
Personal Knowledge Models

with Semantic Technologies

Max Völkel

Personal Knowledge Models
with Semantic Technologies

Max Völkel

2

Bibliografische Information

Detaillierte bibliografische Daten sind im Internet über
http://pkm.xam.de abrufbar.

Covergestaltung: Stefanie Miller

c© 2010 Max Völkel, Ritterstr. 6, 76133 Karlsruhe

Alle Rechte vorbehalten. Dieses Werk sowie alle darin enthaltenen
einzelnen Beiträge und Abbildungen sind urheberrechtlich geschützt.
Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsschutz
zugelassen ist, bedarf der vorigen Zustimmung des Autors. Das gilt
insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen,
Auswertung durch Datenbanken und die Einspeicherung und Verar-
beitung in elektronische Systeme.
Unter http://pkm.xam.de sind weitere Versionen dieses Werkes
sowie weitere Lizenzangaben aufgeführt.

Zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswis-
senschaften (Dr. rer. pol.) von der Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation von
Dipl.-Inform. Max Völkel.

Tag der mündlichen Prüfung: 14. Juli 2010
Referent: Prof. Dr. Rudi Studer
Koreferent: Prof. Dr. Klaus Tochtermann
Prüfer: Prof. Dr. Gerhard Satzger
Vorsitzende der Prüfungskommission: Prof. Dr. Christine Harbring

Abstract
Following the ideas of Vannevar Bush (1945) and Douglas Engelbart (1963),
this thesis explores how computers can help humans to be more intelligent.
More precisely, the idea is to reduce limitations of cognitive processes with
the help of knowledge cues, which are external reminders about previously
experienced internal knowledge. A knowledge cue is any kind of symbol,
pattern or artefact, created with the intent to be used by its creator, to re-
evoke a previously experienced mental state, when used. The main processes
in creating, managing and using knowledge cues are analysed. Based on the
resulting knowledge cue life-cycle, an economic analysis of costs and benefits
in Personal Knowledge Management (PKM) processes is performed.

The main result of this thesis is a meta-model for representing knowledge
cues, which is called Conceptual Data Structures (CDS). It consists of three
parts: (1) A simple, expressive data-model; (2) A small relation ontology
which unifies the relations found in the cognitive models of tools used for
PKM tasks, e. g., documents, mind-maps, hypertext, or semantic wikis. (3)
An interchange format for structured text together with corresponding wiki
syntax.

These three parts together allow representing knowledge cues in varying
degrees of granularity (number and size of items), structuredness (relations
between items), and formality (fraction of items typed with items from a
meta-model) in a unified way.

The CDS model has been implemented in Java. Based on this reference
implementation several tools for personal knowledge management have been
created (one by the author of this work and two external tools). All three
tools have been used in a comparative evaluation with 125 person-hours.
In the evaluation, the Conceptual Data Structures (CDS) data model has
successfully been used to represent and use (retrieve) artefacts in a uni-
form fashion that are in different degrees of formalisation. Although still
research prototypes, the CDS Tools had interaction efficiency and usability
ratings compared to Semantic MediaWiki (SMW). Using CDS Tools, users
produced significantly more non-trivial triples than with SMW. The created
Relation and concept hierarchies can be re-used in a semantic desktop.

4

Acknowledgements
I thank my professor, Prof. Dr. Rudi Studer, for letting me pursue what
I wanted to pursue, taking care of my environment. I thank the whole
research group which has a fascinating attitude of open criticism and honest
feedback. Of course, I also thank Prof. Dr. Klaus Tochtermann for his
valuable feedback. I thank Dr. Andreas Abecker for a prompt and valuable
review of the complete thesis.

I thank (in order of appearance) Alexander Grossoul, Mike Sibler, Sebas-
tian Gerke, Benjamin Heitmann, Markus Göbel, Andreas Kurz, Sebastian
Döweling, and Mustafa Yilmaz who helped to research and develop various
parts of this work with their student research projects (Studienarbeiten)
and diploma thesis’ (Diplomarbeiten). I thank additionally (in order of
appearance) the students that helped to develop the CDS code base, espe-
cially Werner Thiemann, Daniel Clemente, Konrad Völkel, Andreas Krei-
dler, Björn Kaidel, and Daniel Scharrer. Furthermore, I thank the students
that helped to evaluate the final CDS tools.

I would also like to thank a lot of people for reviewing this thesis in
various stages. All mistakes that are left are my fault, not theirs. I thank
Jens Wissmann and Peter Wolf for reviewing chapter 4. I thank Konrad
Völkel for reviewing chapters 1, 3 and 4. I thank Mark Hefke for providing
valuable feedback on the economic analysis. I thank David Elsweiler for
language and style checking various parts of the thesis.

I thank Heiko Haller for many enthusiastic day-long discussions about the
obscurest details of the CDS model. His constant nagging questions helped
to shape the CDS model and API.

I thank Stephan Bloehdorn and Denny Vrandecic for many critical dis-
cussions at our favourite Sushi place.

And I thank Anke and my parents for being patient with me in the long
times where I was sitting at my desk.

Part of this work has been funded by the European Commission in the
context of the IST Integrated Project NEPOMUK1 – The Social Semantic
Desktop, FP6-027705. Another part of this work has been done in “WAVES
- Wissensaustausch bei der verteilten Entwicklung von Software”2, funded
by BMBF, Germany. Yet another part of this work was supported by the
European Commission under contract FP6-507482 in the project Knowledge
Web3.

The expressed content is the view of the author but not necessarily the
view of any sponsor.

1http://nepomuk.semanticdesktop.org/ (accessed 06.01.2010)
2http://waves.fzi.de/ (accessed 06.01.2010)
3http://knowledgeweb.semanticweb.org (accessed 06.01.2010)

5

Presumably man’s spirit should be elevated if he can better re-
view his shady past and analyze more completely and objectively
his present problems. He has built a civilization so complex that
he needs to mechanize his records more fully if he is to push
his experiment to its logical conclusion and not merely become
bogged down part way there by overtaxing his limited memory.

Vannevar Bush (1945, p. 108)

Contents

1 Introduction 9
1.1 Readers guide . 9
1.2 Motivation . 12

1.2.1 Focus on the individual knowledge worker 13
1.2.2 Limits of the individual 18
1.2.3 External representations 20
1.2.4 Automating symbol manipulation 23
1.2.5 Economic considerations 28
1.2.6 Summary . 30

1.3 Research questions and contributions 30
1.4 Solution overview . 32

2 Foundations 35
2.1 Modelling, models and meta-models 36
2.2 Documents . 39
2.3 Desktop operating system and the file metaphor 42
2.4 Hypertext and the World Wide Web 42
2.5 Software engineering . 45
2.6 Semantic technologies . 46
2.7 Note-taking . 51
2.8 Personal Information Management 53
2.9 Wikis . 54
2.10 Mind- and Concept Maps . 56
2.11 Tagging and Web 2.0 . 57
2.12 Knowledge acquisition . 59
2.13 Human-computer interaction 60

3 Analysis and Requirements 61
3.1 Use cases in PKM . 61
3.2 Processes in PKM . 66

3.2.1 Existing process models 66
3.2.2 Knowledge cue life-cycle 69

3.3 Economic analysis . 78
3.3.1 Costs and benefits without tools 80
3.3.2 Costs and benefits with tools 81
3.3.3 Detailed analysis . 84
3.3.4 Summary and conclusions 90

3.4 Requirements for Knowledge Models from literature 93

Contents 7

3.4.1 Interaction for codify and augment process 93
3.4.2 Interaction for retrieval process 103
3.4.3 Expressivity . 104

3.5 Analysis of relations from conceptual models of PKM-tools . 105
3.5.1 Documents . 109
3.5.2 Hypertext . 109
3.5.3 File explorer . 111
3.5.4 Data structures . 112
3.5.5 Mind- and Concept Maps 113
3.5.6 Collaborative information organisation tools 114
3.5.7 Summary of common relations 114

3.6 Knowledge representation . 115
3.6.1 Data exchange formats 115
3.6.2 Ontology and schema languages 116
3.6.3 Common relations . 119

3.7 Requirements summary . 120
3.8 Conclusions . 120

4 Conceptual Data Structures 123
4.1 CDS data model . 124

4.1.1 Informal description and design rationale 125
4.1.2 Formal definition . 133
4.1.3 Queries . 138
4.1.4 Operations . 140

4.2 CDS relation ontology . 143
4.2.1 Informal description 144
4.2.2 Formal definition . 148

4.3 Syntax and structured text 152
4.3.1 Structured text interchange format (STIF) 153
4.3.2 From syntax to structured text 156
4.3.3 From structured text to CDS 157
4.3.4 Summary . 162

4.4 Using CDS . 163
4.4.1 Authoring and stepwise formalisation 163
4.4.2 Mapping to semantic technologies 164
4.4.3 Retrieval . 166
4.4.4 Modelling examples 168

4.5 Summary and conclusions . 169
4.5.1 Feature summary . 169
4.5.2 Summary . 172

5 Realisation 175
5.1 CDS Reference Implementation 175
5.2 Hypertext Knowledge Workbench 180

5.2.1 User interface . 180
5.2.2 Implementation . 191

5.3 Further CDS-based tools . 196
5.3.1 iMapping – a zooming user interface tool 196

8 Contents

5.3.2 QuiKey – a graphical command-line 198
5.4 Conclusions . 199

6 Evaluation and Related Work 201
6.1 Fulfilment of requirements . 203
6.2 Formative user study . 203

6.2.1 Method . 205
6.2.2 Results . 206
6.2.3 Discussion . 207

6.3 Comparative user study . 208
6.3.1 Method . 208
6.3.2 Results . 217
6.3.3 Discussion . 225

6.4 Comparing CDS and RDF . 226
6.5 Related work . 228

6.5.1 CDS data model . 228
6.5.2 CDS relation ontology 229
6.5.3 Structured text interchange format (STIF) 229
6.5.4 Hypertext Knowledge Workbench 230

6.6 Conclusions . 231

7 Discussion, Future Work, and Conclusions 233
7.1 Discussion . 233
7.2 Future work . 238
7.3 Conclusions . 241

A Appendix 247
A.1 Foundations: Embedding RDF in HTML 247
A.2 Analysis: PKM survey . 247
A.3 Structured text interchange format 248

A.3.1 A STIF Wiki Syntax 248
A.3.2 STIF Document Type Definition (DTD) 251

A.4 XML-based persistence format for CDS 253
A.5 Evaluation . 255

A.5.1 Fulfilment of requirements 255
A.5.2 Study task descriptions 258
A.5.3 Retrieval questions . 268
A.5.4 Retrieval schedule . 269
A.5.5 User study results . 271
A.5.6 Relation and concept hierarchies 274

Bibliography 287

List of Figures 307

List of Tables 309

Glossary 311

1. Introduction

This chapter motivates this work and provides an overview of the work
presented.

1.1. Readers guide
Following the ideas of Douglas Engelbart (1963), this thesis explores how
computers can help humans to be more intelligent. More precisely, the
idea is to reduce limitations of cognitive processes with the help of external
reminders about internal knowledge. That is, the whole process of thinking,
taking notes, searching notes, re-using knowledge encoded in personal notes,
should become more productive. Users should be supported – but not forced
to – to structure, organize and formalise their notes, so that better retrieval
options become possible.

1. In the first chapter, the motivation for this thesis and a definition of
personal knowledge management (PKM), relating to knowledge man-
agement (KM) are given. PKM is characterised as a decision where
the user has to weigh the costs against the benefits, i. e.: Will my
effort to record and structure knowledge be rewarded in the future
with enough benefit? This chapter introduces the key terms “knowl-
edge cue”, and “knowledge model” and explains how these artefacts
can vary in size, structuredness and degree of formality. The chapter
concludes by summarising the solution idea (page 32) and stating the
research questions (page 30).

2. The foundations of this thesis are laid in Chapter 2 (page 35). Longer
sections highlight relevant concepts and references from models in a
general sense, and from documents. Both have been major conceptual
influences for this thesis.
On a more technical side, file systems, hypertext, software engineer-
ing, semantic web, wikis, mind- and concept mapping, and tagging
are described. These more technical topics are analysed in depth in
Chapter 3.
A fusion of wiki and semantic web works was the starting point of this
work. The decoupling from wiki-content and wiki-user interface has
been described already by Völkel (2005a). Later these ideas led the
author to start a workshop series on semantic wikis, create the first
article on Semantic wiki in Wikipedia1, and then to this thesis.

1http://en.wikipedia.org/wiki/Semantic_wiki (accessed 06.01.2010)

10 INTRODUCTION

A relation to existing approaches can be found in the fields of note-
taking, personal information management, and knowledge articula-
tion, which are also introduced.

3. Chapter 3 looks into use-cases in PKM, goes over to existing process
models of which none describes PKM satisfactory and introduces a
new knowledge cue life-cycle model. This model is used to analyse
in depth economic factors in PKM from which first requirements for
PKM representation models as well as for PKM tools are derived.
Literature analysis reveals further requirements.
The existing conceptual models of popular tools from the fields in-
troduced in Chapter 2 are analysed with the intention to find com-
monalities among them and gather structural features that should be
present in future PKM tools simply because people have used them
successfully in the past, which also means, they don’t have to learn
new concepts.
A similar analysis is performed for commonly used relations in tools
that are often used for doing PKM tasks.
The chapter concludes with a concise requirements table.

4. In Chapter 4 the solution is presented. The solution consists of a
simple data model for storing knowledge cues. This model represents
content of varying granularity as well as semantic links between them.
This data model is accompanied with a relation ontology that contains
the most-commonly used relations from popular tools used for doing
PKM tasks. It derives and explains a hierarchy of relation types,
suitable to describe personal knowledge models.
A Structured Text Interchange Format (STIF) is presented as well as
ways to transform instances of this model into CDS and vice versa.
STIF is a building block in the gradual formalisation of content.

5. Chapter 5 presents different prototypical tools based on the CDS
model. The Hypertext Knowledge Workbench (HKW) is an editor
for personal, CDS-based knowledge models. The editor is based on a
generic CDS-API, on which several other tools have been realised by
third parties. Those CDS-based tools are also presented.

6. Next, different kinds of evaluation are presented in Chapter 6. A part
of the evaluation is the rational analysis of fulfilled criteria. Further-
more, five participants worked together for 125 hours with CDS Tools
and a comparable semantic modelling tool. Their resulting knowledge
models have been assessed and compared in various ways.
The chapter continues by presenting a number of approaches related
to the different parts of the solution.

7. In Chapter 7, a number of future research themes are identified and
presented. Finally, the main contributions of this thesis are summa-
rized.

1.1 Readers guide 11

8. The appendices present the complete set-up of the evaluation as well
as detailed result tables.

Notational conventions

• This thesis uses the female form “she” for examples, but male readers
should not feel excluded.

• The margin notes allow the selective reader to quicker find relevant parts
of the text. Some margin notes also give a short summary of the content.
The sequential reader can ignore the margin notes without missing any
content.

• Each requirement in this thesis has a number and a short reference-name.
Example: “Req. 8 formality levels”

• The different types of Items in the CDS model are typeset in small
capitals.

12 INTRODUCTION

1.2. Motivation
Our world is constantly changing and the rate of change has constantly
increased. Today, changes are in large part caused by the humans them-
selves, due to the growth of their global population and the ability to use
technology to change matter, i. e., in agriculture, energy production, goods
production, and transportation. Part of the ability to steer the forces of
nature and humans in controlled ways can be attributed to the invention
of management: “The most important contribution of management in the
20th century was to increase manual worker productivity fifty-fold (Drucker,
1999).”

The fast rate of change in the environment and in human societies causesGreat
Problems great wealth, but also great problems, e. g., social problems, economic prob-

lems and ecological problems (Vester, 2000). As an example, very few people
had foreseen or understood the financial crisis in 2008. Many bankers said
in interviews that nobody could understand the complex relationships of
markets and financial products any longer.

Humans must tackle the pressing ecological and economical problems.
Bush (1945, p. 108) summarised the motivation for this thesis nicely:

“Presumably man’s spirit should be elevated if he can better
review his shady past and analyze more completely and objec-
tively his present problems. He has built a civilization so com-
plex that he needs to mechanize his records more fully if he is
to push his experiment to its logical conclusion and not merely
become bogged down part way there by overtaxing his limited
memory.”

Drucker (1999) puts it more optimistically and foresees: “The most impor-
tant contribution of management in the 21st century will be to increase
knowledge worker productivity – hopefully by the same percentage. [. . .]
The methods, however, are totally different from those that increased the
productivity of manual workers.”

What could be methods to increase the productivity of knowl-
edge workers? This translates to efficiency and effectiveness, i. e., also to
be able to solve large or hard problems that could not yet be solved at all.

Due to the high degree of specialisation in our society, efficient knowledgeTowards a
knowledge-
based economy

organisation and sharing has become a critical success factor. In 2000, the
European Commission issued the Lisbon Strategy2 to stimulate economic
growth. The first one of three pillars is:

. . . preparing the ground for the transition to a competitive, dy-
namic, knowledge-based economy. Emphasis is placed on the
need to adapt constantly to changes in the information society
and to boost research and development.

2http://lisbon.cor.europa.eu/ (accessed 06.01.2010)

1.2 Motivation 13

As our society becomes more knowledge-intensive, future progress depends Need for more
automation
of knowledge
work

on efficient and effective ways to automate knowledge processing. Full au-
tomation is an unrealistic goal, but partial automation is feasible and nec-
essary. This is analogous to manufacturing, where repetitive or physically
hard tasks have been replaced by machines and robots.

1.2.1. Focus on the individual knowledge worker
This section introduces the terms knowledge, knowledge management and
finally personal knowledge management is defined.

Knowledge North (2002) defines the terms signal, data, information, knowl-
edge, and wisdom in a layered fashion, one building upon another. By this
definition, knowledge itself cannot be stored in information systems, only
information can. Maurer (1999, p. 12) states that knowledge resides in the
heads of people and the computer can only store “computerized knowledge”
which is to be understood as “shadow knowledge”, a “weakish image” of
the real knowledge. Knowledge cannot be stored in an information system.
In fact, an information system, such as a computer, can only store data,
i. e., bits. Together with data about this data (metadata) a program can
interpret the data. In this respect, some of the data becomes information
for the computer. The Handbook on Knowledge Management (Holsapple,
2004) makes a clear distinction between a representation and knowledge
being represented by it. Knowledge is then defined as the usability of the
representation to a human interpreter in a given environment, trying to
accomplish a certain task. In this view, a computer can store only infor-
mation, not knowledge itself. But it can certainly represent knowledge as
information.

Blackler (1995) sees knowledge embrained (conceptual, implicit), embod-
ied (tacit, implicit), encultured (shared beliefs), embedded (in processes)
or encoded (symbolic, external). So he distinguished between conceptual
knowledge that has just not been written down yet and embodied knowledge
that cannot be written down. This thesis deals primarily with conversions
between embrained and encoded knowledge.

Knowledge management The field of knowledge management has inves-
tigated since about 1995 (Stankosky, 2005) how people and knowledge work
together. North (2007) defines knowledge work as work based on knowledge
with an immaterial result; value creation is based on processing, generating
and communicating knowledge.

Polanyi (1966) makes a distinction between explicit knowledge encoded
in artefacts such as speech, books or web pages, and tacit knowledge which
resides in the individual. The SECI-model of Nonaka (1994, p. 57 ff)
describes knowledge conversions between tacit and explicit knowledge.

14 INTRODUCTION

Nonaka’s model has four integrated processes:

• Socialisation describes a direct transfer of tacit knowledge between hu-
mans.

• Externalisation is the process from tacit to explicit knowledge. Other
researchers call this process codification or materialisation. This step
must happen before any piece of knowledge can be externally stored or
even processed by a computer.

• Combination or re-combination creates new explicit knowledge out of
existing explicit knowledge.

• Internalisation is the process transferring knowledge from explicit repre-
sentations to a humans mind, e. g., when reading a document.

Abecker (2004, p. 26) defines knowledge management as a

• structured, holistic approach

• for sustainable improvement of handling tacit and explicit knowledge
(e. g., know-how, skills, notes, documentation) in an organization

• on all levels (individual, group, organization, interorganizational level)

• in order to better achieve one or more of the organization’s strategic
goals, like decreasing costs, improving quality, or fostering innovation.

Knowledge management approaches have mostly focused on sharing of
knowledge within organisations and teams. Many of the initial approachesTop-down
tried to improve knowledge sharing in a top-down manner, by installing
central repositories for explicit, codified knowledge. Such a single central
database is often either not used by employees or not filled with easy-
to-digest content. Overall, the high expectations towards centralised ap-
proaches have often not been met (Braganza and Mollenkramer, 2002).
Other approaches concentrated on tools such as expert finders and cor-
porate yellow pages, hence less on managing explicit knowledge and more
on direct communication among people (socialisation).

Personal knowledge management (PKM) In 1958, Peter F. Drucker (1985)Knowledge
worker was among the first to use the term knowledge worker for someone who

works primarily with information or one who develops and uses knowledge
in the workplace. Schütt (2003) defines a knowledge worker based on the
works of Drucker (1977) and Taylor (1911): Simplified, workers (doing) are
instructed by managers (thinking). These managers have to manage them-
selves. This self-managing is considered an important characteristic of a
knowledge worker.

In the current Western societies, there is a trend from once rather static
organisations to virtual organisations with short life-spans. The individual
has to change from a loyal employee to a more self-caring, life-long learning,
self-marketing entrepreneur.

1.2 Motivation 15

Management is in general a systematic approach to define goals, mea-
sure, define and execute actions and repeat this control loop until the goal
is reached. Self-managing involves the problem of fulfilling two roles (exe-
cuting and managing) and learning when and how to switch between these
roles. Typical management problems in PKM are, e. g., time and task man-
agement (Grebner, 2009), matching work habits with personal productivity
level variations, investing time into personal learning and PKM improve-
ments, and general work-life balance. As an example, Groth (2006) observes
that often private homepages of researchers get updated more often than
their official homepages. Personal knowledge management focuses on the
productivity of individual knowledge workers. Davenport (2005, p. 6) lists
members of these professions as knowledge workers: Management; business
and financial operations; computer and mathematical; architecture and en-
gineering; life, physical, and social sciences; legal; healthcare practitioners;
community and social services; education, training and library; and arts,
design, entertainment, sports, media.

Knowledge is fundamentally created by individuals (Nonaka and Takeuchi, Focus on the
individual1995, p. 59). This thesis favours a bottom-up approach. By supporting the

individual in his PKM, overall Knowledge Management (KM) of the organ-
isations where the individual is part of is improved. “The knowledge-based
organisation is no more effective than the sum of its knowledge workers’
effectiveness.” (Davenport in Higgison, 2004).

Increasing the individual knowledge worker productivity increases the
productivity of the organisation as a whole. One should focus on the in-
dividual and give individual users incentive and benefit before focusing on
the social network (Oren, 2006, p.8). Management of personal information
and personal knowledge becomes more important as more people work as
knowledge workers, where their capital is their knowledge.

The term personal knowledge has been discussed in great length by Emergence of
PKMPolanyi (1958), reprinted in (Polanyi, 1998), in rather philosophical ways.

Usage of the term can be dated back to at least 1987 “computer-based per-
sonal knowledge management systems can combine and integrate a number
of important resources...” (National Library of Medicine (U.S.), Board of
Regents, 1987, p.40)3. Following publications from the hypertext (Schnase,
Leggett, Hicks, Nürnberg, and Sánchez, 1993) and the database community
(Srinivasan and Zeleznikow, 1990) retained the technical focus. Later pub-
lications started to use the term in a broader fashion, e. g., in the context
of life-long learning (Frand and Hixon, 1999; Alley, 1999). Soon thereafter
the first universities started to offer courses on PKM, in which they taught
students, e. g., how to structure information and create knowledge maps
(Schreiber and Harbo, 2004).

The European Committee for Standardization defines PKM as “A set of Definition:
PKMconcepts, disciplines and tools for organizing often previously unstructured

knowledge, to help individuals take responsibility for what they know and
who they know” (Allan, Heisig, Iske, Kelleher, Mekhilef, Oertel, Olesen,
and (ES), 2004, part 5, p. 12). Higgison (2004) defines personal knowledge

3Search via ACM Digital Library, Google Scholar, and Google Booksearch

16 INTRODUCTION

management as managing and supporting personal knowledge and infor-
mation so that it is accessible, meaningful and valuable to the individual;
maintaining networks, contacts and communities; making life easier and
more enjoyable; and exploiting personal capital. This thesis defines PKM
as follows:
PKM investigates the use of methods and tools to amplify theDefinition
abilities of the individual to work better with knowledge. This can
mean to

• help recalling previously learned knowledge faster (or at all) when it is
required, e. g., with a desktop search engine;

• represent (not store) knowledge in a tool to derive new insights – as it is
done today often with spreadsheet applications4; or

• strategies for filing ideas to retrieve them when needed.

Comparing OKM and PKM In the remainder of this thesis, the term or-
ganisational knowledge management (OKM) is used to distinguish it from
personal knowledge management. Although knowledge management (KM)
could be used as a super-term for OKM and PKM, most works on KM talk
in fact mostly about OKM. OKM is contrasted to PKM by Allan et al.
(2004): “Unlike personal KM, which centres on the individual, organiza-
tional KM depends upon an enterprise-wide strategic decision to actively
manage knowledge through a range of processes, tools and people.”

Davenport (2005, p. 138) notes a need for PKM “Perhaps the single
most important, yet rarely addressed, knowledge worker capability is the
management of the personal information and knowledge environment”.

Table 1.1 compares organisational and personal knowledge management.
PKM takes the perspective of the individual. This perspective is poten-Perspective of

the individual tially better suited to explain individual motivations and behaviour, even
in organisational contexts.

