not create stories. These efforts were trying to take into account everything

in the collection rather than selecting exemplars. They often use story metadata and document

metadata but are difficult for users to understand without training.

Specific to the Portuguese Web Archive (Arquivo.pt), the Laboratory of Artificial Intelligence

and Decision Support has developed Conta Me Histórias (Tell Me Stories) [49] Temporal Summa-

rization Framework15,16. It is a storytelling tool that retrieves mementos across that web archive

and generates a listing of headlines for a given topic over time. To use Conta Me Histórias, a user

types in a search term, and the system finds mementos fitting that term. From there, the system

15https://github.com/LIAAD/TemporalSummarizationFramework
16http://contamehistorias.pt/arquivopt/

https://github.com/LIAAD/TemporalSummarizationFramework
http://contamehistorias.pt/arquivopt/
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(a) Timeline Interface

Fig. 60. Conta Me Histórias displays a timeline of results for Papa Franciso (Pope Francis)

drawn from the Portuguese Web Archive (Arquivo.pt).

Examples from: http://contamehistorias.pt/arquivopt/

http://contamehistorias.pt/arquivopt/
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(b) Statistics Interface

Fig. 60. (Continued) Conta Me Histórias displays a timeline of results for Papa Franciso (Pope

Francis) drawn from the Portuguese Web Archive (Arquivo.pt).

Examples from: http://contamehistorias.pt/arquivopt/

http://contamehistorias.pt/arquivopt/
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generates a story consisting of a timeline and a set of headlines corresponding to mementos for the

search term, seen in Figure 60a. A user can click on the headline and view the memento. Clicking

on the Details tab brings the user to a set of statistics about the mementos, seen in Figure 60b.

From here, we can see sentiment analysis, the distribution of the mementos, and the distribution

of domain names. These visualizations combine information retrieval and visualization to deliver

relevant search terms while preserving the available temporal information. In our case, we are

focusing on a single web archive collection rather than only representing mementos that match a

search term across an entire web archive.

Espenschied [276] worked with data from the Obama White House to craft stories combining

mementos from Webrecorder with the Obama social media archive. He prototyped a narrative

framework for three different events in the Obama presidency, shown in Figure 61. Humans

created these stories. On the left side exists a set of paragraphs detailing how a given social

media story unfolded. These paragraphs contain links to mementos gathered using Webrecorder.

Espenschied notes how this is an example of “how a curated web archive can clear a path through

otherwise overwhelming data and really tell a story.” While we believe that these narrative features

are a meaningful future for web archives, our goal is to generate automated stories that summarize

web archive collections. Our goals align in the desire to help users find the signal in overwhelming

data.

Jatowt et al. [133] were one of the first to visualize web pages over time. They demonstrated

the Page History Explorer (PHE), a tool that downloads mementos from web archives and provides

a visualization. PHE shows all mementos of a given URI as thumbnails from oldest to newest,

spanning left to right. For several user-specified time periods, a term cloud displays up to 20

top-scored terms from the web page during that time. Clicking on any of the thumbnails gives

the user a larger window holding the thumbnail. If the user supplies a keyword, then the system

arranges the pages along the y-axis in the order of frequency of that keyword among the mementos.

Jatowt’s visualization worked for a single original resource and not a web archive collection, but

this visualization influenced Padia and AlNoamany.

Padia and AlNoamany [256, 257] developed several visualizations of web archive collections.

Some of these visualizations rely upon the Group seed metadata field, as generated by the curator

of the collection. As noted in earlier chapters, most Archive-It collections lack seed metadata;

thus, some of these visualizations may not work collections outside of these examples. For col-

lections lacking this metadata, Padia developed a set of rules to categorize websites based on the

URI features work of Kan and Thi [172]. Padia [256] created rules to fit URIs into the categories

of social media, news, blogs, videos, and others.
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(a) “Thanks Obama”

Fig. 61. Stories produced from Webrecorder as part of a prototype of its narrative features.

Examples from: http://archive.rhizome.org/narrative-archives/.

(Screenshots taken July 2018.)

http://archive.rhizome.org/narrative-archives/
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(b) TD4W x FLOTUS

Fig. 61. Stories produced from Webrecorder as part of a prototype of its narrative features.

Examples from: http://archive.rhizome.org/narrative-archives/.

(Screenshots taken July 2018.)

http://archive.rhizome.org/narrative-archives/
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(c) #LoveWins

Fig. 61. Stories produced from Webrecorder as part of a prototype of its narrative features.

Examples from: http://archive.rhizome.org/narrative-archives/.

(Screenshots taken July 2018.)

http://archive.rhizome.org/narrative-archives/
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(a) Category Level of Padia’s TreeMap Visualzation.

(b) Web Page Level of Padia’s TreeMap Visualzation.

Fig. 62. Padia et al.’s [256] interactive TreeMap visualization presented a web archive collection

at three different levels.
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(c) Memento of Padia’s TreeMap Visualzation.

Fig. 62. (Continued) Padia et al.’s [256] interactive TreeMap visualization presented a web

archive collection at three different levels.

Fig. 63. Padia et al.’s [256] TimeCloud Visualization of Archive-It Collection 194: North

Carolina State Government Web Site Archive. The left shows the top 20 terms weighted only by

term frequency, whereas the cloud on the right shows the top 20 scoring terms by TF-IDF.
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Fig. 64. Padia et al.’s [256] BubbleChart Visualization of Archive-It Collection 1068: Human

Rights. All possible values for the Group seed metadata field in the given collection are shown

across the top. The size of the bubble indicates the number of mementos in each group.
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The TreeMap shown in Figure 62 displays Padia’s interactive visualization of Archive-It Col-

lection 1068: Human Rights. This visualization consists of multiple levels, allowing the user to

navigate from web page category (Figure 62a) to original resource (Figure 62b) to memento (Fig-

ure 62c). They designed this layout to provide a hierarchical view of the collection, grouping

original resources into categories and mementos under original resources.

Figure 63 displays Padia’s TimeCloud for Archive-It Collection 194: North Carolina State

Government Web Site Archive. Using the sliders on top to change the range of start and end time,

a user can view the 20 most frequent terms encountered in the collection at that time period.

Padia also developed a non-interactive visualization that provides the user with a quick sum-

mary of the types of web pages found in the collection. Figure 64 displays this bubble chart. The

size of the bubbles indicates how many mementos fit into each category. A user can click on the

bubbles and get to the archived copies. This view provides the end-user with a quick idea of the

number of mementos in a particular Group. The bottom of the chart provides a summary of the

collection, including the number of original resources, mementos, groups, and the time span of

the first and last memento-datetimes.

Padia’s Image Plot visualization, seen in Figure 65, gives a more interactive view of the size

of different groups. Again, the visualization breaks the collection into its defined categories, with

thumbnails of the latest memento for each original resource shown below each category. The

user can scroll through these thumbnails and click on them to visit Archive-It’s page listing all

mementos for that original resource. The visualization includes a smaller bar plot on the lower

right. The size of each bar in this plot serves a similar purpose to the size of the bubbles shown

in Figure 64, allowing the user to see how many mementos fit into each category. If a user hovers

over the thumbnail of a memento, a wordle (word cloud) is generated, showing the top 20 terms

for that page.

Costa and Silva [64] point out that timelines can help users understand the temporal nature

of mementos. With this in mind, Padia developed a Timeline visualization, as seen in Figure

66. Each category has a corresponding color. Each line in the visualization represents a single

original resource. Dots on each line indicate captured mementos. When a user hovers over a time,

a window displays the other original resources that the web archive captured on the same day.

Padia notes that this visualization allows users to see the structure of crawls and the evolution of

the collection over time.

These visualizations require training and description to use correctly. The Bubble Chart and

the Image Plot attempt to summarize a single metadata field for the collection but do not provide

any additional insight into the collection content. The TreeMap visualization allows a user to
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Fig. 65. Padia et al.’s [256] Image Plot Visualization of Archive-It Collection 1068: Human

Rights. All possible values for the Group seed metadata field in the given collection are shown

across the top.

explore the mementos of the collection from page categories and seeds but requires much inter-

action. These visualizations try to visualize all of the mementos in a collection at once. Our goal

is different. We seek to provide a story that allows the user to quickly get the general idea of a

collection, saving the user time. We also apply visualization techniques (surrogates) that users are

exposed to all of the time, thus requiring little training and less cognitive load.

3.5 STORYTELLING WITH WEB ARCHIVES

AlNoamany et al. [7, 11, 12, 13, 13, 14, 14] pioneered the use of social media storytelling

for web archive summarization. As shown in Figure 67, AlNoamany’s work covers our entire

storytelling model. Her work was instrumental in promoting the idea of combining exemplar
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Fig. 66. Padia et al.’s [256] Timeline Visualization of Archive-It Collection 1068: Human Rights.
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Fig. 67. AlNoamany et al.’s [11, 12, 13, 14] work combines all of the storytelling processes in

our model.

mementos with surrogates as a visualization. Figure 68 displays four stories produced by her first

Dark and Stormy Archives (DSA) system. These stories were submitted to and visualized by the

now-defunct [289] social media storytelling service Storify.

She applied several approaches to select exemplars. To reduce the number of mementos from

consideration, AlNoamany chose first to identify mementos that were off-topic [10]. Within web

archive collections, the system crawls seeds at various intervals. Each memento is an observation

of that seed at a particular point in time. Sometimes, the seed itself contains content that no

longer matches the topic of the web archive collection, as seen in Figure 69. This example relays

a somewhat complicated history for the web page at hamdeensabhay.com. It starts as on-topic

but goes off-topic due to database errors, the inability of the company to pay for hosting, website

changes, hacking, and, finally, domain expiration. Many seeds exhibit different kinds of off-topic

behavior, and the next chapter contains more examples of this behavior. AlNoamany discovered

that off-topic seeds exhibit several patterns. Always On seeds never go off-topic. Step Function

On seeds are on-topic initially and stop being on-topic after some point; they never come back

on-topic. Step Function Off seeds are off-topic initially and then start being on-topic past a certain

point. Oscillating seeds are on and off-topic at various points throughout their life. Finally, Always

Off seeds are never on-topic.

Using human review of 15,760 mementos across three Archive-It collections, AlNoamany et
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(a) Russia Plane Crash Sept 7,2011

Fig. 68. Stories produced as part of AlNoamany’s Dark and Stormy Archives [11], captured as

mementos by the Internet Archive.
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(b) Occupy Movement 2011/2012

Fig. 68. (Continued) Stories produced as part of AlNoamany’s Dark and Stormy Archives [11],

captured as mementos by the Internet Archive.
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(c) 2013 Boston Marathon Bombing

Fig. 68. (Continued) Stories produced as part of AlNoamany’s Dark and Stormy Archives [11],

captured as mementos by the Internet Archive.
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(d) 2013 Government Shutdown

Fig. 68. (Continued) Stories produced as part of AlNoamany’s Dark and Stormy Archives [11],

captured as mementos by the Internet Archive.



126

(a) on-topic

on 2012-05-13

(b) database error

on 2012-05-24

(c) financial issues

on 2013-03-21

(d) under construction

on 2013-07-02

Fig. 69. An example from AlNoamany et al. [10] of the hamdeensabhay.com seed going

off-topic. Each thumbnail corresponds to a memento captured by Archive-It because the site is

re-crawled periodically.
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(e) hacked

on 2014-06-05

(f) domain expiration

on 2014-10-11

Fig. 69. (Continued) An example from AlNoamany et al. [10] of the hamdeensabhay.com seed

going off-topic. Each thumbnail corresponds to a memento captured by Archive-It because the

site is re-crawled periodically.

al. manually created a gold standard dataset [152] to evaluate several algorithms for detecting

off-topic data. This gold standard dataset contains the URI-M of each memento and whether it is

on or off-topic compared to the rest of the collection. Separately, they selected the first memento

from each seed’s TimeMap for these collections and computed similarity measures comparing

each subsequent memento to the first. The similarity measures they used were cosine similarity,

Jaccard coefficient, the intersection of most frequent terms, web-based kernel function, change

in size by bytes, and change in size by words. Comparing these results to the gold standard

dataset, they computed accuracy and F1 scores. They discovered that cosine similarity was the

best algorithm for discovering off-topic mementos. A combination of word count and cosine

similarity performed even better. In Chapter 4.2, we evaluate other similarity measures and more

precise threshold values beyond her study to see if we can improve upon this off-topic detection

and, in our case, word count performed best.

AlNoamany et al. [9] evaluated both 3,109 Archive-It Collections and 14,568 Storify social

media stories. In Storify, users could employ several elements as part of their narrative, includ-

ing links represented as social cards, images, video, and freeform text. AlNoamany discovered
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that 48% of stories contained no text elements. When grouping elements from all stories, only

8.1% contained text, making text elements quite rare. In contrast, 70.8% of elements were links.

Across all stories, the top 5 domains from links are to social media sites, with 74.92% to twit-

ter.com, 29.09% to youtube.com, 12.64% to instagram.com, 12.37% to facebook.com, and 7.41%

to flickr.com.

Interestingly enough, most of the tweets in these stories contained their own embedded re-

sources, producing a nesting relationship whereby the tweet’s card contains its own social cards,

images, and videos. Using the number of views for each story as a proxy for popularity, they

discovered that popular stories contain a median of 10 images and a median of 20 links. Overall,

popular stories have a median value of 28 elements.

They evaluated all collections Archive-It to understand the platform’s makeup. They discov-

ered that the largest collection was collection 3572, Government of Canada Publications. In 2015

it contained 123,647 seeds (as of July 12, 2021, it now contains 339,166 seeds). She noted how

some collections have mementos created before Archive-It came into existence because those

collections’ archivists imported mementos from other web archives. They found that the top 5 do-

mains for Archive-It seeds based on the number of collections they appear in were facebook.com,

twitter.com, youtube.com, blogspot.com, and wordpress.com. Comparing the two, they discover

that Storify and Archive-It do diverge quite a bit. Most URIs in Storify came from the .com

TLD, whereas many URIs in Archive-It come from .gov and .edu domains. Archive-It is used

to preserve the content of government agencies and educational institutions, often to meet some

regulatory requirement. This study determined that links rendered as social cards are a common

element used in storytelling. They also established that a good target number of elements for a

summary story should be 28.

AlNoamany et al. [11] formalized the concepts needed to produce stories from Archive-It

collections. They detail a taxonomy of four different types of stories possible using the dimensions

of time and seed:

• Fixed Page, Fixed Time (FPFT) – In this case, the seed is the same for all elements in the

story, and all mementos are from the same time period. This type of story can be used to

view the same seed but captured from different physical locations, languages, user-agents,

or other environment-specific changes.

• Sliding Page, Sliding Time (SPST) – For these stories, both the seed and the time may

vary across the life of the collection.

• Fixed Page, Sliding Time (FPST) – This shows how a single seed changes over time. This
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type of story is useful for watching an unfolding news story.

• Sliding Page, Fixed Time (SPFT) – Here, the seed changes, but the time stays fixed. This

story documents different sources reporting for the same time period.

They note that FPFT stories are not currently possible with the technology provided by web

archives. AlNoamany visualized the DSA framework as a filter, or sieve, as seen in Figure 70.

Each step removes mementos from consideration until only around 28 representative mementos

remain. They use the number 28 because it is the number of elements found in their earlier study’s

most popular Storify stories.

Before we discuss her algorithm for storytelling, we must first cover the concept of path
depth. The path depth for each seed URI consists of the number of items separated by slashes

after the domain name. If the path consists of a query string, 1 is added to the path depth, similar

to McCown et al. [218]. If the last item in the path consists of a known default page (e.g.,

index.html), then we subtract 1 from the path depth. Default pages are determined by a list of

well-known default pages17. Typically, pages with a higher path depth discuss more specific

topics than those with a lower path depth [57]. AlNoamany makes use of this concept to select

mementos covering more specific topics from the collection.

Given a web archive collection, AlNoamany’s Algorithm for producing these stories is as

follows:

1. Mark mementos that are deemed off-topic from the collection. Exclude them from further

consideration.

2. Mark mementos that are near-duplicates to each other. Exclude them from further consider-

ation.

3. Mark mementos that do not use the English language. Exclude them and only keep the

English language mementos.

4. Slice the collection by memento-datetime.

5. Cluster the mementos within each slice based on similarity of content.

6. Select the best representative memento from each cluster by using a quality equation.

7. Order the selected mementos by publication date or memento-datetime.

17https://support.tigertech.net/index-file-names

https://support.tigertech.net/index-file-names


130

Fig. 70. The Dark and Stormy Archives framework, visualized as a filter in AlNoamany’s

presentations [8].
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8. Visualize the selected mementos with Storify.

AlNoamany built Step 1 on her earlier off-topic detection work. Step 2 uses Simhash to com-

pute hashes and measure their distances from each other. Step 3 uses the Java language detection

library developed by Shuyo [284]. Step 4 slices the collection into several slices depending on the

number of mementos N in the collection, as shown in Equation 10:

S =

d28+ log10(N)e if N > 28

N if N ≤ 28
(10)

Clustering in Step 5 is performed by computing the Simhash distance between different mementos

and executing DBSCAN [84].

Several factors inform the quality equation used for Step 6. AlNoamany noted that the sur-

rogates produced by Storify for news articles had more topically relevant content than those pro-

duced by a news website’s main page. Such articles have a greater URI path depth. They also

noted that social media URIs produced poor surrogates with Storify. Ideally, surrogates of social

media posts would contain content about that post. However, surrogates of social media sites often

contain information about how to sign up for an account at the site rather than containing the post’s

content. AlNoamany uses a URI classification scheme from her previous work with Padia [257]

to detect social media sites and give them a lower weight compared to news sites. Finally, not

all mementos are of the same quality. Due to issues with crawling, some mementos are missing

images, stylesheets, and scripts. Brunelle et al. [45] covered this extensively and even produced

a method of evaluating the quality of mementos, and AlNoamany incorporates Brunelle et al.’s

Memento Damage metric into this quality equation. The equation is as follows:

Mq = (1−wd×Dm)+wl×Ml +wc×Mc (11)

where Dm is memento damage, Ml is the path depth of the URI, and Mc is the weight of Padia’s

URI category. The other terms in the equation are weights whose values have been determined

empirically as wl = 0.45, wd = 0.40, and wc = 0.15.

For Step 7, they attempt to extract the publication date using natural language processing and

fall back to memento-datetime otherwise. Finally, in Step 8, Storify renders the mementos to vi-

sualize the story. The Storify API provides some tools for augmenting or changing the behavior of

surrogates. By default, Storify would use a favicon and domain from the web archive. AlNoamany

overrode these values with those of the seed URI and appended the memento-datetime.

This dissertation refers to AlNoamany’s Algorithm as DSA1 because it is the first attempt at

solving this problem. Figure 71 shows how her proof-of-concept system maps to our model. Her
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Fig. 71. How AlNoamany’s proof-of-concept system maps to our storytelling model.
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Java and Python code took care of selecting exemplars through steps 1 - 7 of her algorithm. It

also scraped Archive-It for the collection title to generate story metadata. In Step 8, she aug-

mented Storify’s surrogates by applying additional document metadata. Finally, Storify took care

of visualizing the story and distributing it.

To evaluate the output of this algorithm, the authors first needed a gold standard against which

to test. They asked expert archivists to select representative mementos from their Archive-It col-

lections using the following guidelines:

• mementos must come from within the collection

• mementos must be on-topic

• mementos must be English

• the number of mementos must be around 28

• stories can be of one of the types mentioned above

• mementos must not be a near-duplicate of another memento in the story

• mementos of better quality are preferred

• stories can be from a specific time period in the collection if the collection spans many years

The archivists generated 23 stories from 10 different collections, hereafter referred to as human-

generated stories. The authors then executed the DSA framework against the same stories to

produce automatically-generated stories. In addition, the authors created randomly-generated

stories for each collection. Finally, they selected a single memento and repeated it 28 times to

produce a poorly-generated story for each collection.

With the stories now available, AlNoamany et al. turned to MT to recruit participants for 1,035

tasks. Each task presented a participant with two sets of two stories, side by side. They instructed

the participant to consider each story as an overview of a topic and choose their preferred story.

Unknown to the participant, AlNoamany presented one of the following sets of tasks to them:

• human vs. automatic, human vs. poor

• human vs. random, human vs. poor

• random vs. automatic, automatic vs. poor
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Fig. 72. The results of the user study conducted by AlNoamany et al. [9].

The task containing a poor story was an attention question. If a participant selected a poor story as

their preferred story, then their response was discarded. Figure 72 displays the results for the other

story types. There was some variation amongst stories from this study, but overall, the participants

could not tell the difference between the stories generated by humans or the DSA framework.

AlNoamany’s work is compelling. Her work provides structural and topical methods of reduc-

ing a collection of mementos to a representative sample. Unlike other visualizations, such as those

by Padia, users consuming these stories require minimal training to understand them because the

stories use social cards that the users have experienced elsewhere on the web. In addition, unlike

stories created with live web curation platforms, AlNoamany’s stories link to web archives, mean-

ing they should never have broken links. Even better, users could not tell the difference between

stories produced by the DSA or archivists.

There is more to be done. AlNoamany only evaluated collections based on events. In Chapter

4.1, we show that there are more types of collections. She tailored her solution to Storify, which

is now gone. In Chapter 5.1 we show how existing platforms are not a suitable replacement for

Storify. We introduce the tools MementoEmbed (Chapter 5.4) and Raintale (Chapter 6.1) to not
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only replace Storify but expand the possibilities of storytelling with web archives beyond Storify.

AlNoamany proved that test participants could not tell the difference between stories created by a

human or created via this algorithm. She did not, however, evaluate how well these stories worked

as summaries, which we cover in Chapter 4.4.

3.6 CHAPTER SUMMARY

In this chapter, we reviewed the existing work related to the different processes in our sto-

rytelling model. For selecting exemplars, the existing algorithms that select exemplar sentences,

images, and documents from collections inspire us. Their primitives are the concepts of filtering,

clustering, and scoring. We address RQ1 in Chapter 4.1 where we explore web archive collec-

tions’ structural features to understand better how to apply these primitives. We address RQ2 by

evaluating different methods of applying these primitives to selecting exemplars. In Chapter 4.2

we demonstrate how to filter off-topic mementos from collections. In Chapter 4.3 we discuss a

model that applies these concepts as primitives for creating more complex algorithms. We eval-

uate some of these complex algorithms in Chapter 4.4 and implement our model of primitives in

the tool Hypercane introduced in Chapter 4.5.

Existing efforts at generating story metadata for collections rely upon manual review of each

memento in the collection. Web archive collections consist of thousands of mementos, making

it expensive to apply these solutions. Even if they only applied metadata to individual seeds, the

scale is still in the thousands for some collections. In Chapter 4.1 we discuss structural features

of collections that can help users understand the curatorial involvement with a collection, how it

changed over time, the diversity of its seeds, and its lifespan. We will also cover how Hypercane

can address the need to generate story metadata in Chapter 4.5.

We covered past studies that tried to evaluate which surrogates best worked for search results.

These studies focused on whether or not the participant selected the relevant result. A number of

these studies had inconclusive results. More importantly, they focused on search engine result rel-

evance rather than collection understanding. RQ3 asks which surrogate is best for understanding

groups of mementos. We address RQ3 in Chapter 5.2 where we perform our evaluation of which

surrogate works best for providing an understanding of the underlying collection. In Chapter 5.3

we discuss how to generate surrogates, specifically social cards when metadata is scarce. This

work helps us address RQ4, where we ask how to emulate human behavior while automating the

creation of surrogates.

We highlighted the efforts by others to visualize web archive collections. These efforts at-

tempted to summarize the collection as a whole, often generating story and document metadata
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for use in complex visualizations that allow users to explore facets of the collection. These imple-

mentations did not select exemplars as a summary. Instead, they tried to visualize all mementos at

once. Their visualizations’ complexities also increases the cognitive load on the user because they

require that the user train with them to be able to apply them. In contrast, we are relying upon the

visualization paradigm of social media storytelling that most web users are already familiar with.

Finally, we introduced AlNoamany’s pioneering work on combining social media storytelling

with web archives. She combined all of the storytelling processes in our model. She developed

an algorithm, referred to in later sections as DSA1, that selects exemplars by filtering, clustering,

and scoring the collection. She rendered these exemplars via Storify, which handled generating

document metadata, visualizing the story, and distributing it. AlNoamany also evaluated existing

stories to determine that popular stories had a median of 28 elements. This number serves as a

good target for our stories. She also established that human participants could not tell the dif-

ference between stories generated via her method and those created by archivists from their own

collections. The rest of this dissertation builds upon her work.

In the next chapter, we cover our work addressing the first steps to storytelling with web

archives — selecting exemplars and generating story metadata.



137

CHAPTER 4

SELECTING EXEMPLARS AND GENERATING STORY METADATA

Fig. 73. The processes for storytelling that are covered in this chapter are indicated by the blue

box.

In this chapter, as shown in Figure 73, we cover research questions related to selecting exem-

plars and generating story metadata. These are the starting points of storytelling with a corpus. We

start with the semantic categories of collections that we discovered in Archive-It, indicating the

intent behind creating a collection. We then discuss an Archive-It collection’s structural features.

These structural features help us understand the nature of collections beyond text analysis, thus

indicating which features might be helpful when selecting exemplars or selecting collections for

experiments. Both of these help us address RQ1. We also show how these structural features can

predict the semantic category of a collection.

For RQ2, we evaluate different ways of selecting exemplars. The first step in selecting ex-

emplars is to identify which mementos no longer match the overall collection topic. We analyze

different methods of identifying off-topic mementos and establish how differences in word count

perform best. Then we cover a model for how to build algorithms that select exemplars from a

collection, which we then use to produce different exemplar selection algorithms. Considering
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that search engines are the existing method with which users might explore collections, we eval-

uate the exemplars chosen by each of these algorithms against a search engine to show that these

algorithms select exemplars that have poor retrievability with a state-of-the-art web archive search

engine and queries automatically generated by several methods. Finally, we introduce Hypercane,

a tool inspired by our algorithm-building model that allows users to select exemplars.

4.1 STRUCTURAL FEATURES AND TYPES OF COLLECTIONS

Before we can select exemplars, we need to understand the nature of web archive collections.

Collections contain structural features that help us understand them in ways that text analysis will

not. As noted in Chapter 3.1 selecting exemplars can involve filtering, scoring, and clustering.

Some structural features give us an idea of how to cluster, by what features to filter, and how to

score candidate exemplars. In addition to helping us select exemplars, structural features help us

compare collections. If we want to create a diverse sample of collections for an experiment, as we

do in Chapter 4.4, we want to include collections that contain a variety of values for these features.

Between October and December 2017, we evaluated 3,382 Archive-It collections to better under-

stand these features and how we can use them to describe and even predict a collection’s semantic

category.

4.1.1 SEMANTIC CATEGORIES OF WEB ARCHIVE COLLECTIONS

We recognize that archivists create web archive collections for different reasons. A semantic
category describes the intention behind creating a collection. In December 2017, we manually

reviewed the metadata of 3,382 Archive-It collections and placed them into four semantic cate-

gories. Table 10 shows the distribution of these semantic categories across our sample. Below we

describe these categories in more detail.

Self-Archiving — These collections consist of one or more domains either (1) belonging to

the archiving organization or (2) being archived as part of some archiving initiative of which the

collecting agency is part. Collections fitting into this category include the University of Utah

Web Archive (ID 2278) archived by the University of Utah or the City of Eagan Websites (ID

2289) archived by the City of Eagan, Minnesota. In each case, the organization is archiving its

own web presence. Less apparent are collections like Governor of Tennessee, Phil Bredesen (ID

391) archived by the Tennessee State Library and Archives. In these latter cases, the archiving

organization, the name of the collection, or the ownership of the seeds do not match, but the

Tennessee State Library and Archives specifically exists to archive the State of Tennessee gov-

ernment. Tennessee State Libraries has collections for many, if not all, Tennessee state agencies.



139

TABLE 10

Distribution of collections for each semantic category (as of December 2017)

Semantic # of % of All
Category Collections Collections

Self-Archiving 1,828 54.1%

Subject-based Archiving 935 27.6%

Time Bounded - Expected 476 14.1%

Time Bounded - Spontaneous 143 4.2%

Total 3,382 100%

From this behavior, we can infer that they are tasked with archiving the web presence of all Ten-

nessee state government agencies. Other organizations with collections that fit into this category

are the Federal Depository Library Program Web Archive and the Region of Waterloo Archives.

The Self-Archiving category dominated Archive-It with 54.1% of collections in 2017.

We can learn about different aspects of organizations through stories built from Self-archiving

collections. With a sliding page, sliding time (SPST) story, we get to understand the collection

and the organization it represents as a whole. Organizations often segment units into different

URIs. For example, in University of Utah Web Archives, to learn about the university as a whole,

we visit the mementos for its home page (http://www.utah.edu/). To visit the University

Library, we visit https://lib.utah.edu/. With a fixed page, sliding time (FPST) story, we

can take a specific unit of the organization and follow it through time. With a sliding page, fixed

time (SPFT) story, we can view how the whole organization was responding to the events of the

time period. We select exemplars differently depending on the aspect of the organization we want

to explore.

Subject-based Archiving — Some collections consist of many seeds bound by a single topic.

The topic may be evident, as with Environmental Justice (ID 7635), archived by Tufts University.

The topic may also be vague, like ISU Special Collections Department Manuscript Collections

Web Sites (ID 1501), archived by Iowa State University (ISU). In the former, the subject is “envi-

ronmental justice.” In the latter, the subject is “the set of organizations that have shared physical

items with the ISU Special Collections Department“’. Collection 1501 does not fit into the Self-

Archiving category because these organizations are not part of ISU, nor is it apparent that ISU is

specifically tasked via some broader archiving initiative to archive them. ISU is merely comple-

menting its physical library collection by archiving additional information about the organizations

http://www.utah.edu/
https://lib.utah.edu/
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that have contributed to it. Subject-based archiving made up 27.6% of collections in 2017.

Stories from Subject-based collections allow us to explore one or more subtopics. SPST stories

provide an overview of the subject altogether, giving us enough information to further explore

the topic (and the collection). A subject’s subtopics could be hidden behind different URIs. For

example, in Environmental Justice, different sources cover topics like community farming (http:

//growingfoodandjustice.org/) and sustainable water systems (http://pacinst.

org/). The focus of these different sources allows us to use FPST stories to explore a subtopic

over time. SPFT stories allow us to see the conversation around the subject at the time. If subtopics

are not apparent through seeds, we may select exemplars from Subject-based collections through

topic modeling, or we may cluster the collection to find subtopics and then filter for a specific

subtopic to tailor the story to that aspect of the collection.