This thesis favours a bottom-up approach. The individual is supported inTop-down vs.
bottom-up his personal knowledge management. This indirectly improves the overall

knowledge management of the organisation where the individual is part of.
Referring to the SECI-model (Nonaka, 1994), PKM is restricted to the

processes externalisation, re-combination, and internalisation – socialisation
with oneself is not possible. Thus PKM is “communication with oneself”.
A more detailed PKM process model is presented in Sec. 3.2.

PKM tries to support individuals in effectively storing, structuring, link-
ing, formalising and retrieving knowledge cues. Thus there is the danger
that knowledge islands are created. That might indeed be the case, but

4Given some numbers a formulas, it is easy to calculate simulations with n steps or
get quickly the results of many calculations, which would be tedious to enter in a
calculator. Even statistical analysis or visualisation tools are usually available in a
spreadsheet tool.

1.2 Motivation 17

Typical attributes OKM PKM
Perspective The organisation The individual
Approach Top-down Bottom-up
SECI Socialisation Externalisation, inter-

nalisation
Degree of structured-
ness

Structured (“publica-
tion”)

Semistructured (“per-
sonal note”)

Degree of formality Semiformal (“forms”) Informal (“plain
text”)

Number of notes per
person

Few Many

Education Mature Poor

Table 1.1.: Comparing Organisational and Personal Knowledge
Management

these knowledge islands can develop into rich, interlinked knowledge mod-
els, which can be shared with others. The result is a knowledge distribution
process not in a centralised, but rather a peer-to-peer fashion, thus much
closer to existing social processes.

According to Gartner, knowledge management is shifting from a focus on Focus on the
individualenterprise productivity to a focus on individual knowledge worker productiv-

ity (Caldwell, 2002). This thesis focuses on the individual knowledge worker
and ways to make her or him more productive. Top-down approaches em-
phasize sharing, however, if knowledge is not externalised, there is nothing
to share. Bottom-up approaches empower a knowledge worker with tools
for externalisation and internalisation (e. g., desktop search and enterprise
search).

Most traditional enterprise KM products have no or poor support for Degree of
formalitymanaging truly private and personal notes. The very idea of enterprise

knowledge management is usually the sharing of content within teams or
even the whole organisation. Psychologically, this turns each entry of the
user into a semi-official publication. The author has to carefully judge the
social impacts on her professional reputation etc. The net effect for most
personality types are few written notes. Those notes that are published in
an enterprise KM system will be rather well-structured and well-written. In
PKM, a typical user will write many more notes, many of them probably
using just the amount of structure needed to be understandable by the
author. This notion of a “degree of formality” is explained in depth in
Sec. 1.2.4. A tool which supports management of early, rough, unshare-able
notes and structures helps to create shareable knowledge as well. Even if
only some of them will be shared with others, such emerging digital artefacts
might not exist at all if they could not been drafted quickly and informally
in the beginning.

In OKM there exist a large number of specialist training courses on best Education
practices, but for PKM there are few such offers. The market consists
mostly of courses on time management and “How To”-books. Individuals

18 INTRODUCTION

thus have to find out everything for themselves (Mitchell, 2005). Toffoli
(2002) stresses the importance of soft factors such as the need for education
in personal knowledge management which, in his view, includes the ability to
write programs for knowledge automation, transformation and filter tasks.

Personal knowledge management and the bottom-up approach have been
less explored than organisational knowledge management as a means to
improve productivity.

This section introduced personal knowledge management (PKM) as op-Summary
posed to organisational knowledge management (OKM). PKM can be seen
as a sub-field of general KM which looks with the perspective of the indi-
vidual on knowledge management problems. This section motivated why
this thesis focuses on the individual knowledge worker.

1.2.2. Limits of the individual
This section describes the role of external representations in problem solving
and relevant cognitive limits of the individual.

Problem solving The goal of this thesis is to make knowledge workers
more productive. In particular, to enable them become better at problem
solving, in order to be able to tackle major social, economic and ecological
issues. Problem solving has been defined as “any goal-directed sequence of
cognitive operations” (Anderson, 1980, p. 257).

According to Jonassen (2000, p. 10) problem solving varies along at least
three different dimensions:

• (a) problem type,

• (b) problem representation, and

• (c) individual differences.

An analysis of problem types is given by Dörner (2003). Complicated prob-
lems have predictable, but difficult to calculate relations. Complex problems
are those with unpredictable parts. Wicked problems (Rittel and Webber,
1973) are those with incomplete, contradictory, and changing requirements,
as well as feedback loops. Vester (2000) presents a methodology to tackle
complex problems by modelling the feedback loops of the problem domain.
For a given knowledge worker and given problem, the only way to make the
individual more productive is by working on the problem representation.

“Solving a problem simply means representing it so as to make the solu-
tion transparent” (Simon, 1981, p. 303). Zhang and Norman (1994, p. 2)
defines the representational effect as “the phenomenon that different isomor-
phic representations of a common formal structure can cause dramatically
different cognitive behaviours.”

To summarise, internal and external representations heavily influence
problem solving performance.

1.2 Motivation 19

Cognitive limits In knowledge work, people are frequently confronted with
two limitations of the human mind: long-term memory recall and short-
term memory capacity. Both limits degrade performance on tasks such as
learning, understanding, or sense-making. Other limitations such as missing
creativity or insufficient ability to structure have also a huge influence on
the ability to solve problems, learn and understand, but these limits are not
addressed in this thesis.

Long-running tasks require a knowledge worker to remember facts over a Long-term
memory recalllong period of time. As recall degrades over time, most knowledge workers

take notes to remember themselves later. Today, knowledge workers are
flooded with information (Alvarado, Teevan, Ackerman, and Karger, 2003).
Often the purpose of unexpectedly encountered facts is unclear, so they are
filed for later use.

A typical example of a long-running task is research on a given domain,
e. g., for creating a presentation or publication. A researcher will encounter
new facts at unexpected times, e. g., when working on another task.

External representations can provide memory aids (Zhang and Norman,
1994, p.32); hence limits of the long-term memory can be overcome partially
with tools to help remembering or reconstructing knowledge.

Human short-term memory can hold only around seven objects at a time Short-term
memory limits(Miller, 1956). Later works in psychology coined the term “cognitive load”

(Sweller, 1988) as a concept to measure how much short-term memory ca-
pacity is required for certain tasks. Card in (Jones, Pirolli, Card, Fidel,
Gershon, Morville, Nardi, and Russell, 2006, p. 2) even claims colloquially
“Most significant cognition is too complicated to fit in the head”, which
means one must use external representations.

The importance of cognitive load is widely acknowledged. Cognitive load
can be influenced, e. g: (1) The ISO standard 10-075 series (ISO, 1991a)
gives general advice how to handle mental workload. (2) For user interfaces,
Shneiderman (1998, p. 75) advises to ”Do everything possible to free the
user’s memory burden”.

Large or complex problems can often not be fully represented internally,
thus external knowledge representations must help to “swap” concepts. The
limitation of the short-term memory can be partly relieved by using external
knowledge representations, e. g., by taking short notes, or drawing a diagram
or mind-map that help keep an overview over a somewhat larger set of Items
and quickly bring each single one into consciousness on demand (anecdotal
evidence).

A knowledge worker cannot rely solely on her long-term memory to re-
call all encountered knowledge and task-related information later on. As a
result, she has to create external representations as a memory-aid. Second,
if the knowledge involved in the tasks becomes too complex she must work
with external representations to reduce her cognitive load. Both of these
cognitive limits can be addressed by providing adequate external, modifi-
able, scalable representations.

20 INTRODUCTION

1.2.3. Shifting cognitive capacity limits with external
representations

This section introduces knowledge cues as a special kind of external artefact.

Figure 1.1.: Three examples of commonly used knowledge cues

Introducing knowledge cues The term cue5 has been used by Haller (2003)
to denote a stimulation which re-activates previously experienced knowl-
edge. A knowledge cue serves as a memory prosthesis (Lamming, Brown,
Carter, Eldridge, Flynn, Louie, Robinson, and Sellen, 1994). Fig. 1.1 shows
three examples of commonly used knowledge cues: A handkerchief is con-
sidered as much a storable artefact as a hand-written note or a digital docu-
ment. A letter written to a friend that is not intended to be read later again
by its author is not a knowledge cue. An email, which is stored in the sent
folder, should in most cases be considered a knowledge cue as most authors
are well aware of the ability to re-read sent emails. While the knowledge
cue is created, its creator has certain knowledge in mind that she wants to
be reminded of. This is the purpose of creating the knowledge cue. For
person A, an unread email from person B is not a knowledge cue. “If a
piece of written material has not yet informed them, then they cannot sen-
sibly file it anyway because its subsequent use or role in their world is still
undetermined” (Kidd, 1994).

If the way the key is lying on the desk reminds a person of something,
then this is only considered a knowledge cue if it has been placed there on
purpose to act as a reminder. If the key has not been put on the desk with
the intention to re-evoke this knowledge, it is not considered a knowledge
cue in this thesis. A knowledge cue can also be a voice recording.

Reinmann and Eppler (2007) use the term “personales Wissen” to denote
knowledge residing in a person. Conceptual and graphical knowledge can
be represented by knowledge cues. This includes some knowledge which
cannot be externalised, as defined by Nonaka and Takeuchi (1995). Hence,
PKM deals with a broader spectrum of knowledge, compared to OKM.

Given all these characterisations, the term knowledge cue (as it is usedDefinition:
Knowledge cue in this thesis), can now be defined. A knowledge cue is

• any kind of symbol, pattern or artefact,

• created with the intent to be used by its creator,

• to re-evoke a previously experienced mental state
(activated knowledge), when viewed or used otherwise.

5German term: “Hinweisreiz”

1.2 Motivation 21

Strictly speaking, an existing artefact can also act as a knowledge cue if
it is explicitly associated with a current mental state, e. g., “I take now this
red pen which should remind me tonight of investigating Dr. Müller’s idea
to cancer research”. Here the aspect of creation was just the explicit cre-
ation of the association, the red pen existed before. The definition includes
artefacts created for target audiences of which the creator is a member,
e. g., when somebody takes meeting minutes in a team meeting that will
be read (among others) also by the person who took the minutes. Using
includes internalisation and transformation. Colloquially, a knowledge cue
is simply a “note to self”. It does not need to be self-contained, as it suffices
to remind the user of the knowledge that was present when the knowledge
cue was created. The knowledge cue might or might not contain knowledge,
the important characteristic is that it was created with some knowledge in
mind and the purpose to re-evoke this knowledge later in its creator’s mind.

The concept of knowledge cues explains how external representations can
be useful, even if they do not contain knowledge. A knowledge cue might
make no sense to others but evokes some kind of knowledge in the authors
mind. Note that the creation of a knowledge cue is not always an external-
isation process in the sense of the SECI-model. The knowledge cue is just
a reminder for the person about some knowledge. The association between
the artefact and a mental state is not externalised. What content do knowl-
edge cues contain? Simple knowledge cues do not contain anything. E. g.,
a knot in a handkerchief does not “contain” anything. Other examples for
simple knowledge cues are the letters of the alphabet, entries in a to-do-list,
a photo of a colleague, or a thumbnail picture of a book cover. Knowledge
cues are usually not self-contained, i. e., their interpretation often needs a
lot of context information.

Knowledge is not only encoded in artefacts, but also in the relations
between artefacts. More complex knowledge cues can be composed of a
set of other knowledge cues, e. g., a picture album can contain a number
of pictures. Similarly, a knowledge cue can be represented as a connection
between other knowledge cues. In the analogue world, such connections can
be represented merely by physical placement or more implicit encodings
such as references in text or number systems on index cards.

Analogue knowledge cues are usually easy to create but expensive to Limited
modifiability
and scalability

modify and query. The most prominent PKM tool in use today is probably
pen and paper. Even in the presence of powerful smart-phones and personal
digital assistants (PDA), most people still use pen and paper for ubiquitous
knowledge cue creation. However, pen and paper clearly has limits. It is
not possible to re-arrange items on a sheet of paper without erasing and re-
drawing or re-writing it. Second, a sheet of paper has clearly defined size,
which limits the growth of a knowledge model. Using more than one sheet
also has its management problems beyond a certain number of sheets. Both
problems, modifiability and scalability, can be solved with digital knowledge
cues.

22 INTRODUCTION

Digital knowledge cues can be stored and retrieved on a computer. OnDigital
knowledge
cues

a computer, a knowledge cue can be represented as a snippet of text in a
file, in a filename, or even in a part of a filename. It can also be a folder, or
the fact that a certain existing file has been placed into a certain existing
folder. In this respect, the organisation and connection of information can
itself be a knowledge cue. In fact, any kind of manipulable state, in the
computer science sense, can act as a knowledge cue. A knowledge cue can be
represented as a kind of content or as connections between other knowledge
cues. Digital knowledge cues can contain a countless number of digital files
such as documents, images, data bases, executable programs, etc. Digital
knowledge models can be modified over and over again and their scalability
is usually not limited by physical space but by the human’s limited ability
to navigate in large knowledge models.

For improved readability, the remainder of this thesis uses the term knowl-
edge cue to denote a digital knowledge cue, unless noted otherwise.

Bernstein, Kleek, Karger, and monica mc schraefel (2008) introduce the
notion of information scraps defines as “an information item that falls out-
side all PIM tools designed to manage it.” Information scraps can be used
as knowledge cues. A more detailed characterisation is given by Bernstein,
Kleek, monica mc schraefel, and Karger (2007):

Information scraps – small pieces of user-generated data which
fit poorly within existing filing paradigms – represent a signifi-
cant percentage of our information workspace, yet to date HCI
research has found no satisfactory solution for them. Scraps
run counter to many of the assumptions of our current filing
paradigms: for example, assumptions that all data must be given
an unambiguous filing location and name immediately upon cre-
ation. [...] We define information scraps as short, self-contained
notes intended for their author’s use. Information scraps typ-
ically span a few words to a few partial sentences in length,
containing only enough clues to evoke the complete thought in
the author’s mind. They serve a variety of purposes, includ-
ing functioning as reminders, memory aids, or holding places for
incomplete thoughts.

Bernstein, Kleek, Karger, and monica mc schraefel (2008) list also some
examples of information scraps that are not necessarily knowledge cues, if
they have not been created to remind of a previously experienced knowledge,
such as “Song lyrics and guitar tabs taped on the wall”or “A copy of an
academic transcript saved in a text file”. In short, information scraps are ill-
managed personal information items whereas knowledge cues are explicitly
created artefacts that might or might not be managed well.

Again, any entity from labels up to documents, or connections between
entities, can be a knowledge cue. What matters, is that the knowledge cue
has been created by a knowledge worker. Therefore an incoming email,
which has not been read yet, is not a knowledge cue. Once the email has
been filed into a folder – or at least been read – re-finding this email can re-
evoke some knowledge. Going into the details, the subject line of an email,

1.2 Motivation 23

of which the body has not been read yet, can be considered a knowledge
cue. Ultimately, any collection of bits that a human associated with some
mental concepts can be considered a knowledge cue.

Personal knowledge models From the perspective of a knowledge cue
creator, a knowledge cue represents a part of a mental model. A set of
interrelated knowledge cues can represent a larger, more complex mental
model. This composition of knowledge cues is itself a knowledge cue (be-
cause the composition has also been created willfully to remind its creator of
something). However, for compositional knowledge cues the term knowledge
model is more appropriate. Note that this thesis uses the term knowledge
model in a much broader fashion than, e. g., in artificial intelligence research.

Models can be categorised as symbolic, i. e., consisting of interrelated Symbolic and
non-symbolic
models

entities (which act as symbols), or non-symbolic models, e. g., miniature
buildings as often used in architecture. Knowledge models are symbolic
models. They represent knowledge as the choice of which symbols are used
from a set of possible symbols that could be used, plus the relations between
these symbols.

A preliminary definition6 of the term personal knowledge model can be
stated as follows:

A personal knowledge model is a collection of knowledge cues.
These knowledge cues can be linked by directed7, typed relations.
Each knowledge cue can contain a piece of text, even a single word,
or binary content. The knowledge model may additionally contain other
artefacts than knowledge cues (e. g., unread emails or other digital objects).

The remainder of this work uses the term knowledge model to denote a
personal knowledge model.

If the knowledge model contains knowledge cues created from others, it
is a collaborative knowledge model. If it contains no knowledge cues, it is
not a knowledge model.

Using external artefacts (here knowledge cues and knowledge models) al-
low reducing the cognitive load on the short-term memory (e. g., multiplying
two large numbers assisted with paper and pencil) and helps to remember
more facts over a longer period of time (e. g., writing a diary, using a lab
diary, bookkeeping in a company). However, using external artefacts has
also the cost of creating, maintaining and using them. The next section
looks into ways to reduce some of these costs and increase the value of the
external artefacts.

1.2.4. Automating symbol manipulation
Digital knowledge cues can be processed by a computer and hence allow
automating manipulation processes. In practice, this automation is, e. g,
manifested as full-text search, queries in a database, search- and replace
commands, but also in advanced technology such as compilers or inference

6The complete definition is given on page ??.
7Directed relations allow to encode undirect relations, but not the other way round.

24 INTRODUCTION

engines (see below and Sec. 2.6. Automating symbol manipulation can lower
the cost of information processing in such dramatic ways that some ques-
tions can be answered, which could not be answered before with available
resources.

Seminal articles by Bush (1945) and Engelbart (1963) describe imaginaryGeneric
external
representations

tools that allow an individual to work more efficiently and more effectively
with generic external representations of knowledge. Both projects let a
user create and connect knowledge cues in flexible and sophisticated ways.
As a result, a user is no longer restricted to editing linear documents or
two-dimensional drawings but can instead create a complex, abstract rep-
resentation of a mental model.

Degree of Explicitness The distinction of tacit and explicit knowledge
made by Polanyi (1966) is still in use today, cf. Nissen (2005). The Cynefin
model (Despres and Chauvel, 2000) and the Ba model (Nonaka and Konno,
1998), conclude that external and internal (tacit) knowledge are two ex-
tremes on a spectrum. I. e., knowledge resides partially in the minds of
people and can partially be codified as external artefacts.

Boettger (2005) describes a formality spectrum from personal notes to
documents intended for the general public which states that notes have to
be more explicit, the less well known the audience is for the author or the
less familiar the audience is with the topic. This notion can be extended
by including a person doing PKM, who reads its notes on the same day, or
weeks or years later (c f. Fig. 1.2). In this respect, writing for oneself later
in time, can be seen as a special audience.

PKM OKM
degree of structure/semanticsundetailed,

rough,
short,
prior knowledge assumed

Detailed,
exact,

understandable,
common codes,

meaning is reconstructable
recipient

me, now

People I know well Large public

People who know
the topic well

People who are
new to the topic

me, days later me, years later

Figure 1.2.: From Personal to Organisational Knowledge Management.
Based on Boettger (2005). An individuals at different points
in time is compared to different social groups.

Degree of Structuredness Storing explicit knowledge, e. g., encoded as
text and hypertext, in a computer allows retrieval, e. g., by full-text search
and by browsing links. Structured databases and semi-structured document
formats (e. g., XML) allow answering queries from the user with short, con-
cise answers.

1.2 Motivation 25

In databases, the user has the choice to put, e. g., a street address into
a single field or represent it more fine-grained as name, first name, street,
number, city, zip code and country. The fine-grained representation allows
the user to perform much more elaborate queries, e. g., to find out which
addresses in the database have the same city. In fact, the user adds structure
to the data and tells the computer where to segment the data. The computer
still has no idea, e. g., that Berlin is located in Germany. Hence a query
for all cities located in Germany would yield no results, as “being located
in” is not a concept in the database. If the user realises this, she can work
around this by asking more complex queries, e. g., list all address entries
in which the field city-name has the value ‘Berlin’, ignoring capitalisation.
The information is there, it is just not very easy to use.

Knowledge cues can be in different degrees of structuredness. The term
structuredness has been used by Boehm, Brown, Kaspar, Lipow, MacLeod,
and Merritt (1978) in the context of software artefacts.

Background: Semantic technologies By representing knowledge in a for-
mal knowledge representation language, e. g., in OWL (Schreiber and Dean,
2004) or RDFS (Dan Brickley, 2004), the computer can deduct new knowl-
edge and answer queries about concepts.

A central concept in the area of semantic technologies is an ontology Ontology
(Staab and Studer, 2009). An ontology is a “formal, explicit specification
of a shared conceptualisation” (Gruber, 1993). Technically, an ontology
consists of a set of formal statements and natural-language labels for the
concepts. A conceptualisation is a mental model of a certain aspect of
reality. A conceptualisation is shared, if several parties agreed on it.

Obviously, in PKM the shared part of the definition cannot be fulfilled. Personal
ontologyNevertheless, researchers have adopted the term “personal ontology” for

“ontologies” created and used by a single person. The term has also been
used by Huhns and Stephens (1999)8, Chaffee and Gauch (2000)9, Park and
Cheyer (2006)10, and Dix, Katifori, Poggi, Catarci, Ioannidis, Lepouras,
and Mora (2007)11.

Ontologies and personal ontologies are created to encode knowledge in
re-usable form. As such, they also remind the original author about this
knowledge. Hence ontologies can be seen as a special kind of knowledge
model.

Reasoning, also called inferencing, is built on the idea to declare a set of Reasoning
true formal statements in a formal language and let the computer deduct
further true statements.

8Imagines a personal ontology mostly as an index on physical and digital information
artefacts.

9A reference ontology for annotating websites is mapped to a personal ontology, in
order to let the user browse annotated sites using his personal perspective.

10Within the IRIS semantic desktop
11Trying to convert personal digital artefacts into a resource for automatic user task-

support, such as filling out web forms.

26 INTRODUCTION

For such an input set of formal statements many names are used: fact
base, knowledge model12, rule base (if a rule-paradigm is used), or com-
monly knowledge base.

A more detailed introduction to semantic technologies is given in Sec. 2.6.
Semantic technologies deal mostly with formal statements, e. g., there is
usually no way to store structured text in an ontology. In PKM, informal
knowledge needs to be represented, too.

Degree of formality Although explicit and structured, externalised knowl-
edge can still vary largely in its degree of formalisation (cf. Sec. 3.2.2, Aug-
ment processes). Externalised knowledge can be anything between, e. g., a
loose collection of keywords, a weakly structured text, an informal graph
or hypertext, up to a highly structured knowledge representation and fully
formalised knowledge base.

Researchers of formal models and semantic technologies acknowledge the
existence of a “formality continuum” ranging from informal textual descrip-
tions up to mathematically proven formalisms (Uschold, 1996, p. 3). Huss-
mann (1997) presents hybrid formal-pragmatic specifications in software
engineering. Staab, Studer, Schnurr, and Sure (2001, p. 28) call it “degrees
of formal and informal knowledge”. Lethbridge (1991b) defines the two
extremes of the formality spectrum for representing a concept: The most
informal representation contains only bit maps of natural language text.
An example would be an encyclopedia article about the moon. The most
formal representation is expressed only via links to other completely formal
concepts. These links have also to be completely formalised. An example
would be the concept moon with a Relation orbits to a concepts such as
earth. The entities orbits and earth would themselves be linked to other
Relations, etc. This concept of a most formal representation suffers in
practice from the problem of endless recursion. Such aspects are discussed
in Sec. 2.1.

Remark: In general, structure in knowledge representations tells a com-Structuredness
and formality puter how to segment a larger chunk of knowledge. Formal knowledge rep-

resentations tell a computer how different segments are related – if the
meaning of the representations meta-model is understood by the software.
Such relations can themselves be less or more formalised by successively
answering questions such as:

• Are two entities related at all?

• If they are related, is it a directed relation?

• What formal type can be assigned to the relation?

It is possible to have a high degree of structure but no or low degree for
formalisation. Formalisation always requires some degree of structure (rep-
resenting knowledge as distinguishable entities), but can still vary for a given
degree of structuredness.
12Note how this thesis uses knowledge model to denote a different thing, namely struc-

tured aggregations of personal digital knowledge cues.

1.2 Motivation 27

The topic of semi-structured data has been explored in the XML commu-
nity. The topic of semi-formal data has received little attention in the past.
Chapter 4 describes a formalism for knowledge models allowing to represent
different degrees of structuredness and formalisation.

PKM often deals with knowledge that is somewhere in the middle of these Degree of
formality in
PKM

extremes. E. g., note-taking is a core activity of PKM. An individual cre-
ates an external representation for internal concepts. Later, the external
representation is internalised again to re-activate the knowledge in the indi-
vidual’s mind. If somebody writes a short informal note to himself it is often
completely meaningless to others. The knowledge is thus not fully exter-
nalised – yet this note is an external reminder about some knowledge that
the author would otherwise forget. E. g., a short note like “coffee” could
mean anything from “buy coffee”, or “don’t forget to have a coffee with
an old friend next Tuesday” to “download and install a tool called coffee”.
For a knowledge worker some marks on paper represent parts of a mental
model (Kidd, 1994, p. 187–188). People often use their desks as a filing sys-
tem where informal piles coexist with explicitly filed documents (Malone,
1983). In many cases, the knowledge is thus not fully externalised – Yet this
note is an external reminder about some knowledge that the author would
otherwise forget.

Oren (2006) requires to leave users their freedom and do not constrain
them into rigid schemas. Kidd (1994, p. 190) goes even further and con-
cludes a tool should concentrate on capturing and reproducing the appear-
ance of marks made by knowledge workers rather than interpreting them.
However, not interpreting any semantics of a user’s marks seriously limits
automatic processing, e. g., searching, browsing, transforming, and export-
ing. The important point is to not force the user to formalise, but to offer
her the possibility to formalise in addition to capture and reproduce free-
form content.

Humans are often not able to write down directly a problem description in
pure logical formulas or other precise mathematical notation. It is a central
aspect of problem solving to formalise a given problem gradually until it is
fully understood. Until now, few tools or methodologies to support such
systematic formalisation are available. Instead tools either support coarse-
grained document-centric information management or give the user a limited
set of modelling constructs for more fine-grained decision support, e. g.,
argumentation tools. The process of knowledge externalisation is currently
poorly supported. Traditional knowledge articulation methods, like writing
emails or slides, filling out word processing or spreadsheet templates, are all
in a limiting, simple, linear form.

Maier and Schmidt (2007) describes a knowledge maturing process which
starts with very informal, personal artefacts (idea stage), which are then
discussed in a community until they are ready for formalisation. Afterwards
the content can be taught to others in a systematic manner. In this respect,
the PKM processes (as described in Sec. 3.2.2) support the first steps of the
knowledge maturing process.

The higher the desired level of automated processing, the more formality

28 INTRODUCTION

is required (Uschold, 1996, p. 3). The next section looks into the relation
between formalisation effort and its benefit.

1.2.5. Economic considerations of modelling effort vs. benefit
There is a general trade-off problem between modelling effort and benefit.

First of all, it is clear that note-taking and modelling cannot only push
cognitive limits, but also make knowledge workers more productive. How?
As Davenport (2005, p. 72) notes, “the most effective knowledge workers
reuse their own knowledge all the time.” After having an insight (knowledge
has been created) people often make a note in order to act as a reminder in
case they forget their idea (externalisation).

The process of managing knowledge cues can be simplified as (cf. Fig. 1.3):Knowledge cue
creation and
usage

Use

Later …Personal
Information

Space

Externalisation
(authoring,
structuring)

Personal
Information

Space

Retrieval

Cost of Externalisation (CE) Cost of Retrieval (CR) Benefit of use (B)

Personal
Information

Space

Goal: more benefit than costs (B > CE + CR)

Figure 1.3.: Simplified model for cost and benefit analysis in PKM

1. Some parts of the implicit knowledge become external. Knowledge
cues are created. The user has externalisation costs CE .

2. Time passes by and the author might forget some or all details of the
articulated knowledge.

3. At a certain moment, in the context of a certain task, the user initiates
a retrieval process. The user reads the search results, and refines the
search query. After some steps, the user either found one or several
matching knowledge cues or cancels the search with no result. The
process of reading through a list of search results is part of the search
costs. If the knowledge cue is long in size, the time to read through it
takes longer. If the desired knowledge is only a part of the artefact,
reading through the artefact is thus additional search cost. All these
costs are retrieval costs CR.

4. If results were found, the user has some benefit from having avail-
able the external knowledge or from remembering knowledge from the
knowledge cue. This benefit B depends highly on the current task
and cannot be defined in general (Iske and Boekhoff, 2002).

1.2 Motivation 29

The basic hope of a person doing PKM is to have more benefit B in the
end, than the effort it took to externalise CE and retrieve CR the personal
notes. Formally, the goal is:

CE + CR < B

The more structured and the more formalised knowledge is, the more pow- More structure
→ better
search

erful become ways to work with this knowledge in a computer.
Better organisation, structuring, and formalisation of content is expected

to lower the costs of retrieval (Glushko, 2006). For sentence retrieval tasks,
more structure gives better results (Bilotti, Ogilvie, Callan, and Nyberg,
2007). Highly structured and formalised information sources are easier to
search and process.

Adding more structure and metadata to a note enhances the probability
for re-finding it, but also adds to the externalisation costs. Similarly, the
more formal statements are in a knowledge base, the more thinking and
modelling effort has gone into their creation. E. g., writing a post-it note is
easy to do, but retrieval does not work well if there are thousands of them.
On the other hand, creating a formal ontology, e. g., in Protégé (Noy, Sintek,
Decker, Crubézy, Fergerson, and Musen, 2001) is very costly, but offers
many more ways to query knowledge bases precisely, compared to merely
structured ones. E. g., “List all cities with more than 100.000 inhabitants
in Germany” instead of the much vaguer “List all documents which contain
the term ’Germany’ in the section ’Geography’ ” – and then manually try
to find whether the article is about a city and what the population number
might be.

If a person writes down a note today, she can usually not predict well, Decision under
uncertaintyif or when that note is going to be needed again (Bruce, 2005). For rather

short-term simple notes like shopping lists, the prediction is easy. For more
long-term complex subjects such as product ideas or research notes, the
prediction of the usage context becomes much harder. The benefit of re-
membering the right knowledge at the right time differs much depending
on the usage contexts. If it will be useful in the future, she has to make
sure the note will be found again in the right contexts. Deciding whether
to store something at all, or at which degree of formality, is done by sub-
consciously weighting costs – the “least average rate of probable work” Zipf
(1949) – and benefits Bruce (2005). PKM has to keep the balance between
externalisation costs, finding costs, and anticipated value. The user must
have the freedom to decide how much effort to use for knowledge
modelling.

Current tools do not allow spending effort in arbitrary amounts: E. g.,
Either text is created via a text editor, without any formal metadata. This
requires high effort at retrieval and re-use time. Or an ontology is created
using an ontology editor, shifting all effort in the authoring phase. But
where is the tool allowing to create “something half text, half ontology?”
There is no generic model describing the needs and possible solutions for this
unified representation of informal and formal knowledge, allowing stepwise
formalisation.

30 INTRODUCTION

A more detailed economic analysis of effort and benefit of PKM processes
is given in Sec. 3.3.

1.2.6. Summary
The goal of this thesis is to make individual knowledge workers more produc-
tive. They face two prominent cognitive limits, namely short-term memory
load and long-term memory recall. These limits are addressed with the
concept of a knowledge model, an external, manipulable, digital artefact.
More structured and more formal knowledge is cheaper to work with, but
more costly to create. Hence a knowledge model must be able to express
and use knowledge at various degrees of formality. The user must have
the freedom to decide how much effort to invest in her knowledge model.
Knowledge models are not static; users are expected to change them all the
time. Hence knowledge models must allow users to add, remove, change,
and incrementally formalise knowledge cues all the time.

The remainder of this chapter states the research questions of this thesis
and presents a brief overview of the solution.

1.3. Research questions and contributions
This thesis tackles four research questions. Initially, the problem needs to
be understood:

1. Which factors influence costs and benefits in PKM?
This question is answered in Chapter 3 with an in depth-analysis of
requirements for a PKM tool. Besides literature research, this includes
an economic analysis of costs and benefits in PKM processes (see
Sec. 3.3).
The result argues for using personal knowledge models with the right
level of granularity and range of expressiveness. Compared to classic
knowledge representation, this thesis aims to reduce the articulation
costs.
This leads to the second question:

2. What is a suitable model to represent and use artefacts in a
uniform fashion that are in different degrees of formalisation?
The model should fulfil a number of requirements, which are gathered
in Chapter 3.
A Personal Knowledge Model formalism has been designed, able to
represent semi-formal content and allowing stepwise formalisation (cf.
Sec. 4.1).
As a means to represent structured text and transform these structures
into more formal constructs the Structured Text Interchange Format
(STIF) has been developed (cf. Sec. 4.3).

1.3 Research questions and contributions 31

A particular design problem, namely how to deal with a high num-
ber of semantic relations without confusing the user and how to map
various existing structures into a unified yet extensible representation
leads to the third research question:

3. What is a unified top-level ontology for personal knowledge
models?
To manage a large number of relation types, a top-level ontology of
personal relations – the CDS relation ontology – has been developed
from literature studies and analysis of existing tools (cf. Sec. 4.2).
Finally, in order to evaluate the usefulness of the personal knowledge
model, one has to ask:

4. How can a tool for using personal knowledge models be built?
Chapter 5 describes the realised CDS implementation and a tool for
PKM based on the CDS model.

The evaluation (Ch. 6) spans all four research questions. The relation be-
tween contributions and chapters is depicted in Fig. 1.4.

Chapter 1:
Motivation

Chapter 2:
Foundations

Chapter 6:
Evaluation and Related Work

Chapter 7:
Discussion, Conclusions and Outlook

Contributions

2. A model to represent and use artefacts in a uniform
fashion that are in different degrees of formalisation

3. A top-level ontology for personal knowledge models

Chapter 4:
Conceptual Data Structures

4. A tool for using personal knowledge modelsChapter 5:
Realisation

1. A model to describe the costs and benefits of PKM
Chapter 3:

Analysis and Requirements

Figure 1.4.: Mapping from chapters to research goals

32 INTRODUCTION

1.4. Solution overview
This section gives an overview of the complete solution which is developed
in the following chapters.

To let the user profit from semantic technologies without the burden to
use only formal knowledge, the approach of this thesis is to allow a friendly
and useful coexistence of knowledge in different degrees of structuredness
and formalisation. Additionally, it should be (cognitively) easy to formalise
knowledge step-by-step (cf. Fig. 1.5, right). There is a trade-off between ac-
quirability of a knowledge representation language and its expressive power
(Gruber, 1989).

A knowledge model can be seen as a superset of documents and formal
ontologies (cf. Fig. 1.5, left), because it contains both formal assertions as
well as non-formalised content in one representation. Two definitions are

Knowledge Models

Degree of Formal Expressivity

D
eg

re
e

of
 S

tr
uc

tu
re RDF

Annotated
Documents

XML

Free Text
Tagging

Wiki Pages

Formal
OntologyWeb Pages

Email

formal knowledge

structured knowledge

unstructured knowledge

uniform entry and access

Figure 1.5.: Knowledge models unify different levels of formality

central for the solution:

Definition: A personal digital knowledge model is a digital arte-Definition:
Personal
knowledge
model

fact which represents a set of knowledge cues. The knowledge
cues can vary in size, structuredness and degree of formality.

Definition: A knowledge cue is eitherDefinition:
Knowledge cue

• a piece of content, containing plain text, semi-structured text,
or arbitrary binary content such as images or desktop objects,
or

• a connection between other knowledge cues. Such connections
can be unspecified relations, directed hyperlinks and formal
statements.13

The core idea of this thesis can best be described as a brief series of design
decisions:

13Formal statements are represented by linking term-like knowledge cues to each other.

1.4 Solution overview 33

• Cognitive limits in short-term memory and long-term memory knowl-
edge are shifted with the use of explicitly represented knowledge in a
knowledge model.

• The knowledge model must be
flexible (i. e., easy to re-structure),
expressive (i. e., allow but not force to represent formal knowledge)

and
generic, i. e., not domain-specific. Instead of constraining the user

to pre-defined schemata, e. g., as in an address book or todo list, a tool
should expose modelling on both layers, data and schema, to the end-
user.

• Existing explicit digital knowledge should be importable into a knowledge
model. And the representation formalism of the knowledge model should
be easy to learn. For both reasons, the knowledge model should be a
super-set of existing familiar formalisms to represent PKM knowledge in
a computer.

• For economic reasons, it should be easy to structure and formalise knowl-
edge in a step-by-step fashion and to give the user benefit for each level,
e. g., retrieval should combine simple full-text retrieval with structured
and formal queries.

Taken together, these ideas mean to expose the power of general-purpose
modelling to knowledge workers for their everyday tasks. As an analogy,
today, end-users can do numeric modelling in spreadsheet tools, using math-
ematical relations between cells as well as informal colouring and annota-
tions. A user can either use a spreadsheet just like a sheet of paper or
link different cells into complex formulas. This thesis aims at exploring and
providing the same ease of use and mix of formality degrees for knowledge
cues within a knowledge model.

A second analogy are 3D-CAD-tools which help construction engineers to
design cars, by giving them an external, manipulatable model which they
could not represent in their heads. Similarly, personal knowledge models can
help users to develop complex concepts and ideas by providing a navigable,
modifiable semi-semantic space.

The concept of semantic personal knowledge management as described in
this chapter has been published by Oren, Völkel, Breslin, and Decker (2006).

2. Foundations

This chapter introduces a number of research fields that are referenced in
later parts of this thesis. The sections on models, documents, hypertext,
and semantic technologies have been the core influences for the CDS model.
Fig. 2.1 gives a high-level overview about this chapter and shows which
parts are used where. Entries marked with a plus (+) are analysed in detail
in Chapter 3. Some parts give general background information, while other
parts directly influenced the CDS model. The graphic has been created
with the iMapping tool (cf. Sec. 5.3.1).

Figure 2.1.: Overview of the Foundations chapter. The parts shown above
the Conceptual Data Structures are the formal parts. Be-
low, more informal and person-centric topics and tools can
be found.

36 FOUNDATIONS

2.1. Modelling, models and meta-models
The term model is central for the definition of knowledge model (c. f. 1.2.3).
Generic modelling processes are later refined into a knowledge cue life-cycle
(c. f. 1.2.3).

Models have three characteristic properties (Stachowiak, 1973, p. 131):Define: Model

Mapping property: Each model has an original. Such an original might
exist, have existed or be planned to exist. An original can also be
another model.

Truncation property: A model represents not all attributes of the orig-
inal, but only the ones that seem relevant to the model creator and
model user. A model inevitably also has some properties not present
in the original.

Pragmatic property: A model is created for a certain purpose, i. e., for
a certain audience, a certain time span, and to solve a certain task.

Stachowiak (1973) distinguishes a number of models, classified into graphi-
cal models (images, drawings, and diagrams), technical models (e. g., minia-
ture versions of real-world physical objects), and semantic models, consisting
of symbolic entities. Semantic models are further subdivided into internal
models (perception, cognitive models) and external models (spoken lan-
guage, script, braille). External models consist of symbols and rules for
using them.

This thesis deals with external models represented in a computer, i. e.,
finite, discrete models. A discrete model consists of a set of entities and
relations between them. Not all entities need to be connected to other
entities.

Modelling Modelling, the act of creating a model, is a core activity of
human reasoning. Johnson-Laird (1983) proclaims “humans are model-
builders”. According to the widely used theory of constructivism (Matu-
rana and Varela, 1987), each person creates his or her own mental model
of reality. These mental models help to make predictions about the future
state of the world and thus help to plan actions. Mental models range from
simple physical models like “things fall down” up to complex theories for,
e. g., stock markets or medical models about cells.

The first step in modelling is the definition of a set of model elements
(E) and its mapping to the problem domain. The elements in a model
must be distinguishable from each other, like elements in a mathematical
set. The simplest possible modelling language is thus an enumeration of
distinguishable symbols. i. e., it is an act of modelling weather a table is
modelled as five entities (one “board” and four “legs”) or just one entity
(one “table”). A mapping from models to reality is always outside the
scope of the model itself. The next step is the choice or design of a suitable
meta-model for the task at hand.

2.1 Modelling, models and meta-models 37

Application development, document writing and even simple note-taking
can be considered as modelling activities. The processes between a human
and his PKM tool can be summarized as modelling. The CDS framework
is designed as a suitable meta-model for modelling in the context of PKM
tasks.

Formal Model of Models Let E be a set of model entities. A connection
between two entities can then be represented by a tuple (x, y) ∈ E × E.

To allow several connections between the same two elements, a finite set
of connection labels R is defined as a subset of N together with a function
c that maps each x ∈ R to a pair of entities, i. e., c(x) : R → E × E. A set
of labelled connections can be defined as C = R × E × E with ∀(n, x, y) ∈
C : c(n) = (x, y), where n is the label for a connection (x, y). A model M
is then a set of entities and a set of connections, i. e., M = E ∪ C.

Mapping this to simple node-and-link diagrams, E are the different nodes,
and E × E are the links connecting the entities.

Meta-Model This paragraph gives some definitions from the author of
this thesis, based largely on concepts from meta-modelling in software en-
gineering as published by the Object Management Group (OMG), i. e., in
the UML standard (OMG, 2007).

A meta-model MM is a model with the purpose to define the semantics
of another model. A typed model is a set of entities and relations that
are mapped to entities in a meta-model. The meta-model entities represent
types of entities and types of relations. The meta-model defines semantics
for instances of a type. Fig. 2.2 shows the general concept of layered models.

Entity
X

Entity
Z

Entity
A

Entity
D

Model

Entity
C

Meta-Model

Connection Y

Connection B

Legend: Boxes are items. Big arrows are relations. Thin dotted lines are has instance
links.

Figure 2.2.: Modelling layers

38 FOUNDATIONS

Definition: A model M is a formal model, if all elements in MDefinition:
Formal Model (all entities and all connections) are typed with entities from the

same meta-model. If the semantics of the meta-model are defined, then
the type-assignments state the semantics of the model. E. g., RDFS can be
used as a meta-model for RDF triples. With this definition, a semi-formal
model can be defined as a model in which some elements are typed with
entities from the same meta-model. The degree of formality can be defined
as the fraction of typed elements, cf. 1.2.4.

A set of meta-model elements together with rules how to use them – i. e.,
definitions of syntax and semantics – is often called a modelling language.

A meta-model can again be described by a meta-meta-model, etc. ThereRecursion
is in principle no limit on the level of meta-models used. To end the recur-
sion, meta-models are often “defined in itself”, which means they break the
layering and assign entities within one layer as types to entities on the same
layer. Definitions of such models “defined in itself” 1 are usually accompa-
nied by rich natural language descriptions.

The process of modelling layers could be repeated ad infinitum, but in
practice rarely more than three layers are used: model, metamodel and
meta-metamodel.

Meta-model examples Imagine a simple node-and-link diagram with nodes
labelled Claudia, Dirk, SAP and SAP Research. In addition, imagine a
meta-model with entities like person, organisation, employs, and owns.

Now the node-and-link diagram can be turned into a typed model M , by
relating each node and each link to a node in the meta-model. This typed
model can now be used for a number of automatic tasks: E. g., M can be
checked for validity (“Is each company owned by at least one person?”) or
automatically new knowledge can be deducted (“If a person owns a company
A and that company owns company B, then the person also owns B”).

An example for meta-modelling in the Unified Modeling Language (UML)
can be found in Fig. 2.4 on page 46.

The metamodels used in software engineering usually offer a rich system
of concept and relationship types to be used in instance models. Types
in a meta-model are sometimes structured in an inheritance hierarchy, so
that lower concepts inherit properties from their parents according to the
semantics of the particular modelling language.

Software engineering metamodels usually strive for a clear separation of
layers in order to define precise semantics, while other metamodels do not,
e. g., RDF Schema (RDFS) allows meta-modelling in a way that classes can
be also be instances.

Protégé by Musen (1989), cf. Rubin, Noy, and Musen (2007), is an ex-
ample of a tool that allows authoring on two modelling layers, meta-model
and model. Constraints posed in the meta-model are enforced by the user
interface when modelling the instance data.

1An example can be found in the Java type system. A call of getClass() in a type
Person returns an object of type Class. A call of getClass() on the Class-
object returns again Class. See also Fig. 2.4.

2.2 Documents 39

2.2. Documents
Documents have been used for several thousand years now. The packaging
format of knowledge – documents – did not change much. Although docu- High costs,

slow
distribution

ments are an established means of communication, their creation is costly,
slow and not always needed. Often only small parts of a document are
needed to answer a given information need.

A French team of over 50 researchers analysed the term document in
depth (Pédauque, 2003) and gives three co-existing definitions of the term
“document”: (i) Document as form, where a document is seen mostly as
a container, which assembles and structures the content to make it easier
for the reader to understand it. (ii) Document as sign, which emphasizes
the argumentative structure of the content. Also, a document that can be
referenced acts as a sign (placeholder) for its content. (iii) Document as
medium, concentrates on the “reading contract”, which is the intention or
assumption of the author what will happen with the document.

There has been a debate about the “true nature of text”. In 1990, some
authors (DeRose, Durand, Mylonas, and Renear, 1997, reprint from 1990)
believed in the OHCO-hypothesis. This stands for text as an “ordered
hierarchy of content objects”. Later, some of the same authors (Renear,
Mylonas, and Durand, 1993) argued against this simplification.

An information atom is the smallest unit of content which can be inter- Information
Atompreted without a document’s context (but, of course, requiring background

knowledge). E. g., for text, information atoms are single words.
Of course, an information atom can act as a knowledge cue (cf. 1.2.3).
How to model the structure and content of documents? A document can Packaging

be seen as a structured entity, containing a number of information atoms.
By “packaging” the information atoms together, an interpretation context
is created, which influences how readers interpret it.

Layers in a document Aspects of information in a document are:

Reference-ability Once a document is published, the reference can act
as a placeholder for the content expressed within. A reference to a
document can act as a meta-symbol on top of the symbols (knowledge
cues) the document contains.
The usage of document references as symbols allows a document to
“participate” in conversations, which probably lead to scholastic meth-
ods and modern academia.

Metadata Each document is written by a number of authors for a certain
audience with a certain goal. By sending this process metadata along
with the document, the reader has the ability to put the document in
context and interpret it better. Such metadata is used by the reader
as a frame of reference for interpretation and for search.

Sequential Navigation A document can typically be read from start to
end by navigating through all contained knowledge cues. This is a

40 FOUNDATIONS

simple yet effective strategy to scan completely over a body of infor-
mation.

Visual structure A document is not only a stream of sentences, but uses
type-setting, i.e. bold, italics, different font styles and size, and place-
ment of figures. Using only the visual structure, references can only
point to page numbers. They can change when the document is, e. g.,
re-printed with a wider margin.
Instead of focusing on the visual properties of documents, such as
distribution of content on printed pages, this thesis looks at the logical
structure encoded by visual properties.

Logical structure The visual structure is used to encode a logical struc-
ture consisting of, i. e., paragraphs, headlines, footnotes, citations,
and title. The logical structure makes it possible to reference smaller,
meaningful parts within a document, i. e., “Sec. 4.2”.

Argumentative structure On top of the linear content, a document fol-
lows an argumentative structure to convey its content to the reader.
Argumentative structures appear on all scales. A typical structure is
the “Introduction - Related work - Contribution - Conclusion”-pattern
of scientific articles. On smaller scales, patterns like “claim–proof” and
“question–answer” are used.

Content semantics Documents’ contents mean something. Building upon
logical and argumentative structure, the author encodes statements
about a domain within the content.

Legal aspects This thesis focuses on documents for PKM and hence ig-
nores legal aspects of documents, e. g., think of contract documents or
intellectual property rights.

Digital documents Buckland (1997) argues, it’s even harder to define the
term “digital documents”, e. g., in former times people used “log tables”
to look up logarithmic values. Today, one would likely use a functionally
equivalent software tool. The on-screen rendering of such a tool could be
considered a document, too. Buckland (1997) sees a trend towards defining
a document in terms of function rather than physical format. By following
this trend, everything that behaves like a document is a document.

Structures in text serve many purposes. They ease navigation and oftenStructured text
the structure of a text reflects the structure of its content. In information
systems, text appears either as part of an entry in an data base system or as
a document, i. e., as a file. In the beginning of computerisation, documents
were created with a typewriter or word processor. Then a printout was
handed to the editor, which would typeset the whole text from scratch.
Later the process has been streamlined and the document authors are now
able to produce typesetting-quality files. As a result, end-users are now used
to create highly structured documents. This allows using structured text as
means to create structured knowledge cues, as described in Sec. 4.3.3.

2.2 Documents 41

Prominent examples of digital documents are text processors files, hyper- Observations
from analogue
to digital
documents

text documents and PDF files. Digital documents differ in many ways from
analogue documents. In digital documents the visual structure is some-
times separated (e. g., via CSS, cf. Sec. 2.4) from the logical structure. This
makes it possibly to execute queries based on the logical structure and, e. g.,
generate automatically a table of contents or return “all footnotes that con-
tain a hyperlink”. Additionally, other documents can now deep-link into
a document, e. g., by using named anchors. From a reader’s perspective,
this effectively means that the granularity in digital documents is smaller
compared to analogous documents.

A document has to be stable in time in order to become something
reference-able. Only in this way people can cite the document without
having to copy the content. This is not the case for all online documents
and web pages: The content at any given URL can change at any point
in time. Digital documents can therefore only replace or at least mimic
classical documents in two ways: (a) a trustworthy source manages the web
server and promises not to change the served content (a part of the busi-
ness model of digital libraries) or (b) documents are sent as messages to the
recipients, e. g., messages on email mailing lists. Nevertheless, with the ad-
vent of hypertext, the number of links between documents or parts thereof
increased dramatically when documents became digital.

Augmented Digital Documents Documents can be annotated, e. g., to
make the argumentative structure of a document explicit (Peter, Sack, and
Beckstein, 2006). Hennum (2006) describes ways to encode argumentative
structures in RDF. One basic observation is that modelling a document
as a strict tree, i. e., as in XML, does not allow modelling overlapping re-
gions. Hennum (2006) does not discuss the discourse structures themselves
in much detail. This gap is filled by Groza, Handschuh, Möller, and Decker
(2007) which describes a small yet expressive ontology for argumentative
structures, which is based on Rhetorical Structure Theory (Taboada and
Mann, 2006). Groza et al. (2007) models argumentation at the sentence
level.

In a similar manner the metadata – e. g., who wrote the document when
and why – can be made explicit. A system for annotating and relating
documents in a visual way is described by Maier, Archer, Delcambre, Hy,
Annareddy, Cassel, Gangula, Teng, Fox, and Murthy (2006). He goes be-
yond showing annotations next to a document, as the annotations them-
selves are forming a document on their own. Phelps and Wilensky (2000)
describe the concept of Multivalent Documents for uniformly annotating
different content types with rich annotation types. Annotated documents,
stored together with their annotations, can be seen as a knowledge model.

Even more complex forms of digital and augmented documents are dis-
cussed in Sec. 2.4 on hypertext research.