Time Bounded - Expected — These collections focus on an expected, planned event, such as

2010 Winter Olympics (ID 5711) archived by the International Internet Preservation Consortium

(IIPC). The collections may also be based on a specific time period, such as Virginia’s Political

Landscape, 2007 (ID 663) archived by the Library of Virginia. Collections from institutions

participating in the K-12 Archiving Initiative [191] also fit into this category, as their archivist

plans to stop adding to them after a single semester or school year. These collections made up

14.1% of collections in 2017.

In Time Bounded - Expected collections, we can apply SPST stories to get an idea of the event

as a whole. Time Bounded - Expected collections provide coverage of the event from different

sources. In the case of Virginia’s Political Landscape, each seed reflects a specific political can-

didate (e.g., http://www.northam2007.com/). An FPST story gives us an idea of how

that candidate’s message changed over time. SPFT stories give us an idea of how different can-

didates discussed the issues at the same time. In the case of 2010 Winter Olympics, news sources

(e.g., http://jo-vancouver-2010.francetv.fr) cover specific countries’ interests in

the games. Thus, FPST stories give us an idea of the feeling of anticipation by a country’s athletes

and their responses when they finally win or lose. Different SPFT stories let us see how everyone

covered the games before it occurred, during, or after. We can also cluster the collections and filter

on these clusters to create stories featuring a particular political opinion or sporting event.

Time Bounded - Spontaneous — These collections start after a spontaneous event. Collec-

tions fitting into this category include Tucson Shootings (ID 2305) archived by the Virginia Tech:

Crisis, Tragedy, and Recovery Network [334, 335] and Japan Earthquake (ID 2438) archived by

the University of Michigan, School of Information. They may also start after the beginning of

a movement, such as Black Lives Matter Movement (ID 6396) archived by the San Jose State

http://growingfoodandjustice.org/
http://growingfoodandjustice.org/
http://pacinst.org/
http://pacinst.org/
http://www.northam2007.com/
http://jo-vancouver-2010.francetv.fr
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University, School of Information. The key is that a curator creates these collections in response

to this spontaneous event or movement, and the curator usually stops adding to them at some

point. Perhaps due to the spontaneity of their creation, they are the smallest semantic category,

only making up 4.2% of collections in 2017. They are also the only collection type evaluated by

AlNoamany [11].

Like with Time Bounded - Expected collections, stories from Time Bounded - Spontaneous

collections can give us an idea of the collection’s whole topic or specific aspects. The difference is

in the nature of the coverage. With FPST stories, we are trying to analyze the changing information

in one source over time, not just following the events as if we were living during that time but

also experiencing the misinformation and lack of information that the public experienced. For

example, in Japan Earthquake we have 811 seeds covering the event. Some seeds (e.g., http:

//11shokunin.com/keyholder/) covered how the event affected individuals, including

how the earthquake destroyed their workplaces. Other seeds focused on the damaged nuclear

power plant and how activists were exploiting the contemporary public sentiment to keep it closed

(e.g., http://1120antinukes.tumblr.com/). SPFT stories help us understand what the

public and first responders knew while the event was resolving.

With these different semantic categories, we get some idea of the types of stories to tell and

how to select the exemplars to tell them. These semantic categories are not the only way of looking

at a collection, however.

4.1.2 SEED FEATURES

Seed features provide insight into the behavior of the curator concerning the collection. They

also allow us to consider how a collection might be scored or clustered. For example, AlNoa-

many’s Algorithm contains a scoring function that takes path depth into account. This section

covers structural features related explicitly to seeds. The following section will discuss memen-

tos.

Seed URI domain diversity — Seed URI domain diversity (also known as WSDL diversity

[237] and source diversity by Nwala et al. [245]) quantifies the spread of the collection across

different sources. A collection where all seeds are from the same domain would have a domain

diversity of 0, and one where all seeds are from different domains would have a domain diversity

of 1.

D =
U
C

(12)

http://11shokunin.com/keyholder/
http://11shokunin.com/keyholder/
http://1120antinukes.tumblr.com/
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D′ =
CD−1
C−1

=
U−1
C−1

(13)

Equation 12 computes the diversity D as the number of unique domains U divided by the

number of seeds C. In Equation 13, D′ normalizes this diversity value D between 0 and 1. A

collection with 1 seed, by definition, has a diversity of 0. A collection with a docmain diversity

of 0 represents a collection where all of the content comes from a single domain, but this does not

mean that such a collection only produces Fixed Page Sliding Time (FPST) stories (Chapters 1

and 3.5) because those require a single URI-R. A collection with a domain diversity of 0 only has a

single source and may only present a single point of view, but it may also provide the opportunity

to tell a story where that point of view changes over time.

Natasha, Elbert, and Ling want exemplars that summarize a collection. They would prefer that

their exemplars have a similar domain diversity to their source collection. Natasha is considering

the collection South Louisiana Flood of 2016 which has 26 seeds. It has 10 unique domains out of

26 seeds for D = 10
26 = 0.38, and a normalized domain diversity score of D′ = 10−1

26−1 = 9
25 = 0.36.

Rustam wants a story that tracks a single source. His story’s source collection may have a domain

diversity of 1, but, because it only tracks a single source, his story should have a domain diversity

of 0.

Seed URI path depth diversity — We acquire an idea of the spread of path depth across the

collection by applying the above domain diversity equation to the seed path depth of every seed

in the collection. This feature may indicate if the seed URIs consist solely of top-level pages or a

mixture of top-level pages and more specific content [57]. Deeper pages tend to have information

about more specific topics, and if the path depth diversity is high, then we have a mix of pages

providing overviews and pages providing specific topics. Again, for a decent summary, the path

depth diversity of the selected exemplars should be close to the path depth of the collection from

their source collection. When comparing collections, path depth diversity helps us ensure that we

have different collection types.

Natasha’s collection has 5 unique path depths with values ranging from 0 to 4 and her collec-

tion has 26 seeds. Its path depth diversity P = 5−1
26−1 = 4

25 = 0.16. In Rustam’s case, his story will

have a path depth diversity of 0 because it only consists of one original resource.

Most frequent seed URI path depth — If a collection’s most frequent seed URI path depth

is 0, then it primarily consists of seeds of top-level pages. If the most frequent path depth is at

a value of 2 or higher, then the collection primarily consists of seeds deeper in a website. The

mode of the seed path depth is another feature that we can compare between the collection and

exemplars. If this mode differs, it indicates that the exemplars only represent an aspect of the
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collection and not its overall structure. Because he is interested in a FPST story, representing an

aspect concerning frequent path depth may work well for Rustam’s case but not the others.

% Query string usage — Some collections consist primarily of URIs with query strings,

whereas others consist of just paths. Path depth does not quantify the number of URIs with query

strings. A collection with one seed has either 0% or 100% query string usage depending on the

presence of a query string in this single seed URI. Because query string parameters can occur

in any order, query strings can create issues for search engines trying to create a canonical URI

for a given resource. Google created guidance in 2007 [251] instructing webmasters to create

“clean URLs” with as few query string parameters as possible and, if they still need to create

query strings, to register a canonical URL for each page on their website. Pages before this 2007

guidance applied query strings more liberally than those after. Certain websites (e.g., belonging to

governments or banks) are built upon older technologies that heavily apply query strings. Because

of these behaviors, we consider % query string usage as a feature that helps describe a web archive

collection.

These features can help us evaluate the selected exemplars by comparing them with their

source collections. A story with a lower domain diversity than its source collection covers fewer

sources, but this may be desirable depending on the type of story we want to tell. A story with

lower path depth diversity may cover more specific or general information than the collection as a

whole. Comparing a collection’s most frequent path depth with its exemplars gives us an idea of

how the exemplars differ from their source collection, again indicating that the exemplars cover

more specific or more general information. Finally, the % of query string usage gives us an idea

of how well the exemplars match their source collection. Next, we cover features concerning

mementos.

4.1.3 COLLECTION GROWTH CURVES

Collection growth curves help us selecting exemplars by describing the temporal spread of

the collection. A collection growth curve provides insight into the seed curation and crawling

behavior of an Archive-It collection, giving us an idea of how its mementos are clustered in terms

of memento-datetime. Clustering by memento-datetime is a key part of different summarization

algorithms, introduced in Chapters 3.1 and 3.5. Figure 74 shows an example growth curve for

Archive-It Collection 366, University of Southern California Website Archive. The x-axis repre-

sents the life of the collection or the time between a collection’s first memento and its last. We

show the x-axis as a percentage of the collection’s lifespan to normalize collections with differ-

ent durations. The y-axis represents the percentage of URIs in the collection at a given time.
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Fig. 74. The Growth Curve of Archive-It Collection 366

URIs come in two categories: seeds or seed mementos, represented by the green and red lines,

respectively.

Growth curves for Archive-It collections consist of multiple parts. Figure 75 demonstrates

how to interpret the information within a growth curve. An imaginary diagonal line shows a linear

relationship between the growth of URIs over time. It divides each graph into two parts. If the seed

line (green) is in the upper left corner, most of the seeds were added earlier to the collection, and

if the seed line occupies the lower right corner, the archivist added most of them later. The seed

line reflects an aspect of curatorial engagement with the collection, indicating when the curator

first crawled a given seed. The closer the seed line is to the diagonal, the more often the curator

added a new seed. We use the memento-datetime of the first memento for each seed to generate

the seed line.

The meaning of the seed memento line is similar. Where the seed line indicates intent, the seed

memento line (red) indicates the growth of the actual collection, which could just be the result of
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Fig. 75. The Anatomy of a Collection Growth Curve

setting up a periodic crawl. If the seed memento line mainly occupies the upper left corner, then

most of the mementos were crawled earlier in the collection’s life, meaning that the curator created

most of the collection’s holdings at that time, and thus its temporality is skewed earlier. If the seed

memento line occupies the lower right corner, then the collection’s temporality is skewed later. If

the seed memento line runs along the diagonal, then the collection’s temporality is spread more

evenly across the collection. We use the memento-datetimes of all mementos to generate the seed

memento line. More coverage of growth curve behaviors is available in Jones et al. [160].

Growth Curve Behaviors

Using the area under the curve (AUC), we were able to identify different collection behaviors. If

the AUC exceeds 0.5 — the area of the diagonal — then the growth was early. If the AUC is less

than 0.5, then the growth was late. If the AUC is within 0.05 of the diagonal, then we considered

it to be growing continuously.

Using these three primitives, we identified the behaviors shown in Figure 76.

Seeds early, seed mementos early — Seen in Figure 76a with collection Idle No More (ID

3490), the growth curves with this behavior indicate that the curator made most curatorial deci-

sions near the start of the life of the collection. The seed memento line skews early, indicating that

most of the seed mementos in the collection come from that time period.

Seeds early, seed mementos continuously — Figure 76b shows collection Northern Illinois

University (ID 6435), where the curator added more than 70% of the seeds near the beginning of

the collection’s life. The curator selected seeds early but then chose crawling strategies that added

seed mementos steadily throughout its existence.
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(a) Archive-It Collection 3490:

Seeds early, seed mementos early

Fig. 76. Examples from nine different growth curve behavior categories, grey inset text conveys

the percentage of the 3,382 collections in this study that fit into each category.
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(b) Archive-It Collection 6435:

Seeds early, seed mementos continuously

Fig. 76. (Continued) Examples from nine different growth curve behavior categories, grey inset

text conveys the percentage of the 3,382 collections in this study that fit into each category.
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(c) Archive-It Collection 4006:

Seeds early, seed mementos late

Fig. 76. (Continued) Examples from nine different growth curve behavior categories, grey inset

text conveys the percentage of the 3,382 collections in this study that fit into each category.



149

(d) Archive-It Collection 4399:

Seeds continuously, seed mementos early

Fig. 76. (Continued) Examples from nine different growth curve behavior categories, grey inset

text conveys the percentage of the 3,382 collections in this study that fit into each category.
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(e) Archive-It Collection 3332:

Seeds continuously, seed mementos continuously

Fig. 76. (Continued) Examples from nine different growth curve behavior categories, grey inset

text conveys the percentage of the 3,382 collections in this study that fit into each category.
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(f) Archive-It Collection 6337:

Seeds continuously, seed mementos later

Fig. 76. (Continued) Examples from nine different growth curve behavior categories, grey inset

text conveys the percentage of the 3,382 collections in this study that fit into each category.
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(g) Archive-It Collection 2438:

Seeds Late, seed mementos early

Fig. 76. (Continued) Examples from nine different growth curve behavior categories, grey inset

text conveys the percentage of the 3,382 collections in this study that fit into each category.
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(h) Archive-It Collection 2355:

Seeds late, seed mementos continuously

Fig. 76. (Continued) Examples from nine different growth curve behavior categories, grey inset

text conveys the percentage of the 3,382 collections in this study that fit into each category.
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(i) Archive-It Collection 6205:

Seeds late, seed mementos late

Fig. 76. (Continued) Examples from nine different growth curve behavior categories, grey inset

text conveys the percentage of the 3,382 collections in this study that fit into each category.
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Seeds early, seed mementos late — In all of these cases, the curator chose seeds early, but

the crawling strategy produced seed mementos at a later time. In collection Southern Folklife

Collection Web Archives (ID 4006), shown in Figure 76c, we see a case where the curator added

60% of the seeds earlier in the collection’s life. In this case, the curator crawled 50% of all

mementos by 65% of the collection’s life.

Seeds early is the most frequent seed behavior, taking place in 88.7% of all collections studied.

Seeds continuously, seed mementos early — Figure 76d shows collection Ukraine Conflict

(ID 4399), where the seed growth curve wraps around the diagonal, indicating that the curator

added seeds more regularly, but most crawling happened earlier in the collection’s life. In this

case, there are more seed mementos from the earlier seeds.

Seeds continuously, seed mementos continuously — Collection Waldo Canyon Fire Web

Archive Collection (ID 3332) is shown in Figure 76e. Collections with this behavior indicate

continuous involvement both on the part of seed selection as well as crawling. Both lines wrap the

diagonal as the collection grows steadily.

Seeds continuously, seed mementos late — Shown in Figure 76f with collection Tamiment-

Wagner: Civil Rights and Civil Liberties (ID 6337), this behavior indicates that the curator was

continuously engaged in adding seeds to the collection. However, most of the mementos were

created later in the collection’s life.

Seeds late, seed mementos early — This behavior is demonstrated by collection Japan Earth-

quake (ID 2438) in Figure 76g. In this case, the seed memento growth line exists farther left on

the graph than the seed growth line. The early seeds added to the collection have more memento

growth than the seeds that follow because the curator added more seeds later in the collection’s

life.

Seeds late, seed mementos continuously — Figure 76h shows collection Region of Waterloo

Rapid Transit (ID 2355). In this case, the seed memento growth is steady, but something changed

around 60% of its life span. Approximately 60% of the seed mementos belong to the first 20% of

seeds.

Seeds late, seed mementos late — This behavior is exemplified by collection Austin Seminary

(Institutional) (ID 6205), shown in Figure 76i. In this case, the curator added more seeds when the

collection was already 70% old. Another dramatic shift happened when more seeds were added

at the 90% mark. This pattern could indicate dramatically renewed interest in this collection.

Understanding these behaviors has implications for the type of temporal clustering needed

for selecting exemplars. AlNoamany’s Algorithm (Chapter 3.5) contains a step where mementos

are sequentially placed into equally-sized slices by memento-datetime. This method works well
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when an archivist adds seed mementos continuously because every memento is equally temporally

distributed. If a collection’s growth is early or late, then mementos that are temporally close can

end up in different clusters, not truly representing the collection in its resulting story. The DSA2,

DSA3, and DSA4 algorithms, which we will cover in Chapter 4.3, apply k-means clustering to

account for these different growth curve shapes.

Growth Curve Features

We have identified five growth curve features that provide insight into the behavior of a collection.

The number of seeds submitted to the collection varies, as does the number of seed memen-
tos. We can count these by using the seed acquisition activities and TimeMaps. As the ratio of

seeds equals the number of seed mementos, the growth curve for the collection is likely seeds

continuously, seed mementos continuously. If we compare the number of seed mementos in the

collection to the number of exemplars, we get an idea of the level of compression we have per-

formed on the collection.

Difference between seed curve AUC and diagonal — The AUC of the seed curve indicates

whether the seeds were added earlier or later to the collection. Subtracting this value from the

AUC of the diagonal gives additional information helpful in understanding the nature of the seed

curve. Negative values indicate that the curator first added seeds later. Positive values indicate

that the curator added seeds earlier. Values very close to 0 indicate that the curator added seeds

continuously.

Difference between seed memento curve AUC and diagonal – The area under the seed me-

mento curve is helpful as well. Subtracting this value from the AUC of the diagonal provides

similar information to the seed AUC feature mentioned above. This difference gives us a measure

of the balanced size of temporal clusters in the collection. If the value is close to 0, then AlNoa-

many’s time slices represent the temporal skew of the collection, but if the value is much higher

or lower, then another clustering method would better represent the collection’s temporal skew.

Difference between seed curve AUC and seed memento curve AUC — Subtracting the

AUC of both curves indicates how close they are to each other. A value of 0 indicates that the

curves are overlapping, likely meaning that there is one memento per seed. A positive value

means that the curator added seeds earlier than the seed mementos. A negative value means that

the seed memento growth has overtaken the seed growth.

Collection Lifespan — The collection lifespan is the difference in memento-datetime between

the last memento and the first. For selecting exemplars, our best output provides representation

across this entire temporal range. For SPST stories, the exemplars from a good summary should
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have a similar collection lifespan to that of the collection.

4.1.4 PREDICTING SEMANTIC CATEGORIES USING STRUCTURAL FEATURES

Each structural feature provides an aspect for a collection. We wanted to know how well the

structural features mapped to these semantic categories. Our goal was to be able to predict some

aspect of the descriptive information from the structural features introduced in the last section.

Based on testing 20 classifiers with Weka v. 3.8.2 [98] using 10-fold cross validation, we

determined that Random Forest [41] is the best classifier for predicting a collection’s semantic

category (Table 11) based on the structural features we have covered.

We have four semantic categories, so these weighted average results do not provide a complete

picture. Table 12 shows the results for Random Forest by semantic category. Random Forest

correctly categorizes Self-archiving the best, with a weighted average F1 = 0.847. This result is

likely because 54.1% of Archive-It collections fall into this category. Other semantic categories

do not fare so well. Random Forest performs worst with Time Bounded - Spontaneous, with

F1 = 0.456. This result is likely because it only makes up 4.2% of all collections, giving the

classifier little with which to train. More surprising is that Random Forest does so well with Time

Bounded - Expected at F1 = 0.621, even though that semantic category only makes up 14.1%

of all collections. Finally, Random Forest performs slightly worse with Subject-based Archiving

with F1 = 0.562 despite making up 27.6% of all collections.

4.1.5 SUMMARY

This section introduced four semantic categories of web archive collections: Self-Archiving,

Subject-based Archiving, Time Bounded - Expected, and Time Bounded - Spontaneous. We dis-

covered that Self-Archiving is the prevailing semantic category, making up 54.1% of the collec-

tions surveyed. Time Bounded - Spontaneous is the smallest category, only making up 4.2% of

collections. We covered how we could select exemplars to tell different stories depending on the

semantic category of the collection.

We introduced structural features for understanding an Archive-It collection, addressing RQ1.

We have adapted collection growth curves to Archive-It collections, revealing their behaviors.

Through these curves, we gain an understanding of the skew of the temporality of a collection.

This skew can aid us in selecting exemplars because the temporal clustering we choose could

depend on the collection’s skew. We have also identified seed features that help us understand

the curation strategy of a collection. Via domain diversity, we can tell if a collection consists of

seeds from one domain or many, thus understanding that the collection comes from many different
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TABLE 11

Weighted average results of 10 best classifiers for predicting semantic class evaluated using

10-fold cross validation runs while training on the complete data set

Weighted Average
Classifier TPR FPR F1 ROC Area

Random Forest 0.728 0.182 0.720 0.871

ForestPA 0.713 0.201 0.701 0.854

Decision Table 0.702 0.214 0.685 0.831

LMT 0.702 0.205 0.685 0.833

CDT 0.700 0.212 0.686 0.819

JRip 0.698 0.235 0.679 0.769

Simple Cart 0.694 0.199 0.683 0.811

FT 0.693 0.201 0.681 0.789

BFTree 0.689 0.214 0.676 0.766

Multilayer Perceptron 0.686 0.197 0.675 0.818

TABLE 12

Results by class of Random Forest classifier for predicting semantic category evaluated using

10-fold cross validation runs

Weighted Average
Semantic Category TPR FPR F1 ROC Area

Self-Archiving 0.891 0.250 0.847 0.899

Subject-based Archiving 0.538 0.144 0.562 0.794

Time Bounded

- Expected 0.588 0.050 0.621 0.911

Time Bounded

- Spontaneous 0.364 0.010 0.456 0.879

Weighted Average 0.728 0.182 0.720 0.871
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sources. Using the most frequent URI path depth, we determine if most of the collection consists

of top-level pages or specific deep URIs. Seeds with higher path depths tend to cover more specific

topics, while those with lower path depths cover less specific ones. We understand the spread of

path depths within a collection with seed path depth diversity, indicating if most of its seeds come

from the same level of their websites. Understanding how much of a collection uses a query string

in its URIs also provides information on the nature of its seeds. Through these features, we gain

an understanding of the nature of what curators chose for archiving.

We also provided the results of training runs with classifiers and determined that the Random

Forest classifier performs best at identifying the semantic category, with a weighted average F1

score of 0.720.

In Chapter 4.3, we introduce a model for selecting exemplars from collections and detail sev-

eral algorithms that take into account the features discussed in this section. In Chapter 4.4 we

will revisit the structural features and growth curve behaviors as we discuss the collections we

have selected for evaluating these algorithms against search engine results. In the next section, we

tackle an important first step toward selecting exemplars from web archive collections: identifying

off-topic mementos.

4.2 IDENTIFYING OFF-TOPIC MEMENTOS

The exemplars we select must represent one or more aspects of their collection, or they will

not produce a good summary. Curators create collections for some purpose, and they choose

seeds to support the collection’s topic. In order to understand the history of an event or an orga-

nization, curators will often configure the platform to capture the same original resource multiple

times, thus producing many mementos per seed. Many collections at Archive-It are like collection

2438, Japan Earthquake, with 81,014 seeds resulting in 486,227 seed mementos. For selecting

exemplars, we want to optimize the amount of time spent evaluating mementos, and the sheer

quantity of mementos to evaluate makes it imperative that we not spend time on mementos with

low information value.

While a crawler automatically builds a web archive collection, the content of each original

resource can drift from the content of its original capture. Occasionally this content drifts so far

that the original resource is no longer on topic, but the crawler is still automatically capturing

mementos of that page. Pages can go off-topic for a variety of reasons. Technical issues can befall

a website, as shown in Figure 77. Sites may be taken down for maintenance, as seen in Figure 78.

Hosting services may suspend a website, often due to nonpayment (Figure 79). Another company

can purchase domains and replace the website (Figure 80). Hackers can deface websites (Figure
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(a) On-topic

on 2012-03-10

(b) Off-topic due to technical issues

on 2012-10-19

Fig. 77. http://www.nigeriarights.gov.ng/ preserved in Archive-It collection 1068:

Human Rights.

(a) On-topic

on 2011-12-02

(b) Off-topic due to site maintenance

on 2012-03-02

Fig. 78. http://amnestyghana.org/ preserved in Archive-It collection 1068: Human

Rights.

http://www.nigeriarights.gov.ng/
http://amnestyghana.org/
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Algorithm 1 General algorithm used to determine which mementos in TimeMap are off-topic.
1: for timemap ∈ collection do

f ← HT T PGETraw(memento f irst)

f ← preprocess( f )

2: for memento ∈ timemap do
m← HT T PGETraw(memento)

m← preprocess(m)

score← computeSimilarity( f ,m,measure)

saveScore(score,memento,measure)

3: end for
4: end for

81). A web page can go off-topic due to website redesigns. Finally, as is often the case with news

websites, resources can go off-topic because the given seed no longer publishes on-topic content.

To perform research on the content of a web archive collection, it becomes imperative to exclude

these off-topic mementos from downstream analysis.

We start by assuming that an original resource’s first memento is on topic because it was

captured after the curator judged and selected it [10]. We assume that subsequent mementos for

that same resource are off-topic if their content drifts too far from the original. To make this work,

we turn to TimeMaps to provide us with a list of mementos and their datetimes. Our work differs

from Patel et al. [259] in that our method for identifying off-topic mementos is intra-TimeMap

whereas Patel’s is inter-TimeMap. We will discuss Patel’s work further in Chapter 7.

Algorithm 1 displays the general algorithm used to determine which mementos in a TimeMap

are off-topic. This algorithm iterates through all TimeMaps in the collection. For each TimeMap,

it dereferences the raw version of the first memento (denoted by f ) in for its content. After pre-

processing (if necessary), the algorithm iterates through the preprocessed version of every other

memento in the TimeMap, comparing the first memento to each additional considered memento
(denoted by m) with the selected similarity measure (denoted by measure). We evaluated different

textual similarity measures for off-topic detection. Table 13 lists these similarity measures, their

score ranges, and whether we apply preprocessing, such as boilerplate removal, stemming, and

tokenization, before leveraging them. Each similarity measure requires a threshold score for de-

termining if a page is off-topic. In the next section we detail how we arrived at reasonable default

values for each measure.
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(a) On-topic

on 2013-02-07

(b) Off-topic due to account suspension

on 2013-02-21

Fig. 79. http://25leaks.com preserved in Archive-It collection 2358: Egypt Revolution

and Politics.

(a) On-topic

on 2009-02-10

(b) Off-topic due to change in ownership

on 2012-03-02

Fig. 80. http://www.afapredesa.org preserved in Archive-It collection 1068: Human

Rights.

http://25leaks.com
http://www.afapredesa.org
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(a) On-topic on 2012-03-27 (b) Off-topic due to hacking on 2012-04-10

Fig. 81. http://occupyevansville.org/ preserved in Archive-It collection 2950:

Occupy Movement 2011/2012.

TABLE 13

Similarity measures evaluated in our off-topic detection experiment.

Measure Fully Equivalent Fully Dissimilar Preprocessing
Score Score Performed

Byte Count 0.0 -1.0 No

Word Count 0.0 -1.0 Yes

Jaccard Distance 0.0 1.0 Yes

Sørensen-Dice 0.0 1.0 Yes

Distance

Simhash of 0 64 Yes

Term Frequencies

Simhash of 0 64 No

Raw Content

Cosine Similarity 1.0 0.0 Yes

of TF-IDF Vectors

Cosine Similarity 1.0 0.0 Yes

of LSI Vectors

http://occupyevansville.org/
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(a) Byte Count

Fig. 82. Scatter plots of threshold F1 testing results for different similarity measures.
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(b) Word Count

Fig. 82. (Continued) Scatter plots of threshold F1 testing results for different similarity

measures.
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(c) Jaccard Distance

Fig. 82. (Continued) Scatter plots of threshold F1 testing results for different similarity

measures.
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(d) Sørensen-Dice

Distance

Fig. 82. (Continued) Scatter plots of threshold F1 testing results for different similarity

measures.
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(e) Cosine Similarity

of TF-IDF Vectors

Fig. 82. (Continued) Scatter plots of threshold F1 testing results for different similarity

measures.
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(f) Cosine Similarity

of LSI Vectors

Fig. 82. (Continued) Scatter plots of threshold F1 testing results for different similarity

measures.
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(g) Simhash

of Term Frequencies

Fig. 82. (Continued) Scatter plots of threshold F1 testing results for different similarity

measures.
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(h) Simhash

of raw memento content

Fig. 82. (Continued) Scatter plots of threshold F1 testing results for different similarity

measures.
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TABLE 14

Distribution of the Gold Standard dataset.

Collection ID Collection Name # seeds # mementos # off-topic

1068 Human Rights 199 2302 95 (4%)

2358 Egypt Revolution 136 6886 384 (6%)

and Politics

2950 Occupy Movement 255 6569 458 (7%)

2011/2012

4.2.1 EVALUATION OF OFF-TOPIC DETECTION

We conducted a study [164] to acquire reasonable default thresholds for each measure and

determine which measures performed best for identifying off-topic mementos. We reused the

dataset [152] from AlNoamany’s 2016 off-topic work [10]. Table 14 displays information about

the gold standard dataset used in this study. We executed our study against Archive-It in December

2017.

For evaluating these thresholds, we applied the F1 measure (see Chapter 2.6.2). We also in-

clude Accuracy, also defined in Chapter 2.6.2, so we can compare our scores against AlNoamany’s

work. AlNoamany tested each similarity measure with 21 thresholds [10]. For more precision, we

evaluated 100 thresholds for every measure but Simhash. For Simhash, we evaluated 64 thresh-

olds because Simhash measures differences between documents by differences in bytes between

hash values, and each document has a hash of 64 bytes.

We chose a measure and started with the lowest threshold for that measure. Our process

then executed Algorithm 1 against a TimeMap with this threshold and measure. We recorded the

scores and which mementos were declared off-topic by this combination. We then incremented

the threshold and compared all mementos again. We repeated this process until we reached a des-

ignated upper limit. Then we selected another measure and repeated the process for that measure.

Figure 82 displays visualizations of the results for each measure with each threshold on the x-axis

and the resulting F1 score on the y-axis.

For example, with byte count as the measure, we executed Algorithm 1 and saved the scores

for each memento. We declared a memento off-topic if its score was less than -0.99. We then took

each memento’s byte count score and declared it off-topic if its score was less than -0.98. We then

repeated for each memento with a threshold set at -0.97. We repeated this process in increments
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of -0.01 until we reached -1.

We then compared the off-topic determinations per threshold with the gold-standard data.

From there, we were able to generate a corresponding F1 score for each threshold value. We

had assumed that testing the thresholds this way would help us discover threshold values close to

those found by AlNoamany, and we did get close in some cases. The F1 scores, however, are often

worse, and we identified some differences between our environment and hers.

We used the justext library [269] for boilerplate removal, whereas AlNoamany used boilerpipe

[185]. We used NLTK [35] for tokenization and stemming whereas AlNoamany used scikit-learn

[260]. These different preprocessing techniques are not the only potential cause of these score dif-

ferences. We experienced different download errors than AlNoamany did when she conducted the

study in 2015. We ran our experiment on Archive-It 4.9 [273] in 2017, and Archive-It had received

improvements to its playback engine since 2015 [21] which alters its behavior. These changes in

behavior among web archives have been researched by Ainsworth et al. [3] and Aturban et al.

[23].