42 FOUNDATIONS

2.3. Desktop operating system and the file metaphor
In 1981, the Xerox Star Workstation, one of the first personal computers,
was released (Friedewald, 2000). It pioneered the WIMP-metaphor (win-
dow, icon, menu, pointing device) and placed digital documents, represented
as little icons, in the heart of the user interaction. Files in the computer
were modelled close to physical documents.

Since then, documents remained the dominant paradigm for user interac-
tion, information exchange and archival. This is problematic, when search
results return references to long documents, instead of shorter – and maybe
even reference-able and annotation-able – information objects.

For more considerations on the effect of document granularity on costs in
PKM see Sec. 3.3.

In file systems, a single folder name needs to be unique only among other
files and folders in the same parent folder. As a result, a single folder name
cannot locate a folder. Only a full path starting with the file system root
denotes exactly one folder. E. g., the folder name “My Pictures” does
not work, but “C:\Documents and Settings\My Pictures” does.

The basic principles of file system explorers are analysed in Sec. 3.5.3.
An extension of a standard file system to a semantic file system has beenSemantic file

system published by Bloehdorn, Görlitz, Schenk, and Völkel (2006).

2.4. Hypertext and the World Wide Web
Ideas from hypertext systems and hypertext research have been a strong
influence for this thesis.

Remote web-sites play also an ever-increasing role in information work, as
more and more personal data is stored in shopping accounts, online banking
applications, social networking sites, online email, or online games. The
model of the web has proven to be able to represent all kinds of content in
a unified way.

Hypertext has been invented by Engelbart (1963) in his NLS (oNLine
System) system, created in the AUGMENT project2. Based on this, an
active hypertext research community created feature-rich models of hy-
pertext. The Dexter Hypertext Reference Model (Halasz and Schwartz,
1990) presents a unified model with composite entities and n-ary links
from analysing various hypertext systems, among them NoteCards, Nep-
tune, KMS, Intermedia and NLS.

Hypertext is good if there is a large body of information organized intoUsability of
Hypertext numerous fragments, the fragments relate to each other, and the user needs

only a small fraction at any time (Golden Rules of Hypertext by Shneider-
man, 1989).

2The features of NLS were so interesting that researchers have re-created the sys-
tem with modern web technologies, see http://hyperscope.org (accessed
06.01.2010)

2.4 Hypertext and the World Wide Web 43

Content

ChangeDate

MimeType

Encoding

meta-
data

URI

RepresentationResource
1:n

Figure 2.3.: The web model: REST

Web concepts REST is a term coined by Fielding (2000). It describes
REpresentational
State Transfer
(REST)

an architectural style, – that is a set of constraints on connectors, com-
ponents and connections – which describes the conceptual model of the
World Wide Web (WWW). REST is an important concept to understand
web-based programming. REST describes a set of addressable resources
which are manipulated by sending self-describing representations to them
(cf. Fig. 2.3). One of the REST constraints is “hypertext is the engine
of application state”, which means each representation should contain the
URIs of related resources (Fielding, 2000, p. 82). There is no defined way
to model typed relations between resources.

The WWW instantiation of REST consists of transport via the HTTP WWW
protocol, addressing via URIs and resource representation via markup lan-
guages such as HTML and XML.

URI A Uniform Resource Identifier (URI, Berners-Lee, Fielding, and
Masinter, 2005) is an identifier for a resource in the WWW. A typical
URI is a web address like http://xam.de but non-resolvable names3

such as urn:xam.de:20090828-08.31.17.053-0 are also URIs.

Representations WWW representations are character streams plus meta-
data describing the encoding, type of content and other metadata such
as the last modification date. In practice, there are many more meta-
data fields, e. g., to control caching or compression of content.

Web content This paragraph introduces popular web content formats
which have been used as input for the Structured Text Interchange For-
mat (STIF) model described in Sec. 4.3.1.

Almost all web pages are written in HTML. Hypertext
Markup
Language
(HTML)

HTML is an instance of the Standard Generalized Markup Language
(SGML, ISO, 1991b) language, which is a meta-language to describe lan-
guages. XML is a restricted and simplified form of SGML. It is introduced
in Sec. 2.5.

HTML uses inline-markup, which is markup included in the sequence of
characters. HTML provides elements for different purposes: text format-

3These are names that should never return a representation. However, for practical
reasons described by Sauermann, Cyganiak, and Völkel (2007), resolvable URIs
should be used in most cases.

44 FOUNDATIONS

ting, linking, document structure, user input forms, and semantic elements,
e. g., “address”.

The following content formats are frequently used in the WWW:

HTML 4.01 This version of HTML was published in 1999. The official
URL is http://www.w3.org/TR/html401/ (accessed 06.01.2010). It
specifies three sub-types: strict, transitional and frameset.

HTML 4.01 Strict A trimmed-down basic version containing few pre-
sentational attributes. It contains 55 different element definitions.

HTML 4.01 Transitional This is HTML 4.01 Strict extended with more
presentational attributes that were used in older HTML versions, e. g.,
<center, , or <strike>.

HTML 4.01 Frameset This is HTML 4.01 Transitional extended with
frames.

XHTML 1.0 Strict, Transitional, Frameset The same as their HTML
4.01 counterparts but with the additional requirement to be valid XML
documents. This requires, e. g., an XML header plus a normalised way
to write element attributes. XHTML 1.0 Strict (Pemberton, 2000)
defines 77 elements. XHTML 1.1 is the subsequent recommendation
edited by Altheim and McCarron (2001) which describes a modu-
larised view on HTML.

CSS Cascading Style Sheets (CSS, Lie and Bos, 1999) is a W3C standard
for defining the visual appearance of a web document written in one of
the HTML variants. CSS defines things such as colours, fonts, border
styles, margins, and space between elements. CSS allows separating
content and presentation to a high degree.

Web programming The following technologies are used in the CDS editor
prototype, described in Sec. 5.2.

Traditional web applications ran all code on the server side, resulting inAsynchronous
JavaScript and
XML (AJAX)

a slow and flickering user experience. Each time the user clicked, she had to
wait for a complete page reload from the server. Network latency thus really
added up as user wait times. Using JavaScript in the end-user’s browser,
often does not requires a page reload at all for navigation operations. If
a user clicks somewhere, JavaScript requests only the needed data from
the server and modifies the loaded page in the browser – without a page
refresh. The result is a much more fluid user experience. This technique is
often called AJAX4. There are essentially three kinds of state in an AJAX
web application:

DOM The Document Object Model5 (DOM) is the object-oriented, hi-
erarchical model of web page rendered by a browser. A DOM can
contain hidden elements as well, i. e., those currently not visible by
the user.

4http://en.wikipedia.org/wiki/AJAX (accessed 06.01.2010)
5http://www.w3.org/DOM/DOMTR (accessed 06.01.2010)

2.5 Software engineering 45

Script JavaScript is loaded from a server and is run in the browser. Java-
Script may create arbitrary object structures and is able to manipulate
the DOM. Furthermore, in AJAX-enabled browsers, JavaScript is able
to make calls to a web server to send or retrieve further data.

Server There are two parts of the server: The static part serves HTML
pages, images, CSS files and JavaScript code; the dynamic part an-
swers requests from AJAX applications. The distinction between the
two parts is not always clear, as the AJAX application can also request
static resources and the normal web resources can also be generated
dynamically, e. g., dynamic images.

AJAX is used extensively in the realised CDS editor prototype, HKW,
described in Chapter 5.

2.5. Software engineering
In the discipline of software engineering, modelling approaches are used at
every level. The two most popular modelling languages, XML and UML,
are introduced in this section.

Extensible Modelling Language (XML) The conceptual model of XML
is the XML info-set6 model. XML is a document-oriented model in which
all content is represented in a hierarchy of labelled elements. The leaves
of the tree can be (empty) elements, attribute values, or longer pieces of
content (text nodes). XML is used widely for exchange of data between
systems written in different programming languages and for communication
of software modules over the internet (web services). XML document struc-
tures can be described with a Document Type Definition (DTD) or an XML
Schema (Thompson, Sperberg-McQueen, and Gao, 2008). These schemata
describe not only types but also the grammar, i. e., the nesting rules, of
typed elements.

Unified Modelling Language (UML) The UML (OMG, 2007) is a visual
language for describing software systems. It was initially created to improve
communication among developers and later also used for model-driven de-
sign (MDD) and model-driven architecture (MDA)7. UML is much richer
than the simpler, data-base oriented Entity-Relationship-Models from Chen
(1976).

The most popular diagram type is the class diagram which talks about
classes, inheritance, instances, attributes, visibility modifiers, and methods.
UML is neither a language to describe arbitrary languages nor a suitable
language for knowledge models.

The OMG has defined four modelling layers (cf. Fig. 2.4 and Recursion OMG Meta-
modelling
stack

in Sec. 2.1). This layering is widely used in industry.

6http://www.w3.org/TR/xml-infoset/ (accessed 06.01.2010)
7MDA is a trademark of the Object Management Group (OMG), which created UML.

46 FOUNDATIONS

John John‘s car

Person Car

M1

car-ownerM2

owns

has Field

Class FieldAggregationM3

M0

Legend: Dotted gray lines are has instance links. The images of John and John’s car
should mentally be replaced with the real John and his car.

Figure 2.4.: The four UML meta-modelling layers (simplified)

The four classical layers are:

M0 The reality. It contains real objects, like John or John’s car.

M1 Digital objects that represent physical or conceptual objects, like a
Java object modelling John’s car and John himself.

M2 Classes of objects, like the class Car or Person. Defining behaviour of
car-instances. E. g., the fact that they have an owner.

M3 Meta-classes. Here the concept of a Java Class itself is defined. To
avoid further layers, this layer is defined in itself.

From each higher to a lower layer are has instance links.

2.6. Semantic technologies
Semantic technologies have numerous application areas. The two most
prominent application areas are data integration and reasoning. A pre-
requisite for both are data representation and ontologies.

Data representation in RDF The Resource Description Framework (RDF,The Resource
Description
Framework
(RDF)

Hayes, 2004; Klyne and Carroll, 2004) is the basic representation format for
knowledge on the semantic web. RDF defines an extensible, graph-based
model for integrating distributed, heterogeneous information sources. It re-
uses URIs for addressing (see Sec. 2.4). For a discussion on choosing good
URIs for the semantic web see Sauermann et al. (2007). RDF was orig-
inally defined as a format to describe meta-data about resources on the
web. It was not intended to contain the actual content of web resources.
Fig. 2.5 shows the RDF data model together with the notion of Named
Graphs (Carroll, Bizer, Hayes, and Stickler, 2004) as used in SPARQL

2.6 Semantic technologies 47

URI BlankNode

Resource Literal

Node

Plain
Literal

Data-
typed
Literal

subject

predicate

object

Language
Tagged
Literal

datatypeURI

Named
Graph

Statement

Figure 2.5.: The semantic web model: RDF

(Prud’Hommeaux, Seaborne, Seaborne, and Prud’hommeaux, 2007). Each
triple in RDF consists of URIs (U), blank nodes (B) and literals (L) and is
of the form (U, B) × (U) × (U, B, L).

To abbreviate URIs in technical documentation as well as in data formats, Namespace
prefixesRDF uses a namespace-mechanism, similar to the one used in XML. The

following example shows how namespaces are defined and used in the Turtle-
notation (Beckett and Berners-Lee, 2008).

A namespace is defined as a pair of prefix and expansion URI. The prefix
must end with a colon (“:”). No prefix may be defined twice. Within a
Turtle document, each occurrence of the namespace-prefix is then replaced
with the expansion URI. As an example, this RDF triple:

<http://www.semanticdesktop.org/ontologies/2007/09/01/cds#hasDetail>

<http://www.semanticdesktop.org/ontologies/2007/08/15/nrl#inverseProperty>

<http://www.semanticdesktop.org/ontologies/2007/09/01/cds#hasContext> .

given the namespace definitions:
@prefix cds: <http://www.semanticdesktop.org/ontologies/2007/09/01/cds#> .

@prefix nrl: <http://www.semanticdesktop.org/ontologies/2007/08/15/nrl#> .

can be shortened to
cds:hasDetail nrl:inverseProperty cds:hasContext .

Beside its complexity and technical nature there are two other problems
hindering its usage for PKM tools:

Problems with binary data Although RDF can conceptually contain
binary data, stored in an xsd:base64Binary data-typed literal,
there is no defined way to relate URIs non-ambiguously with content.
Current RDF triple stores like Sesame8 or Jena9 are not designed to
store larger binary chunks either. Programming libraries for RDF
lack ways to describe, access, or change the content of web resources
themselves.

8http://www.openrdf.org (accessed 06.01.2010)
9http://jena.sourceforge.net (accessed 06.01.2010)

48 FOUNDATIONS

Ill-suited for authoring A second problem with RDF is its lack of au-
thoring tools. These can be divided into two classes: (1) generic:
the user can change the schema at runtime, and (2) fixed-schema: the
schema is pre-defined. An example of a fixed-schema tool is an address
book editor which outputs its data in a fixed RDF format. Authoring
generic RDF without a pre-defined schema is very flexible, but has
usability issues: E. g., each RDF resource can have none, one, or mul-
tiple labels. It is an application level task to decide how to handle
this. RDF can be called an assembly language for data, which can
represent almost everything but lacks higher-order features to make
it efficient for direct interaction with humans.

The strengths of RDF are (a) a well-defined process for merging several
data sources, and (b) the ability to represent arbitrary graphs. Dealing
with RDF directly requires quite a technical mind set, e. g., thinking about
the distinction between literals, blank nodes and URIs.

There are several competing proposals on embedding RDF in HTMLEmbedding
RDF in HTML (cf. Sec. 2.4): RDFa10 and eRDF11. In the CDS editor Hypertext-based

Knowledge Workbench (HKW), the ideas from eRDF are used. A technical
comparison between eRDF and RDFa can be found in Appendix A.1.

Ontologies An ontology is a formal, explicit specification of a shared con-
ceptualisation (Studer, Benjamins, and Fensel, 1998).

In this thesis, an ontology is understood as a data structure in which all
elements are formally typed (as defined in Sec. 2.1) with elements from an
ontology modelling language. An ontology is usually a shared model of a
certain domain upon which several parties have agreed on.

This definition can be stretched, so that a knowledge model created by aOntologies in
PKM single person that contains only formally typed elements is also considered

an ontology. This single person could be considered as two entities, menow

and melater, so one single person agrees with itself to use a certain formal,
explicit specification later on again. In this respect, knowledge models can
be seen as a corner-case of ontologies. However, to avoid this definitional
nit-picking, the term knowledge model is used in this thesis. Also, ontologies
usually contain no document-like content, which is considered a normal case
for knowledge models.

Ontology modelling languages An ontology modelling language is a lan-
guage used to type elements (using the layering explained in Sec. 2.1). Sev-
eral ontology modelling languages (sometimes also called ontology represen-
tation languages) are relevant in this thesis:

RDFS RDF Schema (RDFS, Hayes, 2004; Dan Brickley, 2004) is both
an RDF vocabulary and a schema. As an RDF vocabulary, it de-
fines formal semantics for certain triple patterns. As a schema, it al-
lows modelling class (rdfs:subClassOf) and property hierarchies

10http://www.w3.org/TR/xhtml-rdfa-primer/ (accessed 06.01.2010)
11http://research.talis.com/2005/erdf/wiki (accessed 06.01.2010)

2.6 Semantic technologies 49

(rdfs:subPropertyOf). RDFS has no clear separation of mod-
elling layers; a class can be an instance of another class. Classes in
RDFS are extensionally defined sets.
RDFS uses an open world assumption: everything not explicitly ex-
cluded could be true. RDFS has no way to state negation, therefore
the answer of a reasoning engine to the query “Is triple (a, b, c) true
in this model?” can only lead to “Yes” or “Not as far as I am aware,
but it still could be true”.

OWL OWL (Schreiber and Dean, 2004), and OWL2 (Hitzler, Krötzsch,
Parsia, Patel-Schneider, and Rudolph, 2009) are more complex and
more powerful languages than RDFS. OWL is a description-logic-
based, declarative formalism. They are designed at the borderline
between computability and expressivity. OWL 1 defines three lan-
guages with different expressivity/computability features. OWL 2 in-
troduces three profiles which achieves the same effect. OWL allows
negation, has an open world assumption, and mandates a strict sep-
aration of modelling layers. Classes are defined intensionally. OWL
supports optionally inverse relations.12

NRL The NEPOMUK Representation Language (NRL, Sintek, van Elst,
Scerri, and Handschuh, 2007) has been created in the NEPOMUK
project for modelling ontologies on the semantic desktop (see end of
section). The main difference to RDFS and OWL is a closed world
assumption: If a fact is not stated as true, it is considered false. This
matches expectations of users better, as a local desktop is indeed
a closed world with a limited, known, processable number of files.
NRL integrates the concept of multiple graphs, similar to the Named
Graphs defined by Carroll et al. (2004). Being able to manage multiple
graphs makes data management much easier and connections between
different data-sets can formally be defined. NRL supports optionally
inverse relations.

Data integration Data integration is a core application area for ontologies.
The schema part of an ontology (T-Box) can be seen as a definition of a
data model, i. e., the instances (A-Box) – or as unified view on several data
models.

Imagine two data bases, one has a table for customers which have a phone
number, the other one has a table client with the attribute contact infor-
mation. Using ontologies, one can state that

(client, is the same as, customer) and
(phone number, is a sub-property of, contact information).

Such a global mapping ontology helps people to understand the structure of
the two databases better, but foremost it can be used to automatically trans-
form data or queries13, so that queries can be posed across both databases.
12This becomes relevant later, when the requirement for mandatory inverse relations

comes up.
13Which one is transformed is an implementation detail.

50 FOUNDATIONS

This would allow a user to query for the contact information of customers
and retrieve both the phone number and the contact information fields
from the customer and the client table. Of course, asking specifically for
the phone number would return only values of this field.

Data integration in PKM can help in three kinds of tasks in semantic-
based PKM (cf. Sec. 3.2.2: import, export):

1. For integrating data from different applications that are used for cre-
ating knowledge cues. This is explored in semantic desktop research
(see below).

2. For integrating different versions of somebody’s own conceptualisa-
tions. E. g., to enhance the precision of full-text search if the user
started to use another term for an old one, so that the query for
“Universität Karlsruhe” returns documents that contain “KIT”.

3. For integrating different knowledge models (or parts thereof) created
by different people.

Reasoning In the context of the semantic web, reasoning engines (also
called inference engines) are often used to deduct further knowledge from
a knowledge base. Many inference engines are based on an interpretation
of a set of triples as a set of formal statements. The semantics depend on
the chosen formalism (e. g., RDFS, OWL Light, OWL DL, OWL2, F-Logic,
. . .). An inference engine is a program that implements the semantics of
a given ontology language. There are two basic technologies used. One
way, called forward chaining or materialisation computes all facts than can
be computed and stores them. For some ontology languages, the amount
of facts than can be inferred is infinite. E. g., even the empty ontology in
OWL DL has an infinite set of logical true statements. For such cases, or
for performance reasons, backwards-chaining is used, which means a query
from a user is used to recursively trigger computation until the program can
either find a deduction tree from given facts to the query or know that no
such tree exists in a given set of facts.

There are two possible principle benefits that knowledge workers can get
from reasoning:

1. Reasoning can make knowledge workers more efficient by letting them
find knowledge cues or derived conclusions quicker.
E. g., if a user took a number of notes about two topics A and B,
and later decides that B can be considered a sub-topic of A. Then,
after adding a formal super-topic statement (A is-a-super-topic-of B),
a reasoning engine can return also the notes with topic B when the
user queries just for A. This allows the user to forget the old notes
and the old topic, as they will be brought up when she searches for
the new topic.

2. Reasoning can make knowledge workers more effective by letting them
find conclusions where none could be found manually. Here the de-

2.7 Note-taking 51

rived knowledge is – although just mechanistically derived from user-
stated knowledge – so new that it is an insight for the user to see it.
Most spreadsheet calculations fall already in this category.

Semantic Desktop The semantic web is currently evolving in two places:
As semantic web and as semantic desktop (Decker and Frank, 2004; Decker,
Park, Quan, and Sauermann, 2005).

For effective PKM, a user needs access not only to his personal notes,
but also to existing more structured items on his desktop, like address book
entries, tasks, or arbitrary office files.

Computers still provide limited support for capturing and managing struc-
tural relations between knowledge units in a natural and pervasive manner
across desktop applications (Wiil, 2005).

The European project NEPOMUK14 researched the social semantic desk-
top. It contains two components to unify access of desktop objects. The
Aperture15 project transforms diverse file formats and application objects
into RDF and full text. Another component, the Beagle desktop search
engine allows searching in a unified way across all crawled data. The tool
presented in Ch. 5 is also part of the NEPOMUK project.

2.7. Note-taking
This section presents studies on paper-based, physical note-taking as well
as on digital, software-based note-taking.

Paper-based approaches Existing approaches to personal note manage-
ment are paper-based approaches such as sticky-notes, paper notebooks, or
a Zettelkasten (Luhmann, 1992).

The paper-based approaches are hard to automate. In a Zettelkasten
one has to traverse the links from note card to note card manually. A
Zettelkasten can be seen as a predecessor of wikis, which are introduced in
Sec. 2.9.

On paper it is especially costly to change the content of notes or relations
to other notes. Sometimes a complete note has to be rewritten. Also there
is no ability for full-text queries or semantic queries.

There are few published studies on the structure of physical personal Paper
notebooksnotes. A study by Dienel (2006) examined personal note books used by

engineers around 1850 and later. Typical entry types were ideas, projects,
addresses, to-do lists, meeting minutes, data from measurements, and ap-
pointments. Most engineers used one or two diaries at the same time, one
for factual knowledge and the other for more process-related knowledge.
The study also remarks the prominent use of different colours and carefully
added table of contents. The artefacts in the notebooks are either text
snippets representing one of the types listed above, or drawings or tables.

14http://nepomuk.semanticdesktop.org (accessed 06.01.2010)
15http://aperture.sourceforge.net/ (accessed 06.01.2010)

52 FOUNDATIONS

A relevant feature of all personal notes is their durability. An interviewTime and
notes conducted by Khan (1994) with 28 participants revealed that 64 % of in-

terviewees kept their notes for years before throwing them away. 20 % of
people stored their notes for months and only 8 % regularly threw away their
recently made notes. Hence, notes must be retrievable, understandable and
usable after years.

Software-based approaches There are many software-based approaches
for note management; almost all of them allow full-text search and a vir-
tually unlimited amount of personal notes. Unfortunately, search is not
enough for PKM. As Barreau and Nardi (1995) point out, there is also a
need to organize notes so that a note is even found if the user is only querying
for a related note or browsing to a certain folder or category. Personal notes
often have internal structure and relations to other notes. These relations
are hard to manage in plain text files and the file system.

Bernstein, Kleek, monica mc schraefel, and Karger (2008, page 4) reportsPeople
remember
personal notes
after 8 days

on an evaluation of a note capturing tool. They ran an eight-day long study
with 14 participants who used the tool in their everyday life. The features
of the tool were rated “. . . unbeneficial to our participants over such a short
period of time, due to both the small number of notes they accumulated and
our participants’ still-intact memory of notes’ contents.” To evaluate better,
they plan “participants must gather notes over a long enough period of time
that these mechanisms may become useful, or instead seed the application
with existing notes.”

Kalnikaitė and Whittaker (2008) report on a study in which the abilityPeople forget
fictitious
stories after
7 days

to remember facts from fictitious stories was measured after one day, seven
days and thirty days. The 25 participants used either no tool, pen and
paper, or a digital note-taking tool. The study found a significant decay
of memory for participants using no tools between one day and seven days,
but not much further decay after thirty days. This is somewhat contrary
to the study of Bernstein, Kleek, monica mc schraefel, and Karger (2008),
where people could still remember after eight days. The difference might
be the test content: real personal notes vs. facts from fictitious stories.

In the study of Kalnikaitė and Whittaker (2008), participants which used
a tool had a drop in accuracy after a month. After that period of time,
the authors speculate, the participants could no longer make sense of their
own notes. They conclude that pen and paper notes are often usable by
its creator to trigger memory recall after a period of 30 days. The studyDigital vs.

analogue tools also examined the differences of usage in pen and paper versus digital tools
and found “Digital and analogue note-takers tend to exploit space in similar
ways, to use equivalent numbers of bullet points and to take similar volume
and quality of notes.”

Examples for personal note taking tools are Evernote16, PersonalBrain17

or the Notes function in smart phones and in Microsoft Outlook.

16http://www.evernote.com/ (accessed 06.01.2010)
17http://www.thebrain.com/ (accessed 06.01.2010)

2.8 Personal Information Management 53

2.8. Personal Information Management
PIM is an acronym with two closely related meanings: Personal Information
Manager and Personal Information Management. In this thesis, PIM is used
to denote the latter.

Personal Information Manager A Personal Information Manager is an
application that can manage personal structured data such as address book
entries, appointments, tasks, and notes. Popular PIM tools – or PIMs – are
Microsoft Outlook, Apple iCal, Kontact, and Lotus Notes. Smartphones
usually have built-in PIM software. The more advanced semantic desktop
systems (cf. 2.6) are also personal information managers, e. g., the semantic
task manager from Grebner (2009).

Existing PIM tools either focus on specific structured data such as ap-
pointments, to-dos or contact data – or tackle only free-form note taking.
E. g., management of CD collections, cocktails recipes, text fragments, ideas,
the personal social network, structured argumentation, bibliographic data,
or web site logins is usually poorly supported. Plain text notes are in most
PIM tools merely an unstructured, unrelated set of memo items.

Personal Information Management PIM is a research field that investi-
gates how and why people manage personal information. The first publi-
cations explicitly mentioning the field come from 2001 (Jones, Bruce, and
Dumais, 2001), since 2004 international workshops discuss the topic. The
field of academic Personal Information Management (PIM) research is much
broader than the study of PIM tools.