We tried byte count threshold scores between 0 and 1 at increments of 0.01. A threshold score

of -0.39 produces the best F1 score. This score indicates that the off-topic memento is 39% smaller

than the first memento in the TimeMap. AlNoamany’s findings suggested a threshold value of -

0.65, making the our results more strict. This result is one case where our F1 score of 0.756 is

higher than AlNoamany’s finding of 0.584.

We used the same range and increments to test word count. A threshold score of -0.70 produces

the best F1 score. This score means that the off-topic memento has 70% fewer words than the first

memento in the TimeMap. AlNoamany’s findings suggested a threshold value of -0.85, again

making our results of -0.70 more strict. This makes sense for off-topic mementos that result

from technical issues, defacements, or web site redesigns because error messages (or hackers’

statements) often contain far less text than the article they replace.

For Jaccard and Sørensen-Dice, we used the same range of threshold values from 0 to 1, at

increments of 0.01. A threshold score of 0.94 has the best F1 value for Jaccard. AlNoamany

discovered that a value of 0.05 was best, but her work used the pure Jaccard Index rather than

the Jaccard distance. This threshold is consistent with her findings as the Jaccard distance is 1−
Jaccard index. However, the F1 score of 0.651 is higher than her F1 result of 0.538 for Jaccard.

AlNoamany did not attempt Sørensen-Dice. Its best threshold value is close to that of Jaccard at

0.88. With both Sørensen dice and Jaccard, the considered memento must be very dissimilar from

the first memento for our algorithm to mark it as off-topic.

Simhash scores range from 0 to 64, based on the number of bits different between simhashes.
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AlNoamany did not test Simhash. For Simhash based on term frequencies, we achieve the best F1

score of 0.523 with a threshold value of 28 bits. If a user chooses to feed just the raw content into

the function, we achieve the best F1 score of 0.578 at 25 bits.

As noted above, cosine similarity scores range from 1 to 0. We achieve very close to Al-

Noamany’s threshold result of 0.15 for the cosine of TF-IDF vectors, with the highest F1 score

at a threshold of 0.12. This score is very close to the score of complete dissimilarity between

documents. AlNoamany achieved an F1 score of 0.881 compared to our 0.766.

Latent Semantic Indexing (LSI) assigns each of a TimeMap’s mementos to a topic. If a me-

mento has a poor correlation to its assigned topic, then it is likely off-topic. Applying the cosine

similarity of LSI vectors produces an F1 score of 0.711. The LSI algorithm requires that one spec-

ify the number of topics. We tried values of 2, 3, 5, 7, 10, 25, 50, and 100 topics. The value of

10 worked best for testing with our gold-standard data. Unfortunately, randomness exists LSI’s

operation in Gensim [250]. Five different runs with LSI produced F1 scores near or at 0.711, but

their corresponding thresholds ranged from 0.08 to 0.12. We took the mean of the scores and set

the default threshold at 0.10.

Table 15 shows the best test scores for each measure. We show AlNoamany’s results for

comparison. Word count has the best F1 score, followed by cosine similarity of TF-IDF Vectors.

Byte count and cosine similarity of LSI Vectors score at third and fourth place, respectively.

We considered the possibility that we could do better with multiple measures. Structural mea-

sures require less time to execute than more semantic measures like cosine similarity. If we can

short-circuit the process with a structural measure, we can eliminate those off-topic mementos

before reviewing with a more time-intensive measure. AlNoamany did so and found that word

count and cosine similarity worked best. We evaluate multiple measures as a logical OR – only

one of the measures has to identify a memento as off-topic for it to be considered off-topic. We

tried different combinations of thresholds just as before and recorded the corresponding F1 and ac-

curacy scores. Table 16 displays these combinations. The cosine of LSI vectors scores a slightly

higher F1 and the same accuracy as word count. The word count score exerts more influence than

its partner measures in all cases where it is present, making both TF-IDF and LSI cosine measures

require stricter thresholds to be successful. Combining these measures does not improve the F1

score.

4.2.2 SUMMARY

As part of the storytelling process of selecting exemplars to represent a collection, filtering

off-topic mementos is an important first step, and thus this work addresses RQ2. We evaluated
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eight different similarity measures with respect to this filter and found that word count has the best

F1 score. This is likely because most off-topic content consists of status messages from technical

issues rather than an article drifting from the content of the collection. Next we discuss how

filtering off-topic mementos is only part of the solution for selecting exemplars.

4.3 APPLYING PRIMITIVES TO SELECT EXEMPLARS

Removing off-topic mementos is just one type of filtering that we can apply to a web archive

collection. As noted in Chapter 3.1, many have tried to automatically select exemplar sentences

and images from an individual document as well as select exemplars documents from a corpus.

With more analysis of this work, a model of primitives becomes evident. In Chapter 3 we men-

tioned the concepts of filtering, scoring, and clustering as potential primitives. Here, we expand

this list to include a few other primitives that address the many other types of possible exemplar

selection.

4.3.1 PRIMITIVES

Our first primitive is sample. Perhaps the simplest method of creating a small sample from

a collection is randomly choosing k mementos from the N that exist in the collection such that

k << N. While this is easiest if one already has a list of URI-Ms, we may need a very large

value of k to capture a sample that takes into account the structural features of the collection,

nor does random sampling evaluate the quality of the mementos it selects. For example, it is

possible, though unlikely, that our k mementos will be off-topic. At this point we are relying upon

probabilistic sampling, hoping that our k mementos will make a good story.

If probabilistic sampling has the potential to yield lower quality results, how do we improve

our chances? Our second primitive is filter. With filter, we try to remove items of low information

value from our sample. In the last section we covered identifying off-topic mementos, but this is

not the only filtering that we can perform. Recall that web archives are built by automatic crawling;

therefore, there are many mementos that contain the exact same content. To improve our chances

of getting a good sample, we can apply Simhash [54] to filter out these near duplicates as well.

Now we have combined our sample primitive with two filter primitives to create a better sample.

We refer to this new sampling algorithm as filtered random. Figure 83 provides a simplified

diagram of how this works: (1) we filter out off-topic mementos, (2) we filter out near duplicates,

(3) we randomly sample k mementos from the remainder.

Filter and sample are similar, but we differentiate them by intent. Filter explicitly reduces a

collection by some intelligent method, like excluding off-topic mementos. The sample primitive
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Fig. 83. We can select exemplars from a web archive collection by first removing off-topic and

near-duplicates before randomly choosing from the remainder.
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Fig. 84. We can select exemplars from a web archive collection by first ordering a collection, and

then systematically sampling every jth memento from the remainder.
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Fig. 85. Creating a fixed page, sliding time story (FPST) requires first filtering the collection by

URI-R prior to sampling.
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Fig. 86. Creating a sliding page, fixed time story (SPFT) requires first filtering the collection by a

range of memento-datetimes prior to sampling.
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Fig. 87. One could create a story by filtering for a specific pattern, like a keyword and then they

could score that output with a function like BM25 and order the results by descending score.
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is either a probabilistic primitive, like true random or systematic sampling, or it is a combination

of other primitives to make a new algorithm for selecting exemplars.

Instead of randomly sampling mementos, we can systemtically choose every jth memento

from the input until we reach our k mementos. Unfortunately, we do not know how the input is

organized, so we have to organize it in some way so that our systematic sampling makes sense.

Thus, we introduce a new primitive, order, that allows us to help the systematic sampling produce

more meaningful results. In the case of our algorithm from Figure 84 we apply order to sort the

collection by memento-datetime and then systematically sample every jth memento from this

sorted list.

At this point, we are no longer probabilistically sampling, but instead we are performing in-
telligent sampling. Recall from AlNoamany’s work [12] that study participants could tell the

difference between randomly generated stories and those produced by her algorithm. The more

intelligence we introduce into our selection, the better our results, but the less chance we have

of creating a statisically representative sample of the collection. For summarization, we need to

balance these concepts so that our resulting exemplars are representative while also being of high

quality. For storytelling, high quality equates to having good information scent. For other work,

high quality may equate to representing a minority topic in the collection. High quality could also

equate to producing mementos of low information value, possibly to analyze how many pages in

the collection suffered web site defacement. Thus, not only is there more than one way to select

exemplars, but there are different use cases for many different summaries and story types.

Consider Rustam’s use case from Chapter 1. He wanted to view how a given web page changed

over time to produce a fixed page, sliding time (FPST) story. Unless his chosen web archive

collection only collected a single original resource, it is likely his story cannot be satisfied through

random sampling alone. He must filter the collection before sampling, as shown in Figure 85. In

this diagram, we do not prescribe a sampling algorithm because that, too, depends on Rustam’s

use case for the output of that filter primitive. He may just filter the collection and produce such a

small sample that he can manually review them afterward.

Also recall Olayinka’s use case from Chapter 1. She wanted to view what the news covered

during a given time period to produce a sliding page, fixed time (SPFT) story. If her web archive

collection does not match her desired time period, then she must apply a filter first before contin-

uing, as shown in Figure 86.

Someone might also be interested in pages that only contain a given pattern of n-grams. Instead

of filtering by URI-R or memento-datetime, we could filter to only include pages that contain that

pattern. If this filter action is not sufficient and we still need to make sense of these documents, we
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need an additional primitive, score. With score, we elevate the importance of some mementos over

others, allowing us to make additional decisions on presentation or future filtering. We could score

each document from our filtered list by how well it matches this pattern with an algorithm like

BM25 [280]. Then we could order those results by descending score. Our filter step reduced our

set of mementos to only those that meet our definition of high information value. Our score step

imbues each memento with a value. Our order step provides additional information by elevating

the highest scoring memento to the top of the list. At this point we have created a primitive search

engine (Figure 87) .

In some use cases the user knows what aspect they want to explore in a collection. Rustam

knows the page that he wants to study. Olayinka has decided on her time period. In our primitive

search engine example, the user must have an idea of the n-gram pattern for which they want to

filter. For other use cases, the user starts with no prior knowledge. Natasha, Elbert, and Ling only

have a web archive collection as input. They just want to create a summary of it. They can work

with a sliding page, sliding time (SPST) story. To create SPST stories, we introduce our final

primitive, cluster, in the next section.

4.3.2 PRIMITIVES COMBINE TO CREATE DSA1

AlNomany’s algorithm, introduced in Chapter 3.5, creates SPST stories. We refer to this al-

gorithm as DSA1. We can apply our primitives to create her algorithm. She first filters to exclude

off-topic and near-duplicate mementos. She then filters again to include only English language

mementos. For a large collection, this intelligent sample is still too large to process. We must give

additional meaning to the remaining mementos so we can reduce the set further. The cluster prim-

itive uses a given algorithm to group mementos by some common feature. DSA1 performs two

clustering steps, once in the dimension of time and a second in the dimension of aboutness. The

first clustering step surfaces temporal aspects of the collection. The second clustering step ensures

that novel mementos have exposure in future steps. DSA1 then scores the resulting mementos

with a function that places a high value on mementos with long paths, belonging to specific page

categories, and having low memento-damage. After this, she filters one final time so that only the

highest scoring memento from each cluster becomes an exemplar. The final ordering step ensures

that the exemplars will make a good story because they will flow by publication date. Figure

88 shows how our primitives model of DSA1 maps to AlNoamany’s original algorithm diagram

(Figure 70 on page 130.)

The DSA1 algorithm applies two filters from our filtered random algorithm. Rather than ran-

domly sampling mementos from the remainder, it tries to make sense of the collection through
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clustering. Clustering breaks the collection into subsets and it also infuses the mementos in those

subsets with new meaning. In step 4 of Figure 88, we give meaning to each set of mementos by

placing it into a different cluster based on time. This is different from just extracting the memento-

datetime. It instead creates several sub-collections from which we can perform further actions. In

step 5, we cluster again to instill topical information among each of the temporal clusters. By

clustering, we create several subsets that represent different aspects of the collection and also en-

sure that those aspects are all scored separately. In step 6, DSA1 scores all of the mementos in

these clusters so we can select the highest scoring ones for our story in step 7. Without clustering,

we would still only have one group from which to choose the highest scoring memento. With that

one group, scoring by path depth, page category, and memento-damage would not help us choose

exemplars that represent these collection aspects.

4.3.3 A FOCUS ON GROWTH CURVES AND SURROGATE METADATA IN DSA2

DSA1 is not the only possible algorithm. One of the points of this section is that these primi-

tives can be combined in many ways to produce algorithms with different effects. DSA2 attempts

to address several shortcomings of DSA1.

The first shortcoming is that DSA1 temporally clusters the collection by creating k≈ 28 slices.

At this step, DSA1 has the potential to produce more than 28 mementos because DSA1 step 5

(Figure 88) clusters a second time. This is typically not a problem for small collections because,

in practice this second clustering does not yield many secondary clusters, but for a large collection,

it has the potential inflate the size of the story well beyond k ≈ 28 mementos.

The second shortcoming has to do with the mechanism of creating time slices. After DSA1

step 3, there are j mementos. As part of step 4, DSA1 creates k slices. It then sorts the j mementos

by memento-datetime. Starting from the first memento in this list, DSA1 fills each slice until it

reaches a size of d j
ke mementos, and then starts filling the next slice. This works well for col-

lections whose growth curve has its mementos growing continuously, but if the memento growth

curve is early or late, then it is possible for DSA1 to place mementos with very similar datetimes

in separate slices. This has the net effect of heavily representing the portions of the collection that

are temporally dense.

The third shortcoming deals with certain assumptions in the DSA1 scoring function. This

function takes into account the type of page that the memento represents. News is scored more

highly than image sharing services, which are scored more highly than social media posts, which

are scored more highly than blogs. The function also tries to find quality mementos by favoring

those with low memento-damage [46]. These two decisions were made to favor mementos that
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Fig. 88. AlNoamany’s Algorithm, referred to in this dissertation as DSA1, combines our

primitives to select exemplars for SPST stories.
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would produce better surrogates for our stories.

DSA2 (Figure 89) tries to address these shortcomings with the additional knowledge that we

have gained in the years since DSA1’s development. Per Chapter 4.1 we now have a better un-

derstanding of the growth curves of web archive collections. Rather than applying the time slices,

DSA2 step 3 uses k-means clustering to ensure all memento-datetime regions of the collection

have better representation, regardless of growth curve. In step 4, DSA2 applies LDA topic mod-

eling rather than DBSCAN clustering with TF-Simhash distance. DBSCAN does not accept a

number of clusters as an argument, discovering the clusters on its own, if any. This is why DSA1’s

use of DBSCAN sometimes produces no additional clusters. With LDA topic modeling, we can

specify the number of topics desired, giving us better control over how we get to k≈ 28 mementos.

S =

d28+ log10(N)e if N > 767

d
√

(N)e if N ≤ 767
(14)

St = Sl = d
√
(S)e (15)

Equation 10 from Chapter 3.5 is AlNoamany’s method for determining the number of clusters

for time slicing in DSA1. To determine the number of clusters for each clustering step in DSA2,

we update Equation 10 with Equation 14 based on experience with generating stories from AlNoa-

many’s method. Here N indicates the number of mementos under consideration. Our boundary of

767 was determined empirically because stories without the second case would often contain poor

quality mementos because the resulting clusters would be too small.

DSA2 allows us to specify the size of each cluster. In Equation 15 we take the square root of

S to produce an input of St for the number of temporal clusters for DSA2 step 3. We do the same

to arrive at Sl for the number of lexical clusters (number of topics) for DSA2 step 4. Because

S = St ·Sl , we have a chance of reaching our target of S≈ 28 for our story.

In step 5 of DSA2, we can take advantage of the knowledge of how surrogates are created. In

Chapter 5.3, we will cover how to create surrogates even though they lack the metadata covered in

Chapter 2.4. With this knowledge, the scoring function scores highly those mementos that contain

all of this metadata. If that fails, then it favors a memento with more text and a higher number of

images so that automatic summarization algorithms have more candidates from which to select.
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Fig. 89. The DSA2 algorithm selects mementos that should produce better surrogates.
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Cs = wc · fc +wt · ft +wd · fd +wi · fi

fc =

1 if twitter:card present and not empty

0 otherwise

ft =

1 if twitter:title or og:title present and not empty

0 otherwise

fd =

1 if twitter:description or og:description present and not empty

0 otherwise

fi =

1 if twitter:image or og:image present and not empty

0 otherwise

(16)

The DSA2 scoring function first applies the simple card score shown in Equation 16. This

function takes into account existing social media social card metadata standards. As shown, fc

has a value of 1 if the memento lists a non-empty value for the twitter:card field and 0

otherwise. The ft variable has a value of 1 if the memento has a non-empty twitter:title

or og:title field. We apply the same idea for arriving at values for fd for the description fields

and fi for striking images. The card score Cs should range from 0 for a memento with no metadata

at all to 1 for a memento where all metadata fields are full. To ensure this is the case, weights wc,

wt , wd , and wi should all sum to 1.

Mq = wk ·Cs +wt ·Mt +wm ·Mi (17)

The rest of the DSA2 scoring function, shown in Equation 17, provides values to differenti-

ate one memento from others if Cs is 0. Recall that Facebook introduced social card metadata

standards in 2010 and there are many mementos who were captured prior to 2010. Mt returns

the length of the text normalized by its Z-score. Mi returns the number of images in the page

normalized by its Z-score. The Z-scores are calculated based on the mean and standard deviation

of the input, so they are only relative to the input and not comparable to results for other groups

of mementos. The weights wk, wt , and wm can be applied to increase or decrease the importance

of these terms for certain types of stories. For example, some stories may favor pages with more

images, so a high wm is best in that case.
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Fig. 90. The DSA3 algorithm selects mementos that better match the overall collection topic.
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4.3.4 EXEMPLARS MATCHING THE OVERALL COLLECTION TOPIC WITH DSA3

We created DSA3 not to improve upon issues with other algorithms, but instead to select exem-

plars that best match the overall collection topic. DSA3, shown in Figure 90, contains more steps

than DSA2 or DSA1. The goal is to still represent the collection temporally while emphasizing its

topical representation.

DSA3 step 3 contains an addtional clustering step that allows us to further identify topical

outliers. Here we cluster by DBSCAN with TF-IDF as the feature. As noted in Chapter 2.7.1,

DBSCAN establishes core points and those within a distance of ε are considered to lie within the

same cluster as the core point. We empirically determined that ε = 1.3 gives the best balance of

outliers and non-outliers. Those outside of a cluster are outliers. For small collections, values of

ε lower than 1.3 cause DBSCAN to consider approximately 90% of the collection to be outliers.

DSA3 step 4 filters these outliers from consideration, further ensuring that resulting steps only

process documents that are central to the overall collection topic. In Steps 5 and 6, DSA3 performs

temporal and topical clustering with K-means. First, we cluster by memento-datetime to ensure

that the collection growth curve is considered. Second, we cluster by TF-IDF to ensure that we

represent different topical aspects of the collection. We apply K-means clustering for these steps

so we can control the number of clusters and the size of the story, using Equations 14 and 15 to

calcluate the number of clusters.

Finally, instead of the card scoring performed in step 5, we score by first extracting the most

frequent named entities from the collection. We then apply those entities as search terms to every

memento in the collection and record their BM25 scores. This way the mementos that contain the

most frequent named entities score highest, ensuring that we tell a story with the mementos that

represent the overall collection’s 5W questions (Chapter 2.7.1).

Because we do not score based on surrogate creation capability, it is possible that DSA3 ex-

emplars may not produce good surrogates.

4.3.5 NOVEL EXEMPLARS WITH DSA4

DSA4, in Figure 91, creates a story of the more novel mementos in a collection. Step 3 clusters

each memento by memento-datetime with k-means just like in DSA2 and DSA3. Step 4 clusters

each memento by TF-IDF with k-means just in like DSA3. The scoring function computes the

distance of each memento from its cluster centroid. A higher distance from its cluster centroid

means that the memento has a lower similarity to the other mementos in its cluster, thus making it

more novel.
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Fig. 91. The DSA4 algorithm selects mementos that surface more novel content.
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Because we do not score based on surrogate creation capability, it is possible that DSA4 ex-

emplars may not produce good surrogates.

4.3.6 SUMMARY

With these algorithm primitives, there are many ways to select exemplars for our stories. The

sample primitive allows us to probabilistically sample from a collection, or it may be a function

for a much more complex intelligent sampling algoirthm. The filter primitive reduces the input

by some procedure, such as excluding off-topic mementos. The order primitive arranges the me-

mentos in order by some feature. The score primitive runs a scoring function across all of the

mementos and produces a result. The cluster primitive divides the collection into subsets based on

a clustering algorithm and a given feature. Through these primitives, we can create many different

algorithms for different types of stories.

Here are some examples. The filtered random algorithm filters off-topic and non-duplicate

mementos from the collection and then randomly samples from the remainder. We can also order

the collection by memento-datetime and then systematically sample every jth memento. The

DSA algorithms all combine filter, cluster, score, and order to intelligently sample collections for

different purposes. The combinations are not limited to these examples. If necessary, it is even

possible to create a primitive search engine from filter, score, and order.

Because search engine indices can take up as much as space as the original collection, not all

web archive platforms have search engines. If present, search engines are the de facto method of

exploring web archive collections. Now that we have introduced these primitives and some algo-

rithms for selecting exemplars, how well do our algorithms produce novel mementos compared to

a search engine?

4.4 EVALUATING THE DSA ALGORITHMS

The DSA algorithms select exemplars from web archive collections by processing each me-

mento’s content and metadata. A user could choose a different path. Some web archive collec-

tions, like those at Archive-It, contain search engines. People like Natasha could apply a search

engine to explore a collection with queries like when was the shooting? or shooting victims. How

well could someone recreate the list of exemplars produced by a DSA algorithm with a search

engine? To answer this question, we conducted an experiment comparing search engine results

(SERs) based on queries with the mementos selected by DSA1, DSA2, DSA3, and DSA4. Our

assumption is that once the off-topic, near-duplicate, and other noise has been removed from the

collection, then what remains is of higher quality and our DSA algorithms can focus on extracting
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Fig. 92. SolrWayback allows users to search a set of WARCs for terms, images, locations, and

URI-Rs.
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(a) Archive-It search engine

Fig. 93. Archive-It allows users to search individual collections by term or URI-R.
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(a) Repeated results for the same URI-R in the Archive-It search engine

Fig. 94. (Continued) Archive-It allows users to search individual collections by term or URI-R.
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novelty from this higher quality sample. We hypothesized that the DSA algorithms would surface

mementos not easily discovered if a user explored the collection via a search engine. We also hy-

pothesized that DSA3, designed to surface content more in line with the general collection topic,

should have the highest retrievability and DSA4, designed to surface more novel content, should

have the lowest retrievability.

SolrWayback [80] is a search engine created for web archives. It requires that the user indexes

WARCs from their collection with warc-indexer [132]. With the index in place, a user can supply

a search query and review the SERs, as shown in Figure 92. From here, the user has many options.

They can click on the results and view the pages in SolrWayback’s playback engine. They can

narrow these results via facets or review the images in individual results. If necessary, they can

export the search results in CSV or WARC to analyze them with another tool.

SolrWayback has not solved some of the longstanding issues with applying search engines

to web archives. If multiple mementos match the search term, they are all returned, so the first

n results returned often contain different mementos for the same original resource, and the next

n+m results contain mementos for a second original resource, and so on. This behavior is standard

for search engines with web archives because we have not found a better paradigm for presenting

memento results. Archive-It’s search interface (Figure 93a) also has this issue (Figure 94a) with

repeated results for the same URI-R.

We chose SolrWayback as our comparison search engine because it incorporates Solr, the

de facto standard search engine for document collections. We did not use Archive-It’s search

engine for several reasons. We wanted our collection behavior to be predictable. Archive-It col-

lections grow over time, as seen in Chapter 4.1, and we did not want a crawling event in one of

Archive-It’s collections to introduce unexpected behavior during our experiment. We also do not

control Archive-It. It can experience technical problems and undergo upgrades, further reducing

the predictability of our results. We are also only aware of the seed mementos for each collection.

Searches with Archive-It can produce deep mementos that DSA is unaware of without a complete

crawl. With SolrWayback, we can provide a stable environment for a fixed set of mementos.

4.4.1 METHODS

Table 17 lists the collections that we have selected for this effort. We chose collections from

different semantic types, values for domain diversity, values for path depth diversity, collection

lifespan, numbers of seeds and mementos, and shapes of growth curves. We also needed collec-

tions with sufficient metadata – at least a filled description field – so we could use that metadata

to generate queries.
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We synthesized WARCs from the seed mementos accessible from each of these Archive-It

collections. We generated these WARCs so they would resemble the content of the original crawls

performed by Archive-It. We ensured that the memento-datetimes and URI-Rs present in the

WARCs matched those from their mementos. We also used the raw memento content for each

WARC so that Archive-It branding and link rewriting would not be indexed by SolrWayback,

tainting our results.

To ensure reproducibility, we were careful not to alter the default behavior of SolrWayback.

Even though Solr can index multiple collections, by default SolrWayback only indexes a single

set of WARCs. To isolate collections from each other, we created eight instances of SolrWayback,

one for each collection.

As noted in Chapter 2.7.1, we can generate queries based on documents. We automatically

generated queries for each exemplar memento selected by DSA1, DSA2, DSA3, and DSA4. We

selected query generation techniques that would allow us to demonstrate the spectrum of searching

user behavior.

Our first query generation technique, doc2query-T5 [236], processes the text in a document

and generates questions based on the text to simulate a naïve user searching for the topic of the

document. With doc2query-T5, the queries emulate the behavior of a user asking questions of a

search engine. Example queries generated by doc2query-T5 include “what is the closest asteroid

to the earth” and “how many known exoplanets are there?” To use doc2query-T5, we supplied

a memento stripped of its boilerplate and indicated how many queries we wanted it to generate

from that content. Occasionally, doc2query-T5 generates nonsensical queries, like “what area of

earth is rhea on” because it does not have background knowledge of the subject of the document.

This query is nonsensical because Rhea is a moon of Saturn and hence cannot be “on” Earth.

These nonsensical queries are in the minority and may simulate a user with little education on the

collection’s topic. To ensure that one nonsensical query does not heavily influence the results, we

use each memento’s top five queries.

We next generated queries from the top five named entities from each memento. Recall from

Chapter 2.7.1 that named entities answer the 5W questions like who?, when?, and where? We

applied spaCy [121] to extract these named entities from a memento. Then we calculated the fre-

quency at which each occurred and selected the top five. This method simulates a more adept

search user looking for information by applying pre-existing topical knowledge. We applied

named entity query sizes of 1, 2, and 5 terms. A single term simulates a user looking for a

particular topic. Two terms is the standard query size found in the search engine logs used by

Traub et al. [300] in an experiment on retrievability. A query of five terms simulates a power user
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TABLE 18

Example queries generated from the document at URI-M

https://wayback.archive-it.org/694/20070523182123/http:

//www.washingtonpost.com/wp-srv/metro/vatechshootings/

Query Type Example

doc2queryT5 “virginia tech killer ammo”

“what kind of ammo did seung hui cho have”

“how many rounds was cho ammo?”

“who killed at virginia tech”

“who was the gunman who killed so many people?”

top entities virginia tech

va.

tim craig

seung hui cho

norris hall

lexical signature killer officials disclosed craig conclude

title Virginia Tech Shootings (washingtonpost.com)

https://wayback.archive-it.org/694/20070523182123/http://www.washingtonpost.com/wp-srv/metro/vatechshootings/
https://wayback.archive-it.org/694/20070523182123/http://www.washingtonpost.com/wp-srv/metro/vatechshootings/


201

who has a particular topical interest.

We then used lexical signatures as a query method because they are designed to return specific

documents. Lexical signatures contain the terms with the highest TF-IDF scores from the docu-

ment [265]. We calculated IDF scores based on term usage from the entire collection. As with

named entities, we applied lexical signature sizes of 1, 2, and 5 terms. A query with 1 or 2 terms

simulates a user looking for a particular topic, much like with named entities. A lexical signature

of 5 terms simulates a user who has no identifier for a document but is seeking a document for

which they recall details. Phelps and Wilensky [265] referred to lexical signatures as “robust hy-

perlinks” because they would allow live web search engine users to find the same document at a

different URI. A 5-term lexical signature is an optimum size identified by Phelps and Wilensky,

and later Park et al. [258, 265] to successfully retrieve specific documents from the live web.

Finally, we employed titles as a fourth query type because they work so well for finding specific

documents on the live web [182]. These queries simulate users searching for a known item [211].

In this case, the user is aware of the document by its name and uses that as an identifier. Titles are

very good at returning the same document on the live web but at a different URI.

For each collection, we generated a story of k mementos with each DSA algorithm. From each

of these k mementos, we generated a query using one of the query methods highlighted above. We

generated an additional query by using the collection metadata as input to the same query method.

This last query simulates a user who was inspired to form a query after reading the metadata. For

all query types but doc2query-T5, we have Q = k+ 1 queries per story. For doc2query-T5, we

chose the 5 top queries for each memento, so we have Q= 5 · (k+1) queries per story. Table 18

shows a set of example queries generated from a memento found in the collection 694 about the

Virginia Tech Massacre.

Then we evaluated how well these queries returned SERs containing the same mementos as

each story. To measure their success, we applied Azzopardi’s retrievability metric introduced in

Chapter 2.7.1. This metric counts the number of queries that successfully return the expected

document using the search engine. It requires a cutoff value c to indicate how many search results

the user viewed. Thus, we discover if a user found a story memento within c search results for

each set of queries representing that story.

A DSA algorithm that achieves a retrievability score close to 1.0 is selecting the same ex-

emplars users could expect to find by querying a search engine. A DSA algorithm with a low

retrievability score demonstrates that it is capable of surfacing mementos that a user cannot easily

find through an existing search approach.
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Fig. 95. Mean retrievability per cutoff value by query method: doc2query-T5 (5 queries).

TABLE 19

p-values at c = 10 (p < 0.05 in bold) by query method: doc2query-T5 (5 queries).

DSA1 DSA2 DSA3 DSA4

DSA1 1.00000 0.19280 0.13230 0.23783

DSA2 0.19280 1.00000 0.74984 0.01077
DSA3 0.13230 0.74984 1.00000 0.00676
DSA4 0.23783 0.01077 0.00676 1.00000
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4.4.2 RETRIEVABILITY DISTRIBUTIONS OF DIFFERENT DSA ALGORITHMS

Figures 95 through 118 demonstrate different ways of looking at the retrievability scores for

each query method.

Our doc2query-T5 queries simulate a casual user. In Figure 95, we see very little change in the

mean retrievability of documents from each DSA algorithm with queries generated by doc2query-

T5. The x-axis is scaled by log10, so we can see the trend as we accept more search results moving

from left to right. At c = 101 = 10, we have the standard user experience of evaluating “ten blue

links,” or the first page of search results. At c = 103 = 1000, we simulate a user performing

an intensive search, potentially to build their own collection of documents. The y-axis contains

the mean normalized retrievability for a memento (r(d)). The mean retrievability starts at a very

low value for all algorithms. The algorithm with the lowest retrievability is DSA4 with a mean

retrievability of 0.00086 for c = 10 and 0.0312 for c = 103. As mentioned in Chapter 4.3.5 we

expect DSA4 to return more novel content. We expect DSA3 to return content describing the main

topic of the collection. The scores are so poor that it is hard to determine by this data alone that

DSA3 and DSA4 succeed in their intentions.

Figure 19 contains a table listing the p-values for each algorithm at c = 10, based on SciPy’s

[316] implementation of Student’s t-test. Those in bold are values where p < 0.05, indicating

that the differences in retrievability between these DSA algorithms for this query method are

statistically significant. We see that our evaluations of DSA2 vs DSA4 and DSA3 vs DSA4

are statistically significant for doc2query-T5. We conclude that DSA2 and DSA3 have higher

retrievability values with doc2query-T5 than DSA4 at c = 10, and thus DSA4 produces more

novel content than either of these algorithms. These results are encouraging because they match

our goals for DSA4, but we have to remember that the results represent only one of many query

methods.

Figure 96 shows a histogram of each algorithm’s retrievability at c = 10. Here we note that

none of the DSA algorithms break past a maximum retrievability of 0.2. DSA4’s 147 documents

across all stories only reach 0.1277. At c = 1000 (Figure 97), the maximum retrievability scores

only reach as high as 0.862 with DSA3 and as low as 0.5319 with DSA4. A user with these casual

queries may be able to reassemble a significant portion of a story build by DSA3, but there are

still items out of their reach.

Our entity queries simulate users trying to understand a topic through the 5W questions. Fig-

ure 98 shows better mean retrievability scores than for doc2query, with DSA3 reaching a mean of

0.2226 retrievability by c = 1000. Comparisons applying the top entity as a search term are not
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Fig. 96. Histogram at c = 10 by query method: doc2query-T5 (5 queries).

Fig. 97. Histogram at c = 1000 by query method: doc2query-T5 (5 queries).
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Fig. 98. Mean retrievability per cutoff value by query method: top entity.

TABLE 20

p-values at c = 10 (p < 0.05 in bold) by query method: top entity.

DSA1 DSA2 DSA3 DSA4

DSA1 1.00000 0.17943 0.43782 0.36442

DSA2 0.17943 1.00000 0.60295 0.69013

DSA3 0.43782 0.60295 1.00000 0.90070

DSA4 0.36442 0.69013 0.90070 1.00000
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Fig. 99. Histogram at c = 10 by query method: top entity.

Fig. 100. Histogram at c = 1000 by query method: top entity.
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Fig. 101. Mean retrievability per cutoff value by query method: top 2 entities.

TABLE 21

p-values at c = 10 (p < 0.05 in bold) by query method: top 2 entities.

DSA1 DSA2 DSA3 DSA4

DSA1 1.00000 0.16798 0.78643 0.69450

DSA2 0.16798 1.00000 0.26856 0.32861

DSA3 0.78643 0.26856 1.00000 0.90140

DSA4 0.69450 0.32861 0.90140 1.00000
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Fig. 102. Histogram at c = 10 by query method: top 2 entities.

Fig. 103. Histogram at c = 1000 by query method: top 2 entities.
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Fig. 104. Mean retrievability per cutoff value by query method: top 5 entities.

TABLE 22

p-values at c = 10 (p < 0.05 in bold) by query method: top 5 entities.

DSA1 DSA2 DSA3 DSA4

DSA1 1.00000 0.14967 0.68819 0.63276

DSA2 0.14967 1.00000 0.03946 0.34073

DSA3 0.68819 0.03946 1.00000 0.34284

DSA4 0.63276 0.34073 0.34284 1.00000
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Fig. 105. Histogram at c = 10 by query method: top 5 entities.

Fig. 106. Histogram at c = 1000 by query method: top 5 entities.
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statistically significant between DSA algorithms (Figure 20). At c = 10 the maximum retrievabil-

ity is 0.3333 for DSA1 (Figure 99). The minimum is DSA3 with 0.1667. Figure 100 shows that

DSA3 reaches a maximum retrievability of 0.8333 c = 1000 with DSA1 in second place at 0.7500

when c = 1000.

Recall that this is the top entity from each memento in a collection. As noted in Chapter

4.2, collections are typically built upon a central theme. Using this one entity as a query likely

unlocks most of the collection, and one can rebuild much – but not all – of all DSA stories if one

performs an intensive search of the collection. These results for DSA3 at c = 1000 are statistically

significant when compared with DSA2 (p = 0.00010) and DSA4 (p = 0.03326). Recall that

Figure 20 does not show these values because it only lists p-values for c = 10. These results

provide evidence that DSA3 may be meeting its goal of exposing mementos that best match the

collection’s topic, at least when compared with DSA2’s and DSA4’s performance. In spite of this,

we have not reached a case where a single memento has r(d) = 1.0.

As noted by Traub et al. [300], users most often issue 2-term queries, as reflected in the

results in Figures 101 through 103. The mean retrievability scores (Figure 101) are lower than

those achieved when we applied a single entity as a search term. The comparisons between DSA

algorithms are not statistically significant at c = 10 (Figure 21). The distributions for DSA2 at

c = 10 in Figure 102 reaches the maximum retrievability of 0.2857 which is close to its maximum

at c = 10 with only the top entity. DSA3 comes in second place and DSA1 and DSA4 tie with

a maximum retrievability of 0.1818. By c = 1000, however, seen in Figure 103, DSA4 has the

highest maxium retrievability at 0.7273 compared to DSA3’s 0.6923. These results are statistically

significant at c = 1000 for DSA3 and DSA4 and detract from the idea that DSA3 or DSA4 are

fulfilling their intentions successfully.

Results with queries of five entities are represented by Figures 104 through 106. These perform

poorer, as seen in the mean retrievability visualized by Figure 104. Comparisons between DSA2

and DSA3 are statistically significant at c = 10 (Figure 22). Thus, on average, DSA3’s mementos

are slighlty more retrievable than those from DSA2 at c = 10. This statistical significance holds

at c = 1000 for DSA2–DSA3 (p = 0.00351). Also, at c = 1000 the results for DSA1–DSA4

are significant (p = 0.01381) with DSA1 having a higher mean retrievability of 0.0901. DSA3’s

maximum retrievability at c = 10 only reaches 0.2308 (Figure 105), but that is better than the

others. A memento chosen by DSA2 has the highest retrievability of 0.5833 at c = 1000 (Figure

106).

Several reasons exist for why the 5-entity queries did not perform as well as the top entity
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queries. At first, we anticipated that a 5-entity query would perform better than the others be-

cause this method produces queries that provide a specific set of terms to identify the document.

However, recall that the means shown in Figures 98, 101, and 104 are means across all entity

queries issued for a document. If we issue our k+1 1-entity queries, the top entity is likely com-

mon among most queries generated from the mementos in that story. This commonality raises the

mean retrievability of all story mementos. By increasing the number of entities, we make each

query more specific to a memento. If only one query in our k+1 returned the expected story me-

mento, this result would drive down the mean retrievability. The mean number of story mementos

is 21.00. Thus k̄ = 21.00 and k̄+ 1 = 22.00. If, on average, for a set of k+ 1 5-entity queries

only one query returns the correct document, then 1
k̄ = 1

22.00 = 0.04545. This is close to the mean

retrievability values shown in Figure 104 at c = 10. It improves by c = 1000 but not nearly as

much as it does with one or two entity queries.

Lexical signatures allow more types of terms than entities. In Figure 107 we see slightly better

mean retrievability scores for the top term from a lexical signature compared with those from a top

entity (Figure 98). The top term from the lexical signature is statistically significant (Figure 20)

for comparisons between DSA1–DSA2 and DSA2–DSA4; thus, at c = 10, DSA1 produces me-

mentos with slightly better retrievability than DSA2 and DSA4 produces mementos with slightly

better retrievability than DSA2. Our histogram for the top term from a lexical signature at c = 10

(Figures 99) shows that a memento from DSA2 reaches the highest maximum retrievability at

0.2143 compared to DSA1’s 0.1818. At 0.7500, DSA1 reaches the highest retrievability for a sin-

gle memento at c = 1000 (Figure 100) but this is only statistically significant when compared with

DSA4 (p = 0.00006). DSA4, however, has the lowest maximum retrievability for a single me-

mento at 0.4000 and this is statistically significant when compared to DSA1 (p = 0.00006), DSA2

(p = 0.00337), and DSA3 (p = 0.00000). This supports that DSA4 is performing as intended.

Applying the top two terms of a lexical signature (Figure 110) also produces a higher mean

for DSA1 at c = 10. Per Figure 24, this result is statistically significant only when compared

with DSA2. The maximum retrievability of 0.3077 reached by DSA1 for c = 10 (Figure 111)

is higher than the other algorithms. By c = 1000, a memento selected by DSA1 reaches the

highest retrievability of all algorithms with this query type, but this is only statistically significant

compared with DSA2 (p= 0.02194 and DSA4 (p= 0.00000). DSA4’s low performance, however,

is statistically significant when compared to all other algorithms (p = 0.00000 for DSA1, p =

0.01236 for DSA2, p = 0.00000 for DSA3), giving us more evidence that DSA4 may be fulfilling

its goal.

Five term lexical signatures are those recommended by Philips and Wilensky [265] and Park et
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Fig. 107. Mean retrievability per cutoff value by query method: lexical-signatures (1 term).

TABLE 23

p-values at c = 10 (p < 0.05 in bold) by query method: lexical-signatures (1 term).

DSA1 DSA2 DSA3 DSA4

DSA1 1.00000 0.00286 0.09466 0.30027

DSA2 0.00286 1.00000 0.29204 0.03550
DSA3 0.09466 0.29204 1.00000 0.42379

DSA4 0.30027 0.03550 0.42379 1.00000
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Fig. 108. Histogram at c = 10 by query method: lexical-signatures (1 term).

Fig. 109. Histogram at c = 1000 by query method: lexical-signatures (1 term).
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Fig. 110. Mean retrievability per cutoff value by query method: lexical-signatures (2 terms).

TABLE 24

p-values at c = 10 (p < 0.05 in bold) by query method: lexical-signatures (2 terms).

DSA1 DSA2 DSA3 DSA4

DSA1 1.00000 0.02998 0.19632 0.12272

DSA2 0.02998 1.00000 0.38415 0.48701

DSA3 0.19632 0.38415 1.00000 0.82062

DSA4 0.12272 0.48701 0.82062 1.00000
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Fig. 111. Histogram at c = 10 by query method: lexical-signatures (2 terms).

Fig. 112. Histogram at c = 1000 by query method: lexical-signatures (2 terms).
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Fig. 113. Mean retrievability per cutoff value by query method: lexical-signatures (5 terms).

TABLE 25

p-values at c = 10 (p < 0.05 in bold) by query method: lexical-signatures (5 terms).

DSA1 DSA2 DSA3 DSA4

DSA1 1.00000 0.00361 0.13736 0.02836
DSA2 0.00361 1.00000 0.14136 0.52322

DSA3 0.13736 0.14136 1.00000 0.42165

DSA4 0.02836 0.52322 0.42165 1.00000
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Fig. 114. Histogram at c = 10 by query method: lexical-signatures (5 terms).

Fig. 115. Histogram at c = 1000 by query method: lexical-signatures (5 terms).
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Fig. 116. Mean retrievability per cutoff value by query method: titles.

TABLE 26

p-values at c = 10 (p < 0.05 in bold) by query method: titles.

DSA1 DSA2 DSA3 DSA4

DSA1 1.00000 0.00016 0.16123 0.02523
DSA2 0.00016 1.00000 0.00973 0.14587

DSA3 0.16123 0.00973 1.00000 0.32318

DSA4 0.02523 0.14587 0.32318 1.00000
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Fig. 117. Histogram at c = 10 by query method: titles.

Fig. 118. Histogram at c = 1000 by query method: titles.
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al. [258] for directly retrieving a document. These queries simulate a user searching for a specific

document that they strongly remember. DSA1 has the highest mean retreivability of 0.0789 at

c= 10 (Figure 113) and this is statistically significant when compared with other DSA2 and DSA4

(Figure 25). Looking at the histograms in Figure 114 we see the lowest maximum retrievability

score with DSA4. This trend does hold at c = 1000, with DSA4’s maximum retrievability only

reaching 0.2000. The comparisons for DSA4 are statistically signficant at c = 1000 for DSA1

(p = 0.00524) and DSA3 (p = 0.04301), again supporting that DSA4 is meeting its goal.

Like with the entities, we see the same pattern of the 1-term lexical signature outperforming

the 5-term query. The same scenario that occurs with the entities is at play here as well, with all

values in Figure 110 starting at roughly 1
k̄ = 1

22.00 = 0.04545 and slighly improving as c→ 1000.

Finally, our title queries simulate a user searching for a specific document. In Figure 116, titles

perform comparable to lexical signaturess for locating the same memento within a collection. We

again reach values roughly approximating 1
k̄ = 1

22.00 = 0.04545 at c = 10. DSA1 has the highest

mean retrievability score at 0.0501, but is only statistically significant (Figure 26) when compared

with DSA2 and DSA4. One of DSA4’s mementos reaches a retrievability of 0.2222 (Figure 117),

giving that algorithm the highest retrievability at c = 10. At c = 1000, DSA4 has the highest

retrievability for a single memento at 0.7500 (Figure 118) and these results are only statistically

significant at c = 1000 when compared with DSA2.

We see several trends in these results. For doc2query-T5 and lexical signatures of one, two, and

five terms, DSA4 consistently has the statistically significant lowest retrievability when compared

to other algorithms’ performance, supporting the hypothesis that it is meeting its goal of surfacing

novel mementos from the collection, at least for some types of queries. DSA3 only has the highest

retrievability when using the query method of top entities and only once a user has reviewed

1,000 search results (c = 1000). From this result, we have little conclusive evidence that DSA3 is

working as intended, in spite of its extra steps to filter out content that does not support the general

topic of the collection.

In no case, however, do we see any of the algorithms produce a single memento with 100%

retrievability, even at c = 1000. This means that the DSA algorithms surface mementos that

are difficult to retrieve with a search engine. Retrievability has another facet besides its mean,

however. How many mementos had zero retrievability?
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Fig. 119. Percentage of story mementos with zero retrievability at different cutoff values of c by

query method: doc2query-T5 (5 queries).

4.4.3 ANALYZING ZERO RETRIEVABILITY OF DSA ALGORITHMS

The last section focused on mean and max retrievability for our exemplars. For an exemplar

to score a retrievability of 0, none of its Q queries would have returned it. In this section, we

calculate the percentage of exemplars that have a retrievability of 0. This percentage tells us

the number of exemplars that are not found at all. With a percentage of 100%, none of the DSA

algorithm’s mementos are retrievable by the queries in the query method. With a percentage of 0%,

all of the DSA algorithm’s mementos are retrieveable by at lease some query in the query method.

Figures 119 through 126 show the percentage of mementos chosen by each DSA algorithm that

produce zero retrievability when searched by applying the given query method. The x-axis of

each visualization shows the cutoff, and the y-axis the percentage. The higher the percentage,
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Fig. 120. Percentage of story mementos with zero retrievability at different cutoff values of c by

query method: top entity.
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Fig. 121. Percentage of story mementos with zero retrievability at different cutoff values of c by

query method: top 2 entities.
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Fig. 122. Percentage of story mementos with zero retrievability at different cutoff values of c by

query method: top 5 entities.
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Fig. 123. Percentage of story mementos with zero retrievability at different cutoff values of c by

query method: lexical signatures (1 term).
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Fig. 124. Percentage of story mementos with zero retrievability at different cutoff values of c by

query method: lexical signatures (2 terms).
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Fig. 125. Percentage of story mementos with zero retrievability at different cutoff values of c by

query method: lexical signatures (5 terms).
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Fig. 126. Percentage of story mementos with zero retrievability at different cutoff values of c by

query method: titles.
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the more mementos are missed by our queries but surfaced by our DSA algorithms. The lower

the percentage, the more successful a user will be at applying a search engine to produce these

mementos.

Applying doc2query-T5 produces the highest percentage of mementos with zero retrievability.

DSA4 leads with 61.9% of its mementos having zero retrievability at c = 10 and 48.3% of its

mementos being unretrievable at c = 1000. Other algorithms’ scores are comparable but not as

high. These results are consistent with the low retrievability scores we viewed for doc2query-T5

in the last section. This provides further evidence for DSA4 meeting its goals. DSA2 has the

highest percentage of mementos with zero retrievability, not DSA3 as expected.

In Figure 120, DSA3 has the highest percentage of mementos with zero retrievability when

queried by the top named entity found in each memento. Other algorithms are comparable. We

see a steep drop by c = 1000, with DSA4 leading the others with 8.84% of its mementos still not

retrievable. Much like we saw in the last section, this behavior provides further evidence that a

single named entity surfaced by measuring and ranking entity frequencies can help users retrieve

much of the collection. The DSA algorithms demonstrate, though, that between 3% and 9% of the

collection remains out of reach by searching.

Figures 121 and 122 demonstrate similar behavior for named entities, but starting with lower

percentages of mementos with zero retrievability than we saw for the top entity. DSA1 still has the

highest value for queries containing the top 2 and top 5 entities at c = 10. With 5-entity queries,

we have fewer mementos with zero retrievability, starting with 29.49% via DSA1. If we compare

this with the last section, we see that the mean retrievability scores for 5-entity queries were lower

than those for 1- and 2-entity queries. By c = 1000, however, we see the same steep drop for both

query methods. With 9.52% of DSA4’s mementos not retrievable with 2-entity queries or 5-entity

queries, DSA4 is still surfacing more novel mementos than the search engine.

Single term lexical signatures perform better. Figure 123 shows how DSA3 has the most

mementos with zero retrievability at 44.85% at c = 10. Of DSA4’s mementos, 4.08% are still un-

reachable with this query method at c = 1000. With two-term lexical signatures, we further reduce

the number of mementos with zero retrievability. DSA1 has the highest number of mementos with

zero retrievability at 34.62% at c = 10 (Figure 124). By c = 1000, all DSA1 mementos are retriev-

able with 0% having zero retrievability. For DSA4 24.49% of its mementos have zero retrievability

at c = 10, but 4.08% of DSA4’s mementos are still out of reach by c = 1000.

At c = 10, five-term lexical signatures produce the lowest percentages of mementos with zero

retrievability. Figure 125 shows how DSA1 has the highest percentage of mementos with zero

retrievability at 27.45%. This result is the lowest score for DSA1 across all query methods shown
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(a) Surfaced by DSA1 from collection 1740

URI-M:

https://wayback.archive-it.org/1740/20100705231755/http:

//twitter.com/CassiniSaturn/

Fig. 127. Examples of mementos with zero retrievability in SolrWayback, but that were surfaced

by DSA algorithms.

https://wayback.archive-it.org/1740/20100705231755/http://twitter.com/CassiniSaturn/
https://wayback.archive-it.org/1740/20100705231755/http://twitter.com/CassiniSaturn/
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(b) Surfaced by DSA2 from collection 5711

URI-M:

https://wayback.archive-it.org/5711/20100228094018/http:

//www.skoyteforbundet.no/

Fig. 127. (Continued) Examples of mementos with zero retrievability in SolrWayback, but that

were surfaced by DSA algorithms.

https://wayback.archive-it.org/5711/20100228094018/http://www.skoyteforbundet.no/
https://wayback.archive-it.org/5711/20100228094018/http://www.skoyteforbundet.no/
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(c) Surfaced by DSA3 from collection 1305

URI-M:

https://wayback.archive-it.org/1305/20110417211516/http:

//governor.delaware.gov/index.shtml

Fig. 127. (Continued) Examples of mementos with zero retrievability in SolrWayback, but that

were surfaced by DSA algorithms.

https://wayback.archive-it.org/1305/20110417211516/http://governor.delaware.gov/index.shtml
https://wayback.archive-it.org/1305/20110417211516/http://governor.delaware.gov/index.shtml
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(d) (Continued) Surfaced by DSA4 from collection 694

URI-M:

https://wayback.archive-it.org/694/20070606234249/http:

//www.vtmagazine.vt.edu/

Fig. 127. (Continued) Examples of mementos with zero retrievability in SolrWayback, but that

were surfaced by DSA algorithms.

https://wayback.archive-it.org/694/20070606234249/http://www.vtmagazine.vt.edu/
https://wayback.archive-it.org/694/20070606234249/http://www.vtmagazine.vt.edu/
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in Figures 119 through 126. DSA4 has the highest number of mementos with zero retrievability

at 14.97% at c = 1000 using five-term lexical signatures.

Finally, with titles as queries in Figure 126, we see each algorithm start with 36% to 38% of

their mementos undiscovered at c = 10. All of DSA1’s mementos are discovered by at least one

query by c = 1000. We discover nearly all of DSA4’s mementos with only 3.4% outstanding.

Using titles as queries with the search engine, we could not discover 4.76% of the mementos that

DSA3 surfaced.

These results tell us that the DSA algorithms surface mementos that remain out of reach of

search engine users – some examples of such mementos are shown in Figure 127. At “10 blue

links”, users will miss between 14% and 62% of mementos that they would otherwise encounter in

our stories. If users perform an intensive search, they may find all of the mementos with the correct

query but will have to review a thousand search results. DSA3 does not do a good job surfacing

mementos that are retrievable with the search engine. Surpisingly, DSA1 did surface mementos

that are retrieveable by both titles and two-term lexical signatures. Of these algorithms, DSA4

surfaced the largest percentage of mementos that were out of reach even at c = 1000 using the

query methods of lexical signatures, entities, and doc2query-Tf5. With titles, DSA3 surpassed.

This provides futher supporting evidence that DSA3 has failed to surface mementos with high

retrievability and DSA4 surfaces novel mementos that are not easy to retrieved from the collection.

4.4.4 SUMMARY

A user like Natasha will first turn to a search engine to explore a web archive collection.

She must start with a query, and she will base that query on the metadata she can find on the

collection and any prior knowledge she brings to the endeavor. Our DSA algorithms surface k≈ 28

exemplars to describe the collection. This section evaluated how well someone like Natasha could

reproduce our exemplars through search engine queries.

We synthesized WARCs from eight Archive-It collections and indexed them with SolrWay-

back, a web archive search engine. Once these mementos were available in SolrWayback, we

generated stories from these collections with the DSA1, DSA2, DSA3, and DSA4 algorithms. To

replicate search engine user behavior, we generated search queries from the mementos in these

stories. We applied various methods, simulating casual searchers with doc2query-T5, more ex-

perienced users with named entities, users who recall the existence of specific documents with

lexical signatures, and those who apply document titles to perform known-item searches.

We discovered that our DSA algorithms surface mementos that are not reachable through

these search engine queries, even for known-item searches – i.e., with titles and five-term lexical
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signatures. That is to say that the DSA algorithms choose mementos with low retrievability scores.

In DSA3, we tried to create an algorithm with high retrievability, but it did not succeed in its task,

still surfacing novel mementos. In DSA4, we tried to build an algorithm with low retrievability

and its low retrievabilty persists, even across differnt query types.

This study shows the efficacy of our method for helping surface mementos that are not other-

wise discoverable. In addition to saving Natasha time by only sharing k≈ 28 exemplars, the DSA

algorithms also provide insight not available by the de facto method available to her for collection

understanding. In the next section, we introduce Hypercane, an application that helps users select

exemplars from web archive collections.

4.5 HYPERCANE: IMPLEMENTING INTELLIGENT SAMPLING

Hypercane [144, 145, 146, 149, 157, 166] is a tool for summarizing web archive collections

through intelligent sampling. It is a command-line application (hc) that takes a collection of

mementos as input and provides various actions that can be applied to a web archive collection to

produce a subset of URI-Ms as output. The primitives mentioned in Chapter 4.3 map to actions in

Hypercane. For example, hc cluster performs clustering. Hypercane is an implementation of

the model detailed in Chapter 4.3.

Because most Hypercane commands accept a list of URI-Ms as input, outputs from one Hy-

percane command can be fed into another, forming complex chains similar to Unix shell command

pipes. More information on Hypercane’s capabilities is available in its documentation [150] but

we will provide a summary here. We divide Hypercane’s actions into two categories: core and

advanced. We intend core actions to be the ones most applied by end-users. Advanced actions can

be employed to construct custom algorithms for a collection. Figure 128 shows how the different

Hypercane actions map to the storytelling processes outlined in Chapter 1.

4.5.1 CORE ACTIONS

Hypercane’s principal focus is to select exemplars from a web archive collection, thus its first

core action is named sample after the same primitive from Chapter 4.3. The sample action

accepts a list of URI-Ms and performs a specified sampling operation on the input. The user

can select from a variety of probabilistic sampling algorithms, such as true-random which

randomly selects k mementos from the collection, and systematic, which selects every jth

memento from the collection. Hypercane also provides intelligent sampling algorithms, such as

DSA1, DSA2, DSA3, and DSA4, specified as dsa1, dsa2, dsa3, and dsa4. We also com-

bine the two concepts in filtered-random, which eliminates off-topic and near-duplicate
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Fig. 128. The mapping of Hypercane actions mapped to the overall storytelling processes

outlined in Chapter 1.

mementos before randomly selecting k from the remainder.

To fulfill an additional storytelling process, Hypercane can generate story metadata from a

web archive collection or a list of exemplars through its report action. Through report, a user

can generate a list of terms or entities from the list of exemplars for use in the final story.

They can also apply image-data to the list of exemplars to ask Hypercane to choose the best

representative image from all documents in the input. Likewise, hc report metadata can

be run on the whole collection to extract metadata from the collection pages of the web archive

collection itself. Users can apply this report to provide the collection title, creators, and other

metadata for downstream storytelling.

The report action is not just limited to generating story metadata for storytelling. For

the experiment run in Chapter 4.4, we generated queries through Hypercane’s hc report

generate-queries command. Hypercane also provides reports on http-status indi-

cating the availability of mementos and Memento Protocol data from a web archive collection.

A user can analyze individual HTML metadata fields with hc report html-metadata.

A user can also create metadata based on the structural features from Chapter 4.1 through hc

report seed-statistics and hc report growth. These capabilities are helpful for

understanding and analyzing a collection but not necessarily helpful for storytelling.
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Unconnected to our storytelling process is Hypercane’s synthesize action, which al-

lows users to convert their list of mementos into other formats, such as a directory of WARCs.

The synthesize action is similar to the export capability of many tools and, except for

raintale-story output, is more of a convenience feature than related to the storytelling

process outlined in Chapter 1. We applied the synthesize action to generate WARCs from

Archive-It collections in the study from Chapter 4.4.

4.5.2 ADVANCED ACTIONS

Hypercane’s advanced actions allow users to create their own algorithms. Again, the output

from most Hypercane commands is a list of URI-Ms, and any command can accept a list of URI-

Ms, allowing users to chain Hypercane commands together. Internally, Hypercane implements

intelligent sampling algorithms, such as dsa1, by executing scripts that contain these chains.

The identify action allows a user to convert one list of Memento Protocol objects into

another. They can convert their list of mementos into a list of TimeMaps, or vice-versa. They can

generate a list of URI-Rs from TimeMaps. It also includes convenience features for extracting

all URI-Ms, URI-Ts, or URI-Rs from a given Trove, Archive-It, or PANDORA collection. We

built the identify action into each of these commands so we can run it as part of their input

handling. One can also run it alone to save their conversion for use outside of storytelling. Because

Hypercane needs to download content to find mementos using identify, it is often best to save

the output of identify before moving to the next step.

From Chapter 4.3, we have primitives for filter, cluster, score, and order. Each of

these have their own corresponding Hypercane command combining the primitive with additional

arguments (e.g., hc order memento-datetime).

Hypercane leverages many existing libraries to meet its goals. Recall our experiment with

detecting off-topic mementos in Chapter 4.2. We implemented that algorithm in the Off-Topic

Memento Toolkit (OTMT) [138, 141, 164]. Hypercane applies the OTMT to filter off-topic me-

mentos via the hc filter exclude off-topic command. It leverages many other li-

braries, such as Gensim [342] for topic modeling (e.g., hc cluster lda), spaCy [121] for

named entity recognition (e.g., hc report entities), and scikit-learn [261] for clustering

(e.g., hc cluster dbscan).

4.5.3 CREATING ALGORITHMS WITH HYPERCANE

Figure 129 shows the Hypercane commands that execute AlNoamany’s Algorithm. As noted

in Chapter 3, AlNoamany’s algorithm reduces the mementos under consideration by filtering out
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hc identify timemaps -i archiveit -a 13529 -o timemaps.tsv

hc filter

include-only on-topic -i timemaps -a timemaps.tsv -o ontopic.tsv

hc filter exclude

near-duplicates -i mementos -a ontopic.tsv -o non-duplicates.tsv

hc filter include-only languages --lang en -i mementos -a non-

duplicates.tsv -o english-only.tsv

hc cluster time-slice -i mementos -a english-only.tsv -o sliced.tsv

hc cluster dbscan -i mementos -a sliced.tsv -o sliced-and-clustered

.tsv

hc score dsa1-scoring -i mementos -a sliced-and-clustered.tsv -o

scored.tsv

hc filter include-only highest-score-per-cluster -i mementos -a

scored.tsv -o highest-scored.tsv

hc order pubdate-else-memento-datetime -i mementos -a highest-

scored.tsv -o ordered.tsv

Fig. 129. DSA1 run via Hypercane’s advanced actions.

hc identify timemaps -i archiveit -a 13529 -o timemaps.tsv

hc filter

include-only on-topic -i timemaps -a timemaps.tsv -o ontopic.tsv

hc filter exclude near-duplicates -i mementos -a ontopic.tsv -o non

-duplicates.tsv

hc sample true-random -i mementos -k 28 -a non-duplicates.tsv -o

random-sample.tsv

Fig. 130. Hypercane’s filtered-random sampling algorithm.
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hc identify timemaps -i archiveit -a 13529 -o timemaps.tsv

hc filter

include-only on-topic -i timemaps -a timemaps.tsv -o ontopic.tsv

hc filter exclude near-duplicates -i mementos -a ontopic.tsv -o non-

duplicates.tsv

hc cluster kmeans -i mementos -k 28 -a non-duplicates.tsv -o time-

clustered.tsv --feature memento-datetime

hc cluster lda -i mementos -a time-clustered.tsv -o topic-clustered.tsv

hc score dsa2-scoring -i mementos -a topic-clustered.tsv -o scored.tsv

hc filter include-only highest-score-per-cluster -i mementos -a scored.

tsv -o highest-scored.tsv

hc order pubdate-else-memento-datetime -i mementos -a highest-scored.

tsv -o ordered.tsv

Fig. 131. The DSA2 Algorithm run via Hypercane’s advanced actions.

those that are off-topic (filter include-only on-topic), near-duplicates (exclude

near-duplicates), and non-English (include-only languages --lang en).