The report of the second PIM workshop (Jones and Bruce, 2005) defines Personal Space
of Information
(PSI)

the term Personal Space Of Information (PSI) as the space that “includes
all the information items that are, at least nominally, under that person’s
control (but not necessarily exclusively so)”, no matter if the information
is analog or digital. This includes, e. g., all personal notes and all emails
a person received or sent. The field of Personal Information Management
(PIM) aims to help individuals to manage all artefacts in the PSI.

Jones et al. (2001) introduces the problem of “keeping found things found” Keeping found
things foundwhich reports on the tension between knowing something and merely stor-

ing something. Academic PIM research analyses problems such as storing,
finding and re-finding files, web pages and emails.

From / To Myself Others
Me Personal notes (PKM and PIM) Email sent folder (PIM)
Others Email inbox, news feeds (PIM) Web, mailing lists

Table 2.1.: Comparing Personal Information Management (PIM) and
PKM

Comparing PIM and PKM PKM can be seen as a sub-field of PIM re-
search, focusing on self-authored, personal (semi-)structured, (semi-)formal

54 FOUNDATIONS

notes, which do not fit in to the existing structures. As depicted in Tab. 2.1,
PIM deals with artefacts sent to and from a person, whereas PKM focuses
on artefacts created and consumed by the same person.

PKM could also be seen as a super-field of PIM, the goal of PKM is to
help the individual to digest, collect, understand, use and re-use personal
knowledge more effective and more efficiently, whereas the goal of PIM is
“merely” managing information.

Without the notion of knowledge cues (cf. Sec. 1.2.3) such debates over
knowledge vs. information are endless. In this thesis, the term PKM is
mostly used for managing personal knowledge cues (PKM as a subfield of
PIM).

2.9. Wikis
This section introduces wikis and its semantic extension, semantic wikis.

Wikis Ward Cunningham developed Wiki concepts and implementations
in 1995. A wiki is a web-based system for collaborative creation and usage
of content. Wikis have a simple conceptual model: Each page has a name,
which is a short string that can be typed on a keyboard and be remembered
by the users. Attached to each page title is the wiki page content. Page
content consist of a longer string of characters which are interpreted by the
wiki render engine to produce HTML. Special syntax in the page content
is interpreted as links to other pages. Links are established by referring
to other wiki page titles. Empty wiki pages represent concepts with no
description attached.

Maybe by using simple titles for pages instead of long, error-prone URLs
and by integrating the knowledge articulation tightly to the knowledge re-
trieval process, wikis became the first widely deployed tool for authoring
emerging, networked note structures. They are very popular in intranets,
as lab diaries, as public encyclopedia (Wikipedia) and as personal note-
books.

Wiki Syntax Wiki syntax is the way textual input is interpreted as HTML
with document structures and hyperlinks.

In emails most people carefully use ASCII-formatting in order to makeTyping
Structured
Text

reading easier. They encode logical structures of the text in visual ASCII
formatting. For example, list items are very often stated with leading stars
or minus signs. The human reader hereby can easily conclude that all list
items share some kind of common characteristics. Text structures often
carry a kind of implicit semantics, e. g., all items in a list are persons invited
to a meeting. As soon as the semantics of the list would be known to the
computer, a user could query for it.

The result of parsing wiki-syntax is usually an HTML document. WikiWiki-Syntax
syntax can be learned in a try-and-see manner, because no wiki syntax leads
to error messages. As the worst result, an undesired document structure
can appear.

2.9 Wikis 55

After the success of wikis, the concept of lightweight markup languages
became more popular and other generic text-to-HTML languages emerged
outside of wikis, e. g., Textile18, Markdown19, or reStructuredText20. Note
that both wiki-syntax as well as the other lightweight markup languages
produce HTML.

Another way to process textual input has been explored by Miller (2002). Alternatives to
wiki syntaxThe paper describes a text editor with a special treatment of text selections.

If a user selects a span of text, the editor tries to select similar spans of text
in the same document, e. g., text spans that are preceded and terminated
with the same string. The LAPIS tool uses a set of heuristics for this. Based
on these ideas, Gerke (2005) presents an approach where a user can select
a number of positive and negative examples and additionally state nesting
rules between different sets of text spans. This allows a user to create a
document grammar by virtue of machine learning.

Semantic wikis In a semantic wiki, the user can state the type of a link.
Instead of merely linking Berlin to Germany the user can type the link with
is capital of. Semantic wikis allow representing informal knowledge cues
(text), semi-formal knowledge cues (structured text) and formal knowledge
cues (typed links).

One of the first published semantic wiki was Platypus from Tazzoli,
Castagna, and Campanini (2004). The first academic meeting was the work-
shop on semantic wikis by Völkel and Schaffert (2006).

Semantic wikis are designed and used not only for collaborative use, but Personal
semantic wikisalso for personal knowledge management (PKM, Oren, 2005; Oren, Völkel,

Breslin, and Decker, 2006). Semantic wikis allow stepwise formalisation
of content: First a page is created, then filled with text, spell-corrected,
structured, re-structured, and linked to other pages. Then links are typed
and pages linked to categories.

Ironically, just like with paper-based approaches, changing things is not
that easy in semantic wikis. Tasks such as moving content from one page
to another or renaming a relation require typically an administrator to run
scripts over the database. Second, a common use-case of PKM tools is the
need to import knowledge from external sources. In most semantic wikis,
the import of semantic data needs to be represented by artificially generated
wiki syntax inserted into pages.

Semantic MediaWiki (SMW) One of the most stress-tested and used wiki
engines is the open-source MediaWiki engine, which is used in all Wiki-
media Foundation21 projects such as Wikipedia, Wikibooks, Wictionary,
Wikinews, Wikibooks, and Wikiquote. The open-source extension Semantic
MediaWiki (SMW, Völkel, Krötzsch, Vrandecic, Haller, and Studer, 2006;
18http://textile.thresholdstate.com/ (accessed 06.01.2010)
19http://daringfireball.net/projects/markdown/ (accessed

06.01.2010)
20http://en.wikipedia.org/wiki/ReStructuredText (accessed

06.01.2010)
21http://wikimedia.org/ (accessed 06.01.2010)

56 FOUNDATIONS

Krötzsch, Vrandečić, Völkel, Haller, and Studer, 2007) turns MediaWiki
into a semantic wiki engine.

Semantic MediaWiki extends the MediaWiki link syntax “. . .[[Germany]]
. . . ” to “. . .[[is capital of::Germany]] . . . ”. Used on a page like
“Berlin”, this encodes a triple (Berlin, is capital of, Germany). Addition-
ally, a user can write “. . .[[population::3,426,354]] . . . ” to denote
a triple (Berlin, population, “3426354”) with a literal value. However, it is
not possible to link to such content snippets (“3426354”) with another link.
These content snippets in SMW are not first-class entities.

SMW uses the MediaWiki namespace mechanism22 to provide a wiki page
for each property, e. g., Property:Has_capital. This allows users to
document the intended semantics of the property. Additionally, the range of
the property can be stated using another semantic link, which is interpreted
by SMW. SMW provides the ability to download an RDF file containing
all the semantic information which has been created by the user via wiki
syntax.

SMW itself has been extended in numerous ways23. The HALO exten-HALO
extension sion24, also known as SMW+, extends SMW with easy-to-use annotation

and refactoring tools.

2.10. Mind- and Concept Maps
This section introduces mind maps and concept maps briefly. They are
tools for structuring, organising and refining knowledge. The conceptual
models of both are analysed in Sec. 3.5.5.

Mind Maps Besides standard office document formats – like text docu-
ment, spreadsheet, presentation slides, and diagrams – mind maps are be-
coming a popular format, too. Mind maps were invented by Buzan (1991) as
a paper-based method to help people learn new material faster and better.
As a computer application, mind maps are mostly used to (re-)structure
items or to help capturing ideas in discussions.

Popular mind-map software tools are the commercial tool MindManager
and the open-source tool Freemind25 Examples for mind-maps created with
Freemind can be found in Figures A.1–A.15 in Appendix A.5.5.

Concept Maps Concept maps have also first been used on paper. A con-
cept map is a set of labelled boxed which can be connected by labelled
lines or arrows. The concept map approach is described in detail by Novak
and Canas (2006). A line or arrow may have several start or end-points,
although such multi-lines occur seldom.
22http://www.mediawiki.org/wiki/Help:Namespaces (accessed

06.01.2010)
23http://semantic-mediawiki.org/wiki/SMW_extensions (accessed

06.01.2010)
24http://sourceforge.net/projects/halo-extension/ (accessed

06.01.2010)
25http://freemind.sourceforge.net/. (accessed 06.01.2010)

2.11 Tagging and Web 2.0 57

Digital concepts maps are used for learning (Jüngst, 1992) and PKM
(Tergan, 2005). An example that shows typical Concept Map usage is given
in Fig. 2.6.

Source: Originally published by Novak and Canas (2006, Fig. 5, p. 10) with the title:
One representation of the knowledge structure required for understanding why we have
seasons

Figure 2.6.: Example for a Concept-Map

Concept maps are similar to conceptual graphs (Sowa, 1976) in their Comparison
to Conceptual
Graphs

attempt to map natural language sentences rather directly to a graphical
representation. However, different from conceptual graphs, concept maps
have no direct formal interpretation. Conceptual graphs on the other hand,
have no means to express informal knowledge.

2.11. Tagging and Web 2.0
Tagging is the new name for an old concept. The method of assigning
keywords (descriptors) to documents (books and journals) dates at least
back to the first publishing of “Rules for a dictionary catalogue” by Cutters
(Löffler and Fischer, 1956, p. 124).

Tagging is the process of assigning freely selected keywords to web pages,
images or other content collections. Often tagging is used in a collaborative
fashion, i. e., multiple users are assigning their keywords to a (mostly) shared
content collection.

58 FOUNDATIONS

Popular web-sites using tagging are delicious26 (bookmarks) and BibSon-
omy27 (bookmarks and publications) or SOBOLEO28 from Braun, Schmidt,
and Zacharias (2009).

Tagging systems are also used privately, e. g., in the popular note-taking
tool Evernote or Apples iPhoto.

Clary Shirky coined the term folksonomy in his post “Ontology is Over-Folksonomy
rated: Categories, Links, and Tags”29. A folksonomy is described as the
set of tag assignments (user, tag, resource). Even for a single user, the tu-
ples (tag, resource) imply a number of interesting sets such as (Notation:
?=query variable, ∗=any):

• (t, ?): The set of all resources tagged with tag t. This is the most common
retrieval query.

• (?, r): The set of tags used for a certain resource r. This is a kind of
summary about the resource.

• (?, ∗): The set of tags. This is the vocabulary of a user.

In a collaborative system, these queries can be extended to all users. This
results in resources or tags occurring multiple times in the implied sets.
This set can easily be ranked by the number of occurrences. Alternatively,
all resources occurring less than k times can be left out. This improves
precision and degrades recall. Additional queries possible in collaborative
systems are:

(∗, t, ?): The set of all resources tagged with tag t by any user, implies a
topically grouped resource collection.

(?, ∗, r): The set of users that have tagged a resource r. This implies a set
of users with similar interests, but maybe very different perspectives
and viewpoints.

(?, t, ∗): The set of users that have used tag t. This is a set of potentially
related users.

By taking into account groups of tag assignments, further interesting sets
can be computed. For example, by looking at all tags a user A used, users
with similar tags can be identified; then resource from related users can be
suggested to user A. This approach is illustrated well by Jäschke, Hotho,
Schmitz, Ganter, and Stumme (2008).

The classification system used in Wikipedia (categories) is essentially theCategories
same as tagging with the additional ability to nest categories. Nesting of
tags is also available in delicious, although to a lesser degree and only one
nesting step is allowed there.

The Semantic File System (Bloehdorn et al., 2006) also uses tags as a
core organisation principle.
26http://delicious.com/ (accessed 06.01.2010)
27http://www.bibsonomy.org/ (accessed 06.01.2010)
28http://www.soboleo.com/ (accessed 06.01.2010)
29The main article can be found at http://www.shirky.com/writings/

ontology_overrated.html (accessed 6.11.2009)

2.12 Knowledge acquisition 59

2.12. Knowledge acquisition
This section looks into knowledge acquisition aspects.

Knowledge elicitation methodologies Schreiber (1993) published a book KADS
on the KADS methodology for knowledge base development, which is a
methodology with the goal of creating a formal model of a domain.

CommonKADS (Schreiber, Akkermans, Anjewierden, Dehoog, Shadbolt, CommonKADS
Vandevelde, and Wielinga, 1999, Ch. 6) is a refined model, emphasising
formalised task-specific knowledge. It explains a methodology for knowledge
elicitation from non-experts by experts.

Another methodology based on KADS is the “MIKE”-approach (Angele, MIKE
Fensel, Landes, and Neubert, 1995). It emphasizes incremental modelling
and the notion of semi-formal models.

The described methodologies are rather heavyweight and not suitable for
PKM for two main reasons: (1) In PKM, there is no difference between
expert and non-expert, as there is only one person, and (2) the person
rarely has the explicit goal of creating any kind of formal knowledge, it is
rather an emerging by-product. Therefore, knowledge acquisition processes
cannot be re-used directly to PKM.

Mediating Representations A mediating representation (Johnson, 1989)
is an interactive representation of a part of knowledge model to a user. In
the same way as programming languages abstract away, layer by layer, the
bit string that is running inside a computer’s processor, a mediating repre-
sentation abstracts away how data is modelled. A mediating representation
works in both ways; it can show data to a user and interpret user interface
commands as changes to the data. A mediating representation is the user
interface equivalent of a conceptual model.

“In fact, a spreadsheet could be classified as an effective me-
diating representation. A spreadsheet provides users with an
efficient representation language for building business models.
Previously such models were programmed directly in languages
such as Basic or COBOL. Many more users can build business
models on computers because spreadsheets are available. The
emphasis is on business modelling skill, not programming skill.
[. . .]. It can be argued that spreadsheets help improve the qual-
ity of business models because users (1) are not burdened with
computer programming, (2) concentrate on important aspects
of the model directly, (3) can easily change the model, and (4)
can more easily maintain the model.” – Boose (1990)

According to Lethbridge (1994), “a mediating representation is designed to
highlight certain aspects of the knowledge, or to allow the user to perform
a certain task with the knowledge.”

60 FOUNDATIONS

2.13. Human-computer interaction
Conceptual Model An important concept in human-computer interaction
(HCI) is the conceptual model. A conceptual model focuses on information
abstractions rather than device controls (Jones et al., 2006, p. 66).

A conceptual model is the conceptual representation a human works with.
Consider a file-system: From the point of view of a user working with a
file system explorer, the conceptual model is a tree in which each tree node
(folder) contains files and sub-trees (sub-folders). But from a technical view-
point, a file system consists of nodes, blocks, node tables and file allocation
tables. The conceptual model can be quite different from the technical
model.

Input devices Personal computers have been equipped with a keyboard
since their first appearance in 1973 (The Alto described in Friedewald, 2000,
p. 261). Other text entry methods did not become mainstream. Since its
invention in 1964 (Friedewald, 2000, p. 181), the mouse became popular as
a second input device for graphical user interfaces. Other input devices are
joysticks, graphic tablets, touch-sensitive displays, scanners, digital cameras
or more advanced controls such as motion-tracking gloves as used in virtual
reality environments. Today, out of all these input devices, only keyboard
and mouse are present on almost all personal computers. Portable comput-
ers often use so called track-points or a touch-pad as a mobile version of the
mouse.

Input efficiency for knowledge articulation User interfaces for knowledge
articulation often use keyboard and mouse in combination. For many mouse
commands an equivalent keyboard shortcut exists. For writing a document
or program source code, they keyboard is more efficient than the mouse.

A standard computer keyboard contains over 100 keys, so with each key
press a user can transmit willingly over 6 bits, which are bits that carry
human-intended semantics. Mouse movement generates technically more
bits, i. e., all changes of position and button movement, but far fewer mean-
ingful bits, i. e., selecting a menu command with the mouse takes much more
effort than with a keyboard. Thus externalising knowledge via keyboard is
faster than via mouse. For externalising ideas, text has a second advantage.
Language is the basis of thinking. Language is expressed in words which
can be written down in texts.

A mouse is useful for browsing or refactoring structures in a visual way.

3. Analysis and Requirements

This chapter gathers requirements for knowledge models. First typical PKM
use cases are described which have been collected from a survey. In Sec. 3.2,
existing models for processes in PKM are presented. A new knowledge cue
life-cycle is presented which describes the interaction of a user with her
PKM tool more detailed. Based on this life-cycle model, Sec. 3.3 conducts
an economic analysis for the different steps. Finally Sec. 3.4 presents known
requirements from literature. At this stage, it becomes clear that knowledge
models should be able to represent generic structured models. Sec. 3.5 analy-
ses popular existing conceptual models for working with external knowledge
representation on a computer, i. e., documents, file system, wikis, hypertext,
tagging, and semantic web languages, are analysed. From this analysis, the
most relevant relations for knowledge models are distilled. Sec. 3.7 gives
an overview over all requirements gathered from the other sections in this
chapter.

3.1. Use cases in PKM
This section analyses the core used cases in PKM, as collected in an online
survey.

Survey To find out about the requirements for PKM tools, 50 participants
were interviewed in an online survey. Test subjects were recruited form a
number of sources: (a) All 16 participants from case study I (see Sec. 6.2),
(b) 5 random visitors of the English PKM page on Wikipedia, and (c) 29
researchers and students at FZI and AIFB which haven been recruited di-
rectly. The complete survey can be found in Appendix A.2.

40 participants out of 50 answered the question “For what kind of pro- PKM tasks
jects/tasks do you wish you had better PKM support?”. Each participant
could answer in free text and list any number of tasks. The following tasks
were mentioned at least two times:

• Note-taking (21 times).

• Todo-lists and task management (11 times). Linking tasks with other
artefacts has been mentioned 3 times.

• Writing, creating a (scientific) document (6 times).

• Project planning and project management (4 times).

• Creating or preparing a presentation (3 times).

62 ANALYSIS AND REQUIREMENTS

• Learning, i. e., any tasks related to studying (3 times).

• Publishing, sharing and exchanging personal knowledge (3 times).

• Collaborative projects or team work (2 times).

Other tasks mentioned are address book management, calendar, documen-
tation of software and processes, organisation of social life, planning of per-
sonal future, programming, requirements engineering, shopping, and trans-
lation.

Note-taking This task has been mentioned by over 50% of participants.
Therefore this task is considered a core-task of PKM. In order not to forget
things, people make notes about their ideas (i. e., lab book), their life (i. e.,
diary), their friends (e. g., address book) and complex subject matters (e. g.,
learning notes).

Note-taking is also a very general task. Many participants indicated also
their most problematic sub-task in note-taking:

• Organisation of notes (6 times)

• Annotation of existing artefacts such as web pages or desktop objects (6
times)

• Maturing notes and later exporting them in a more structured format to
other applications (5 times)

• Collecting ideas (3 times)

When collecting ideas and filing notes away, this relieves the mind from
keeping track of that idea all the time.

The survey (cf. Sec. A.2) asked also “In one week, how many personal
items do you write down?” In average, people create 46 “personal items” per
week. The answer field was free-text and some people wrote down not only
a number but also explained briefly what they considered a personal item
in note-taking: An A4 sheet of paper, a page typeset with LaTeX, a longer
email, an EMACS database entry, a line of keywords in a tiny notebook, en
entry in todo-list application, a sheet of paper, a short note, or an entry.

A common use case involving note-taking is learning.Related use
cases

Learning Learners often take personal notes to phrase text books into
their own language and create more compact, personalised representa-
tions. Therefore, learning is considered an application of note-taking.
Similar to PKM systems, there is the notion of Personal Learning En-
vironments (PLE) (van Harmelen, 2006). PLEs are often focused on
creating a personal portfolio which is used to track and plan personal
learning progress. A personal portfolio can be shown to supervisors
and prospective employers to demonstrate acquired skills. The re-
search communities around personal learning and personal knowledge
management study similar phenomena from different viewpoints.

3.1 Use cases in PKM 63

A typical task in learning is “Getting Overview” about a new topic.
E. g., if a person wants to learn all about French cheese.

Idea Management This task is also very closely related to note-taking.
Many people take notes about their ideas in order to first capture and
later filter and refine them. This process of “idea maturing” is also
advocated by Schnetzler (2004). A similar, more generic process of
“knowledge maturing” is followed in the MATURE project1.

A frequent form of taking personal notes is copying a part form an existing Sample task
digital source and pasting it into another tool. E. g., copying a part of a
web-site or email into a personal wiki. In fact, the most often used command
in Microsoft Word 2003 is paste2, which amounts to 11% of all commands
used.

Document creation The task “document creation” was mentioned 6 times.
One user summarized this task as “[. . .] locate the information by keyword,
date, other metadata or by tracing a path of discovery, then attributing the
source correctly, and communicating in a universally readable format [. . .]”.
Esselborn-Krumbiegel (2002) defines the typical document creation process
as

• orientation – collecting ideas, defining the topic;

• investigation – evaluating and analyzing material from external sources;

• structuring – creating an outline;

• creating a first draft – containing all parts in linear order but low quality;

• refining – content, language and style.

Creating or preparing a presentation can be considered a related task to
document creation. Similarly, publishing, sharing and exchanging personal
knowledge requires some kind of codified knowledge. Usually informal per-
sonal notes are not enough and contextually richer documents need to be
created.

Our society is heavily based on communication by documents, ranging
from books to emails. “Almost all current documents have existed in elec-
tronic form at one stage in their life” (Pédauque, 2003). Few documents
are written directly in a text editor in a linear one-pass fashion. During
document creation, the final order is most likely not yet defined. Order-
ing a collection of ideas or text snippets into a coherent flow is one of the
main tasks of authoring (Esselborn-Krumbiegel, 2002) (→ Req. 19 order)3.

1http://mature-ip.eu/ (accessed 06.01.2010)
2http://blogs.msdn.com/jensenh/archive/2006/04/07/570798.
aspx (accessed 06.01.2010)

3The notation “(→ Req. 19 order)” is used to indicate that this is an argument for re-
quirement 19. Each requirement is referenced by number plus and additional short
verbalisation.

64 ANALYSIS AND REQUIREMENTS

A user should be able to create order gradually, e. g., by stating order be-
tween some sections, but not requiring a total ordering (→ Req. 9 stepwise).
Different tools are employed for different degrees and kinds of structures
(e. g., notes about the idea, outline, argumentative structure, list of refer-
ences, quotations from other sources). Knowledge often goes a long way,
traversing different media and tools while subsequently approaching its fi-
nal structure. A typical sample task from this area is the export of a setSample Task
of personal notes into the format of a specialised outline or mind mapping
tool.

Personal knowledge models could speed up the document creation pro-
cess, by allowing an author to manage her knowledge digitally and refine
it step-by-step into a document-like artefact. Then, a part of the personal
knowledge model could be exported as a document.

Argumentation Another use-case for PKM, although rarely mentioned in
the survey, is structured argumentation.

Sometimes and individual has to take difficult decisions with far-reaching
consequences, e. g., whether to accept a job offer in another city or not.
Structured argumentation helps also to capture the rationale for a decision,
e. g., in software engineering. The foundations for structured argumentation
have been published as IBIS by Kunz and Rittel (1970), with the core con-
cepts issue, idea, example, pro- and contra-argument. Later works created
software tools based on IBIS, such as gIBIS (Conklin and Begeman, 1988)
and Issue Based Argumentation In A Wiki4 (IBAW).

PIM: tasks, appointments, email, contacts Although PIM (cf. Sec. 2.8)
is much more than just managing tasks, appointments, email, and contacts,
for most people these are the core information types.

Tasks and Appointments Technically, task management is mostly about
managing a set of highly structured objects (the tasks) which can be
viewed and manipulated in a set of specialised views (e. g., a calen-
dar, a todo-list, a task-dependency-tree, . . .). The same is true of
project planning and project management. Taken together, the tasks
managing todo-lists, task management and project management have
been mentioned by 27% of the survey-participants who answered the
question. An introduction to task-management and semantic-based
task management is given by Grebner (2009).

Emails Again, Emails are highly structured artefacts with a number of
standards, e. g., about header data and content formats. Inside this
structured envelope users send plain text, HTML text and files around.

Contacts In most PIM applications, contacts are managed as structured
data objects with a number of standard attributes such as street ad-
dress, work phone, private phone, fax number and email address.

4http://xam.de/2006/02-ibaw.html (accessed 06.01.2010)

3.1 Use cases in PKM 65

These standard attributes can usually be synchronised to, e. g., mobile
phone and other PIM tools.

All three kinds of information objects are highly structured and a number
of standards for data exchange exist. Many PIM applications provide so-
phisticated user interfaces for manipulation of these structured objects but
rather poor options for management of personal notes. Often personal notes
are just a free-text field attached to the structured information items with
no option to add structure or links.

This thesis explores personal notes that can also be used to represent PIM
objects. It is expected that prototypical tools for managing personal notes,
even if they can be structured and formalised well, do not initially meet the
requirements of experienced PIM tool users. They are likely very used to
their existing, specialised views. Behind this fact is an economic conflict:
Either a tool is generic, with the consequence of the user interface being
ill-suited for structured objects. Or a tool is domain-specific, with the con-
sequence of a restricting data-model customized for one kind of structured
object. This prevents the tool from being used in a number of situations.
For managing personal knowledge cues, flexibility was considered more im-
portant than specialised user interfaces.