Then it clusters by AlNomany’s time slices (cluster time-slice) so that each slice

contains roughly the same number of mementos. From there, it clusters again via DB-

SCAN (cluster dbscan) using the Simhash distance of each memento in the cluster

from each other. Finally, it scores the mementos in each cluster based on a scoring function

(score dsa1-scoring) that weights memento-damage, path depth, and page category.

Hypercane then filters out all but the highest scoring memento (filter include-only

highest-score-per-cluster) from each cluster and orders them by publication date

(order pubdate-else-memento-datetime). A user executes these same steps when

they run the command hc sample dsa1.

In Figure 130 we demonstrate how to construct the filtered-random algorithm from

Chapter 4.3 that filters out off-topic and near-duplicate mementos before randomly choosing 28.

In this example, we show how one can feed the output of other commands through an additional

sample command to reduce the set of mementos further.

Figures 131, 132, and 133 show the algorithms DSA2, DSA3, and DSA4, respectively, as

detailed in Chapter 4.3 and used in the experiment from Chapter 4.4. A user executes them with

hc sample dsa2, hc sample dsa3, hc sample dsa4.
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hc identify timemaps -i archiveit -a 13529 -o timemaps.tsv

hc filter

include-only on-topic -i timemaps -a timemaps.tsv -o ontopic.tsv

hc filter exclude near-duplicates -i mementos -a ontopic.tsv -o non-

duplicates.tsv

hc cluster dbscan -i mementos -a non-duplicates.tsv -o dbscan-clustered

.tsv --feature tfidf --eps 1.3

hc filter exclude with-cluster-id -i mementos -a dbscan-clustered.tsv -

o no-outliers.tsv --cluster-id -1

hc synthesize

cluster-free -i mementos -a no-outliers.tsv -o clusters-stripped.tsv

hc cluster kmeans -i mementos -a clusters-stripped.tsv -o time-

clustered.tsv --feature memento-datetime

hc cluster kmeans -i mementos -a time-clustered.tsv -o term-clustered.

tsv --feature tfidf

hc score top-entities-and-bm25 -i mementos -a term-clustered.tsv -o

scored.tsv

hc filter include-only highest-score-per-cluster -i mementos -a scored.

tsv -o highest-scored.tsv

hc order pubdate-else-memento-datetime -i mementos -a highest-scored.

tsv -o ordered.tsv

Fig. 132. The DSA3 Algorithm run via Hypercane’s advanced actions.
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hc identify timemaps -i archiveit -a 13529 -o timemaps.tsv

hc filter

include-only on-topic -i timemaps -a timemaps.tsv -o ontopic.tsv

hc filter exclude near-duplicates -i mementos -a ontopic.tsv -o non

-duplicates.tsv

hc cluster kmeans -i mementos -a non-duplicates.tsv -o time-

clustered.tsv --feature memento-datetime

hc cluster kmeans -i mementos -a time-clustered.tsv -o term-

clustered.tsv --feature tfidf

hc score distance-from-centroid -i mementos -a term-clustered.tsv -

o scored.tsv

hc filter include-only highest-score-per-cluster -i mementos -a

scored.tsv -o highest-scored.tsv

hc order pubdate-else-memento-datetime -i mementos -a highest-

scored.tsv -o ordered.tsv

Fig. 133. The DSA4 Algorithm run via Hypercane’s advanced actions.

hc filter include-only containing-url-pattern \

--url-pattern "http://bostinno.streetwise.co/2013/04/19/boston-

marathon-suspect-dead-another-at-large-after-standoff/" \

-i archiveit -a 3649 -o story-mementos.tsv

Fig. 134. The filter for Rustam’s FPST story.

hc filter include-only near-datetime \

--start-datetime "2018-07-11T00:00:00" \

--end-datetime "2018-07-30T11:00:00"

-i mementos -a news-mementos.tsv -o story-mementos.tsv

Fig. 135. A filter for Olayinka’s SPFT story.
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Elbert wants to create stories to promote his collection for people like Natasha. He can select

exemplars by executing one of these commands. Then he can generate story metadata with hc

report. Ling can do the same, so she has a set of exemplars from her collection. Ling can

also apply the other report commands to explore her collection through structural features and

additional metadata.

Hypercane does not accept WARCs as input. Its focus is to provide anyone access to a public

web archive collection’s mementos through the Memento Protocol. Not only can archivists apply

Hypercane to promote or explore their own collections, but users can select their own exemplars to

meet their needs. Recall that Rustam wants to tell a fixed page, sliding time (FPST) story where he

can view a specific page on the Boston Marathon Bombing. He can execute Hypercane’s filter

action on a specific URI-R as shown in Figure 134.

Hypercane is not limited to Archive-It. It supports lists of URI-Ms from any Memento-

compliant archive. Olayinka wanted to tell a sliding page, fixed time (SPFT) story centered on

a specific time period. She can execute a filter action for a specific time range on that list as

shown in Figure 135.

4.5.4 SUMMARY

Hypercane (hc) is a command-line application that implements the primitives detailed in

Chapter 4.3. It has helped us address RQ1 and RQ2 throughout this chapter. First, Hypercane

can sample mementos from a web archive collection. With Hypercane, a user can apply prob-

abilistic sampling techniques, like true random, or intelligent sampling techniques, like DSA1.

With intelligent sampling techniques, Hypercane can satisfy the storytelling process of selecting

exemplars. Second, Hypercane’s report action provides information about the collection. It can

generate reports that contain data on a collection’s structural features, as mentioned in Chapter

4.1, helping us better understand a collection overall. The report action also provides metadata,

both generated and captured, on the collection or a list of exemplars, satisfying the storytelling

process for generating story metadata.

Hypercane’s potential is not just limited to existing sampling algorithms. We applied Hy-

percane to the experiments in this chapter. It allows the user to build their own algorithms out of

advanced actions. Because Hypercane applies the Memento Protocol, it can sample from any pub-

lic web archive collection — not just Archive-It — allowing users to select their own exemplars,

generate their own story metadata, and explore web archive collections in ways not supported with

existing search engines.
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4.6 CHAPTER SUMMARY

In this chapter, we covered the storytelling processes of selecting exemplars and generating

story metadata. These two processes are our first steps toward storytelling. Generating story

metadata provides us with the information necessary to augment our story. It may also be used to

help us select exemplars.

RQ1: What types of web archive collections exist and what structural features do they
have?

We introduced Archive-It collections’ structural features and semantic categories, providing

different methods of characterizing a collection. We discovered that four semantic categories exist

for Archive-It collections. The most common is Self-Archiving, where organizations are archiving

their own content. The least common is Time Bounded - Spontaneous, where an archivist tries to

archive the coverage of a natural disaster or other unexpected event.

We detailed seed features, like domain diversity, that allow a user to compare how diverse the

sources are for a collection. We discussed growth curves, that demonstrate the temporal skew of

a collection’s contents. Clustering by time is an essential part of selecting exemplars from web

archive collections. This temporal skew has implications for choosing which clustering algorithm

produces mementos that best represent the temporal skew of the collection.

RQ2: Which approaches work best for selecting exemplars from web archive collections?
An essential ability to select exemplars is removing off-topic mementos from consideration.

We evaluated different measures for determining if a memento is off-topic compared to the others

in its TimeMap and concluded that word count performs best on our gold standard dataset with an

F1 score of 0.788.

We introduced a model for selecting exemplars through primitives. Most algorithms that select

exemplars covered in Chapter 3.1 apply one or more primitives of filter, cluster, score, and order.

We demonstrated how we combine these primitives to create AlNoamany’s Algorithm (DSA1)

from Chapter 3.5. We then discussed how our knowledge of structural features could be applied

to improve AlNoamany’s Algorithm with a new algorithm named DSA2. We further introduced

DSA3 for selecting exemplars that best match the overall topic of the collection and DSA4 for

selecting more novel exemplars.

We addressed how difficult it is for a user to apply a search engine and arrive at the exemplars

selected by the DSA algorithms. We synthesized WARCs from Archive-It collections and indexed

them with SolrWayback. Once in SolrWayback, we ran the DSA algorithms to select exemplars.

We automatically generated queries that simulated how different types of users might search the

collection from these exemplars. We then recorded the search engine results for each of these
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queries and discovered that the search queries did not surface all of the mementos selected by the

DSA algorithms. These results show that the DSA algorithms are a valuable method for selecting

exemplars thare are not easily retrieved with a search engine.

Finally, we introduced Hypercane, a tool for sampling from web archive collections. Hyper-

cane provides several actions that allow the user to tailor algorithms to intelligently sample from

the collection, producing the exemplars that best tell the story they desire. Hypercane’s sample

action satisfies the select exemplars storytelling process through pre-defined probabilistic and in-

telligent sampling algorithms. Hypercane’s report action satisfies the generate story metadata

storytelling process, providing collection-wide metadata and structural feature analysis. Hyper-

cane’s synthesize action allows one to convert mementos into WARCs. Hypercane’s advanced

actions permit the user to identify, filter, cluster, score, and order mementos as part of developing

their own algorithms.

With our exemplars selected, in our next chapter, we summarize each document to generate

document metadata. After that, we will combine the story metadata and the document metadata

to tell stories.
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CHAPTER 5

GENERATING DOCUMENT METADATA

Fig. 136. The processes for storytelling that are covered in this chapter are indicated by the blue

box.

Chapter 4 discussed issues with selecting exemplars and generating story metadata. Natasha

wants to compare collections. Rustam wants to compare different versions of the same page over

time. Olayinka wants to compare the content of different pages captured around the same time.

Ling wants to understand her own collection. Elbert wants to promote a collection for others.

All of these personas need someone to generate document metadata so they can understand

the exemplars in their stories, thus this chapter covers that process (Figure 136). A surrogate

is a visualization of an individual document’s metadata. It is not easy for end-users to evaluate

metadata without also evaluating a surrogate visualizing it.

In Chapter 5.1, we will summarize an evaluation of 55 platforms to find one that completes

this storytelling process for mementos. We will discover that these platforms do a poor job for

mementos, leading us to conduct a user study in Chapter 5.2 that helps us determine that social

cards probably work best for understanding collections of mementos (RQ3). The results of this

user study give us a surrogate to focus on, so in Chapter 5.3, we analyze how common social
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Fig. 137. Storify combined the storytelling processes of generating document metadata,

visualizing the story, and distributing it. Its API allowed AlNoamany to augment its surrogates

with additional story and document metadata.

card metadata is for mementos of news articles. We discover that this metadata was quickly

adopted when Facebook first released social card standards in 2010. However, mementos captured

before 2010 will require some automated solution for generating the document metadata necessary

to produce cards. Mementos captured prior to 2010 represent 150 billion pages in the Internet

Archive [125] and content from 1,486 Archive-It collections. We analyze the authors’ behavior

with respect to card metadata fields in order to describe how to emulate humans’ behavior for

generating descriptions and selecting striking images. Because we are choosing the “best” image

from those available in a document, automating the selection of striking images is yet another case

of selecting exemplars. We close by introducing MementoEmbed (Chapter 5.4), an archive-aware

document metadata and surrogate service that incorporates these lessons.

5.1 HOW EXISTING PLATFORMS DO NOT SATISFY OUR
STORYTELLING PROCESS FOR MEMENTOS

Storify was the initial tool applied by AlNoamany’s work to gather document metadata, visu-

alize, and distribute web archive stories. Storify’s definition of story influenced the visual sum-

maries that we developed. Its application of surrogates as a summarization technique alongside

additional metadata made it a popular tool [328] for journalists [78, 294, 295, 296] and educators
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[20, 96, 102, 201]. Livefyre acquired Storify in 2013 [112] and Adobe acquired Livefyre in 2016

[283]. Adobe created Storify 2 as a content creation platform so authors could create and publish

stories to their own web sites, but removed the public distribution capabilities provided by the

original Storify [116]. Adobe then shut the original Storify down in 2018 [43, 282, 289].

The loss of Storify was problematic for the use cases embodied by our characters. As demon-

strated in Figure 137, Storify combined the storytelling processes of generating document meta-

data, visualizing the story, and distributing it. Without it, Natasha cannot view the stories created

by others, and Elbert cannot promote his collections. We needed a replacement so we could still

tell stories, and Storify 2, as part of Adobe’s Livefyre, had evolved into a product requiring a local

client and manual interaction; thus, it no longer met our needs.

We evaluated 55 platforms in 2017 with respect to their ability to select exemplars, generate

document metadata, visualize, and distribute summaries of mementos [140, 156]. A more com-

plete discussion on that study exists in work by Jones et al. [140, 156]. Here we summarize

the results. We cannot see the internal representations of document metadata so we are forced to

judge the tool’s ability to generate this metadata based on the surrogates that the tool creates. Even

though this chapter focuses on the generating document metadata process, there are many tools

that promise to address other parts of the storytelling process and they fail with mementos. Of

these, 30 promise to select exemplars in some way, but none do so for mementos. Many will not

accept exemplars from an outside source, meaning that we cannot take advantage of their ability

to complete other storytelling processes. We could not evaluate seven because they are no longer

in service. Here we highlight some of the few finalists and why they were not suitable. Though

this survey is four years old, nothing rivaling Storify has emerged in the commercial market since.

5.1.1 FACEBOOK

With 1.88 billion daily active users [85], Facebook is the most popular social media tool.

Facebook supports social cards in posts and comments. Facebook also supports creating albums

of photos but not of posts. Posts contain comments, however. As shown in Figure 138, in order

to generate a series of social cards as a story, we created a post that contained the general collec-

tion metadata (e.g., title, link to collection) and supplied each URI-M in the story as a separate

comment. Ultimately, we had to supply our own story metadata.

As seen in Figure 139, Facebook occasionally fails to generate social cards for links. The

problem is not that Facebook is blocking web archives. Facebook can create cards for web archives

by reading the OGP metadata found in the memento. In Figure 140, both comments contain the
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Fig. 138. We can create Facebook stories through comments. (Screenshot taken in 2017.)
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Fig. 139. A screenshot of two Facebook comments. The URI-M above generated a social card,

but the URI-M below did not. (Screenshot taken in June 2021.)

same URI-R stored in the Internet Archive (top) and Archive.Today (bottom) captured on 2021-

06-07 16:57:36 UTC and 2021-06-07 17:43:21, respectively. The Internet Archive presents the

original resource OGP metadata for Facebook. Archive.Today generates its own values for OGP

metadata, including changing the striking image to a browser thumbnail representing how the

original resource looked when it was captured.

Facebook is unreliable for generating document metadata for mementos and incapable of vi-

sualizing our stories. Additionally, Facebook does not keep the comments in order once they are

submitted. A story ordered by Hypercane through some feature, like publication date, will be

reordered by Facebook, thus losing the meaning we sought to impart. We could employ the Face-

book API to update such comments with a photo and a snippet, if necessary. Providing additional

images is impossible, as Facebook posts and comments will not generate a social card if the post/-

comment already has an image. Also, at that point, Facebook would only be distributing our story,

and we still will not have solved the ordering problem.

5.1.2 TWITTER

Twitter has 186 million daily active users worldwide [307]. Twitter also supports social cards

in posts. For Twitter, comments are also posts, as every interaction on Twitter is a Tweet. Users

can group tweets together to create their own stories through Twitter Moments. All tools we

reviewed required that the user title the story in some way, and Twitter Moments required that the
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Fig. 140. Facebook can create cards for web archives by reading the OGP metadata found in the

memento. Both comments contain the same URI-R stored in the Internet Archive (top) and

Archive.Today (bottom). (Screenshot taken in June 2021.)

user upload an image separately in order to create a story, as shown in Figure 141. This image

serves as the striking image for the collection. Twitter compels the user to supply a description.

Thus, while a user can supply story metadata, the tool will not generate it.

Twitter does not reliably generate social cards for URI-Ms. Figure 142 displays a screenshot

of a Twitter Moment containing mementos. Twitter displays the individual URI-Ms tweets with

no additional visualization. We could use the Twitter API to add images and additional text (up to

280 characters) to supplement these tweets. At that point, we are building our own surrogates out

of tweets and just using Twitter for distribution.

5.1.3 TUMBLR

Tumblr had 319 million visitors in May 2021 [285]. Tumblr is a complex social media tool

supporting many different types of posts. A user selects which type of post they desire and then

supplies the necessary data or metadata. For example, if a user wanted to generate something like

a Facebook post or a Twitter tweet, they would choose Text. The post type Link produces a social

card for the supplied link. In addition to the social card generated by Tumblr, a user can adorn
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Fig. 141. We can create stories on Twitter through Twitter Moments.

(Screenshot taken in 2017.)
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Fig. 142. Tweets containing Archive-It URI-Ms do not render social cards.

(Screenshot taken in 2017.)
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Fig. 143. We can create Tumblr stories by bounding posts together with a hashtag.

(Screenshot taken in 2017.)
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Fig. 144. Tumblr does not reliably produce full social cards for mementos, as seen in this

example. (Screenshot taken in 2021.)

the Link post with an additional photo, video, or text. To create a story on Tumblr (Figure 143),

we apply hashtags. Tumblr confines the hashtags to a specific blog controlled by that blog’s user;

hence posts outside of the blog do not intrude into the collection, as would happen with hashtags

on Twitter or Facebook.

Unfortunately, as shown in Figure 144, Tumblr has similar problems to other tools when trying

to generate surrogates for mementos. In this example, this CNN memento produces a surrogate

containing a title, but nothing else. It also misattributes CNN’s content to wayback.archive-it.org,

potentially confusing readers as to the actual source of this article. Tumblr has an API that we can

apply to fix some of these issues. If a surrogate lacks an image, or if we need to supply additional

text, the post can be updated appropriately, but, like with Facebook and Twitter, we are again

building our own surrogate service at that point.

5.1.4 STORIES BUT NOT STORIFY STORYTELLING

Since Storify, some platforms have co-opted the term story to mean something impermanent.

This impermanence is contrary to the original definition employed by Storify and, more impor-

tantly, contrary to our preservation goals. We want the stories to be artifacts that themselves can

be archived. Snapchat [288], Instagram Stories [124], Facebook Stories [86], and Twitter Fleets

[305] all disappear within 24-hours of posting. Twitter has even announced that the Fleets ca-

pability will not longer be available after August 3, 2021 [44]. This impermanence makes those

platforms unsuitable for our needs. We want stories that are persistent, reusable, and archivable.

5.1.5 SUMMARY

After reviewing 55 platforms, we could not find a service that would reliably generate docu-

ment metadata and visualize it as a surrogate for a memento. Some tools are a poor fit for what we

are trying to do, but others that seem like a good fit still require that we generate our own document
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metadata. Without a reliable target visualization, we conducted a user study to determine which

document metadata, through surrogates, helped users best understand web archive collections.

5.2 EVALUATING DOCUMENT SURROGATES FOR UNDERSTANDING

Platforms build surrogates from metadata. Metadata can consist of concepts like title, striking

image, or browser thumbnail. Even though a browser thumbnail is typically considered a surrogate

in its own right, it does convey information about the document. Here we consider it metadata just

like a title or description. Even though a striking image is a multimedia object, authors still supply

it through a metadata field, as mentioned in Chapter 2.4. If we understand which surrogate works

best to understand a collection, we know what document metadata fields we need to generate for

storytelling.

This section considers six different types of surrogates and how well they might work to con-

vey an understanding of a collection. We compare the existing Archive-It surrogates, thumbnails

of page screenshots, social cards, and three combinations of social cards and thumbnails. We hy-

pothesize that surrogates with more information drawn from the source document produce better

results, both in terms of time and understanding. We report the results of a user study that ana-

lyzed how users interacted with each of these surrogate types and determined that social cards a

probably the best surrogate type for understanding web archive collections.

The existing Archive-It surrogate is very sparse, providing very little information for the

reader. Before moving on to the user study, we first examine what information a user like Natasha

might glean from an Archive-It surrogate.

5.2.1 EVALUATION OF ARCHIVE-IT SURROGATES

Before discussing the results of evaluating different surrogates against each other, we first

quantify the information available from Archive-It surrogates. We used our AIU Python package

[153] to collect the metadata of 5,857 public Archive-It collections in March 2019. Our goal was

to understand the amount of information available with Archive-It surrogates.

Archive-It surrogates contain two sources of metadata: the archiving process and the origi-

nal resource. A seed’s minimal Archive-It surrogate contains information from the archiving

process: the seed’s URI, the dates of the first and last memento, and the number of mementos

available. The title field is an example of metadata derived from the original resource. An

archivist may manually extract the title when they add the seed to the collection or manually add

it later.

In addition to sometimes being nonexistent, metadata can also be inconsistently applied among
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Fig. 145. This screenshot demonstrates multiple Archive-It surrogates with differing amounts of

metadata.
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Fig. 146. The top 10 metadata fields used by seeds in Archive-It.

Fig. 147. A plot of mean metadata field count per collection vs. the number of seeds in an

Archive-It collection for 5,857 public Archive-It collections.
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Fig. 148. Overlap of different information classes of Archive-It seed URIs.

Fig. 149. A bar chart quantifying the potential information detected in Archive-It seed URIs.
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surrogates, as seen in the screenshot in Figure 145. From the 602,944 seeds gathered, Archive-It

represents 329,178 (54.60%) of them with the minimal Archive-It surrogate. These seeds convey

only the URI and information from the archiving process. Suppose the archivist provides meta-

data fields, such as a title or description. In that case, the Archive-It surrogate begins

to resemble surrogates typically found in search engine results. The two fields together are used

on 75,575/602,944 seeds, meaning that 12.53% of Archive-It seeds contain the same metadata

fields as a Google surrogate. Figure 146 shows the top ten fields in use by any seed, regard-

less of the number of fields per seed. In this case title is the most widely used metadata

field, being present in 177,680/602,944 (29.5%) seeds. The description field is in use by

110,065/602,944 (18.3%) seeds.

Some collections, such as Government of Canada Publications (ID 3572), have hundreds of

thousands of seeds, making the addition of metadata a costly proposition in terms of manual time

and effort. Does this cost affect the behavior of the curator? For each collection, we counted

how many metadata fields were applied to all seeds in the collection, regardless of size. We

then divided the number of fields counted by the number of seeds to produce the mean metadata

field count per collection. Figure 147 (also seen as Figure 5 in Chapter 1) shows a point for

each collection where the y-axis is the mean metadata field count and the x-axis is the number of

seeds in log10 scale. This graph displays a pattern whereby an increase in the number of seeds

corresponds to a decrease in the number of metadata fields used to describe those seeds. This

result matches our intuition that because each metadata field requires some effort to maintain,

the curator supplies fewer metadata fields as the number of seeds increases. The mean metadata

field count for 3,096/5,867 (52.86%) collections is 0, again indicating that most collections only

contain minimal Archive-It surrogates.

These results appear to support our intuition that many of the Archive-It surrogates contain

little information, but a user can still gather information from a seed URI. As noted, there are

many collections about the same topic, so there is some overlap in the choice of seed URIs by

different curators. There are 14,179 repeated seed URIs across Archive-It collections, meaning

that only 588,749 unique seed URIs exist in Archive-It. From those seed URIs, we employed reg-

ular expressions from Alkwai et al. [5, 6] to detect different forms of crude information available

in the seed URIs from Archive-It. As shown in Figure 148, a seed URI can belong to all three

information classes. Figure 149 displays the results of this analysis. Long strings of five or more

characters separated by an underscore or other character may indicate the presence of phrases or

sentences. We discovered 62,370/588,749 (10.59%) URIs contained long strings in their domain

names. Our regular expressions only detected dates in the paths of 55,924/588,749 (9.44%) seed
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URIs. Such dates are typically the publication dates of blog posts or news articles. Dates can

provide the viewer with a concept of aboutness for the time period of a collection. A slug is a

special type of long string indicating a shortened title for an article. Note that a single URI can

belong to all three categories. Slugs form the largest category with 177,441/588,749 (30.14%)

seed URIs containing slugs in their path. Figure 149 displays the results of this analysis. These

results indicate that, despite missing metadata, a user like Natasha can still glean information from

the URIs found in Archive-It surrogates.

5.2.2 A USER STUDY COMPARING SURROGATES

Methodology

In January 2019, we presented 120 Mechanical Turk (MT) participants with a link to a survey

hosted at Old Dominion University. We produced four stories represented by six different surro-

gates for 24 different combinations of surrogates and stories. This gave us five participants per

story-surrogate combination, providing 20 participants per surrogate type. The MT participants

were required to have the Master Turker qualification and an acceptance rate of greater than 95%.

To control for the effects of learning [177], we employed UniqueTurker1 to ensure that the same

participant did not provide results for multiple surveys. We paid each participant $0.50.

After reading the instructions, each participant had 30 seconds to view a story using a given

surrogate. The task asked them a question about what they had just seen. This process is similar

to the sentence verification task used in reading comprehension studies [167]. As is common

practice for externally hosted surveys on MT, once they submitted their results, they were given a

completion code for the MT HIT to map their results to those collected by our survey.

As a source of stories to display to the participants, we selected four stories from AlNoamany’s

2016 dataset [13]. Each story consists of collection exemplars selected by a human curator to

describe their collection. Table 27 shows the details of the complete dataset. Some collections

have mementos that are no longer available, possibly because the archivist removed them. Some

collections also have mementos that produce poor-quality thumbnails. If a thumbnail failed to

contain at least a heading describing some of the content within the memento, we considered it

to be of poor quality. The last column in this table lists the percentage of the story that produced

good-quality surrogates.

Our four selections represent a variety of structural and semantic considerations. Occupy

1http://uniqueturker.myleott.com

http://uniqueturker.myleott.com
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(a) Archive-It Facsimile

Fig. 150. Screenshots of parts of stories constructed using different surrogates from a sample of

16 mementos selected from the 80,484 mementos found in collection Egypt Revolution and

Politics (ID 2358).
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(b) Browser thumbnail

Fig. 150. (Continued) Screenshots of parts of stories constructed using different surrogates from

a sample of 16 mementos selected from the 80,484 mementos found in collection Egypt

Revolution and Politics (ID 2358).
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(c) Social Card

Fig. 150. (Continued) Screenshots of parts of stories constructed using different surrogates from

a sample of 16 mementos selected from the 80,484 mementos found in collection Egypt

Revolution and Politics (ID 2358).
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(d) sc+t

Fig. 150. (Continued) Screenshots of parts of stories constructed using different surrogates from

a sample of 16 mementos selected from the 80,484 mementos found in collection Egypt

Revolution and Politics (ID 2358).
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(e) sc/t

Fig. 150. (Continued) Screenshots of parts of stories constructed using different surrogates from

a sample of 16 mementos selected from the 80,484 mementos found in collection Egypt

Revolution and Politics (ID 2358).
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(f) sc^t

Fig. 150. (Continued) Screenshots of parts of stories constructed using different surrogates from

a sample of 16 mementos selected from the 80,484 mementos found in collection Egypt

Revolution and Politics (ID 2358).
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Movement 2011/2012 (ID 2950) was selected because it produces the most high-quality thumb-

nails. April 16 Archive (ID 694) has the highest diversity of original resource domain names

in its URIs [160]. Egypt Revolution and Politics (ID 2358) is a collection that the archivist is

still currently maintaining and hence is the longest-lived collection in the set. Collection Russia

Plane Crash Sept 7,2011 (ID 2823) is about an event that is likely not familiar to American MT

participants.

To compare against the as-is interface at Archive-It, we generated a facsimile of the Archive-It

surrogates using Archive-It’s stylesheets as well as metadata gathered using AIU [153]. Figure

150a shows an example story using the Archive-It Facsimile surrogate. We generated a visualiza-

tion of each story represented as thumbnails (Figure 150b) and again as social cards (Figure 150c).

From these, we developed three additional surrogate types combining social cards and thumbnails

in order to see if a combination of the two improved results. The surrogates for the story in Figure

150d, noted in this paper as sc+t, display the thumbnail to the right of the existing social card.

To produce the surrogates for the story in Figure 150e, noted as sc/t, we replace the social card’s

striking image with the thumbnail. To conserve space and utilize interactivity, we use JavaScript

in the surrogate shown in Figure 150f, noted as sc^t, to allow the user to display the thumbnail if

they hover their mouse over the striking image. All visualizations represented the same URI-Ms

in the same order.

The first page presented in the survey told the participant that they would view a story for 30

seconds, and then the task would ask them a question. We informed each participant that others

may not be viewing the same visualization and that their visualization might respond to mouse

hovers, clicks, and other interactions. We did not provide any specific instruction on how to inter-

act with the visualization beyond this. Once the participant had clicked through the instructions,

the survey presented them the story. We recorded the initial timestamp of the story page load.

The survey system used this timestamp to ensure that the participant had 30 seconds to view the

story. We employed JavaScript to ensure that the participant did not view the story for more than

30 seconds.

Once the 30 seconds had expired, then the survey system presented the participant with a new

question. This question consisted of checkboxes next to six new surrogates of the same type as

the story they had just viewed. We allowed participants as much time as possible to answer the

question. The survey system instructed the participant to select the two mementos drawn from the

same collection that they had just viewed. We randomly generated the order of these surrogates,

but we kept the same order for each collection. Our primary goal was to record how long the

users took to answer each question, expecting them to find the two correct answers in all cases.
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In addition to instructing users to only select two responses, we also included JavaScript that

prevented the user from selecting more or fewer than two. Our question follows Kittur’s MT

advice to use explicit, verifiable questions as part of the task [180]. The simplicity of our question

also avoids user fatigue [177].

To produce the two correct answers, we randomly selected two URI-Ms from the same col-

lection as the story shown to the participants. In choosing these URI-Ms, we discarded ones that

used the same original resource domain as any memento in the story, avoiding issues where simple

banners or logos might indicate that they are from the same collection.

To produce the four incorrect answers, we selected four other URI-Ms from semantically dif-

ferent collections. To determine which collections were semantically different from our story

collection, we extracted entities from each collection in AlNoamany’s dataset using Stanford NLP

[210]. We then computed the Jaccard distance between these entity sets and selected two col-

lections with the greatest distance from our story collection. We randomly selected two URI-Ms

from the most distant and second most distant collections. Table 28 shows the Jaccard scores and

which collections were most distant and second-most distant.

In all cases, we discarded URI-Ms that produced poor quality thumbnails to ensure that the

quality of the memento did not affect the participant’s choice. We also discarded URI-Ms that

were off-topic, such as maintenance pages or 404 pages, as described in Section 4.2. If this

process discarded a URI-M, we selected again to ensure two selections from the collection they

had just viewed, two selections from the most semantically distant collection, and two selections

from the second most distant collection. We then randomly sorted the six URI-Ms and generated

the surrogates.

Our survey system recorded a timestamp for the load of the question page. It then recorded

the timestamp for the load of the completion code. The time the participant took to answer the

question is the difference between these two timestamps. We employed JavaScript to record all

link clicks and hovers over images and links. This process provides us with several data points for

those surrogates: the correctness of their answers, the time the user took to answer the question,

and how they interacted with the story. We ran Student’s t-test between all pairs of surrogates for

completion times and the number of correct answers.

Results

Table 29 displays the mean and median question completion times for each surrogate. At 149.53

seconds, the Archive-It Facsimile surrogates have the highest mean time for answering the ques-

tion. Browser thumbnails come in second highest at 111.22 seconds. Social cards have the lowest
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overall mean at 46.12 seconds. The sc+t and sc^t have means slightly greater than 62 seconds.

The sc/t surrogate comes in slightly higher at 62.86 seconds. We executed the Student’s t-test on

the times for all pairs of surrogates. No values are statistically significant at p < 0.05. Social

cards compared to browser thumbnails produces the lowest p-value at p = 0.190. The next lowest

p-value is p = 0.202 for social cards compared to the Archive-It Facsimile. Despite the mean

values, these p-values indicate that our results provide weak evidence that the Archive-It Facsim-

ile takes the most time to evaluate or that social cards take less time to evaluate. The medians

demonstrate that some outliers are skewing these means. The Archive-It Facsimile has the low-

est median at 33.46 seconds, followed by social cards at 35.89 seconds. The median completion

time for browser thumbnails is highest at 53.30 seconds. The combinations of social card and

thumbnail all have medians between 38 and 40 seconds. Thus, even though the browser thumb-

nails still have the highest median, the p-values still demonstrate that we have not established that

thumbnails take longer to process.

Table 30 displays the mean and median number of correct answers for each surrogate. With

only two correct answers out of six, the distribution of potential values is small. Social cards score

highest with a mean correct answer score of 1.75, followed by a tie between sc+t and sc^t at 1.70.

The Archive-It Facsimile mean is the lowest at 1.30. The medians are 2.0 for all but the Archive-It

Facsimile at 1.5. The Archive-It Facsimile paired with the social card comes closest to statistical

significance at p < 0.05 with p = 0.0569. The next lowest p-values are for Archive-It vs. sc+t at

p = 0.0770 and Archive-It vs. sc^t at p = 0.108. Within collection 2358, social cards, sc+t, and

sc/t all fare better than the Archive-It Facsimile at p = 0.0650 in all cases. Within collection 2950,

social cards and sc+t all fare better than the Archive-It Facsimile, both at p = 0.0560. Familiarity

with some collections’ topics may have influenced the results, which is why we had selected

different collections for this evaluation. The close p-values indicate that our general results of

social cards compared to the Archive-It surrogate are similar to those of Capra et al. [50], even

though Capra focuses on information retrieval and not summarization.

The variation in the quality of Archive-It surrogates may also have shaped the results. Some of

the Archive-It surrogates in the story for the Egypt collection contained as many as 12 additional

metadata fields. In contrast, others from the same collection were minimal Archive-It surrogates.

Almost all of the surrogates in the story for the Occupy collection contained only the additional

metadata field Group. In those cases Group contained values like Social Media and News

Sites and Articles, text that provides little information specific to the collection. In con-

trast, almost all Archive-It surrogates for stories from the Russia and VATech collections contained
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Fig. 151. The number of users interacting per surrogate type, broken down by image hovers, link

hovers, and link clicks.

the additional title metadata field. For a story consisting of mostly minimal Archive-It surro-

gates, it is possible that a small number of metadata-rich surrogates provided enough information

for the user to answer the question correctly.

Because each story has a different size, we cannot normalize the recorded user interactions

across all stories. We chose to tally the number of users who hovered over images, hovered

over links, and clicked links. With browser thumbnails, the image is the link’s anchor; hence

every hover over an image is also a hover over a link. To account for this, we created a separate

category named “thumbnail hovers” combining link and image hovers for thumbnails. The results

are shown in Figure 151. This engagement gives some insight into the amount of work each

participant put into interacting with the story they viewed.

Social cards inspired the least user interactions and the least link clicks. Perhaps the social

card inspired more confidence, and fewer participants needed to view the pages behind them. In

contrast, most users clicked on thumbnails to open links. Perhaps they found the thumbnails harder

to read and felt less confident about their content. Most of the participants interacted with the sc+t

surrogate in some way. More link clicks occurred in all cases where thumbnails were present. This

difference in behavior, coupled with the different response times and accuracy for sc/t compared to
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social cards suggests that including the thumbnail rather than a striking image drawn from the page

may inspire more activity on the part of the user. Our survey may have measured users zooming

in on thumbnails to see them better. Link hovers have a strong correlation with completion time at

Pearson’s r = 0.562, but other interactions, including link clicks, had much weaker correlations to

completion time at |r|> 0.20. Link hovers have a weak negative correlation with answer accuracy

at r = −0.298, but other interactions had much weaker correlations to accuracy at |r| > 0.20.

Participants may have hovered over links to read the URIs in their browser status bar before

making their choice.

5.2.3 SUMMARY

Surrogates are visualizations of the values of metadata concepts, like title, description, and

striking image. Knowing the surrogate that works best for understanding web archive collec-

tions helps us understand which metadata we need to generate for storytelling. We examined the

variation in metadata present in Archive-It surrogates. Despite more than half of Archive-It sur-

rogates missing data, we found that a user could still potentially glean information from the URI

present in a minimal surrogate. We asked participants from MT to view a story visualized using

a given surrogate. We then gave them a question with six mementos visualized using the same

surrogate and asked them to choose the two from the six that they believed belonged to the same

collection as the story that they just viewed. The type of surrogate does not influence the time to

complete the task. However, social cards and social cards side-by-side with thumbnails probably

provide better collection understanding than the existing Archive-It interface at p = 0.0569, and

p = 0.0770, respectively. These results are consistent with a study by Capra et al. [50] comparing

the performance of social cards to text snippets in search results.

We also found that user interactions differ between surrogate types, with social cards having

the fewest participants interact and a combination of social card side-by-side with thumbnail en-

couraging the most participants to interact. Because participants also hover and click more when

thumbnails are present, we postulate that users engage more with browser thumbnails than other

surrogate elements, possibly to zoom in and see details.

For collection summarization, the overall goal of surrogates is to convey aboutness without

requiring the user to click on the underlying link. In this case, social cards require less interaction,

provide higher accuracy, and allow the users to answer our questions in less time. These results are

encouraging for users of social cards. Social cards require fewer resources to generate and store

than thumbnails. Archive-It surrogates require humans to construct metadata, but social cards

can be generated dynamically from existing web page content. Users also interact with social
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cards less, possibly indicating that they find them easier to use. We had initially hypothesized that

surrogates with more information drawn from the source document would produce better results,

but combining social cards with thumbnails produced more interaction than social cards alone.

These features indicate that social cards may be the best surrogate for use in summarizing web

archive collections. Thus the metadata of striking image, title, description, and source attribution

better helps users understand web archive collections when compared to browser thumbnails or

Archive-It surrogates.

Platforms require that web pages contain metadata before the platform can create a social

card. Now that we have established social cards as the best surrogate for understanding, how does

a system create them when no metadata exists to help it?

5.3 AUTOMATING THE CREATION OF SOCIAL CARD METADATA WHEN
METADATA IS MISSING

In the last section we established social cards as our target surrogate because they performed

best. As mentioned in Chapter 2, Facebook and Twitter have established standards that allow

authors to supply values for the parts of social cards as part of HTML META elements published

with the document. Because we are creating cards for past web resources, how prevalent is this

metadata over time? What can we do if it is not present?

To quantify this problem, we analyzed a dataset of news articles — resources that have under-

gone editorial review and, presumably, received some care in their publication. News articles are

also frequent sources for social cards on social media. Here we analyze [158, 163] the prevalence

of this social card metadata in relation to other metadata standards by sampling from the NEWS-

ROOM [110] dataset. Because 39.07% of our dataset does not have the metadata needed to create

full cards, we explore the problems of automatically generating descriptions and automatically

selecting striking images.

5.3.1 THE PREVALENCE OF SOCIAL CARD METADATA

For analysis over time and across news outlets, we need a relatively balanced dataset with re-

spect to domain name and memento-datetime. Unfortunately, we discovered that the 1.3 million

article NEWSROOM dataset was unbalanced in these dimensions. For example, NEWSROOM

has 186,095 mementos from nytimes.com and 1,429 mementos from economist.com.

In terms of the memento-datetime year, NEWSROOM contained 19 mementos from 1998 and

279,232 from 2016. Most (23%) of the mementos in the dataset come from 2016. The percentage

of mementos decreases each year (e.g., 19% for 2015, 13% for 2014, 10% for 2012). Facebook



278

released the Open Graph Protocol (OGP) standard in 2010 [114] and Twitter can also use that stan-

dard. Because of the high percentage of mementos captured in years closer to 2016, and because

we wanted to contrast metadata usage before and after Facebook first introduced card standards in

2010, we added all 90,570 NEWSROOM articles with memento-datetimes from 2009 and before

to our sample. For those after 2010, we created a bucket for each domain and memento-datetime

year. We randomly chose URI-Ms until we filled each domain/year bucket to a size of 1,307 —

the median size of all domain/year divisions after 2010. Our sample size after this process was

310,163 mementos.

We downloaded this sample in June 2020. We divided the URI-Ms in the sample into seven

subsets to lessen the chance of being rate limited by the Internet Archive. We spread them across

different servers in Amsterdam, Frankfurt, London, New York, Northern Virginia, San Francisco,

and Toronto. We felt confident in this approach because the Internet Archive presents the content

it recorded and does not alter it for different geographic locations. To address failed downloads

caused by rate-limiting, we repeated the downloads once in July and again in August 2020. We

discovered that the downloads with HTTP status codes of 400, 403, 404, and 405 were actual

captures of pages with those status codes. Some mementos redirected to mementos captured

after 2016, similar to the behavior that Ainsworth et al. [3] reported using a different dataset. We

removed all mementos captured after 2016 because they were outside of the bounds of the original

dataset. After resolving these issues, our downloaded NEWSROOM sample consisted of 277,724

mementos.

Table 31 lists the number of mementos in the NEWSROOM sample capable of creating dif-

ferent combinations of social card units. Because Facebook is more forgiving with missing fields,

59.56% of articles can create a full card on Facebook, while only 43.86% can do so with Twitter.

We assigned each metadata field encountered to a category based on its corresponding standard

or usage. We removed all instances where metadata fields were specific to a domain (e.g., only

nytimes.com used the metadata field byl). Figure 152 demonstrates how these categories

changed over time. There is a focus on HTML standard metadata over time throughout our sam-

ple because all mementos in the NEWSROOM dataset contain a textual summary in some form.

Before the OGP or Twitter standards, these articles used the HTML standard description

field. We observed that news articles rapidly adopted social card metadata fields, starting with

13.13% adoption of OGP in 2010 and reaching 93.05% by 2016. After 2010, there is a rise in

all types of metadata usage, focusing on search engines, mobile apps, browser customization,

and social media, showing that news articles leveraged promotion of their content once standard

metadata fields became available.
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Fig. 152. By memento-datetime, the percentage of NEWSROOM articles each year that have

adopted a given metadata category. Dashed lines indicate a y-axis value of 0. We see rapid

growth in the adoption of OGP and Twitter Card metadata between 2010 and 2016. Other

categories fail to reach this level of adoption; thus, authors and publishers desire social cards.

5.3.2 AUTOMATICALLY GENERATING DESCRIPTIONS

From Table 31 we see that 38.98% of news articles did not contain a social card description

field. If no og:description, twitter:description, or description field exists, we

can generate a description field using a variety of sentence ranking algorithms, such as TextRank

[221], but we need to know an acceptable value for the length of the description field. Also, some

sentence ranking algorithm implementations require an input argument of the number of words or

sentences to return.

Figure 153 visualizes the changes in description mean character counts for different descrip-

tion fields over time. We note that there are different behaviors for the different description fields

available to article authors. Twitter, represented by twitter:description demonstrates a
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TABLE 31

The number of mementos in the NEWSROOM sample capable of generating different social card

units.

# of Capable Mementos for Platform
and % of Dataset

Social Card Units Twitter Facebook

title only 125,201 (45.08%) 277,724 (100%)*

title only from metadata 125,201 (45.08%) 189,275 (68.15%)

title and description only 123,386 (44.43%) 169,468 (61.02%)†

title, description, image 121,823 (43.86%) 165,426 (59.56%)

* if og:title is missing, Facebook will use the HTML’s title element

† our testing shows that Facebook does not currently support

this configuration, only displaying a card with a title

more consistent use of around 140 characters, starting at 145 characters in 2012, reaching a peak of

154 characters in 2014, and settling to 136 characters in 2016. Facebook’s (og:description)

mean description length rises and falls, starting at 151 characters in 2010, reaching a high of 228

characters in 2012, and finishing at 168 characters in 2016. The schema.org description field starts

at 73 characters in 2011, peaks at 202 in 2015, and finishes at 144 in 2016. These different field

lengths suggest that the choice of output platform affects the author’s choice in character length.

The HTML standard description field, however, has no such influences, and Figure 153 suggests

that an author unencumbered by a target platform might choose a longer description length. In

this case, the mean number of characters starts at 30 characters in 1998, reaches the first peak of

215 characters in 2002, the second peak of 237 characters in 2012, and finishes at 268 characters

by 2016. This behavior implies that, without any platform influences, not only have descriptions

gotten longer, but 268 characters is a good intended description length for description field meta-

data.

To address the second issues of input length argument for sentence ranking algorithms, we

examined the word lengths (Figure 154) and sentence lengths (Figure 155) over time. The pattern

is very similar to Figure 153. If we hold to our prior discussion of favoring the HTML standard

description field, 2016’s 52 word and two-sentence targets are likely good inputs.
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Fig. 153. The character count of descriptions by metadata field over time.

Fig. 154. The word count of descriptions by metadata field over time.

Fig. 155. The sentence count of descriptions by metadata field over time.
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5.3.3 AUTOMATICALLY SELECTING STRIKING IMAGES FOR SOCIAL CARDS

With the automatic generation of descriptions addressed, we sought the best method for ad-

dressing missing striking images. Our overall goal was to find the approach that, given a set of

images, will select the image closest to what a human selected, as found in the metadata, for the

same document, regardless of whether that image exists outside of the image metadata. Thus,

the striking images found in the metadata are our ground truth because the document’s editorial

process produced them.

Methods

Thus, any dataset applied to this endeavor requires documents where all images are available,

and all documents must contain at least one striking image. This disqualifies documents that we

cannot download or cannot parse with BeautifulSoup [277] and documents with images that we

cannot process with Pillow [59] or ImageMagick [298]. We also disqualify documents with only

one image because we have no prediction to make, and these easy wins may skew results. For

each document, we consider image URIs found in the META elements from the HEAD as well as

those provided by the src and srcset attributes of each IMG element found in the BODY.

For analyzing news articles, we started with our NEWSROOM sample of 310,163 mementos.

The issues we encountered left us with 37,522 articles to evaluate. The fact that we lose much of

our dataset to download issues further emphasizes that many mementos can benefit from automatic

striking image prediction because some of their images may be missing or corrupted.

Once we had our datasets, we applied different prediction approaches. Each prediction ap-

proach required one or more image features (e.g., byte size) to be successful. Some approaches

choose the image with the highest or lowest value for the feature (e.g., largest or smallest byte

size). We also ran 20 trials where we randomly chose each document’s striking image for com-

parison with all approaches.

Base features. Because social card creation tools must operate in real-time, we considered

image features that could be calculated quickly by most image libraries across most image formats.

The Pillow library provides the following features for all image formats:

• image byte size

• image width in pixels

• image height in pixels

• the number of columns in the image’s histogram with a value of 0 (negative space)
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• image size in pixels

• the image’s aspect ratio

• the number of colors in the image

To achieve better results, we also supplied multiple features as input to various scikit-learn

[261] classifiers. When training classifiers, we placed images found in the HTML metadata into

the class of present-in-metadata and other images into the class of other. When testing classifiers,

we considered each document to be its own test case. We supplied the features of each image in

a document to the classifier and asked it to provide the probability that the image comes from the

class present-in-metadata. From that set, we choose the image that has the highest probability of

being in the class present-in-metadata as the predicted striking image for that document. We chose

this probability method so that each document contains at least one striking image prediction. If

we had merely evaluated how well the classifier predicted an image’s class (present-in-metadata

or other), there would be documents for which the classifier found no striking image. With our

method, even a low probability of belonging to present-in-metadata still predicts a striking image

because this process still compares all of the document’s images’ probabilities.

Social card creation tools have to contend with many different types of images. The values

for some image features, like byte size, have no upper bound, making proper scaling challenging

to estimate for the long term. Scaling can also remove precision from some measures, leading to

poor results. Thus, we only considered the following classifiers because their scikit-learn imple-

mentations provide class probability scores and they do not require scaling:

• AdaBoost

• Decision Tree

• Gaussian Naive Bayes

• Linear Discriminant Analysis

• Logistic Regression

• Random Forest

We evaluate classifier operation with 10-fold cross-validation by document. Instead of evalu-

ating how well each prediction approach predicts an image’s class (present-in-metadata or other),

we instead evaluate how well, given a set of images found in a document, the approach selects the
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ground truth striking image for that document. Evaluating this process leads us away from consid-

ering metrics like F1 because they invite discussions about what recall means in this application.

Instead, we consider other metrics commonly associated with information retrieval because we

can consider each document a query and the output of a prediction approach as a set of ranked

results where the striking images are the relevant results. Thus, we apply Precision@1 (P@1) to

determine the given approach’s level of success for predicting the striking image from the meta-

data. If an approach produces a relevant result as its first result for a document, the P@1 score for

that document and approach is 1, and 0 otherwise. We take the mean of the P@1 scores for all

documents, making P@1 a proxy for accuracy. We also supply Mean Reciprocal Rank (MRR) to

evaluate how well an approach performed even if it failed to achieve P@1 = 1.0 for a document.

For a given document, we determine the rank of the first relevant image (ranki) as provided by the

approach under test and compute the rank’s reciprocal ( 1
ranki

). We then compute the mean of all

of these reciprocal ranks across all documents for the same approach. For example, if ten images

exist in a document and the approach ranks a relevant image in fourth place, then the reciprocal

rank is 1
4 = 0.25. A score of 1.0 for P@1 and MRR is ideal.

We recognize that the same image may exist at different URIs, or the striking image may

be a cropped or resized form of the same image elsewhere in the document. We apply a per-

ceptive hash (pHash) distance to our evaluation as a proxy for human judgment of image simi-

larity for these issues. If an approach selects image A, but the ground truth image is B, and if

pHashDistance(A,B) = 0, then we consider A to be just as relevant when computing P@1 and

MRR.

Different pHash implementations exist. We evaluated ImageHash’s pHash [189], ImageMag-

ick’s pHash [292, 317], and Zauner’s pHash [337]. We manually reviewed the intra- and inter-

document similarity distances provided by each pHash implementation for the images found in

ten news and ten scholarly articles. We concluded that ImageMagick’s pHash provided the most

intuitive similarity distances because it placed photographs at the same distance to each other, sep-

arate from logos and text. ImageMagick’s pHash was more consistent with considering cropped

or resized images to be similar to their original form. ImageMagick’s pHash scores are not scaled

and reached values as high as 6000 during this evaluation. While low scores intuitively indicated

similar images, at higher values, there is a greater discrepancy between the scores and human

perception; thus, we needed an upper bound for scaling that kept this discrepancy in mind. Our

median score from this 20 article evaluation was 280.904. We scaled all distance scores such that

scores above twice the median (561.808) became 1.0, and other scores result from dividing their

value by 561.808. ImageMagick has an issue processing certain JPEGs [188], so we converted all
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TABLE 32

Correlation values for features in the NEWSROOM dataset to image present in metadata.

feature category feature Spearman’s ρ

base features byte size 0.2146

width 0.2191

height 0.2537

negative space -0.1442

size in pixels 0.2403

aspect ratio 0.0225

number of colors 0.1749

images to PNGs before computing the pHash distance.

Results

Figure 156 demonstrates the performance of different prediction approaches with the NEWS-

ROOM sample. Each line demonstrates the increasing MRR or P@1 score, identified by its points’

y-axis values, as produced by an evaluation that we performed at the corresponding pHash dis-

tance on the x-axis. When we evaluate at a pHash distance of 1.0, any image selected by the

approach is equivalent to the ground truth; thus, MRR and P@1 are 1. At a pHash distance of 0,

only images that are perceptively equal to the ground truth image are relevant. The best approach

achieves the highest MRR and P@1 at the lowest pHash distance, resulting in lines that start in the

upper left quadrant of each graph.

Randomly choosing images gives poor performance at a pHash distance of 0 with MRR =

0.4016, P@1 = 0.1551. Training Random Forest with all base features results in the best perfor-

mance at a distance of 0 with MRR = 0.8825 and P@1 = 0.8314. To see if we could improve

performance with fewer features, we applied Spearman’s ρ to our features, as shown in Table 32.

We see that aspect ratio and negative space have the lowest correlation. We retrained Random For-

est with these features removed and achieved MRR = 0.8782, P@1 = 0.8267 at a pHash distance

of 0. Removing additional features produced results with P@1 < 0.8.

5.3.4 SUMMARY

A social card summarizes each web page through the units of page title, striking image, domain

name, and description. While the title and domain name are often easily extracted, automatically
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Fig. 156. This visualization demonstrates the MRR and P@1 results for different striking image

prediction approaches as run against our sample. The best approach achieves the highest MRR

and P@1 at the lowest pHash distance, making the ideal situation one where an approach’s lines

start higher into a graph’s upper left corner. Items in parentheses are feature categories applied to

the classifier, if applicable.
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generating the description and a striking image metadata are more challenging. Social media

platforms provide standards so that authors can insert their own values for these social card units

into their HTML pages as metadata.

Our evaluation of the archived web pages (mementos) of 296,162 news articles from the

NEWSROOM dataset revealed that card metadata fields are nonexistent for mementos captured

before 2010. This translates into roughly 150 billion web pages at the Internet Archive for which

social card creation tools will need to automatically generate descriptions and striking images.

We found that news articles rapidly adopted social card metadata fields, with 13.13% adoption in

2010 and reaching 93.05% by 2016.

If metadata is missing, we can still generate its values from the content of the document. If

the description is missing, we can apply one of the many text summarization algorithms that exist

for choosing the best sentence from a document. These algorithms require an input in terms of

number of characters, words, or sentences. After analyzing the behavior of authors with respect

to description metadata fields, we find that authors generate a mean of 268 characters, 52 words,

or 2 sentences for their own descriptions.

Selecting striking images when they are missing offers its own challenges. Like with the text

summarization algorithms, our method chooses the best image from a document. Our goal was

to select the same image as chosen by the author of the document, so we relied upon existing

metadata as ground truth when analyzing different approaches. By analyzing 37,522 articles from

the NEWSROOM dataset, we achieve P@1 = 0.8314, MRR = 0.8825 at a pHash distance of 0

with Random Forest and the base features of image width, height, byte size, pixel size, negative

space, aspect ratio, and color count.

5.4 MEMENTOEMBED: ARCHIVE-AWARE SURROGATES AND
DOCUMENT METADATA

In Section 5.1 we established that existing platforms do not reliably produce social cards for

mementos. This result led us to explore which surrogate, and, by proxy, which metadata best

helps users like Natasha, Rustam, and Olayinka understand the collection behind a story. Next,

through user testing in Section 5.2, we established that social cards best support the understanding

of collections. Finally, in Chapter 5.3, we discussed creating social cards when no metadata exists,

which was the case for roughly 40% of the mementos in our dataset. With this motivation and the

knowledge gained from these studies, we developed MementoEmbed, the first archive-aware
metadata and surrogate service.

MementoEmbed is archive-aware, meaning it can include memento-specific information such
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Fig. 157. A social card generated by MementoEmbed annotated to show how it keeps the

information about the archive separate from information about the memento, avoiding

misattribution.

as the memento-datetime, the archive from which a memento originates, and the memento’s origi-

nal resource domain name. This section provides an overview of MementoEmbed. Please consult

the official documentation [147, 151] and work by Jones et al. [142, 156] for more details on

MementoEmbed’s internals.

As demonstrated in Figure 157, a social card generated by MementoEmbed separates informa-

tion derived from the memento content from information about the archive containing it. Through

the Memento Protocol, MementoEmbed can attribute this content to its original website, avoiding

the confusion produced by other services, further allowing a user to understand the nature of the

web page behind the surrogate. Table 33 lists the different metadata fields available in a Memen-

toEmbed card and how those fields are not present or not accurate in a typical card service like

Facebook.

MementoEmbed currently generates the following surrogate types:

• social cards (Figure 157)

• browser thumbnails (Figure 158)

• imagereels (Figure 159) – animated GIFs of the top five images

• word clouds (Figure 160)
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Fig. 158. A browser thumbnail, a screenshot of a web page in a browser without the browser

interface, generated by MementoEmbed based on the same memento as used for Figure 157.

Fig. 159. The five images that make up MementoEmbed’s imagereel created from the same

memento as used for Figure 157. The imagereel starts black and fades to an image before

returning to black and fading to another image. The full animated GIF contains 108 frames.
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TABLE 33

Because it is archive-aware, MementoEmbed can provide more accurate metadata for mementos

that typical social card services.

Metadata field Typical Card Service MementoEmbed

title yes yes

description yes yes

striking image yes yes

original resource domain confuses archive and original resource yes

archive domain confuses archive and original resource yes

archive favicon confuses archive and original resource yes

original resource favicon confuses archive and original resource yes

memento-datetime no yes

URI-R no yes

TimeMap no yes

MementoEmbed is more than a surrogate generation service. MementoEmbed provides an

API capable of generating document metadata in addition to these surrogates to fulfill its role

in the storytelling process. MementoEmbed’s API provides the following endpoints that supply

different types of information for a single memento:

• /services/memento/contentdata/ - title, memento-datetime, and text descrip-

tion, Section 5.3 has more information on automatically generating a description

• /services/memento/bestimage/ - the URI-M of the striking image, Section 5.3

and Jones et al. [156] has more information on how this process works

• /services/memento/imagedata/ - an analysis of all images found in the memento,

providing many derived values like pixel size, perceptive hash, and format, to be applied in

the experiment run in Section 5.3

• /services/memento/archivedata/ - information about the archive, collection

names, domains, and archive favicon

• /services/memento/originalresourcedata/ - information about the original

resource, including domain name, URI-R, favicon, and if the URI-R is still accessible
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Fig. 160. A word cloud generated by MementoEmbed created from the same memento as used

for Figure 157.

• /services/memento/seeddata/ - information on the seed that was used to gen-

erate the memento, including its URI-T, the number of other mementos available for this

memento, first and last mementos, and archivist’s metadata for this same URI-R

• /services/memento/paragraphrank/ - a listing of all paragraphs in the memento,

scored by the readability algorithm [66]

• /services/memento/sentencerank/ - a listing of sentences in the memento,

scored by either Lede3 [110] or TextRank [221]

• /services/memento/page-metadata - all HTML metadata discovered in the me-

mento’s META elements

MementoEmbed’s API also provides different endpoints at /services/product/ for

generating the different surrogates shown in Figures 157, 158, 159, and 160. For more detailed

and current information consult the documentation [147].

As shown in Section 5.1, existing social media and card creation services fail to reliably gen-

erate surrogates for mementos. MementoEmbed is an archive-aware surrogate service that fulfills

the storytelling process of generating document metadata for mementos. It is able to separate data

about the archive from data about the memento, improving the accuracy of metadata for memen-

tos. MementoEmbed can produce four surrogate types, including social cards and thumbnails, and

provides an API that supplies metadata about mementos in a machine readable form.

5.5 CHAPTER SUMMARY
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In this chapter, we focused on generating document metadata, primarily through analyzing

surrogates. Surrogates give us a view of the metadata produced by different platforms for a given

web resource. We started by evaluating 55 surrogate-producing platforms and found that all failed

to generate the necessary metadata for mementos. Popular platforms like Facebook, Twitter, and

Tumblr are poor targets for storytelling because they do not reliably create surrogates for memen-

tos. Tumblr performed best but still conflated archive information with memento content, creating

a potentially confusing experience for readers.

RQ3: What surrogates work best for understanding groups of mementos?
Surrogates are built on metadata. If we understand which surrogate works best to understand

a collection, we know what document metadata fields we need to generate for storytelling. We

conducted a user study with 120 Mechanical Turk participants. We showed each participant a

story rendered using a specific surrogate type and generated from an Archive-It collection where

the collection’s archivist had chosen its exemplars. After 30 seconds, the participant was pre-

sented with six new surrogates of the same type and asked which two of the six came from the

same collection. Participants who were shown social cards answered questions more accurately

than those shown the Archive-It surrogate. We also instrumented their stories with JavaScript to

measure their interactions and found that social cards required far fewer interactions. Thus, social

cards probably provide for better understanding of web archive collections.

RQ4: What methods that automate the creation of surrogates produce results that best
match humans’ behavior?

Now that we have shown that social cards perform best, we sought to understand how they

were constructed. As mentioned in Chapter 2 social cards representing a web page are built from

metadata inserted by the author of that web page. We analyzed the metadata of 296,162 memen-

tos of news articles and discovered that 40.44% could not produce a social card. Most of these

corresponded to mementos captured before 2010, the year Facebook introduced the first social

card standard. The Internet Archive captured roughly 150 billion pages before this year. To de-

termine how to generate document metadata for these pages, we analyzed the behaviors of web

page authors. First, to generate a description for the page, we can apply text selection algorithms

to select the best sentences that describe the memento. We found that authors generate a mean of

268 characters, 52 words, or two sentences for their descriptions, making these good values as ar-

guments for automatic summarization algorithms. Second, to address documents without striking

image metadata, we can select striking images from among the images found in the document.

With Random Forest and the features of image width, height, byte size, pixel size, negative space,

aspect ratio, and color count, we achieve P@1 = 0.8314 when attempting to select the same image
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as the author.

The lack of support for mementos by existing platforms and the research into which surro-

gate worked best led us to develop MementoEmbed, an archive-aware metadata generation and

surrogate service. MementoEmbed applies the Memento Protocol to ensure that archive metadata

and memento content metadata stay separate. MementoEmbed can produce many different surro-

gate types, including social cards, browser thumbnails, word clouds, and imagereels. In addition,

MementoEmbed supports an API that provides sentence ranking, image analysis, titles, and other

metadata needed to support visualizing stories for mementos as part of its metadata generation

duties.