Personal Social Network Management (PSNM) Social networks are pop-
ular on the web and within enterprises. Older yellow pages in enterprises
emphasised more the personal competence profile and less the connections
to other employees or clients. Existing consumer social networks such as
Facebook or MySpace emphasise the social relations a lot but offer still few
options to maintain privacy. Few people have only social contacts that are
entirely present on a particular web platform. In the end, users are left
with managing their social network personally outside of the web platform,
e. g., whom they know, where they live and when their birthday is. PSNM
remains therefore a PKM task. Data-wise, PSNM needs to manage a mix
of highly structured and unstructured data. Structured data concerns the
standard attributes of a contact. Less precise knowledge about relations to
other people, companies, and places is not covered well by existing stan-
dards for contact data. Here more free-form like note-taking comes into
play.

In this thesis, PSNM is considered a prime use case motivating the need
for a unified management of formalised, structured and less formalised
knowledge (→ Req. 8 formality levels). An example for a task involving struc- Sample task
tured and less structured information is a person that plans a trip to Berlin
and would like to meet his friends there. So any person that is sufficiently
well known and lives in Berlin or works for a company that is located in
Berlin is relevant. Of all these persons, the email-address is required to
contact them.

Summary One participant summarised this situation as “a PKM tool
should help me aggregate, collect and view all the small bits of informa-

66 ANALYSIS AND REQUIREMENTS

tion, which are either needed for long term reference, or in the short term
for completing a task.”

Note-taking can be seen as a general PKM activity, which is required by
other use cases such as learning and idea-management. Personal Social Net-
work Management requires more graph-like structures whereas most parts
of PIM can be seen as a combination of note-taking and PSNM. Argumenta-
tion can be seen as a prerequisite to document creation. Therefore the most
representative use cases are note-taking, document creation and PSNM.

3.2. Processes in PKM
To analyse clearly where a user, doing PKM in general and note-taking
in particular, needs what kind of support, this section analyses the PKM
processes.

3.2.1. Existing process models
A very generic, note-taking centric process model is given by Jones andJones - PIM

processes Bruce (2005). See Sec. 2.8 for an explanation about the Personal Space of
Information (PSI). The basic processes in PIM are:

1. Keeping: input of information into a PSI;

2. Finding or re-finding: output of information from a PSI, and

3. Meta-activities: e. g., mapping between information and need, main-
tenance and organisation.

A more detailed model for PKM from Avery, Brooks, Brown, Dorsey, andAvery - PKM
skills O’Conner (2001) describes the following seven PKM skills:

1. Retrieving information;

2. Evaluating information; (whether it is relevant or not)

3. Organizing information;

4. Collaborating around information;

5. Analyzing information; (what is encoded in the information)

6. Presenting information; and

7. Securing information (maintain privacy, integrity, and availability).

These skills can also be interpreted as processes. Avery et al. (2001) gives
an interesting definition of the knowledge organisation process:

3.2 Processes in PKM 67

Organizing information is a central part of the inquiry process
focused on making the connections necessary to link pieces of
information. Techniques for organizing information help the in-
quirer to overcome some of the limitations of the human infor-
mation processing system. In some ways the key challenge in
organizing information is for the inquirer to make the informa-
tion his or her own through the use of ordering and connect-
ing principles that relate new information to old information.
Elementary skills of synthesis and analysis are central to this
process. Technological skills in organizing information have be-
come ever more important as electronic tools such as directories
and folders, databases, web pages, and web portals provide the
inquirer with ever more powerful tools to make connections.

This means that incoming information from others needs to be processed in
a way to turn them into personal knowledge cues. He also points out the
importance of interaction with tools in this process.

Nissen (2005) describes in his knowledge flow model (cf. Fig. 3.1) transfor- Nissen -
knowledge
life cycle

mations between different forms of knowledge. The model has three axes:
explicitness, reach and life cycle. Explicitness is either explicit or tacit.
Reach ranges from individual over group to organisation, nation and global.

9

Life Cycle

Explicitness

Individual Group Organization

Refi
ne

App
ly

Sha
re

Form
ali

ze
Orga

niz
e

Crea
te Reach

Explicit

Tacit

Flow time
Short
Long

B

Socialization

C

Externalization

D

Combination

E

Internalization

ACreation

p

A model showing the flow of knowledge between groups (axis: reach), different states of
explicitness (axis: explicitness), and life cycle steps (axis: life-cycle). This diagram can
show transformations of knowledge. The vectors A-E shows Nonaka’s SECI model as an
example for the expressivity of the model. E. g., vector E represents explicit knowledge
within an organisation that has been organized which gets internalized by people in the
organisation as it is applied to a task.

Figure 3.1.: Knowledge Flow Model by Marc E. Nissen

68 ANALYSIS AND REQUIREMENTS

The knowledge life cycle has the steps

1. Create,

2. Organize,

3. Formalise,

4. Share,

5. Apply, and

6. Refine.

Additionally, knowledge can flow slow or fast between any two points in this
parameter space. The figure shows the SECI-model represented within the
knowledge flow model.

A more concrete, very similar process model by Barth (2004) is centredBarth - PKM
processes and
tools

around ideas and includes mentions of tools used:

1. Accessing information and ideas (e. g., desktop search),

2. Evaluating information and ideas (e. g., collaborative filtering),

3. Organizing information and ideas (e. g., diaries, portals),

4. Analyzing information and ideas (e. g., spreadsheets, visualization tools),

5. Conveying information and ideas (e. g., presentations, web sites),

6. Collaborating around information and ideas (e. g., messaging, meeting
at the water cooler), and

7. Securing information and ideas (e. g., virus scanner).

According to North (2007, p. 27–28), core value creation components inNorth - value
creation
components
in knowledge
work

knowledge work are:

1. Planning (including organising, strategy development) – Note: Here
organising is not organising the knowledge, but organising the work.

2. Analyzing (including searching, structuring, and reflecting)

3. Synthesizing (including combination, reconfiguration, and designing)

4. Communication and documentation

5. Learning

3.2 Processes in PKM 69

Comparison of process models Table 3.1 shows a comparison of the mod-
els from Jones, Avery, North and Nissen. Although they are not all PKM
process models, they can be compared to a certain degree. The models from
North and Nissen are both more focused on the mental processes, whereas
Jones, Avery and Barth look more at the interaction of a user with her
tools. Therefore the steps planning and knowledge creation have no corre-
spondence in the tool-centric processes. The same applies to learning and
the step to apply knowledge. On the other hand, only the Jones model has
an explicit step representing the codification process to represent knowledge
in digital form (keeping). There are many processes about analysing exist- Observations
ing codified knowledge (Avery, Barth, North) and about organising existing
codified knowledge (Jones, Avery, Barth, Nissen). However, there are to-
day very few generic, integrated tools for analyzing or organizing codified
knowledge.

Jones Avery/Barth North Nissen
Perspective: Perspective: Perspective: Perspective:
user & storage user & tools mental process knowledge
— — planning —
— — ana., syn. create
finding retrieving/accessing analyzing —
finding evaluating analyzing —
finding analyzing analyzing —
finding presenting/conveying comm.+doc. share
keeping — comm.+doc. —
keeping, finding collaborating all —
meta organising ana., syn. organize
meta (organising) ana., syn. formalise
meta (organising) ana., syn., learn refine
meta securing — —
meta — synthesizing —
— — learning —
— — — apply

How to read this table: Processes are mapped between models. E. g., the process find-
ing from Jones maps to four different steps in the model of Avery/Barth, which again
maps to the two steps analyzing and communication and documentation of North. In
Nissen’s model, not all these steps have a correspondence, only the comm.+doc. step
from North maps to share in Nissen’s model.

Table 3.1.: Comparison of PKM process models

3.2.2. Knowledge cue life-cycle
For an analysis of the requirements for a good PKM system based on the
notion of knowledge cues, none of the models above is fitting particularly
well. A model from the perspective of the individual, focusing on the in-
teractions between people and tools is still missing. Therefore, a knowledge

70 ANALYSIS AND REQUIREMENTS

cue life-cycle model was created (also called Völkel model). Fig. 3.2 shows

reflect

create knowledge

augment
(content,
structure, and
formality)

codify

retrieve
use

knowledge model

Figure 3.2.: Knowledge cue life-cycle in isolation

the basic processes that happen when a person is doing PKM in isolation.
The main processes are (in temporal order):

Create knowledge This is a purely mental process where new knowledge
is created by thinking.

Codify Here some experienced mental state is associated with a pattern
that is just created in digital form. This process represents the initial
creation of knowledge cues.

Augment This is a complex process that involves augmenting an exist-
ing knowledge cue by adding more content, adding more structure
or adding more formality. Of course, removing content, structure or
formality is also possible. This process is described in greater detail
further below.

Retrieve In this process the user interacts with her PKM tool to find
previously created knowledge cues. Typical ways to retrieve cues is
by (full-text) searching, associative browsing and following links – or
combinations thereof. Executing semantic queries is another form of
retrieval.

Use This process represents the usage of knowledge in a real world situ-
ation. The classical process of using knowledge is to act on it, this
means to take an informed decision.
Note: The use-step is the only step that gives value to a user. All
processes that interact with a knowledge model are investments for
future cost savings. Exception: Some people do take notes solely
because the act of writing helps them to remember the content better
(Kidd, 1994).

Reflect This process represents any kind of reflection and management of
the other knowledge cue processes.

3.2 Processes in PKM 71

Augment processes There are many ways in which a knowledge cue can Stepwise
formalisation
and other
augmentation
processes

stepwise be augmented. One can distinguish to change a single knowledge
cue, or to change the structure between multiple knowledge cues. Special
operations like splitting and merging knowledge cues change at the same
time inner and outer structure of knowledge cues.

Figure 3.3.: Range of formalisms in domain-oriented systems by Shipman
and McCall (1999)

The notion of incremental formalisation is used by Shipman and McCall
(1999). Fig. 3.3 shows the basic idea of a continuum of formality.

txikmumad txikmumadbtixwt
adding content

txi

km umad

ad
di
ng

st
ru
ct
ur
e

add
ing

form
ality

txikmumadbti

txi

km
umad

txi

km umad

tx

km um

i

ad

Figure 3.4.: Knowledge cue augmentation processes: A sequence of ran-
dom characters represents content that is augmented along
several dimensions. More content is added, structure is added,
or content is formalised – which requires a certain amount of
structure. Only addressable items can be typed.

Fig. 3.4 depicts the details of the knowledge cue augment process. A
random character sequence txikmumad serves as an example for an initial
knowledge cue. The augment process can now:

Add content This is depicted to the right by extending the characters se-
quence succinctly with more characters. Deletion or changes of char-
acters are also represented in this process.

72 ANALYSIS AND REQUIREMENTS

Add structure This process keeps the size of the knowledge cue constant,
but adds more structure to the content. This process extends the
number of addressable entities.
In the example, the character sequence is split up into parts, which
are then structured in a tree, just like, e. g., in XML or HTML. In text
processors the same effect is achieved by, e. g., by formatting the text
as headlines, sections, paragraphs, bold text and italics. Another way
to change the structure is to add links between knowledge cues. For a
user such processes are, e. g., hyper-linking, tagging, and classifying.
An everyday example of adding structure is to sort digital images into
albums. Albums can represent events, locations or other similarities.
The semantics of the grouping are not made explicit by merely filing
the pictures.

Add formality Only addressable entities can be typed with types from
a meta-model. Therefore, this process requires a certain amount of
structure to be present. It adds meta-data to structure-data in order
to explain the semantics of structures. If structures indicate how items
are structured, then formality explains in which way the structure con-
nects items. The meta-data is represented by call-out rectangles. The
example shows meta-data added to relations and parts of the knowl-
edge cues. These meta-data annotation can be though of as formal
types. Adding formality requires a certain type-system, which is often
defined in a meta-model. Meta-model issues are not represented in
the picture for clarity reasons. They are discussed in Sec. 2.1. This
process covers also the change from a formally typed item or rela-
tion to one with another formal type, where the latter is described by
more or less axioms. E. g., changing from “has sub-structure” to “has
employee”.
A typical examples for adding formality is the classification of mp3
music files with meta-data to describe the genre of songs. If this
genre is stored in the genre-field of the standardised ID3 header, other
software can, e. g., automatically create a playlist of all classical jazz
songs.

Fig. 3.5 shows the extension of the basic processes with collaboration.
This is a more realistic case, but looking at the processes in isolation was
easier to understand. Knowledge workers not only create and transform
knowledge, they also have to communicate knowledge to other parties. For
this, they have, e. g., to write documents and reports (Rockley, 2002). This
is modelled as export as share. In the figure, there are four more processes:

Export This process takes a sub-set of the knowledge model and trans-
forms it into a desired target format. Typical target formats are word
processor document, email, mind-map or web page. Technically, cre-
ating these desired target structures is expensive to implement, since
each target format needs a kind of converter. However, each converter
is rather easy to create, if the variation in knowledge cues is not too

3.2 Processes in PKM 73

reflect

create knowledge

augment
(content,
structure, and
formality)

codify

retrieve
use

export,
share

receive,
import

knowledge model

Figure 3.5.: Knowledge cue life-cycle with collaboration

high. Not all features of the target format need to be used; instead, it
is enough to generate a simple file via some kind of template-approach.

Share After the knowledge cues have been exported to a desired target
format, they can be shared with other users. In a perfect world, the
other users would directly use the knowledge cues; hence no transfor-
mation would have to be performed. However, a way to control which
cues are shared when and with whom is still required.
In addition to use knowledge in the use process, knowledge cues can
be used directly, if they are sufficiently rich in content, structure and
formality. A typical example is the creation of a presentation from an
outline. Sometimes one merely has to add a corporate design template
to convert personal notes into a publishable presentation.

Receive Some kind of input format is received. Conceptually, the most
important step is to decide which parts should be imported and which
not. Knowledge cues from other users that have not been reviewed
cannot be considered knowledge cues for the receiving user.

Import Here existing formats are converted into knowledge cues. Concep-
tually, this is easy, if the knowledge cues are sufficiently expressive.
Again, one converter is required for each kind of input format. How-
ever, different from export, in order to import a source format every
feature of the source format needs to be understood and converted.
Therefore import converters are generally much more costly to imple-
ment.

Summary To summarise, the knowledge cue life-cycle has the processes:

1. Create knowledge mentally;

2. Codify by creating initial knowledge cues;

3. Augment knowledge cues by adding more content, structure, or for-
mality;

74 ANALYSIS AND REQUIREMENTS

4. Export knowledge cues into other formats;

5. Share knowledge cues with others;

6. Retrieve5 knowledge cues and evoke a previously experienced mind-
state;

7. Receive knowledge cues into other formats and evaluate and filter
them;

8. Import relevant and reviewed parts as knowledge cues;

9. Use knowledge in a real world situation;

10. Reflect on all knowledge cue processes.

As a simple example, how these steps can be instantiated, imagine DirkExample
working for SAP. One day, he has an idea how to rewrite a database query
so that it returns the result twice as fast, although it works only for the first
ten elements. Dirk has just created knowledge. Unfortunately, it does not
solve his task at hand, because he needs to return many more results. So he
decides to codify his knowledge and writes in a mind map. His mind map
collection is already very big, so he decides to augment his newly created
knowledge cue (here: the mind map) and stores it in a well-named folder
hierarchy. He also formats his thought nicely and writes full sentences, so
that he can understand his note much later as well. . . . Months later, Dirk
has to work on a new project and needs to return just the best three query
results from a data base really fast. He scratches his head and searches
in his mind map application, trying to remember the tags he might have
used. In fact, he is in the middle of a retrieve process step. He finds four
matching mind maps and reads them. The second mind map tells him how
he can rewrite the query! Dirk is just using his knowledge cue. After happily
implementing that database function, he takes a step back and thinks about
what just happened. Now he is in the reflect step. It occurs to him that
other colleagues might benefit from this knowledge as well. So he exports
his mind-map as formatted text and pastes it into the SAP wiki. He just
shared a knowledge cue. Now his colleagues can receive this wiki page, read
it, and add it to their own personal knowledge model. Depending on the
tools they use, they might be able to import the existing knowledge cue, so
that they don’t have to re-create all the structure in their tool.

Comparing the knowledge cue life-cycle with other process models To
compare the different models without confusing the terms, each term in the
comparison is suffixed with the first author of the model, i. e., “J” for Jones,
“A” for Avery, “B” for Barth, “No” for North”, “Ni” for Nissen and “V” for
Völkel. A graphical representation of the comparison is depicted in Figures
3.6 and 3.7. Dotted lines represent weaker mappings.

The knowledge cue life-cycle emphasises the processes between user andJones

5This process can also search other people’s knowledge models, if their knowledge cues
are shared.

3.2 Processes in PKM 75

Pr
es

en
tin

g/
co

nv
ey

in
g

R
et

rie
vi

ng
/a

cc
es

si
ng

Ev
al

ua
tin

g

An
al

yz
in

g

Co
lla

bo
ra

tin
g

O
rg

an
is

in
g

Se
cu

rin
g

Fi
nd

in
g

Ke
ep

in
g

M
et

a

Cr
ea

te

Co
di

fy

Au
gm

en
t

R
et

rie
ve

U
se

R
ef

le
ct

Ex
po

rt

Sh
ar

e

Im
po

rt

R
ec

ei
ve

Av
er

y/
Ba

rt
h

Jo
ne

s
Vö

lk
el

Fi
gu

re
3.

6.
:C

om
pa

rin
g

th
e

kn
ow

le
dg

e
cu

e
lif

e-
cy

cl
e

w
ith

m
od

el
s

fr
om

Jo
ne

s
an

d
Av

er
y/

B
ar

th

Cr
ea

te

Co
di

fy

Au
gm

en
t

R
et

rie
ve

U
se

R
ef

le
ct

Ex
po

rt

Sh
ar

e

Im
po

rt

R
ec

ei
ve

Vö
lk

el

Pl
an

ni
ng

An
al

yz
in

g

Co
m

m
. &

 D
oc

.

Sy
nt

he
si

zi
ng

Le
ar

ni
ng

Cr
ea

te

Sh
ar

e

O
rg

an
iz

e

Fo
rm

al
iz

e

R
ef

in
e

Ap
pl

y

N
or

th
N

is
se

n

Fi
gu

re
3.

7.
:C

om
pa

rin
g

th
e

kn
ow

le
dg

e
cu

e
lif

e-
cy

cl
e

w
ith

m
od

el
s

fr
om

N
or

th
an

d
N

iss
en

76 ANALYSIS AND REQUIREMENTS

tool, therefore it maps well to the process model of Jones and Bruce (2005).
KeepingJ is present as two processes, codifyV and shareV . From a PIM-
point of view, any knowledge that has been received is already in the per-
sonal space of information (PSI). Therefore, importV maps best to metaJ .
Analogous, the process findingJ is represented as retrieveV and receiveV .
Again, the exportV process maps better to the metaJ process. The pro-
cess augmentV maps directly to metaJ . Mental processes such as create
knowledgeV , useV and reflectV are not present in the Jones model.

Compared to the PKM skills identified by Avery et al. (2001), retrievingAAvery
maps to retrieveV , evaluatingA to receiveV and retrieveV . AnalyzingA is
performed by doing exportV to another tool and create knowledgeV by
looking at the results. PresentingA maps partially to exportV . Collaborat-
ingA maps to all four collaborative processes in the Völkel model: exportV ,
shareV , receiveV , and importV . OrganisingA maps to augmentV , but note
that augmentV is much more than just organising knowledge. SecuringA

is a cross-cutting concern across the life-cycle, not present in the model of
Völkel. Note that Avery has no processes corresponding to create knowl-
edgeV , useV and reflectV . Interestingly, not even the basic process codifyV

has any correspondence in Avery’s model. How information enters the sys-
tem remains therefore unclear.

This model is very similar to the one from Avery and the mapping remainsBarth
the same. The processes from Avery are mapped to those from Barth in
Table 3.1.

Here planningNo can be seen as a part of reflectV . AnalyzingNo seemsNorth
to map to many processes, at least to retrieveV , augmentV and create
knowledgeV . The corresponding process synthesizingNo maps at least to
augmentV and create knowledgeV . CodifyV maps to communication and
documentationNo. The communication aspect maps also to shareV and re-
ceiveV . LearningNo is not really present in the Völkel model, it vaguely
maps to reflectV .

The model of Nissen has an explicit applyNi step which maps to useV .Nissen
The phases organiseNi, formaliseNi and refineNi all map to augmentV . Cre-
ateNi maps best to create knowledgeV , as Nissen is talking about knowl-
edge, not knowledge representations. ShareNi maps easily to shareV . The
codifyV process is probably also covered by formalisationNi. Note that the
Nissen model has no reflection processes. Transformation processes such as
exportV and importV map vaguely to refineNi.

As a contrast to these PKM related models, consider an OKM model:Probst - core
processes of
OKM

Probst, Raub, and Romhardt (2006) defines OKM with six interrelated
core and two accompanying control processes:

1. knowledge identification (reflection about knowledge and knowledge
processes in an organisation),

2. knowledge acquisition (by hiring or buying other organisations),

3. knowledge development (developing new capabilities within the or-
ganisation),

3.2 Processes in PKM 77

4. knowledge sharing and distribution (between the members of the or-
ganisation),

5. knowledge usage, and

6. knowledge keeping (experiences, information and documents)

The control processes are knowledge goal definition and evaluation of goal
achievement. These eight processes do not map well to the PKM processes.
Only knowledge sharing, knowledge usage and knowledge keeping map to
PKM processes.

The four processes of Nonaka (1994)’s spiral model can be mapped well Nonaka
to the knowledge life-cycle. Externalisation is codifyV , internalisation is
retrieveV , combination can be found in augmentV , and socialisation does
not occur in the knowledge cue life-cycle.

To sum up, there is no direct mapping from any of the existing processes Summary
to the Völkel model. None of the models details the interaction between
user and tool and represents purely mental processes as well. Especially the
use process is important in the next section where an economic analysis of
PKM processes is carried out. PKM vs. OKM

in light of the
process model

The general difference to OKM approaches is an emphasis of cognitive
processes and human-computer interaction, as both are potential cost drivers.
High costs often result in tools not being used at all. In PKM, sharing of
information is a subordinate goal to encoding and re-using knowledge cues.

Mapping the knowledge cue life-cycle to use cases The three core use
cases explained in the last section, namely note taking, document creation
and PSNM, map well to the knowledge cue life-cycle.

Note taking. Taking a note is represented as create knowledge and cod-
ify. If the note is later annotated, filed or linked, this happens in the
augment process. Later, the personal note is retrieved and sometimes
the knowledge is then used in practice.

Document creation. Document creation is a use case where the final
goal is the production of a well structured information artefact that
codifies knowledge so that the target audience can hopefully under-
stand it. In addition to the processes for note taking, the processes
augment, export and share become much more important. In the
augment process the user combines many snippets, structures them,
defines a linear order, creates sections, adds references to literature
(linking to other cues) and finally exports the result into a common
format, e. g., PDF.

Personal Social Network Management (PSNM). Knowledge creation
in PSNM is rather spontaneous, e. g., if one gets to know somebody.
Some facts about a person can be codified and this external model of
the personal social network can subsequently be augmented. A practi-

78 ANALYSIS AND REQUIREMENTS

cal example for possible PSN models are sites like Xing6 or LinkedIn7.
On these sites, the user can manage a collection of contacts together
with a short description and tags. Contacts can be exported, e. g., to
PIM software. Furthermore, contacts can be shared with other users
– usually this is a global setting for all contacts of a user. Future
PSNMs might offer better ways to augment the information about
contacts and import such data, especially relations among contacts,
from a number of sources.

3.3. Economic analysis
This section analyses costs and benefits of an individual doing PKM from
the perspective of a neutral observer. The results are based on a paper
(Völkel and Abecker, 2008) published at ICEIS 2008.

Much work has been done in information retrieval (IR) to improve searchLook at the
complete cycle precision for classical and hypertext documents, only by looking at the data

as “given”. However, much less research has been done on the whole cycle
of authoring and retrieval. One of the most important cost drivers is the
question how well the costs spent on externalisation and query formulation
can improve the precision of the retrieved items.

“We need to think in terms of investment, allocation of costs
and benefits between the organizer and retriever”
Glushko (2006, p. 24-31).

In PKM, organizer and retriever is the same person. Different from an or-
ganisational context, there is thus a personal motivation to organize knowl-
edge. The user can freely trade efforts of authoring with efforts of retrieval.

Few works address ways to quantify costs and benefits in PKM or at leastRelated work
analyse the determining factors. A related work done by Bontas, Tempich,
and Sure (2006) in the area of ontology engineering does not fit, as the use
of a personal knowledge model is not a linear, planned process with the
goal of creating a formal representation. Rather the contrary is true: An
individual is usually reluctant to formalise anything, because it is unclear if
the extra effort will ever pay off.

Knowledge work today Today, most knowledge work is assisted with com-
puters. Fig. 3.8 shows a simplified view on knowledge work: People (in
circles) interact heavily with their digital information spaces (gray boxes).
Their personal spaces are connected, e. g., via internet. There is also a
smaller blue arrow indicating face-to-face meetings, but they become more
the exception than the norm, compared to the amount of communication
carried out over digital media, e. g., as emails, meeting requests, shared
documents, wiki pages, PDFs, social networking tools,

6http://www.xing.com (accessed 06.01.2010)
7http://www.linkedin.com (accessed 06.01.2010)

3.3 Economic analysis 79

Figure 3.8.: Knowledge work today

Pollard (2005) sees a trend from central content management to personal
Communication
costs

content management, shared in a peer-to-peer fashion. Instead of publish-
ing one document for a broad audience, a knowledge worker today has to
publish many documents and reports, targeted for small groups or even sin-
gle persons. Thus re-use and delivering of knowledge to different audiences
becomes important. Thus, a knowledge model export should be cheap.

PKM can be seen as the process of sending oneself messages to the future. Message in a
bottleAs a metaphor, each note is like a message in a bottle which is thrown into

the flow of time. At any moment in time, our live is flooded by such bottles
arriving – paper piles everywhere and a hard disk full of reminders. We
forgot the content of the messages – otherwise we wouldn’t need to open
the bottles. At every moment, we have to decide which bottles to open
and which to ignore. We can imagine the bottles having different colours
or labels – this is the filing system we used when we created the message.
Unfortunately, our filing system changes over time.

To apply Nonaka’s model to PKM, a person in time can be seen as dif-
ferent entities. Intuitively, a person five years ago (P−5) is not the same
person as today (P0) and will be different from that person in five years
(P+5). The processes externalisation, internalisation and combination stay
unchanged. Socialisation becomes something completely different. The en-
tities P−5, P0, and P+5 can never meet. But each entity Px can remember
knowledge created or internalised from earlier entities Px−t.

Interaction bottleneck Fig. 3.9 shows the main PKM situation: On the
left is a person adding digital content to a personal space of information.
Later, depicted on the right, the same person is retrieving information again.
In collaborative knowledge work (Fig. 3.8) and even more so in personal
knowledge management (Fig. 3.9), the interface between human and tool
is a strong cost influence factor.

Technological developments, like written language, the printing press and Bottleneck
authoringfinally the internet, have lowered the costs and accelerated the process of

information distribution many orders of magnitude.
Full-text retrieval on global scale (i. e., web search engine) and local scale

(i. e., desktop search engine) takes less than a second. Reformatting a doc-

80 ANALYSIS AND REQUIREMENTS

RetrieveCodify, Augment

Export, ShareReceive, Import

Figure 3.9.: Interaction bottleneck

ument or presentation according to pre-defined styles takes seconds. Re-
calculating a complex spreadsheet with many formulas is carried out quickly
as well. What takes time is to write, read and file documents; to create and
arrange documents and presentations; to create, debug and comprehend
spreadsheets. As information systems have become really fast, the human-
computer interaction became a bottleneck of efficient knowledge work.

On a standard PC, text is much faster to create than diagrams. By meansKeyboard vs.
mouse of information theory pressing a single key on a standard computer keyboard

with 102 keys sends ∼ 6, 6 bits of information, whereas moving the mouse
to one of 102 defined locations on a screen and clicking there requires more
time and haptical effort.

Visual representations play an important role in architecture, engineer-Visual
representations ing, and research as “artefacts of knowing” (Ewenstein and Whyte, 2007).

However, the most common representation type used in these disciplines
are not purely pictures, notation or writing but a hybrid between picto-
rial, geometric and scripted elements (Elkins, 1999). They can be seen as
semi-formal models of a domain, like, e. g., UML diagrams.

A study on 28 people in meetings using pen-computers (Khan, 1994)
found out that 50% only copied diagrams from white-boards, 17% used
diagrams very occasionally, and 33% did not draw diagrams at all. Hence,
even if people have the hardware to create diagrams, they seem not to be
the dominant form of expressing ones own thoughts. Therefore this thesis
focuses on (hyper-)textual representations. A visual tool based on CDS,
iMapping8, is described in Sec. 5.3.1.

3.3.1. Costs and benefits without tools
First costs and benefits are analysed for the case that no tools are used at
all. The next section (3.3.2) analyses costs and benefits with tools.

If no external tools are used, the PKM process consists of

• Knowledge creation at a cost CC and

• Knowledge use with a benefit B.
8iMapping is one of the main parts of a thesis-in-progress by Heiko Haller at the FZI

Forschungszentrum Informatik Karlsruhe.

3.3 Economic analysis 81

The cost of knowledge creation CC is proportional to the amount of time
and personal (e. g., cognitive and motivational) effort an individual spends
on thinking, researching, experimenting, and learning. These internal pro-
cesses for knowledge creation can be measured by the amount of time spent.
But how to measure the value?

Maybe the time needed to create the knowledge? But if it takes long to Value of
knowledgecreate some knowledge that has a low benefit, then one would intuitively

not assign a high value to it. Also knowledge might be cheap to create and
store now, but much more costly to re-create later, e. g., Where have I been
on a given day in 1999? The opposite might also be true: Some knowledge
is difficult to create today, but common knowledge later. In any case, the
value of knowledge is certainly unrelated to the cost of creating it.

The value of knowledge does not exist as such (Iske and Boekhoff,
2002); it depends highly on the task. The value of some knowledge can
be defined as “increment in expected utility resulting from an improved
choice” made possible by this knowledge (Varian, 1999). This is the value
of decisions taken on the basis of the knowledge re-evoked by the knowledge
cue, i. e., one estimates the value of the state of the world that would result
from actions performed in absence of the knowledge (V1) and compares
it with the value of the state of the world resulting from actions taking in
presence of the knowledge (V2). Then the benefit B of having this knowledge
for this task is the difference in value, i. e., B = V2 − V1. B then represents
the additional created value or saved costs. B can (in theory) be measured
in money, saved time, improved quality or better emotions. In practice,
measuring the value of the state of the world is often hard to quantify, i. e.,
consider long-term effects and the difficulty to measure, e. g., happiness. In
the end, value of knowledge is often a subjective quantity, because the value
of “the state of the world” is often subjective. If the task was the creation
of an information artefact, the price paid by others can be an indicator of
its value. Most approaches resort to measure only costs (Feldman, Duhl,
Marobella, and Crawford, 2005). Economists use an abstract “utility value”
without defining a unit of measurement.

3.3.2. Costs and benefits with tools
If tools are used, there are in practice often costs for the availability or
usage of the tools themselves as well, e. g., license costs for software tools.
However, theses costs usually play a minor role in the total costs of PKM
and are hence ignored.

For a long time in history, knowledge cues were only stored in documents,
first analog then digital. Digital document retrieval is the prime application
domain of information retrieval (IR) techniques. The field of IR has a
history of quantitative research, mostly focusing on precision and recall.
These measures were first defined by Cleverdon, Mills, and Keen (1966).
However, Cleverdon et al. (1966) proposed to measure not only these two
factors but also “the extent to which the system includes relevant matter”,
and “the effort involved on the part of the user in obtaining answers to

82 ANALYSIS AND REQUIREMENTS

his search requests”. Maybe because these two factors cannot so easily be
measured automatically, they were mostly ignored by IR research.

The TREC conferences have heavily influenced IR research. In the last
ten years, it ran the novelty track, in which each sentence of a document
was regarded as an information item on its own. The question answering
track goes in a similar direction: here the user is not querying for a set of
documents but for a concise, factual answer to his question. Both tracks
show a tendency towards smaller content granularity. A fact given within
a document requires on average to read half of the document until the
fact is found. The granularity of information thus influences its retrieval
costs. The coarse granularity of documents leads to high costs for locating
relevant parts of documents, e. g., for re-use, aggregate queries, or question
answering. Data bases and ontologies allow for more structured access, i. e.,
browsing and searching. In contrast to documents, data bases and ontologies
allow retrieving sets of items together with relevant properties. Ontologies
(and some database systems as well) allow answering queries to which the
answer has only implicitly been entered. It requires effort to structure and
formalise knowledge to make it fit into a database or ontology, but retrieval
abilities are also higher – ontologies are built for re-using knowledge.

Granularity, degree of structure and degree of formality all influence costsCost-benefit
ratio changes
user behaviour

of codification and retrieval. Bederson (2004) reports on users of his Note-
Lens tool: “Perhaps the most interesting observation is that it [the NoteLens
tool] has changed the cost structure of information access. It used to be that
finding notes was relatively slow, but editing notes was relatively fast, and
so I would create fewer longer notes. Now, finding notes has become rela-
tively fast, and I have started creating more, shorter notes. In fact, I even
edited several long notes and broke them up into shorter pieces so I could
access each individually”.

The individual processes of the knowledge cue life-cycle (Sec. 3.2.2), have
the following costs and benefits:

1. Knowledge creation at a cost CC .

2. Codify: Some parts of the implicit knowledge become external. Knowl-
edge cues are created. These user has externalisation costs CE .

3. Augment: The user invest more time and augments the knowledge
cues so that they encode knowledge more explicit. This leads to fur-
ther externalisation costs CE .

4. Time passes by and the author might start to forget some or all details
of the articulated knowledge. Sometimes even the knowledge to know
something is forgotten as well.

5. Retrieve: At a certain moment, while performing a certain task, the
user initiates a retrieval process in his PKM system.
Note: As information retrieval systems have become faster, the classic
information retrieval measure of “time to execute query” becomes less

3.3 Economic analysis 83

relevant to determine the costs perceived by the user. The human-
computer interaction becomes more often the bottleneck and cost-
driver of efficient knowledge work.
After having executed a query or performed a browsing step, the user
reads the search results, and refines the search query. After some
steps, the user either found one or several matching knowledge cues
or cancels the search with no result. The process of reading through a
list of search results takes time and therefore adds to the search costs.
If a knowledge cue is long in size, it takes longer to read through it. If
the desired knowledge is codified by a part of a cue, reading through
the complete knowledge cue is thus additional search cost. All these
costs are subsumed under retrieval costs CR.

6. Knowledge use: If results were found, the user has some benefit B
from remembering knowledge from the knowledge cue. If the task was
to create some kind of information artefact, the codified knowledge
might be used as the basis for this artefact.

Esser (1998) analyses factors that determine when and which external People
estimate costs
and benefit

memory humans use. Three variables were observed: Expected likelihood
of successful remembering a piece of knowledge when stored in an external
store, cost of storing it there and most importantly: perceived value of the
knowledge to be stored. The higher the perceived importance of remember-
ing the knowledge, the higher costs for storage were accepted.

The basic hopes of any sane person doing PKM are:

• The benefit of re-gaining the knowledge is greater than the management
costs for its knowledge cues, i. e., CE + CR < B

• The management costs are smaller than the costs to re-create the knowl-
edge from scratch, i. e., CE + CR < CC .

A person not believing in these two assumptions is wilfully wasting effort.
Estimating the benefit of storing an item for later use (CE + CR) compared
with the expected costs to re-generate the contained knowledge later (CC)
is certainly hard.

For comparing different PKM systems one needs a pragmatic way to take Comparing
PKM systemsthe benefit into account. The value of a certain piece of knowledge, with

respect to a task, can hopefully be estimated by individuals on a simple
Likert scale (Likert, 1932), e. g., a rating from one to five.

The added value of using a knowledge management system for a given
period of time (t) is the overall cost-benefit gain G which can be approxi-
mated by summing up all benefits B and subtracting the sum of all costs C
(G = B − C). For a given amount of knowledge one can compare the costs
of different PKM systems.

84 ANALYSIS AND REQUIREMENTS

Assuming a user has to solve a certain problem 10 times. There areCounting
example different scenarios of distributing costs:

Remember The lucky case: On the first task instance, the user creates
the required knowledge and for the next nine occurrences she simply
remembers the knowledge. Total costs are 1CC .

Re-think A common case: For each of the 10 task instances, the user has
to re-create the required knowledge. This can happen if the knowl-
edge is complex, hard to remember or the time-span between the task
instances is long. Total costs: 10CC .

Re-use This scenario assumes a PKM tool. On the first task instance
the user creates the required knowledge and codifies it (CE). For the
next nine task instances the user searches, finds the knowledge cue
and gets back the knowledge in memory (retrieval costs: CR). Total
costs: CC + CE + 9CR.

Not finding The same scenario as re-use, but this time assuming the user
cannot find, what she is looking for. Total costs are: 10CC +CE +9CR.

Not searching The same scenario as re-use, but this time assuming the
user even forgot that a note has been taken. The total costs are:
10CC + CE .

Over-investing The same scenario as re-use, but this time assuming the
user spends ten times more effort into codifying the knowledge. As-
suming the knowledge in question is very simple and in this case the
retrieval costs do not go down, the total costs are 1CC +10CE +10CR.

These examples show already that the strategies and memory abilities of a
PKM tool user heavily influence the costs.

3.3.3. Detailed analysis
Given the following basic factors for costs and benefits:

• Each knowledge cue x that is externalised has externalisation costs CE(x).
These costs are detailed in the next section.

• For each task t ∈ T (with T being the set of all task encountered in the
measurement) the user has the option to search for knowledge cues. This
has retrieval costs CR(t). Note that a user might retrieve an item several
times or not at all.

• Retrieved items have a benefit B(t) for the given task t.

The overall process has thus the following gain:

G =
∑

t B(t) − (
∑

x CE(x) +
∑

t CR(t))
=

∑
t(B(t) − CR(t)) − ∑

x CE(x)

3.3 Economic analysis 85

For the purpose of the economic analysis, a knowledge cue is assumed to Simplified
knowledge
model

contain a single term up to a single sentence. The smallest units of content
that make sense to a human are single or multiple words (encoding concepts)
or sentences (encoding facts or questions). To be able to count the amount
of structure and formality in a knowledge model, no further structure is
allowed within the knowledge cue. Given a set of symbols, i. e., words, each
knowledge cue c can be seen as a simple linear stream of symbols devoid
further machine processable structure. Aspects of natural language pro-
cessing are ignored, to measure only non-ambiguously explicitly structured
knowledge. Structure and formal statements in the knowledge model are
represented as relations between knowledge cues. A formal statement is a
triple (c1, c2, c3). The second knowledge cue denotes the semantics of the
relation. E. g., a knowledge cue can represent an “is a hyperlink to”-relation,
or a “has super-concept”-relation.

Note that this restricted and simple model is only used for the economic
analysis. The knowledge model detailed in Sec. 4.1 explicitly models struc-
ture within knowledge cues, too. Mappings to documents and ontologies
are also covered in that section.

Future PKM systems are expected to allow modelling textual and se-
mantic content in the same environment, as described by Bettoni, Ottiger,
Todesco, and Zwimpfer (1998); Ludwig (2005); Oren, Völkel, Breslin, and
Decker (2006).

Externalisation costs

CE can be divided into cost of initially creating the knowledge cue (CC)
and costs of augmenting existing knowledge cues, e. g., classifying new or
existing cues or linking between cues (CA). Linking cues can also be an act
of formalisation if the relation is specified with a relation that has a formal
semantics. Hence CE = CC + CA.

Let N be the set of all knowledge cues in the system. Cost of content ex- Granularity
ternalisation is correlated to the size of externalised artefacts. E. g., writing
more words takes more time. Let |nj | be the size of the jth cue, measured
in the number of symbols it contains. Note: The smallest symbol size in a
text-based environment is a single word or term. Smaller entities are usu-
ally not acting as knowledge cues on their own. Articulating a single symbol
costs cs. Articulating the jth cue costs |nj |cs. Then CC =

∑
j |nj |cs.

In general, augmentation is the process of adding content, structure, and Augmentation
costsformality in and between knowledge cues. For an economic analysis, aug-

mentation is restricted to operations between knowledge cues, e. g., linking,
tagging, typing and categorising cues. The costs of augmenting are indepen-
dent of the cues size. The more cues a knowledge base contains, the more
effort it might take to find the right cue to link another cue to. Structur-
ing is expected to make more of the knowledge accessible to the computer,
which should enable to answer queries with better (more) results. Note:
The structure of a knowledge models contains itself knowledge. It is not
possible to specify the structuring costs per se, but the degree of formality
of a knowledge model can be expected to correlate with the spent structur-

86 ANALYSIS AND REQUIREMENTS

ing costs. The degree of formality df can be measured by the amount of
formal statements (|A|) compared to the total number of knowledge cues,
similar to the definitions given by Lethbridge (1998) as df = |A|

|N | . Assum-
ing a fixed cost cf for articulating a formal statement9, one can estimate
CA = |A|cf . This leads to the total externalisation costs

CE = CC + CA =
∑

j

|nj |cs + |A|cf

This equation assumes that no content and no formal statement is ever
deleted or changed. But in reality, the cues need to be maintained to keep or
improve their value over time. E. g., some knowledge is no longer applicable
or needs to be updated to reflect changes in the world. Informal ideas
undergo several transitions until some of them might become text books
(Maier and Schmidt, 2007).

Some structuring operations could as a side effect increase (split) or de-
crease (merge) the number of cues. Changes to the number of cues are
ignored for sake of simplicity. Deleting outdated or erroneous knowledge
could improve the value of using the knowledge model quite a lot, but some
costs do occur for these maintenance tasks, too. Therefore instead of mea-
suring the knowledge model as such, one needs to measure the costs of the
operations that lead to the current state, i. e., all operations performed.

Let c be a function that assigns to each operation some costs. BasicCosts of
operations operations on a model are:

add content (contenta) Adding m symbols to a knowledge cue costs m×
c(csa) with csa being the costs of adding one symbol.

delete content (contentd) Deleting m symbols from a knowledge cue
costs m × cds with cds being the cost of deleting a symbol. Delet-
ing has often lower cost than adding, e. g., when deleting a cue in a
user interface usually causes deletion of many contained symbols and
some connected cues.
Cost of updating can be modelled as the sum of deletion costs and
addition costs.

add formal statement (stmta) Adding a formal statement. The cogni-
tive costs are expected to vary according to the impact of the formal
statement. E. g., it should take less time for a person to create a
hasPart or knows statement than a hasSubclass statement, because
a hasSubclass statement has many more implications that the cre-
ator needs to check mentally. However, these differences in costs are
ignored for sake of simplicity.

delete formal statement (stmtd) Deleting a single statement could have
dramatic effects, depending on the used inference rules.

9This assumption allows to evaluate a semantic modelling tool, but not to state any-
thing about the knowledge domain.

3.3 Economic analysis 87

To take the restructuring operations into account, n(contenta) is defined as
the total number of added symbols – and respectively n(contentd) as the
number of deleted symbols.

For each kind of operation (op), the costs can be calculated by multiplying
the number of times this operation is performed (nop) with the costs of this
operation (cop). The complete externalisation costs are

CE = ncontentaccontenta + ncontentd
ccontentd

+ nstmtacstmta + nstmtd
cstmtd

The next section analyses the retrieval costs, before the complete cost model
can be stated.

Retrieval costs

In order to precise the relation of structures in the knowledge base and
search costs one first needs to develop a unified model for the search process
in knowledge models. A first work in this direction is the “information
foraging process” (Pirolli and Card, 1995).

There are three basic ways to retrieve information when interacting with
an information system (Bates, 2002):

Following links should not be confused with browsing. A common prac-
tice in large search spaces for which neither suitable collections nor
query terms are known is to explore links, e. g., citation links. Follow-
ing links is thus a kind of associative retrieval.

Browsing a collection of items related to the information need10. In prin-
ciple, two kinds of collections are possible: explicit, i. e., created by a
user, and implicit, i. e., the members in the set are determined by a
(semantic) query. Toms (2000) and Teevan, Alvarado, Ackerman, and
Karger (2004) emphasise the importance of finding information “by
accident”, e. g., when searching for something else. Such (re-)findings
are important for creative processes and knowledge creation.
Formally, browsing is the act of scanning a list of items and evaluating
each of them for relevance. Evaluating a single item has the costs Cev.
The user is free to stop evaluating items from the list at any time.

Searching denotes the process of executing a query (e. g., keywords) and
refining it until the top results are relevant to the information need.
Semantic queries, utilising knowledge indirectly for inferencing, also
fit into this category.
Formulating a query has the costs q. Systems that allow several kinds
of queries need different values for q to model the difference in cost.
After each search-step the user is confronted with a list of search
results which need to be evaluated, similar to browsing.
The search costs depend on the complexity of the query and the struc-
ture of the knowledge base. A complex query has a higher cost to be

10Note that this is the definition of browsing from Bates (2002) as one of the three
search strategies, not browsing of web pages.

88 ANALYSIS AND REQUIREMENTS

formulated, but has the ability to return exactly the required cue.
Simpler queries return usually too many results and need refinement.
From a user’s perspective, starting with simpler queries that are grad-
ually refined is more economic than asking directly a complex query.
The interactive refinement process gives earlier feedback about how
many results are returned, which guides query refinement until the
query is complex enough to filter out the desired cues. This way,
queries do not become more complex than needed.

A complete search process involves typically all three kinds of operations.
Instead of measuring each step (query, follow a link, browse, follow another
link, query again, . . .), the complete retrieval process is modelled as a pro-
cess that involves some costs CR(t). These costs can be broken down to
Cql(t) for formulating queries and following links and costs for evaluating
items Cev.

Assuming the user evaluates k(t) items in the retrieval task t. As for anyk(t), pt

retrieval task, the measures precision and recall can be used (Van Rijsber-
gen, 1979). Each of the t retrieval tasks has its own, task-specific precision
pt and recall rt, since different retrieval strategies might be used. As a
refinement of precision and recall, a relevant item can be said to have a
certain benefit for the given task. This value is expressed in a normalised
way ranging from zero (no benefit) to one (knowledge highly relevant for
the task). The benefit of an item j for a given task t is defined to be vj(t).vj(t)
For irrelevant items, vj(t) is zero.

Let k(t) be the total number of all retrieved items in the search process.
There is a certain cost Cev to evaluate each item in order to be able to decide
if the knowledge represented in the item is relevant for the task. The effort
of evaluating a single item is assumed to be independent of precision and
recall of the complete process. The complete costs of the retrieval process
for task t are then CR(t) = Cql(t) + k(t)Cev.

Only retrieved knowledge cues can bring benefit for the user. Knowledge
that is never used is of zero value. The complete benefit B(t) of the k(t)
retrieved items is B(t) =

∑
j vj(t). Both pt or k(t) might also be zero.

Assuming all retrieved items in a task are either relevant (value = 1) or
not (value = 0), the formula can be simplified as B(t) = ptk(t). For each
retrieval task t:

G(t) = B(t) − CR(t)
= ptk(t) − Cql(t) + k(t)Cev

= k(t)(pt − Cev) − Cql(t)

Thus the query formulation costs Cql are a kind of fixed costs: Regardless
of retrieved knowledge cues and regardless of their value, query formulation
costs have been spent. The relation between precision and evaluation costs
decides if the whole retrieval process was worth the hassle. Precision is
typically heavily dependent on the degree of structuredness and formality
of the data.

3.3 Economic analysis 89

Analysing the equation highlights three factors than can negatively influ-
ence the gain of using a PKM system:

1. If the user does not try to retrieve knowledge for a task t;

2. if no or too few relevant items are retrieved, i. e., if recall or precision
are too low;

3. if the value of the successfully retrieved items is too low, i. e., results
fit, but of too low value.

Addressing factor (1) of the factors than can negatively influence the gain
of using a PKM system: If users do not consult their knowledge model,
they cannot gain any value from knowledge cues stored therein. Therefore,
a PKM system should run queries automatically (→ Req. 1 auto-query). This
is stated as a requirement in a structured format:11

Requirement 1: System should run queries automatically Requirement 1
Motivation:Cutrell, Dumais, and Teevan (2006) propose to automatically
start a search when certain triggers are encountered. Knowledge cues rele-
vant to the current task context should be delivered pro-actively (Schmidt,
2009). Furthermore, a good system should bring up knowledge cues rele-
vant to the current business process (Abecker, Bernardi, Ntioudis, Mentzas,
Herterich, Houy, Müller, and Legal, 2001).

This requirement depends on requirements: 26 queries

Effect on knowledge cue life-cycle: Exploit value of knowledge model more

Continuing with the factors that can negatively influence the gain of using
a PKM system: Factor (2) is addressed by works in information retrieval
and improved search algorithms.12 Note that knowledge articulation and
modelling have no annual competitions.

Factor (3) can perhaps only be addressed by personal experience or train-
ing. Note that if the value of the best-matching content objects is lower than
the cost to find and use them, it would be better to tell the user that there
are no results instead of bothering him with too irrelevant results. Unfor-
tunately, a PKM tool cannot know how valuable a knowledge cue is for a
specific task. The reason for results with too low value can either be that
not enough effort went into creation of knowledge cues and only very few

11This is the first of a long list of requirements and it is time to introduce the struc-
tured format in which requirements are stated in this thesis.

The title is the requirement. The following text introduces, explains and moti-
vates the requirement from analysis and known literature. Requirements are refer-
enced with a number together with a short name. Each requirement appears also as
a margin note to allow locating them easier. A requirement descriptions ends with
a table containing a list of requirements on which this requirement depends, and a
short description that explains which process in the knowledge cue life-cycle is rele-
vant and how this process changes.

Section 3.7 gives a summary on all requirements.
12See, e. g., proceedings of Text REtrieval Conference (TREC), http://trec.

nist.gov/ (accessed 06.01.2010). TREC started in 1992 and is today the annual
conference and competition on text retrieval. Recent conferences included tracks on
question answering.

90 ANALYSIS AND REQUIREMENTS

of the formerly present mental state of knowing is retrieved. It can also be
the case that the task requires only rather trivial knowledge and the user
would have a better economic result if she would not have taken notes in the
first place. A PKM tool could actively ask the user for feedback on search
results, collect data about knowledge cue usage (time spent for creation and
augmentation, number of times appearing in search results, number of times
selected), and help to train better economic behaviour.

3.3.4. Summary and conclusions
Stitching the parts for externalisation and retrieval together yields to:The complete

cost function
G =

∑
t(B(t) − CR(t)) − ∑

x CE(x)
=

∑
t k(t)(pt − Cev) − Cql(t)

− ncontentaccontenta − ncontentd
ccontentd

− nstmtacstmta − nstmtd
cstmtd

The overall benefit of using a PKM system can be characterised by sum-
marizing over the successfully retrieved knowledge items (content or formal
statements) for each task. Costs can be characterised as the sum of the
costs of all authoring and structuring efforts.