In Chapter 4 we reviewed work on selecting exemplars and generating story metadata for

stories. In this chapter, we tackled the problem of generating document metadata. Now we are

ready to visualize our stories and distribute them for Natasha, Rustam, Olayinka, Elbert, and Ling.
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CHAPTER 6

VISUALIZING AND DISTRIBUTING STORIES

Fig. 161. The processes for storytelling that are covered in this chapter are indicated by the blue

box.

Chapter 4 focused on selecting exemplars and generating story metadata. We introduced Hy-

percane as a tool that handles these storytelling processes. From these exemplars, we can generate

document metadata, as covered in Chapter 5. MementoEmbed is the tool that best generates doc-

ument metadata for mementos. In this chapter, we cover visualizing and distributing our stories.

In this chapter 6.1 we introduce Raintale, a MementoEmbed client that accepts the story metadata

and exemplars from Hypercane and generates stories by visualizing and distributing them (Figure

161). Raintale supports templates so that users can customize the presentation of their stories.

Raintale can also produce output as files and social media posts, applying some of the ideas we

discussed with Twitter and Facebook in Section 5.1. By combining Raintale with Hypercane and

MementoEmbed, we address all of the storytelling processes in our model, allowing us to help

our personas Natasha, Rustam, Olayinka, Elbert, and Ling (Table 1 on page 14). In Section 6.2

we cover several use cases with web archives, demonstrating all of the storytelling processes in

action.
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Fig. 162. The MementoEmbed-Raintale Architecture for Visualizing a Story.

6.1 RAINTALE: A STORYTELLING TOOL FOR WEB ARCHIVES

Raintale [143, 156] leverages MementoEmbed’s API (Section 5.4) to generate complete stories

containing the surrogates of many different mementos. More details on Raintale are covered by

Jones et al. [143, 156], but we will summarize the tool here. It requires two forms of input: a story

file containing a list of URI-Ms and a template. The template formats the output and contains

variables that indicate what information the user wishes to display for each memento. Figure 162

demonstrates the relationship between MementoEmbed and Raintale. In step 1, the user provides

a template and a list of URI-Ms to Raintale. In step 2, Raintale records all template variables.

For each URI-M provided, Raintale consults MementoEmbed’s API for each variable’s value in

the corresponding memento. In step 3, MementoEmbed downloads the memento from its web

archive and performs natural language processing, image analysis, or extracts information via the

Memento Protocol [312], as appropriate to the API request. In step 4, Raintale consolidates the

data from these API responses and renders the template with the gathered data. It produces a story
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# tellstory -i story-mementos.txt --storyteller template \

--story-template mytemplate.tmpl -o mystory.html \

--title "This is My Story Title"

Fig. 163. Example usage of Raintale’s tellstory command.

constructed from both document and story metadata.

Raintale is a command-line application that provides various options for the end-user. To

create a story using the mementos supplied in story-mementos.txt and a template file

mytemplate.tmpl and save the output to mystory.html, a user would type the command

shown in Figure 163.

We designed Raintale this way so that users can easily integrate it into shell scripts with other

utilities, such as Hypercane (Section 4.5). Their scripts may contain utilities that provide Raintale

with a list of mementos or an automated utility that might automatically generate templates for

different use cases. We intend for Raintale to be part of an automated web archiving workflow,

and we provide features that allow the archivist to customize its output to their needs.

Raintale supports different types of storytellers. File storytellers, such as template or html

save content to a file. Service storytellers, such as twitter or facebook, write content to

a specific social media service. A user can apply templates to different types of storytellers.

Instead of supplying their own template, a Raintale user can apply one of its pre-packaged presets
including surrogates rendered in formats like HTML, Markdown, and MediaWiki. Figure 164

shows an example of a story visualized with Raintale’s default HTML template.

Raintale’s story file input can take two forms, depending on the needs of the user. The sim-

plest story file format is a newline-separate text file containing URI-Ms. A Raintale user applying

this format must supply a title to their story via the --title command-line argument. Where

the story file contains the URI-Ms and the values of some of the template variables, the Rain-

tale template controls the formatting and which information Raintale will request and display for

each URI-M. Figure 165 demonstrates a simplified example of how this works. Raintale first

parses the template file and determines which variables exist. At this point in the template, Rain-

tale encounters HTML formatting and the Raintale variable element.surrogate.title.

Raintale uses its internal mapping to discover that the appropriate MementoEmbed API end-

point for element.surrogate.title is /services/memento/contentdata. Then

Raintale iterates through all elements in the story file. When it reaches https://archive.

https://archive.example.net/mymemento2
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example.net/mymemento2, Raintale appends the current URI-M (https://archive.

example.net/mymemento2) to /services/memento/contentdata and submits an

HTTP request to MementoEmbed. It then extracts the title from MementoEmbed’s JSON output

and applies it to the resulting output file for the story.

Figure 166 demonstrates what we can do with a template designed for a collection from the

National Library of Australia (NLA). The collection belongs to the Trove platform and covers

Tourism. Rather than applying the default HTML template, we used a custom template incorpo-

rating the NLA’s colors. Our template uses an interactive carousel that allows visitors to scroll left

or right to see the various mementos from the collection. This interactive form of storytelling still

has surrogates and incorporates story metadata gathered by Hypercane and document metadata

generated by MementoEmbed.

Raintale is the endpoint of the DSA tool architecture, as shown in Figure 167. Hypercane

(Section 4.5) focuses on intelligent sampling to select exemplars. Raintale generates the visual-

ization. These two tools consult the others to produce document and story metadata and to render

the final visualization.

6.2 STORYTELLING WITH WEB ARCHIVE COLLECTIONS

We established the DSA Puddles web site1 for sharing web visualizations from the Dark and

Stormy Archives Project. DSA Puddles is written using Jekyll [212], a static site generator sup-

ported by GitHub Pages. Figure 168 shows the storytelling processes introduced in Chapter 1 and

how using each DSA tool with the DSA Puddles website satisfies these processes. In this case,

Raintale visualizes our story, and GitHub Pages handles distribution.

Figure 169 displays the Archive-It interface for collection 13529 Novel Coronavirus (COVID-

19). It consists of 13,200 seeds and 23,376 mementos. In 2020, we generated a story from this

collection using the DSA tools. We built it via the following process, visualized in Figure 170:

1. Ask Hypercane select exemplars from this collection (13529) with the DSA1 algorithm

2. Ask Hypercane to produce the collection metadata (e.g., collection name, collecting organi-

zation) for this collection

3. Ask Hypercane to produce a report of named entities from these exemplars

4. Ask Hypercane to produce a report of terms from these exemplars

1https://oduwsdl.github.io/dsa-puddles/

https://archive.example.net/mymemento2
https://archive.example.net/mymemento2
https://archive.example.net/mymemento2
https://archive.example.net/mymemento2
https://archive.example.net/mymemento2
https://archive.example.net/mymemento2
https://oduwsdl.github.io/dsa-puddles/
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Fig. 164. An example using Raintale’s default HTML preset, with MementoEmbed cards

visualizing the exemplars and story metadata (title, link to source collection, collection creator)

shown at the top.
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Fig. 165. How Raintale combines the template and the story file to insert memento data into the

desired output.
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Fig. 166. Three frames of an HTML carousel story created using a custom template. This

represents exemplars from the Tourism collection created by the National Library of Australia.
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Fig. 167. The entire DSA architecture for storytelling.
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Fig. 168. Storytelling processes incorporating the DSA Puddles web site.

5. Ask Hypercane to produce a report about the images found in these exemplars, and select

the best striking image to represent this story

6. Ask Hypercane to synthesize the exemplars and these reports into a JSON Raintale story

file

7. Ask Raintale to generate the story using a custom template that provides variables for all

story metadata and formats exemplars

(a) Raintale then asks MementoEmbed to generate the document metadata for each exem-

plar based on the variables from the template

(b) Raintale visualizes the story by applying the template and this metadata

8. We commit the story to GitHub, and GitHub Pages distributes the story for us

In Figure 169 we see seeds, metadata, facets, and other tools to help us search the collection.

In Figure 171 we see people in masks, pictures of the virus, maps of the pandemic spreading

across the world, terms, named entities, sources, dates, and links back to the Archive-It collection

from which it came. This story is not only a multimedia experience; it has a higher information
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Fig. 169. The International Internet Preservation Consortium’s Archive-It collection Novel

Coronavirus (COVID-19) seen in its Archive-It interface.
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Fig. 170. A flowchart visualizing the process for producing a story from an Archive-It collection

for the DSA Puddles web site.

scent than the Archive-It interface. Recall from Chapter 1 that Elbert was trying to promote his

collection and make it more enticing so that people like Natasha would be able to understand

its contents at a glance. The example in Figure 171 demonstrates a story with a high degree of

information scent. Thus, this process meets Elbert’s needs for collection promotion and Natasha’s

needs for understanding at a glance. Elbert can further customize this template to ensure that

Raintale renders the document and story metadata in line with the needs of his institution.

To further address Natasha’s need to review collections quickly, we can use this heightened

information scent to allow us to compare collections, like the three collections in Figure 172 about

different shooting events. Based on their Archive-It interfaces, we see some metadata and facets

and may search the collections, but we must primarily rely on their titles or descriptions to know

what each contains, and this may not be apparent at a glance. For example, the metadata for both
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Fig. 171. The International Internet Preservation Consortium’s Archive-It collection Novel

Coronavirus (COVID-19), visualized by Raintale as a story on the DSA Puddles web site with

exemplars selected by Hypercane, story metadata provided by Hypercane, and document

metadata generated by MementoEmbed.
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(a) Virginia Tech Shooting

Fig. 172. Screenshots of three different Archive-It collections on shootings.
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(b) El Paso Shooting

Fig. 172. (Continued) Screenshots of three different Archive-It collections on shootings.
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(c) Norway Shooting

Fig. 172. (Continued) Screenshots of three different Archive-It collections on shootings.
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(a) Virginia Tech Shooting

Fig. 173. We can compare different Archive-It collections from Figure 172 about shootings

through their stories.
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(a) El Paso Shooting

Fig. 174. (Continued) We can compare different Archive-It collections from Figure 172 about

shootings through their stories.
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(a) Norway Shooting

Fig. 175. (Continued) We can compare different Archive-It collections from Figure 172 about

shootings through their stories.
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the El Paso and the Norway shooting collections gives us a date and place but differing levels

of seed metadata. The Virginia Tech collection’s title does not describe a place, but its lengthy

description gives us this information. In the related stories shown in Figure 175 we see victims,

locations, survivors, protestors, dates, sources, headlines, and content that helps us compare, at a

glance, that collection’s aboutness.

GitHub Pages is not the only distribution platform we can use. We can substitute it for a social

media platform. Raintale can leverage the Twitter API to create Tweets and distribute stories

via that platform, as shown in Figure 176. Originally, Storify was both the visualization and

distribution platform, but Storify’s deprecation illustrates that we need a more flexible solution for

storytelling with web archives. In this case, Raintale still manages the visualization — within the

confines of Twitter — but Twitter distributes the story. By separating the concept of visualization

from distribution, Raintale’s templates guide the formulation of tweets. The first Tweet in the

thread contains the collection’s name, its collector, and its URI. Each subsequent tweet represents

an exemplar memento selected from the collection. These tweets contain the generated document

metadata of the memento’s title, its memento-datetime, its URI-M, a browser thumbnail, and

the three highest scoring images from the memento. Twitter users can add to this thread with

comments and extend it further, potentially enriching the story with additional context not found

in the original collection. Elbert would also be happy with this solution because it can drive

engagement with his exemplars and encourage users to visit the collection.

Moreover, Elbert is not the only archivist that can benefit from these storytelling processes.

Recall that Ling was trying to understand a collection that she inherited. Assume for this example

that Archive-It Collection 6848 Congress is the collection she has inherited. Because archivists

have different needs, their stories require different information scent than stories presented to the

general public. Figure 177 shows how Ling created her story:

1. Ask Hypercane to select exemplars from this collection (6848) with the DSA2 algorithm

2. Ask Hypercane to produce the collection metadata (e.g., collection name, collecting organi-

zation) for this collection

3. Ask Hypercane to generate seed statistics for this collection – this includes the seed features

mentioned in Chapter 4.1

4. Ask Hypercane to produce a growth curve statistics and the growth curve for this collection

– as mentioned in Chapter 4.1

5. Ask Hypercane to generate metadata statistics for the collection
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(a) Archive-It Interface

Fig. 176. Archive-It Collection 2950: Occupy Movement 2011/2012 represented by its regular

interface and as a Twitter story.
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(b) Twitter story

Fig. 176. (Continued) Archive-It Collection 2950: Occupy Movement 2011/2012 represented by

its regular interface and as a Twitter story.
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Fig. 177. The process for creating an archivist dashboard story.
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6. Synthesize the exemplars and these statistics into a JSON Raintale story file

7. Create a custom template for the need of archivists that includes the variables for these

statistics and ask Raintale to generate a story using this custom template and the JSON

Raintale story file

8. Distribute the story locally on a web server for other archivists at the same institution so

others can benefit from this story’s knowledge

Here we combine the structural features and other statistics that archivists might find to be

beneficial along with selected exemplars. This way the archivist themselves gets the gist of a

collection under their care so that they can make decisions about it. In Figure 178 we see the result

of her work. This story contains the collection name and the collecting organization. We have

links back to Archive-It collection 6848 and the organization that created it. This story includes the

collection growth curve so that an archivist understands the collection’s curatorial history. We also

have overview stats, like the number of seeds, number of mementos, the number of mementos-per-

seed (not mentioned in Chapter 4 but introduced in Chapter 7), when the collection was created,

its lifespan, the dates of its first and last mementos, and its domain diversity. Further down we

have the other seed, growth and metadata statistics generated by various Hypercane reports. On

the right, we have a set of exemplars represented by MementoEmbed cards. With this information,

an archivist gets a snapshot of the history, contents, and an overview of the collection.

Through this process, Ling can create a story that is distributed locally within her institution.

Other archivists can learn from this story and understand the collection that Ling now maintains.

Based on this story, Ling can understand how the collection grew, the diversity of its sources,

additional statistics from its structural features, and also view a list of exemplars to give her some

idea of the collection at a glance. For example, the collection’s name is Congress. When she

inherited the collection, she thought it was about news coverage and official documentation from

members of the US Congress. However, now, thanks to the exemplars, she understands that the

goal of this collection was to preserve congressional candidate web pages.

Rustam wanted to view how a specific page changed through time, an FPST story. Rustam is

using storytelling to explore a collection. He is willing to be a human-in-the-loop who makes de-

cisions about which exemplars are part of his story. He still needs Hypercane for its identification

and filtering capabilities and will use Raintale to create a visualization of the output. Here is how

Rustam created his story (Figure 179):

1. Rustam asks Hypercane to identify all URI-Rs from a collection about the Boston

Marathon Bombing (3649)
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Fig. 178. Stories can be customized to meet the needs of archivists, with collection statistics in

addition to exemplar surrogates.
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Fig. 179. Visitors can generate their own stories to explore aspects of public web archive

collections. Here Rustam has applied the DSA tools to study how BostInno covered the Boston

Marathon Bombing. Rustam applies Hypercane twice, but serves as a human-in-the-loop and

decides which URI-R the FPST story includes.
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Fig. 180. This screenshot displays Rustam’s story applying the DSA tools to study how BostInno

covered the Boston Marathon Bombing. Note how, even though the titles and striking images are

the same, the description and memento-datetimes is different in each card.
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2. Rustam manually reviewed the list of URI-Rs and decided that http://bostinno.

streetwise.co/2013/04/19/boston-marathon-suspect-dead-

another-at-large-after-standoff/ may be of interest

3. Rustam filters collection 3649 so that the output would only include mementos for that

URI-R – these are our exemplars

4. Rustam asks Raintale to generate a story using its default HTML template from Rustam’s

exemplars so he does not need to specify a template

5. Rustam shares this HTML story on his personal web site

Rustam is interested in a simple visualization of the document metadata. Because he his

applying storytelling more toward learning about a specific aspect of the collection, he does not

need the additional entities and other data that we have generated for other stories. This is an

example of how storytelling can be used to expose a specific aspect of a collection for that story’s

creator and others. In Figure 180, we see a story that presents a single resource over time. With

each card, we get an update of what the public knew about the Boston Marathon Bombing at that

particular moment.

6.3 STORYTELLING WITH GENERAL WEB ARCHIVES

Remember that we are not limited to summarizing a web archive collection from Archive-

It. These tools work with any Memento-compliant web archive. Recall that Olayinka wanted

to understand the news on specific dates and times. There is not a single web archive collec-

tion that specializes in the news for the long term. However, we can apply other tools to select

exemplars and leverage news articles from the Internet Archive and Archive.Today. StoryGraph

[239, 240, 241, 242, 247] analyzes the news every 10 minutes to determine the biggest news sto-

ries at that moment in time. Figure 181 shows how we still satisfy the storytelling processes by

including other tools. In this case, StoryGraph selects exemplar URI-Rs, and Hypercane pre-

serves them as exemplar URI-Ms before providing story metadata. Raintale and MementoEm-

bed execute as before. Because of the addition of StoryGraph and because Hypercane uses the

ArchiveNow library [22] to preserve original resources (URI-Rs) as mementos (URI-Ms), we re-

fer to the daily news summary process as SHARI (StoryGraph Hypercane ArchiveNow Raintale

Integration) [161].

A more detailed form of the SHARI process, shown in Figure 182, is:

http://bostinno.streetwise.co/2013/04/19/boston-marathon-suspect-dead-another-at-large-after-standoff/
http://bostinno.streetwise.co/2013/04/19/boston-marathon-suspect-dead-another-at-large-after-standoff/
http://bostinno.streetwise.co/2013/04/19/boston-marathon-suspect-dead-another-at-large-after-standoff/
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Fig. 181. Storytelling to visualize the biggest news story of the day — how the SHARI process

maps to our five storytelling processes.

1. Extract URI-Rs from StoryGraph for the given date based on the longest living news story

for that day

2. Ask Hypercane to preserve the original resoruce news article URI-Rs as mementos and

return URI-Ms through its identify action to produce our exemplars

3. Ask Hypercane to produce a report of named entities from these exemplars

4. Ask Hypercane to produce a report of terms from these exemplars

5. Ask Hypercane to produce a report about the images found in these exemplars, and select

the best striking image to represent this story

6. Ask Hypercane to synthesize the exemplars and these reports into a JSON Raintale story

file

7. Ask Raintale to generate the story using SHARI’s custom template that provides variables

for all story metadata and formats exemplars
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Fig. 182. The SHARI process for creating a story for the biggest news story of the day.
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(a) Raintale then asks MementoEmbed to generate the document metadata for each exem-

plar based on the variables from the template

(b) Raintale visualizes the story by applying the template and this metadata

8. We commit the story to GitHub, and GitHub Pages distributes the story for us

Thanks to StoryGraph, we can produce SHARI stories as far back as 2017, when Alexander

Nwala first brought StoryGraph online. Figure 186 shows screenshots of four SHARI stories,

each from August 8 of different years. By comparing them like this, Olayinka can see how things

that seemed eternal at the time were forgotten by the following year. In 2017 on that date, the

news was covering nuclear provocation by North Korea. By 2018, the discussion was about US

Congressional elections. In 2019, the US was reeling from the events of dual shootings at El

Paso and Dayton. By 2020, the world was reeling from COVID-19, and Congress was debating

economic stimulus for the United States. Olayinka and other historians can apply these stories

to understand what was happening on a given date, and what information we had at the time

compared to what we know now. SHARI does not summarize web archive collections but adapts

the collections of StoryGraph instead and is one of many additional possibilities for storytelling

with web archives.

6.4 CHAPTER SUMMARY

In this chapter, we covered the final processes of our model of storytelling with web archives.

We introduced Raintale, a tool that visualizes the story and document metadata needed for sto-

rytelling. Raintale is a client of MementoEmbed. It requires a story file containing URI-Ms. It

also needs a template dictating how it should render those URI-Ms as a story. Raintale can save

its stories to files in different text formats, like HTML or Markdown, depending on the template.

Raintale also leverages its templating capability to format stories for social media to share them

on Facebook or Twitter.

Raintale is the final tool that we will cover. By combining it with others, we satisfy all of the

storytelling processes. Hypercane selects exemplars and generates story metadata. MementoEm-

bed generates document metadata. Raintale visualizes our stories and helps us distribute them

with other services. We covered several examples of these storytelling processes with GitHub

Pages, Twitter, and personal and institutional websites.

We covered several examples of these storytelling processes in use with both GitHub pages and

Twitter. We illustrated how stories have a higher information scent than the standard Archive-It

interface and thus allow us to compare collections to one another more easily. We also mentioned
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(a) 2017

Fig. 183. With the SHARI process, we can compare the news across the same day in different

years
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(a) 2018

Fig. 184. (Continued) With the SHARI process, we can compare the news across the same day in

different years
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(a) 2019

Fig. 185. (Continued) With the SHARI process, we can compare the news across the same day in

different years



327

(a) 2020

Fig. 186. (Continued) With the SHARI process, we can compare the news across the same day in

different years
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how the storytelling processes need not be carried out solely with DSA tools. We closed with

the SHARI process, where StoryGraph selects exemplars and Hypercane merely generates story

metadata. The exemplars and story metadata are passed to Raintale as before, but this time we are

not summarizing individual collections but summarizing the exemplars selected by StoryGraph.

What other tools might satisfy these processes? How else might we apply storytelling with web

archives? In the next chapter, we discuss some future directions.



329

CHAPTER 7

FUTURE WORK

A natural outcome of collecting things is to place some structure on them. We can manually

explore a small number of items (e.g., 28) and do not need to apply much formal order to under-

stand them. As the collection grows, it is not easy to comprehend the complexity of the whole,

and we need a summary. Our storytelling processes discover the innate structure of a collection

before visualizing it as a summary. We have selected exemplars, generated story metadata, gen-

erated document metadata, visualized the story, and distributed it. This model applies to many

different storytelling ventures. The work to improve individual processes is ongoing. We have

mentioned before that this method can be applied to other web archives and is by no means lim-

ited to Archive-It. This chapter discusses how we can improve this solution for web archives and

potentially extend it beyond them.

7.1 MORE STORYTELLING WITH WEB ARCHIVES

Where does the archivist Elbert go from here? He can use our DSA algorithms to create stories

for visitors like Natasha who are trying to to compare collections; he can create unique stories for

visitors like Rustam and Olayinka who want to explore an aspect of a collection for their research.

He can help out fellow archivists like Ling who wants to understand a collection that she inherited.

There are still use cases that we have not addressed. We can improve on our processes for selecting

exemplars. We can determine which visualizations work better for understanding.

7.1.1 IMPROVEMENTS FOR SELECTING EXEMPLARS

We still have work to do in selecting exemplars. As noted in Chapter 2, Latent Semantic In-

dexing assigns a single topic to each document, which is not realistic. Latent Dirichlet Allocation

(LDA), however, assigns multiple topics to a document. We employed LDA for clustering in

the DSA2 algorithm, but we could leverage it for finding off-topic mementos as well. Perhaps it

would be better at determining which mementos are off-topic within a TimeMap. Those memen-

tos that correlate poorly with their topics could be considered off-topic. We could also evaluate

other intra-TimeMap measures, like Spamsum [187], which functions similarly to Simhash. The

UK Web Archive has leveraged Spamsum to measure content drift [130] among mementos in a

TimeMap.
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Sometimes the page starts as off-topic. We need a better method than provided by our

TimeMap measures and our algorithm from Chapter 4.2. Patel et al. [259] may offer a solu-

tion. Rather than focusing on identifying off-topic mementos, they consider the task to be a binary

classification problem where they divide the collection into “in-scope” and not. They compare the

results using a bag-of-words generated from the whole document against one from the the start

and end of a document to see if they get better results with less text. They also apply a CNN

classifier to see if it improves performance. They concluded that text from specific portions of

documents is more effective than processing the whole document. They did not, however, process

web pages, focusing solely on PDFs. We would need to extend their efforts to see if we can apply

their solution to the cornucopia of different resource types (e.g., social media posts, news articles,

blog posts) in most web archive collections.

We need to evaluate how well these methods work for collections that contain multiple lan-

guages. Most of our experiments have centered on English. Some portions of the DSA algorithms

are language independent (e.g., clustering) but others may need to be modified to better support

specific languages.

There are many more structural features than those that we have not yet explored. Consider

the following:

mementos-per-seed — This can take the form of a percentage or a ratio. As a percentage it

would just be (number of mementos / number of seeds). As a ratio it would need to be reduced

(e.g., 8:4 becomes 2:1) so we can compare collections to each other. This simple metric may

provide additional curation insight. If this number is close to 1:1, we likely have a collection with

the growth curve shape of seed mementos growing continuously. A value where the numerator is

less than the denominator indicates that many seeds were registered but not crawled.

seeds with metadata — This feature, though helpful to archivists, is likely not helpful in

predicting the semantic type of a collection or which DSA algorithm would be the best fit for it.

Too many collections lack seed metadata for this to be a significant differentiator.

scheme usage — This feature would make more sense in the web of the 1990s than it would

today. Most seeds use http or https as their scheme. It could be interesting to archivists to see this

as a percentage. If we consider http and https to be the same scheme, then it might be helpful to

identify collections with seeds that use ftp. From our 2017 study, only Sun Microsystem documents

(ID 7000) applied ftp as its most frequent scheme.

valid seeds — This feature is another that might make more sense to archivists. Sometimes an

archivist creates a seed that is an invalid URI. Unfortunately, the seed remains on the Archive-It

collection page. It is unlikely to differentiate one collection from another but may be helpful for
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Fig. 187. With this mock collection, we see how collection growth curve shapes change as

archivist activity grows dormant. (SEME = seeds early, mementos early; SLML = seeds late,

mementos late; SDMD = seeds continuously, mementos continuously) See Chapter 4.1 for more

information on growth curves and how to interpret them.

collection administration.

% of seeds in given page category – We are uncertain how to turn this into a specific metric,

but it may be of interest to know how many seeds fit into a given web page category. For example,

some Self-Archiving collections are a mix of social media and .gov or .edu domains combined with

social media domains. Measuring the percentage of seeds linking to a social media domain may

help differentiate collections that fit into this semantic category from those in other categories.

The method employed by Padia et al. [257] requires updating a list of domains for each category.

Abrahamson et al. [2] provide a more adaptable genre classification algorithm.

In Chapter 4.1, we normalized all growth curve features to the life of the collection. It may be

interesting to study how growth curves change over time without this normalization (Figure 187).

As time goes on, all unmaintained collections approach the growth curve shape of seeds early,

seed mementos early. Can we determine if a collection is dormant based on its growth curve and

help users recognize that it no longer being maintained?

We also divided different growth curves into categories based on the area under their curves.

Maybe there are other ways to evaluate these curves. If we assume that archivists are inspired to

add to collections when news events occur, perhaps correlating local minima or maxima to world

events provided by Wikipedia could provide additional insight into these collections. Perhaps we

could leverage this external data to improve the selection of exemplars or even augment stories

with additional metadata.

We did not evaluate if a particular DSA algorithm works best for a particular semantic type of

collection. DSA3 may produce better stories for Self-Archiving collections, and DSA2 may create

better stories for Time Bounded - Expected. Perhaps our semantic categories are not a good fit for

this problem. Someone instead might classify Archive-It collections based on which algorithms

work best for a given collection.

How well do our exemplars cover the content of their collections? We could leverage methods
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like Kilgarriff’s [179] word frequency method to compare corpora. This method considers each

corpus a probability distribution and applies the χ2-test to quantify the statistically significant

difference between distributions. Alternatively, we could leverage the log-likelihood function to

compare the top terms or entities between collections. Unfortunately, these methods rely on the

two corpora being the same size and assume they are statistically independent, which will not be

the case between the whole collection and the selected exemplars. To address this, we could apply

a method developed by Lijffijt [198] that addresses these issues. These methods all require that we

apply them to one term or entity at a time. We can also leverage the collection metrics created by

Nwala et al. [245] and those from Chapter 4.1 to compare the exemplars (small collection) with

their collection of origin. To better understand how to evaluate algorithms by applying the features

from Chapter 4.1, we would need to select exemplars from more collections than the eight from

the experiment detailed in Chapter 4.4.

What other types of stories exist? AlNoamany’s dimensions of page and time were our starting

dimensions, but others exist. Fixed pages, sliding time could include multiple specific seeds from

the collection. A fixed source, sliding time would select exemplars from a given domain name.

One could expand this to fixed sources, sliding time to cover specific media ecosystems. With the

current polarization among US media, one could apply this new story type to tell a story from a

particular political perspective. With exemplars restricted by query or topic modeling, one could

tell a fixed topic, sliding time story. While sliding page, sliding time stories best serve Natasha and

Ling, we want to emphasize that not just archivists but users should be able to tell stories in any

dimension to address their needs. All of these dimensions have implications for how we select

exemplars.

We have focused on selecting exemplars from HTML documents. Many web archive collec-

tions contain PDFs, which have their own document metadata. Work with PDFs has been the

focus of summarizing scholarly corpora. What about other document formats? Not all mementos

are documents. How do we select exemplar images, audio, or videos? Peng [263], Laganière et al.

[190], Potapov et al. [271], Mei et al. [219], Yao et al. [336], and Kanehira et al. [173] all propose

solutions to selecting exemplar clips from videos. Zhuang et al. [340], Gong and Liu [108], and

Mundur et al. [229] provide solutions select exemplar striking images from videos.

Our DSA algorithms from Chapter 4.3 assume that a web archive collection is structured

like Archive-It: a collection of mementos, grouped by each seed’s TimeMap, augmented with

collection metadata. In Chapter 2.3 we mentioned collections from Confier, the Croatian Web

Archive, Library of Congress, and Trove. In Chapter 6 we introduced examples that created

stories from the web archive collections of Trove, maintained by the National Library of Australia
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(NLA). Collections at NLA consist of mementos that archivists selected as being particularly

meaningful. Algorithm steps like filtering duplicates and filtering off-topic mementos may not

be needed because humans have already done this work. We created Hypercane (Chapter 4.5)

with this in mind, realizing that one algorithm would not fit all collections, but perhaps pieces

of algorithms could be shared between solutions. Croatian Web Archive (HAW) collections are

formatted similarly to those at NLA. Perhaps some of these pieces could be shared by algorithms

applied there as well. Our work can continue in that direction, finding algorithms that work best

for these types of collections.

We can surface patterns from the documents in general web archives, like the Internet Archive.

In Chapter 6 we discussed how the SHARI process helps those like Olayinka compare news be-

tween years. SHARI analyzes a portion of the live web and creates order from that sample before

creating or discovering the mementos of that content in the Internet Archive or Archive.Today.

What other techniques can we apply to general web archives? Kanhabua et al. [174] may offer

a path for selecting exemplars. Their solution leverages existing live web search engines to find

original resources. Kanhabu then discovers their mementos. From here, we can build a collection

of mementos so we can then reduce it and summarize what is present in that part of a general web

archive.

Our current DSA toolkit allows a user to specify a time period and original resources. With the

Memento Protocol [312], Hypercane can locate the mementos corresponding to these resources.

Hypercane also allows a user to crawl a web archive and find additional linked mementos. We

can stop the crawl at a given depth and then score each memento by its path depth. By combining

these concepts, a user could conceivably build a “newspaper” for any time period. Combine this

with Hypercane’s additional filtering abilities, and one could create fixed sources, sliding time

stories across general web archives. We could also create fixed topic, sliding time stories. This

work would allow historians to further extend their analysis of past news to address research

questions, like how does a society ingest outsiders? We are currently working with the developers

of StoryGraph to explore how this would work within the DSA toolkit.

Nwala et al. [245] analyzed social media micro-collections to find quality seeds to be feed into

web archives. They also analyzed search engine result pages (SERPs) [246] for quality seeds. In

both cases they were trying to automate the creation of a web archive collection. We could apply

this to also surface collections from existing general web archives and web archive collections.

Klein et al. [181] used data outside of web archives to generate event collections by analyzing

changes in Wikipedia edit frequency to determine an event datetime. Klein et al. then scraped

the Wikipedia references from the page edit at that datetime and crawled web archives with the
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(a) Social card in portrait format from Google+.

(Screenshot taken in 2018)

(b) Social card in landscape format from Facebook.

(Screenshot taken in 2018)

Fig. 188. Do users learn more easily from social cards that are presented in portrait or landscape?

Memento Protocol to surface information about that event. Their methods could be combined

with Kanehira et al. [173] to select exemplars from web archive collections and to generate story

metadata from external sources.

7.1.2 EVALUATING VISUALIZATIONS FOR UNDERSTANDING

We could do more work analyzing the effectiveness of surrogates for collection understanding.

We conducted a user study to determine which surrogate works best for understanding, but how do

the specific fields of document metadata affect collection understanding? Do users understand best

with just titles? Does the favicon or domain name in the social card influence how a user views

the story’s content and hence the underlying collection? What will eye tracking tell us about how

users scan across different surrogate types? What parts of the social card do users spend more
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Fig. 189. Google provides entity cards (outlined in red), which they call knowledge panels, for

certain named entities.
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Fig. 190. Hypercane automatically chooses the best image for a story, like this image of people

living in tents from the Archive-It collection Earthquake in Haiti.
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time examining? Even though users may perform well with one set of document metadata, they

may prefer a different set. We could contrast users’ surrogate preferences with their performance.

What presentation of surrogates works best? We have assumed that the Storify presentation

of cards listed vertically works best because it is the search engines and social media paradigm.

What about cards side-by-side? As shown in Figure 188, are portrait cards more effective than

landscape ones? Also, does the screen size and orientation make a difference? For example, are

some surrogates better for smartphones compared to desktop computers?

How well do surrogates match the content of their document? Existing research evaluates

automatic summaries against human-generated summaries [199]. What if we have no human-

generated summaries? How do we evaluate our surrogates? Grusky et al. [110] introduce concepts

like density and coverage to describe how well an extractive summary summarizes a document.

How well do these metrics correspond to human judgments? How well do they correspond with

human understanding?

In Chapter 5.3, we evaluated different machine learning techniques to choose the same striking

image as an article’s author and we will replace MementoEmbed’s existing image scoring function

[156] with the classifier model from this work. How does a striking image in a social card help the

reader’s understanding? Would the reader have preferred a different image? Do multiple striking

images improve the reader’s performance? Should a system generate striking images based on a

reader’s past history or behavior so that the images are more meaningful to them?

Other types of cards exist, and we need to evaluate them for understanding. Bota et al. [39]

explores the effectiveness of entity cards (Figure 189) on search behavior. Instead of analyzing

a collection to produce for exemplar mementos, we should produce exemplar entities. Would

a mix of entity cards with social cards work better for collection understanding? Perhaps entity

types of cards work better for Self-archiving and Subject-based collections but not Time Bounded -

Spontaneous collections? Designing a user study to determine this could be helpful. A fascinating

study could be analyzing other types of exemplars (e.g., seeds, sources) and the best surrogates to

represent them.

We select the overall story striking image, as seen in Figure 190, using the same method

applied to individual striking images. Does this method work well for overall stories? We can

evaluate this by applying the striking images chosen from the stories at Wakelet1 as ground truth

for a supervised learning study. For that matter, does this increased information scent truly help for

understanding, or does it just make the experience more pleasant for users? As seen in Figure 190,

we supply named entities and most frequent sumgrams [238] to enhance a user’s understanding of

1https://wakelet.com/

https://wakelet.com/
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the collection. Is this needed? Are the cards alone sufficient?

What other visualizations can we add to our stories? How do we visualize events that cover

substantial periods of time, like the entire COVID-19 pandemic, Hurricane Katrina, or the Black

Lives Matter movement? Perhaps we could automatically generate a timeline of incidents where

each incident links to a specific card addressing that portion of the overall event. If a collection

focuses on one of these events, but only supplies specific sources, then a visualization of the event

will differ depending on the web archive collection from which they come.

Finally, can we invert the concept? Maybe storytelling is a better interface for creating web

archive collections. We could conduct a user study to evaluate different interfaces for creating

collections. Seeing as social cards are an interface that users are already familiar with, they might

be easier to use than the existing Archive-It interface. We would, however, need to address mul-

tiple issues with this paradigm, potentially including feedback from ethnographic studies [249]

on how archivists construct web archive collections. For example, we would have to determine

what metadata the card would display, how the card helps users configure crawling times, and how

cards can help with batch processing.

7.2 BEYOND WEB ARCHIVES

We intentionally modeled the problem of storytelling with web archives generically. Our

model for storytelling is about summarizing a collection of things. That summary takes the form of

visualizations that summarize individual exemplars as surrogates and augments the resulting story

with story metadata. However, this model need not only apply to mementos or even traditional

documents.

Figure 191 demonstrates the concept of summarizing a scholar’s grey literature. Here we

executed Hypercane, Raintale, and MementoEmbed against a web archive collection from the

Scholarly Orphans project that contains mementos from Ian Milligan’s work outside of scholarly

publications. We selected exemplars to summarize a scholar’s output during a period of time,

generated story and document metadata, and visualized and distributed it for others to see. It

includes content from sites like GitHub, Milligan’s home page, and WordPress. Stories like these

are not only useful for archivists trying to feature the content of their collections. They can be

used to highlight a scholar’s accomplishments for the year, both to the public and institutional

committees. The source of this story could be live web documents, but a web archive would

further preserve the evidence of Milligan’s contributions.

We can extend this idea further. Figure 192 shows how Google Scholar attempts to do some-

thing similar for a scholar’s traditional publications. There is ordering by citation, there is story
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Fig. 191. We can apply our storytelling techniques to summarize other resources, like a scholar’s

grey literature.
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Fig. 192. Google Scholar lists a scholar’s publications.
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and document metadata, and the whole was visualized and distributed. The key difference is that

Figure 192 shows a complete list. No exemplars were selected. This visualization is a view into

the entire collection. A reader can sort by title, year, and citation, but they cannot search within the

work on this one scholar without searching the rest of Google Scholar. Instead, our storytelling

processes could help a user promote the most impactful exemplars of their work. They could also

apply our processes to convey the work most germane to a specific project so they could share it

with a grant agency.

Ellen van Aken [311] noted that company employees want their corporate intranet search en-

gines to work more like general web search engines (e.g., Google). Mukherjee and Mao [228]

analyzed the needs of enterprise search users and determined how organizations need to manage

intranet search engines more effectively. They discuss how corporate intranets often contain du-

plicate documents, which we can solve with our concept of filtering near-duplicates. Because

most corporations do not hire a full-time librarian to organize their collection, their documents

often have poor metadata, affecting their retrievability. Our concept of generating metadata can

help solve this part of the problem. They suggest organizing documents visually into navigable

structures (clustering) that will assist users in finding relevant information. Dumais et al. [74]

performed a user study and established that these navigable structures help users find information

better than a familiar search interface.

If we step back from our rigid storytelling concept, we see that some of our work may help

solve this problem. Imagine a user exploring their corporate intranet through a series of stories

clustered together via topics. A user starts their session with a query, and the system returns them

a set of surrogates representing individual topics. To find their document, they can explore the

documents within each topic or sub-topics or go back to higher-level topics. Pirolli and Card

introduced this generic concept as scatter/gather [267]. It has been evaluated with positive results

in recent user studies by Weimao et al. [176], Gong et al. [107], and Zhang et al. [339]. Our

goal with storytelling is not to replace enterprise search engines. However, the results from our

storytelling concepts can help users better understand topics on their way to finding the document

they need, similar to a traditional library reference interview. If the corporate intranet search

engine is already failing them, perhaps a journey through this scatter/gather interface would be

more effective, especially considering DSA algorithms return documents with low retrievability

(Chapter 4.4).

Of course, there are other ways our work can help with the corporate intranet. It could sum-

marize an employee’s output on the corporate intranet, possibly helping users fill out end-of-year

assessments. Our stories would be an improvement over the flat list of “user contributions” offered
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Fig. 193. Our storytelling model could summarize portions of a project’s Kanban board.

Example courtesy of Wikimedia Commons [321].

by corporate wikis. Consider extending this idea to projects, where a story summarizes the output

of a particular team or a particular project phase, similar to a Kanban board (Figure 193).

7.3 CHAPTER SUMMARY

We covered potential future directions of our storytelling model. We first addressed where

to take the work we presented in Chapters 4, 5, and 6. For selecting exemplars, we first need to

detect off-topic mementos. We discussed several options for performing this off-topic detection

by applying LDA, Spamsum, and the intra-TimeMap work started by Patel et al.

We also discussed additional structural features for describing and comparing collections, like

mementos-per-seed and % of seeds in a given page category. We mentioned new directions for

evaluating growth curves and how we might apply their shapes to discover events or improve our

stories with information from external sources. We discussed additional algorithms for selecting

exemplars and how to compare results. If we want to know if a set of exemplars is a good summary,

we can compare probability distributions of the words in collections with the set of exemplars. We

can also compare the structural features we have discussed and those developed by Nwala. We
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also mentioned that our focus has been on HTML documents and that mementos of other types

of content, like video, exists in web archive collections. We need to determine if our social cards

work for these or need a new surrogate type.

Other types of stories exist. Fixed pages, sliding time extends the singular fixed page, sliding

time story to include multiple original resources. A fixed source, sliding time story would do

the same for a single domain, and we could group domains in a fixed sources, sliding time story.

We can demonstrate how a given publisher or political point of view covered an event with fixed

sources. With topic modeling, we can create fixed topic, sliding time stories, providing stories that

only cover the results of a specific query or cluster in topic modeling. These are just some of the

additional dimensions with which one could experiment and grow our storytelling concept.

Our existing DSA algorithms may not be the best fit for selecting exemplars from web archives

outside of Archive-It, like those from the National Library of Australia or the Croatian Web

Archive. We noted that we could extend our techniques to explore general web archives and

explore a topic by first building a collection from general web archives and then generating a

summary. An example output of this process might be a “newspaper” for a given time period.

More work is needed to understand the effectiveness of surrogates for collection understand-

ing. We construct surrogates from metadata fields. Perhaps only some of these fields are necessary

for understanding. Someone could evaluate the ordering of surrogates and the arrangement of sur-

rogates to see if it improves the user’s performance and desired experience. We noted that perhaps

different types of cards, like entity cards, might be a good augmentation for some stories. There

is more work to be done in selecting striking images for stories and visualizing events that cover

substantial periods of time.

The future of this model is not just limited to web archive collections. We can extend it to other

areas, such as summarizing scholarly communications, improving corporate intranet discovery

interfaces, or providing summaries of an individual employee’s contributions to the company.

In our final chapter, we discuss how we got here. We revisit our research questions, and we

provide an overview of our work.
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CHAPTER 8

CONCLUSIONS

Fig. 194. The five processes for storytelling with a corpus mapped to the research in this

dissertation.

This dissertation explores the application of social media storytelling to web archives for col-

lection understanding. In Chapter 1, we introduced the needs of Natasha, Rustam, Olayinka,

Elbert, and Ling, summarized in Table 1 on page 14. Natasha wanted to compare collections.

Rustam wanted to explore how a single page changed its reporting as its authors learned new

information about the Boston Marathon Bombing. Olayinka wanted to compare different news

sources at a given date and time. Elbert wants to promote collections and help people like Natasha

compare them. Ling inherited a collection and wants to understand it to make decisions about how

to maintain it in the future.

Addressing their use cases through traditional means is challenging. Web archive collections

consist of seeds which are the URIs of the original resources that archivists capture as memen-

tos. For each seed, there are one or more mementos representing an original resource observed

at different points in time. Some web archive collections contain hundreds of thousands of seeds

(e.g., Government of Canada Publications has 339,166 seeds), and thus there is a multiplier effect

concerning the number of mementos. There are more than 14,000 public Archive-It collections,
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many of which cover the same topic. Library science would dictate that experts apply metadata to

answer questions about these collections, but few collections contain standardized metadata. Too

many documents from too many collections with not enough metadata makes collection under-

standing an expensive proposition.

We turn to automation to develop visualizations that aid in collection understanding. Social

media storytelling provides us with a visualization paradigm where documents are rendered as

surrogates that contain document metadata. Because evaluating thousands of surrogates is no

more helpful than evaluating thousands of mementos, we select exemplars so that a user only has to

review the mementos that best describe the collection. For each exemplar, we generate document

metadata and create a surrogate. These surrogates are bound together in a story augmented with

story metadata and distributed so others can view it. We chose social media storytelling because

it is an interface with which users are already familiar.

Our storytelling processes, as shown in Figure 194, are:

• Select exemplars to represent the collection.

• Generate story metadata to augment the story for better information scent.

• Generate document metadata so we can produce surrogates with good information scent.

• Visualize the story based on the metadata to produce surrogates and represent story meta-

data.

• Distribute the story so that users can view it and understand the collection.

We introduced four research questions with this model in mind. This chapter summarizes how

we have addressed them before itemizing our contributions and finishing with some final words.

8.1 ANSWERS TO OUR RESEARCH QUESTIONS

Our research questions related to the different parts of our storytelling process. Research

Question 1 centers on types of collections and structural features, critical concepts for selecting

exemplars, and generating story metadata. Question 2 involves the development of algorithms

for solving the problem of selecting exemplars. With Question 3, we seek to understand how

to best generate document metadata by studying surrogates that visualize that metadata. Finally,

with question 4, we want to develop surrogates even when the user has not provided sufficient

document metadata. These questions span our storytelling processes and have helped us develop
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Fig. 195. The entire DSA architecture for storytelling.
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tools – Hypercane, MementoEmbed, Raintale, and supporting libraries AIU and OTMT, shown in

Figure 195 – that allow others to conduct storytelling with web archives.

8.1.1 RQ1: WHAT TYPES OF WEB ARCHIVE COLLECTIONS EXIST AND WHAT
STRUCTURAL FEATURES DO THEY HAVE?

In Chapter 4.1 we explored the different types of web archive collections by manually re-

viewing the metadata of 3,382 Archive-It collections in 2017. We placed them into four different

semantic categories:

• Self-Archiving collections consist of one or more domains belonging to the archiving or-

ganization or being archived as part of some initiative of which the collecting agency is

part.

• Subject-based Archiving collections consist of seeds bound by a single topic.

• Time Bounded - Expected collections focus on an expected, planned event such as a sports

competition or an election.

• Time Bounded - Spontaneous collections are created after a spontaneous event such as a

disaster or the start of a movement.

We analyzed the different types of stories possible for each of these semantic categories. We

also determined how many Archive-It collections from 2017 fit into each category. The Self-

Archiving category dominated Archive-It with 54.1% of collections in 2017. Subject-based

archiving made up 27.6% of collections. Time Bounded collections comprise even smaller

amounts, with 14.1% in the category of Time Bounded - Expected and 4.2% in Time Bounded

- Spontaneous.

We explored the structural features of the collections through seed features:

• Seed URI domain diversity quantifies the spread of the collection seeds across different

sources.

• Seed URI path depth diversity indicates if the seed URIs consist solely of top-level pages

or a mixture of top-level pages and more specific content.

• Most frequent seed URI path depth gives us an idea of whether most of the seeds represent

top-level pages or pages deeper in a site.
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• The % Query string usage helps us understand the behavior of seeds with respect to query

strings, potentially indicating they come from a Self-Archiving collection because many

organizations with a high percentage are government or finacial institutions that can be slow

to adopt the technologies that make query strings obsolete.

With seed features, we can compare collections and compare our set of selected exemplars to their

source collection.

We also explored what collection growth curves could tell us about collections. A collection

growth curve, like the one shown in Figure 196, contains the lifespan of the collection on the

x-axis and the cumulative percentage of URIs on the y-axis. The URI represented by the y-

axis depends on which one of two curves the viewer is evaluating. The seed curve (shown in

green) demonstrates the archivist’s curatorial involvement with the collection. It represents when

seeds were added and can indicate when the archivist lost or regained interest in altering the

collection’s sources. The seed memento curve (shown in red) demonstrates the crawling behavior

of the collection. It represents when an archivist added mementos to the collection. For example,

in Figure 196, the green line indicates that 30% of the seeds were added at the beginning of

the collection’s life, with the rest added more continuously. The seed mementos, shown by the

red line, were added mostly throughout the collection’s life, because this red line is close to the

diagonal. The red line indicates that there are more crawls of some of the early seeds and that the

crawling schedule was not changed much during the collection’s life.

Growth curves have the following features:

• The number of seeds is a count of the collection’s seeds.

• The number of mementos is a count of the collection’s seed mementos.

• The difference between the seed curve AUC and diagonal gives us an idea of when an

archivist added seeds to the collection.

• The difference between the seed memento curve AUC and diagonal informs us of the

balanced size of temporal clusters in the collection.

• The difference between the seed curve AUC and seed memento curve AUC provides us

with an understanding of the relationship between seed growth and seed memento growth.

• The collection lifespan is the difference between the first and last memento-datetimes of all

mementos in the collection.
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Fig. 196. An example of a collection growth curve.
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Growth curves have implications for how we select exemplars. Temporal clustering is a nec-

essary step for some types of stories. A clustering algorithm that does not consider the shape of

the collection’s growth curve may place mementos from the same time period in different clusters,

leading to less representative exemplars.

In Chapter 4.5 we introduced Hypercane, which can produce reports of these seed features and

growth curve features for a given collection. Thus, we have not only enumerated and quantified

the types of web archive collections, but we also provided an implementation that calculates these

structural features for further research.

8.1.2 RQ2: WHICH APPROACHES WORK BEST FOR SELECTING EXEMPLARS
FROM WEB ARCHIVE COLLECTIONS?

The first step for selecting exemplars is to eliminate mementos of low information value, so

further steps do not waste time evaluating them. Off-topic mementos, such as those from captured

error pages, defaced websites, and pages whose topic has drifted, have low information value. Our

solution from Chapter 4.2 builds on AlNomanay’s research [10] that compares the first memento

in a TimeMap to subsequent mementos to measure the degree to which subsequent mementos are

off-topic. If subsequent mementos’ degree exceeds some threshold, then we consider it off-topic.

We evaluated multiple similarity measures to determine which worked best for identifying off-

topic mementos and found that differences in word count (Figure 197) provides the best results.

Filtering for off-topic mementos is not the only step in selecting exemplars. In Chapter 4.3 we

cover the primitives used to select exemplars:

• Sample refers to the action of creating a small sample by choosing k mementos from N

such that k << N. This primitive can take the form of probabilistic sampling methods

like random sampling, or sample can be a container for more complex intelligent sampling

algorithms build from other primitives, like filter and cluster.

• Filter is a primitive that reduces the collection by some criteria, such as by removing off-

topic or near-duplicate mementos.

• Order organizes the mementos by some criteria, such as sorting them by their memento-

datetime.

• Score applies a function to our mementos so we can elevate some over others, such as how

well a memento’s content matches a query.
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Fig. 197. Word Count was the similiarity metric that performed best for identifying off-topic

mementos in a collection.
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Fig. 198. We can combine our exemplar selection primitives to form AlNoamany’s Algorithm,

referred to in this dissertation as DSA1.

• Cluster groups mementos by some common feature and divides the collection by these

groupings.

These primitives are derived from research like that performed by Sipos [286], Li [195], Zhang

[338], Mihalcea [221], and AlNoamany [11]. We combine these primitives to reproduce AlNo-

many’s algorithm (which we also refer to as DSA1, shown in Figure 198) and use them to build

three other algorithms.

Searching is the current manual method of discovering and selecting exemplars. A user like

Natasha can employ a search engine to understand a collection. In Chapter 4.4 we create stories

for eight collections with different structural features and of different semantic types. We then
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Fig. 199. Percentage of story mementos with zero retrievability when using titles as the search

term.
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index them with SolrWayback, a standard web archive search engine. We also generate stories

using each of our four DSA algorithms. We apply the concept of retrievability to measure how

difficult the exemplars produced by our DSA algorithms are to retrieve using a search engine.

Figure 199 visualizes how many exemplars are not retrieved at a given result count cutoff c when

using a document title as the query, which Klein et al. showed to be very effective for retrieving

a known document from a search engine [182]. Even with these queries, a user would need to

examine at least one thousand results to find all of the exemplars surfaced by the DSA1 algorithm.

For the other three DSA algorithms, some exemplars are still missing from search engine results.

Thus, our methods surface more novel and quality exemplars than would otherwise be discovered

conventionally with SolrWayback and existing query generation techniques.

We identified the best approaches for identifying off-topic mementos. We outlined a model

of primitives to develop algorithms that surface exemplars from a collection. Finally, we show

that algorithms derived from our model surface more novel exemplars from the collection than the

current manual method of applying a search engine. The best method of identifying exemplars

depends on the story that one wishes to tell. If everything in the collection is relevant, after

filtering with methods such as off-topic detection, then our algorithms produce more novel results

than search engines. Hypercane (Chapter 4.5) is our implementation of this work, and we used it

in these experiments.

8.1.3 RQ3: WHAT SURROGATES WORK BEST FOR UNDERSTANDING GROUPS OF
MEMENTOS?

Our initial thought was to reuse an existing platform like Storify because it was the de-facto

standard. Adobe shut down Storify in 2018 [289], causing us to search for a replacement. We

summarized the results of a review of 55 platforms in Chapter 5.1 (more details in Jones et al.

[140, 156]) to uncover that none reliably produce sufficient surrogates for mementos. Some fail to

produce surrogates at all, while others misattribute content to the web archive instead of its original

source (Figure 200). From these results, no existing platform would work best for understanding

groups of mementos.

In Chapter 5.2 we analyzed the default Archive-It surrogate consisting of a seed URI and first

and last memento-datetimes and discovered that users could still glean information from the seed

URI. We conducted a user study comparing user responses to the existing Archive-It surrogate,

social cards, browser thumbnails, and combinations of cards and thumbnails. We discovered that

users answered questions most accurately with social cards compared to the Archive-It surrogate

at p = 0.0569. We also noted that social cards encouraged fewer users to interact with them
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Fig. 200. Tumblr creates cards for mementos, but misattributes them to the web archive rather

than their original source.
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Fig. 201. The number of users interacting per surrogate type, broken down by image hovers, link

hovers, and link clicks.
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Fig. 202. By memento-datetime, the percentage of news articles each year that have adopted a

given metadata category. Dashed lines indicate a y-axis value of 0. We see rapid growth in the

adoption of OGP and Twitter Card metadata between 2010 and 2016.

(Figure 201). With social cards, users were able to correctly answer our questions without as much

interaction. Thus, with these results, we concluded that social cards work best for understanding

groups of mementos.

8.1.4 RQ4: WHAT METHODS THAT AUTOMATE THE CREATION OF SURROGATES
PRODUCE RESULTS THAT BEST MATCH HUMANS’ BEHAVIOR?

Social cards require that web page authors supply metadata so platforms can fill in the ap-

propriate card fields for striking image, title, and description. In Chapter 5.3 we explore how to

create social cards when this metadata is missing. This metadata may be absent due to a lack of

interest on the part of the author. Many mementos, on the other hand, predate the existence of

these metadata standards. This environment makes it challenging to produce good social cards for
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Fig. 203. This visualization demonstrates the MRR and P@1 results for different striking image

prediction approaches as run against our sample. The best approach achieves the highest MRR

and P@1 at the lowest pHash distance, making the ideal situation one where an approach’s lines

start higher into a graph’s upper left corner. Items in parentheses are feature categories applied to

the classifier, if applicable.
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mementos reliably. We analyzed 296,162 mementos of news articles for which metadata fields

were in use. As seen in Figure 202, once social card metadata fields (OGP and Twitter Cards)

were standardized in 2010, adoption of these fields skyrocketed. For mementos captured before

2010, we can apply the HTML standard description field to create cards with an author-supplied

description, but there is no similar field for striking images.

With this in mind, we analyzed how to best generate descriptions. As listed in Chapter 3.1,

there are many algorithms, such as TextRank, for selecting sentences from the text. These algo-

rithms can help us develop descriptions but require that we specify the length of the description.

From analyzing the different description fields in our mementos, authors generate descriptions

with mean sizes of 268 characters, 52 words, or two sentences.

Having adopted this solution for descriptions, we needed a way to select striking images. For

our ground truth, we applied the striking images chosen by the authors of 37,522 news articles. For

each article, we scored the images present in the article by applying different evaluation methods

and chose the highest scoring image for that method. We then compared methods to each other in

terms of precision at one (P@1) and mean reciprocal rank (MRR) to determine how accurate one

combination of features and methods was to another. As shown in our results in Figure 203, we

found that base features like image byte size, size in pixels, aspect ratio, and color count applied

to the Random Forest classifier most often produced the same striking image as the author.

Social card surrogates consist of a title, description, and striking image, and different metadata

fields define these units. Without metadata to guide our system, we must rely on automation to

generate the metadata. By analyzing the existing metadata, we have determined how to automate

the creation of surrogates such that their metadata best matches what web page authors would

create. We realize this capability in MementoEmbed and its companion storytelling tool Raintale.

8.2 CONTRIBUTIONS

We have built on the work of AlNoamany to provide models and tools that enable future work

with web archives. Now users can select exemplars, generate story and document metadata, and

visualize and distribute their stories. We covered some future directions in Chapter 7 that focus

on improvements to this process, including new structural features, additional ideas for off-topic

detection, more story types, summaries for non-HTML file formats, and further evaluation. Our

contributions support storytelling with web archiving and assist other research efforts with web

archives and web science:

1. We established a model for storytelling with web archives consisting of five processes: select

exemplars, generate story metadata, generate document metadata, visualize the story, and
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distribute the story.

2. We evaluated Archive-It collections and developed a vocabulary for describing different

types of collections which the web archiving community is applying to other work [1, 318].

We found that 54.1% of collections are organizations archiving their own content.

3. We introduced structural features for Archive-It collections and demonstrated how they

could be applied to predict the semantic category of a collection [160].

4. We established that word count is an effective intra-TimeMap method of identifying off-

topic mementos in a web archive collection [141, 164], outperforming more sophisticated

and slower methods.

5. Based on existing work on selecting exemplars from documents and collections [14, 79, 83,

195, 206, 221, 338] we devised a set of primitives in Chapter 4.3 that could be combined to

intelligently sample mementos from a web archive collection. These primitives are sample,

filter, cluster, score, and order.

6. We established that four different algorithms produced from these primitives will select ex-

emplars that are otherwise undiscoverable using a state-of-the-art web archive search engine

and conventional query generation techniques.

7. We developed the tool Hypercane [144, 145, 146, 149, 157, 166] that can select exemplars

and generate story metadata for storytelling. It applies the primitives from our model defined

in Chapter 4.3.

8. Hypercane can also synthesize WARCs and generate queries to assist further research with

web archives. We applied this capability in the final study of Chapter 4.4.

9. Our user study from Chapter 5.2 provides engineers support for choosing social cards over

other surrogate types when designing a platform that requires surrogates [165]. Despite

prior work evaluating users and surrogates for search engine result relevance, surrogates

had never been evaluated for understanding.

10. Our evaluation of metadata in Chapter 5.3 sheds light on the reasons for metadata adoption.

We have expanded this work into an additional paper [158] to provide more insight and

show that the trend of high adoption for social card metadata continues to hold when we

examine individual metadata fields even at the expense of older metadata standards.
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11. We established methods for generating the metadata for social cards if a page’s author fails

to supply it [163]. Prior work did not evaluate as large a dataset and did not use the authors’

input as ground truth. These results should assist some of the platforms we reviewed in

Chapter 5.1 who do not seem to be able to produce social cards consistently.

12. We created the tool MementoEmbed [151, 156] to be an archive-aware document metadata

and surrogate service. Future projects can apply the metadata generated by MementoEmbed

for further document analysis.

13. We produced the tool Raintale [143, 156] that will allow others to visualize stories in a

variety of formats and distribute them to popular social media platforms or even plain web

servers.

Hypercane, MementoEmbed, and Raintale are currently being piloted with the National Li-

brary of Australia as part of a grant from the International Internet Preservation Consortium [234].

8.3 CLOSING THOUGHTS

AlNoamany’s work [12] provided a foundation for us to build on, but it was tied to the web

landscape of 2016. In five years, we have seen target platforms die (e.g., Storify), and new defini-

tions of storytelling arise (e.g., Snapchat stories). This new environment required a rethinking of

the whole process. Along the way, we opened up the processes of storytelling to new frontiers.

The questions we started with were analogous to our storytelling model. Which mementos are

worthy of storytelling? How do we visualize them? How do we distribute the whole? How do we

augment the story with additional content? How do we know if what we are doing is better than

the existing state-of-the-art? We have addressed these questions and more.

As noted in Chapter 3.1 existing web archive exploration tools (e.g., ArchiveSpark) are de-

signed for archivists who have access to their own WARCs. Instead of being constrained to these

limitations, we applied the Memento Protocol [155, 312] to ensure that we and others could over-

come them. With Hypercane, Raintale, and MementoEmbed, web archive users will be able to

tell their own stories. Consider the next project where you need to apply documents from the past.

You might need to decide between web archive collections. You may need to explore a particular

aspect of a collection. With the tools and approaches we have presented, what story will you tell

with web archives?
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