These formulas can serve as a conceptual framework for tool-specific mea-
surements. The economic analysis of the different phases in the knowledge
cue life cycle (authoring, retrieval) can also serve as a guideline for evaluat-
ing PKM tools.

Users have currently the choice to formalise too little (e. g., only text),Cost gap
resulting in too high retrieval costs. Simple keyword search has a number
of drawbacks: One can only retrieve document snippets when remembering
words occurring in the text. If many snippets contain the keyword, one
has to read long results list, guess which snippets might be the right one
and then read all relevant snippets in order to find the right knowledge cue.
Smarter keyword search can also support synonyms, but in these cases the
additional costs of maintaining synonym lists have to be taken into account,
too. Special terms are most likely not to be found in general language
resources such as Wordnet (Fellbaum, 1998).

Or they have to formalise too much (e. g., form-driven database applica-
tions), leading to unacceptably high articulation costs. The sweet spot can
often be in this cost gap. No tool can solve this “decision under uncertainty”
of estimating costs and value. In classical KM one would perform a feasi-
bility study to evaluate what the right degree of formalisation is – in PKM
such decisions have to be taken on a minute-by-minute basis. To reduce the
cost gap, a PKM tool should allow modelling on all levels of formality (→
Req. 8 formality levels).

[bh] As explained above, the total costs for managing knowledge cuesSweet spot
are influenced strongly by costs for externalisation (codify, augment) and
internalisation (retrieval).

Assuming a PKM tool that allows managing knowledge cues in different
degrees of structure and formalisation. The more effort a user puts into

3.3 Economic analysis 91

CE

CR

Degree of formality

C
o
st

CSum
Sweet
Spot

Figure 3.10.: Sweet spot of lowest total costs

creating knowledge cues, the more structure and more formal statements
will be present in the knowledge model. Hence, the overall externalisation
costs are proportional to the degree of structuredness and formality in the
knowledge base.

More structure and formality lead to better, cheaper retrieval. The more
structured such information, the easier it can be accessed. A highly struc-
tured information collection is easier to navigate, yields more accurate
search results, and has more export options to other formats. However,
there is always a minimal cost for retrieval, namely query formulation and
result set evaluation – regardless if the query was a full-text query, a formal
query or a set of browsing steps. Hence, the degree of formality is inverse
proportional to retrieval costs, but with diminishing returns.

Taking these arguments together, there must be a sweet spot, i. e., a Optimal degree
of formalitylocal minimum for the total costs of managing a particular knowledge cue

(C = CE + CR). In other words, depending on the frequency of later usage,
there is an optimal degree of formality for a knowledge cue. Unfortunately,
the optimal degree can only be estimated by a user, because the future
usage of the knowledge cue is not determined yet. Of course, the closer a
future task is, the easier it is to estimate the knowledge required for that
task.

To let users decide on the optimal balance of effort and benefit, PKM
requires the uniform management of unstructured, structured and formal
knowledge (→ Req. 8 formality levels).

Practical cost factors hindering knowledge re-use One obvious way to
make knowledge workers more productive is by re-using as much knowledge
they have created as possible. However, there are several practical cost
factors that hinder re-use of knowledge:

Fragmented applications instead of unified management of all knowl-
edge cues. To unify the diverse range of existing artefacts, a knowledge
model should deal with a mix of text, structured text, binary artefacts
and relations of varying degree of formality (→ Req. 8 formality levels).
Semantic desktop concepts tackle the fragmentation by re-uniting data
on the meta-data level (cf. Sec. 2.6).

92 ANALYSIS AND REQUIREMENTS

Loss of structure and formality in communication. Bradshaw, Light,
and Eichmann (2006) argue that researchers would understand docu-
ments much quicker if they had access to annotations made by oth-
ers. Today, often simple documents are exchanged. If instead well-
structured knowledge models including the annotations and the con-
tent would be exchanged, there would be less loss in the conversion
processes.

Knowledge maturing in a tool zoo. A mind-map might be a good way
to capture unstructured thoughts. A tagging approach can be used
to group a number of, e. g., bibliographic references together. These
two kinds of tools usually do not work well together. Often the items
tagged in one system cannot be viewed in another system. The phys-
ical PDF files of the research papers would probably be stored in the
file system, requiring the user to give, e. g., each file a unique name
and a single location in the folder hierarchy. A hypertext system, e. g.,
a wiki, allows creating arbitrary links between pages, but allows no
structured queries.
Each of the presented tools or formalism is helpful in other steps of
the knowledge maturing process (Maier and Schmidt, 2007). For each
step, the user has to switch tools and is confronted with a new con-
ceptual model, offering new capabilities but taking away others.

Loss of structure and formality in transformations. Knowledge
workers often loose information when they convert knowledge cues
modelled in one tool to another one. E. g., when converting a mind
map to a presentation the colour of the mind map items is lost. A
similar loss of structure occurs for most transformations, as the data
models of the applications differ. This loss of structure degrades abil-
ities for retrieval.
An example for loss of formality is the conversion of a bulleted list to a
string of characters with bullet symbols and line breaks. The visual re-
sult is very similar, but the semantics of which item is a bullet point is
lost. E. g., the list item indentation level can no longer be manipulated
automatically. To minimise this loss, the knowledge model should be
able to represent most used PKM formats (→ Req. 2 super-set).

Cost of interoperability. Specialised tools have lower costs for data en-
try and manipulation. Hence a PKM tool could lower the total costs
of codification and augmentation if export and import are easy to
use and loose no or few of the codified knowledge. E. g., the costs of
transforming explicit knowledge encoded in one kind of formalism into
another one, such as from a spreadsheet to a presentation, have to be
taken into account. It should be possible to re-use structures appear-
ing in structured text, i. e., by later stating the implied semantics of
the structures.

The economic analysis clearly points out the need for a unified management
of knowledge cues, which can differ in size, degree of structuredness and

3.4 Requirements for Knowledge Models from literature 93

degree for formality. Given further the need to be able to import structures
from existing PKM tools (or any tool used for PKM tasks), the second
requirement can be stated:
Requirement 2: Knowledge model should be a super-set of exist- Requirement 2
ing conceptual models
Motivation: To re-use content residing in one kind of representation in Transformation

costsanother tool, it needs to be transformed. Transformations between data-
models come not for free. A naive approach to convert between n formalisms
would require writing n2 transformations. However, if a common interme-
diate formalism can be used, the costs come down to 2n. To save costs in
content transformation, the conceptual knowledge model should therefore
be a super-set of the conceptual models of all other relevant PKM tools.
Sec. 3.5 analyses existing formalisms and collects requirements for a com-
mon super-set.

This requirement depends on requirements: –
Effect on knowledge cue life-cycle: Import: Lower costs

3.4. Requirements for Knowledge Models from
literature

This section lists requirements from literature and those mentioned in the
survey, sorted by the processes of the knowledge cue life-cycle. The re-
quirements have been gathered from a variety of sources analysing PKM
(listed for each requirement), representation formalisms (see Sec. 3.5) and
user behaviour (via the knowledge cue life-cycle, see previous section). Of
course, no such list can be considered “complete” – there might be even
more requirements.

For this thesis, many sources have been used (papers emailed from col- Sources used
leagues, followed forward- and backward references, search engines, . . .). To
achieve a certain degree of completeness, the following additional sources
have been used: (a) Proceedings of the Annual ACM Conference on Re-
search and Development in Information Retrieval from the years 2005, 2006,
and 2007. (b) Proceedings of SIGCHI. All years up to 2008 have been
queried for “personal”, “knowledge”, and “management”. (c) Proceedings
of workshops on personal information management from 2006 until 2009.
For each requirement, a summary table lists other requirements this re-
quirement depends on and which phases of the knowledge cue life-cycle are
related.

3.4.1. Interaction for codify and augment process
Authoring in the knowledge model should have low cognitive overhead, i. e.,
the amount of cognitive activity absorbed by dealing with the system ad-
ditional to the actual task. Therefore the user should be able to start with
informal articulation (→ Req. 4 informal articulation) and any desired level of
granularity (→ Req. 6 granularity). From there on, it needs to be possible to
add formality stepwise (→ Req. 9 stepwise).

94 ANALYSIS AND REQUIREMENTS

Requirement 3: Fast entryRequirement 3
Motivation:The survey revealed a desire for fast entry of new items and
extension of existing items (mentioned by six participants in the survey).

This requirement depends on requirements: –
Effect on knowledge cue life-cycle: Codify, Augment

Requirement 4: Informal ArticulationRequirement 4
Motivation: Users needs a simple way to express content in an informal way,
e. g., as plain text, formatted text or box-and-arrow diagrams (Oren, 2006)
or “this is nested within that, but I can’t say why”.

Abecker and van Elst (2004) advocate a “Minimalization of upfront knowl-
edge engineering. Since KM is considered an additional organizational ac-
tivity orthogonal to the ‘productive‘ work, expensive start-up activities may
be a big barrier for a successful KM introduction.”

Blandford and Green (2001) studied the use of short personal notes for
task work and found that informal tools like paper and unstructured text
files were sometimes preferred over traditional PIM applications because
they supported more freeform input.

Informal articulation requires also adding existing binary files to a knowl-
edge model without any processing. The notion of an attachment is common
for emails and wiki systems.

This requirement depends on requirements: –
Effect on knowledge cue life-cycle: Codify and augment at low costs

Requirement 5: Formal ArticulationRequirement 5
Motivation: Formal reasoning can help to reduce retrieval costs, when from
a set of explicitly stated formal statements further formal statements can be
inferred automatically. This deduced knowledge has not to be constructed
by hand but is already available for browsing and queries. Another kind
of formal knowledge is the assignment of formal types to knowledge cues.
These formal types influence how knowledge cues are handled in the system.
E. g., a file type is an example for a formal type: A .doc file is treated
different from the operating system (scanned for viruses, opened in a word
processer) than, e. g., a .jpg file.

Knowledge that is already formalised, e. g., in domain ontologies, should
be re-used in a personal knowledge model.

A good PKM tool should allow representing formal data, let the user
create such formal data, and make sure that all imported formal data from
other source is also easy to browse and manipulate by the user. This re-
quires, e. g., that all items in a knowledge model have a render-able repre-
sentation.

This requirement depends on requirements: 7 addressability

Effect on knowledge cue life-cycle: Structured queries and inferencing for retrieval
reduce retrieval costs

Requirement 6: Let the user decide on granularity of modellingRequirement 6
Motivation: Content varies greatly in size and type. Polanyi (1998, p.
81): “. . . linguistic symbols must be of reasonable size, or more generally

3.4 Requirements for Knowledge Models from literature 95

that they must consist of easily manageable objects. [. . .] Language can
assist thought only to the extent to which its symbols can be reproduced,
stored up, transported, re-arranged, and thus more easily pondered, than
the things which they denote.”

Documents are authored word by word, outline functions let users work
on the level of sections and subsections. The whole document is stored
in a single file. Desktop search engines help to find complete documents.
Using a document means reading it. Sometimes reading small bits is already
sufficient for a given task. For re-use, one can send the whole document or
copy and paste parts of it. To sum up, documents are managed most of the
time as complete entities.

More structured applications have different notions of granularity. In an
address book, typically content is managed at the level of contacts, i. e., each
contact is one item that can be send to somebody else, changed, created or
deleted. Individual mail addresses are usually not considered to be objects
on their own. E. g., if two persons happen to live in the same house, the
street address has often to be maintained twice.

The granularity of items affects re-use and question answer performance:
It is more costly to create a set of smaller and related items instead of
one large item. To allow efficient re-use, a knowledge model should allow
small content such as single words, sentences or short notes, up to full-blown
formatted documents.

The web began with small personal home pages and grew up with huge
search and shopping portals. Since a few years there is a tendency for
smaller content granularity, especially on collaborative websites. The term
micro-content emerged for this set of addressable content consisting of tags
(single terms), comments (often not more than a single paragraph), blog
posts (often about half a page), images (including meta-data and a title) or
video snippets.

Shneiderman (1989) reports on a comparative study in which two groups
of people had to locate answers to a series of questions in a Hyperties
database. The group with more (46 instead of 5), shorter (4-83 lines in-
stead of 104-150 lines) articles answered more questions correctly and took
less time to answer the questions.

This requirement depends on requirements: 7 addressability

Effect on knowledge cue life-cycle: Let the user decide on trade-off between costs
and benefits

Requirement 7: Entities need to be addressable Requirement 7
Motivation: To be able to link two entities, they must be addressable. To
be able to model different versions of an entity, each version needs a kind
of address. In a personal knowledge model, each entity that is shown to the
user should be addressable.

This requirement depends on requirements: –
Effect on knowledge cue life-cycle: This affects all steps in the knowledge cue life-
cycle, especially the augment and sharing steps.

96 ANALYSIS AND REQUIREMENTS

Requirement 8: Simultaneous use of Different Levels of FormalityRequirement 8
Motivation: Often research notes and references are already managed digi-
tally. Works in PIM (Jones and Bruce, 2005) and Semantic Desktop research
have further stressed the need for unified search and organisation of a user’s
personal items.

People need to be able to work at any level of formality (or informality),
and to freely mix such levels (Lethbridge, 1991b). For textual content this
means exploiting syntax, structures and semantics.

E. g., in semantic wikis (cf. 2.9) all three levels can be used. While typing
text, there is syntax for formatting (bold, italic), structures (headlines, lists)
and semantics (typed links).

Another example is “SmartArt” introduced in Microsoft Excel 12, which
lets the user represent the same data as a pie chart or a bullet list (Rutledge
and Bajaj, 2006)[page 205pp]. Hence the semantics have been stated by the
user and can be represented as different structures.

Yet another example is the Eclipse IDE for software development, which
shows at runtime a structure tree (called the Outline view), derived from
syntax constructs (the typed source code). Different from wikis, this syn-
tax tree can also be used for re-structuring, which in turn is reflected as
syntactical changes. Behind the scenes, Eclipse compiles the source code
after each change to determine the semantics of it. If an error is found, it
is shown as a little red marker in the textual source code.

One can assume that a typical user has the majority of the content in
unstructured form, some content will be at least structured and only little
content will be fully formalised. It would be too costly to structure or
formalise all content. On the other hand, formalising some content lets the
user profit, e. g., from inferred content types. So when content is typed with
“Researcher”, a search for “Person” would also return it – if the relation
between researcher and person has been formally defined as a sub-type-
relation. For many use cases, however, a weak structure is sufficient (e. g.,:
“This issue needs to be solved before that one.”, “These topics are somehow
related to those.”, “When I look for this address I should not forget this
note”).

The data will usually be in a state where some parts are not formalised
at all and other parts are axiomatised. Such a mix of data could be called
“semi-semantic”, analogous to “semi-structured” data. Semi-structured data
such as XML and HTML contains some structured and some unstructured
parts.

This requirement depends on requirements: 4 informal articulation, 5 formal articulation

Effect on knowledge cue life-cycle: Allows user to adapt effort to estimated value,
unified retrieval

Requirement 9: Stepwise changes from informal to more formalRequirement 9
structures
Motivation: The user should be able to migrate the knowledge into more for-
mal structures, if desired (cf. Völkel and Haller (2006)). A very importantAllow

inconsistency characteristic of formal knowledge engineering in general is the modelling
process. During modelling, a knowledge model might be in an inconsis-

3.4 Requirements for Knowledge Models from literature 97

tent state. A tool should not simply prevent such inconsistent states, but
rather inform the user about the consequences. The migration from one
consistent formal state to another consistent formal state can be a complex
operation which cannot or should not need to be carried out completely in
the mind of the user. Instead, a sequence of modelling operations should
allow producing inconsistent states, and then, step-by-step, move towards
the desired target state. Inconsistent states should also be share-able, so
that a resolution can be found collaboratively, if desired.

A typical session of gradually adding structure and semantics is given by
Wiil (2005):

. . . if a knowledge worker is given the task of reviewing (under-
standing, organizing, and presenting) a specific body of knowl-
edge, she may use a spatial ordering tool in the first phases of
her work where no formal understanding of the knowledge units
exists. In the next phases she may add metadata to customize
the knowledge units. She may also add links to associate related
knowledge units. Finally, she may use a taxonomic tool to clas-
sify the knowledge units to reflect her obtained understanding
of the body of knowledge.

Oren (2006) advises to focus on simply capturing and representing the things
that the user wants to store, before doing any reasoning with it. One par-
ticipant in the survey wrote ”I want to be able to massage unstructured
collections of notes into a more regular form, adding structure as I go and
as required.”

In the early stages of a creative project (e. g., a research project, develop-
ment of a documentary film, or investigation into a new application area for
a medical product) it is common to rapidly accumulate a lot of references
and facts which need capturing. The challenge is that at this stage in the
project, the ideal structure for indexing and organizing these facts, docu-
ments, and media objects is unclear. Even the needed annotation types are
unclear (Reynolds, Cayzer, Dickinson, and Shabajee, 2001).

This requirement depends on requirements: 8 formality levels

Effect on knowledge cue life-cycle: Augment: lowers cognitive costs of creating more
formality

Requirement 10: Knowledge model refactoring Requirement
10Motivation: With stepwise formalisation a user can gradually add more

structure and formality to knowledge cues. Externalised personal knowledge
artefacts are usually organised in a systematic manner, e. g., files are sorted
in folders and sub-folders.

Unfortunately, a good structure today is not a good structure tomorrow,
therefore personal organisation schemes change. Weeks, months or years
later, an existing folder structure sometimes “does not make sense” and
cannot help well in locating files. The knowledge model as a whole needs
also to be restructured and changed to adapt to new insights and mental
conceptions.

98 ANALYSIS AND REQUIREMENTS

Stuart K. Card in (Jones et al., 2006) sees this not only as a tedious
maintenance task, but says “re-representation of information is a key to
interpreting it”.

Borrowing a term from software engineering this process can be called
knowledge refactoring. Efficient knowledge refactoring should let a user
perform re-filing, re-categorisation and annotation changing operations on
single or multiple knowledge cues efficiently. All kinds of structures and
formal statements within and among knowledge cues should be easy to
change.

Schreiber and Harbo (2004) emphasise flexibility of knowledge models
and the need for reorganisation:

A central question is how to understand a structure of the col-
lected information. [. . .] But, as known, the problem is that the
process of learning will continue and all the time the individual
will be inspired to look after new subjects or new elements of
the subject. After a while, the individual will experience that
the structure of the information is not the right one anymore. It
is necessary to choose a new way to structure the information.
[. . .] The old one will not be used and, further, it will make
a barrier of the learning process. Thus, a flexibility concerning
how to structure the information is necessary.

One of the more often requested features (survey: fifteen participants)
was support for (re-)structuring existing structures: A PKM tool should
“help to structure and sort items, be easy to restructure, help to move from
unstructured to more structured, organize pieces of larger text, and help
to categorize items according to existing filing schemes such as taxonomies,
tags, vocabularies and ontologies” (survey).

This requirement depends on requirements: –
Effect on knowledge cue life-cycle: Augment: Lowers costs of restructuring

Requirement 11: VersioningRequirement
11 Motivation: The cost of creating and manipulating knowledge cues is lower,

if people have an easy way to undo their operations and revert to previous
versions of a knowledge model. This concept of “make it easy to fix errors
instead of trying to prevent them” is one of the defining characteristics of a
wiki (Leuf and Cunningham, 2001).

This requirement depends on requirements: 7 addressability

Effect on knowledge cue life-cycle: Codify and augment at lower costs

Requirement 12: Capture the context for knowledge cue creationRequirement
12 and import

Motivation: Here context is understood as the work context in a technical
sense, i. e., currently active software tools, kind of loaded files, system time,
etc.

Understand the notion of context, capture it together with the informa-Codify,
augment tion and use it to enhance recall and understanding (Oren, 2006). E. g., the

3.4 Requirements for Knowledge Models from literature 99

creation date of a knowledge cue can easily be captured at creation time. In
most collaborative systems such as wikis, blogs, and social networking sites,
the author and the time of creation or last change are automatically logged
and used for searching and browsing. Automatic context tracking should
relive the user from maintaining bookkeeping data such as creation data of
items or linking (→ Req. 20 (hyper)-links) two items that are commonly used
together (Graça Pimentel, Abowd, and Ishiguro, 2000). Bettoni et al. (1998)
suggest supporting PKM by tracking communication, tasks and contexts,
used files, and concepts.

Users wish it should be clear “which data is from my personal information Import
sphere and which is coming from outside” (survey). At import time, the
import source and time of creation are useful to track the provenance of
knowledge cues.

This requirement depends on requirements: 7 addressability

Effect on knowledge cue life-cycle: Codify, augment, import

Requirement 13: Active assistance in maintenance tasks Requirement
13Motivation: Knowledge organisation schemes change, so the knowledge

model needs to be refactored (Req. 10 refactor). However, even with good
refactoring support available, it would be too costly to re-organise all per-
sonal artefacts frequently. Knowledge cues get out-dated. Old knowledge
cues appear in search results and while browsing, hence the retrieval costs
become higher than necessary. Metadata about the usage of the knowledge
cues by the system is required: How often did the knowledge cue appear in
search results? How often has it been changed? When has the most recent
statement been made about this knowledge cue? When was the last time
this knowledge cue was used for inferencing? Such metadata can be used by
the system to ask a user specifically and actively about the status of certain
knowledge cues.

This requirement depends on requirements: 12 context

Effect on knowledge cue life-cycle: Augment (maintenance is mostly a form of aug-
mentation), reflect

Requirement 14: Easy to learn Requirement
14Motivation: Each new tool has a learning curve that depends on the com-

plexity of the underlying concepts and the user interface. A good user inter-
face cannot compensate for an ill-designed underlying data model. There-
fore this thesis strives to create a data-model, which is similar to existing
data models in use in PKM tools.

This requirement depends on requirements: –
Effect on knowledge cue life-cycle: A tool that is easier to learn has lower initial
costs of using

Ways of adding structure and formality

Requirement 15: Grouping of items Requirement
15Motivation: The tool should be able to let me group seemingly unrelated

content (survey). Users need composition for navigation (Frank, 1988). This

100 ANALYSIS AND REQUIREMENTS

allows, e. g., browsing and thereby narrowing down their view and allows
discovering related, yet unexpected items.

It is important for a user to be able to group seemingly unrelated content
together, so that retrieval of one item triggers retrieving of the others, too
(Jones, Phuwanartnurak, Gill, and Bruce, 2005).

Grouping knowledge cues is also a pre-requisite for any kind of batch op-
erations such as exporting, sharing, refactoring, delete and copy operations.

This requirement depends on requirements: 7 addressability

Effect on knowledge cue life-cycle: Augment, import, retrieve, export

Requirement 16: Containment relationshipRequirement
16 Motivation: A containment relationship is a stronger form of grouping with

additional semantics for operations. Delete and copy commands on con-
tainers trigger recursively the same command for all contained elements.
Such containment semantics are present, e. g., in file explorers (deleting a
folder deletes all files and sub-folders), presentation software (deleting a slide
deletes the content on the slide), programming (deleting a package deletes
all classes therein), . . . As this interpretation is so common, it should exist
in a similar way in a knowledge model.

This requirement depends on requirements: 15 grouping

Effect on knowledge cue life-cycle: Augment, import, retrieve, export

Requirement 17: Optional naming of knowledge cuesRequirement
17 Motivation: The data model should allow giving things human-usable names.

A name is understood as a unique name. Names make linking much easier,
as the link target name can simply be typed and one has not to select from
a complex GUI. Names also allow direct navigation deep into a knowledge
model.

The success of wikis and their page naming scheme shows the importance
of naming.

Users also demanded that it should be easy to place new items into a
named container (survey).

But as users often have difficulties to find names (Boardman, 2004)[p.
105], Frank (1988) advises to not require a user to name all items. Consider
several contacts in an address book to link to the same postal address (e. g.,
all 20 people working for a non-governmental underwater-life-protection or-
ganisation). In this case it would be too much work to assign a dedicated
name to the address of the office. Yet it would also be cumbersome to have
to change the entries of all these people in case the postal address of the
NGO changes. Therefore it should be allowed, but not required, to give
entities a name.

Names allow a user to fetch a unit of information in O(1)13. This is
similar to know, e. g., the URL of a certain web page or the file name and
path of an office file. Human-usable naming is probably an overlooked area

13That is, in a single step. These costs remains small, independent of the growth of the
knowledge model.

3.4 Requirements for Knowledge Models from literature 101

of content management. E. g., wikis allow users to use easy-to-remember
unique names to quickly navigate or link to known pages. The semantic
web is fundamentally built on URIs, which are unique names for resources.
Unfortunately, URIs are not designed for human usage: they are cryptic
strings, hard to read and remember.

This requirement depends on requirements: 7 addressability

Effect on knowledge cue life-cycle: Lower retrieval costs

Requirement 18: Alternative names Requirement
18Motivation: Many systems with unique names have also means to create

additional alias names, which redirect to another unique name. E. g., in
MediaWiki there is a redirect-concept, in HTTP there are several kinds of
redirect status codes to instruct a browser to load another URL instead, and
in the file system there are shortcuts (windows) or links (Linux) to other
files.

This requirement depends on requirements: 17 naming

Effect on knowledge cue life-cycle: Lower retrieval costs

Requirement 19: Order knowledge cues Requirement
19Motivation: Ordering a collection of ideas or text snippets into a coherent

flow is one of the main tasks of authoring (Esselborn-Krumbiegel, 2002). A
user should be able to create order gradually and partially. E. g., by stating
the reading sequence between some sections. Note how different this is from
providing a list data-structure: A list can only represent a total order.

This requirement depends on requirements: 7 addressability

Effect on knowledge cue life-cycle: Augment, import, retrieve, export

Requirement 20: Linking Requirement
20Motivation: Seven survey participants required links between items, e. g.,

a link between the tasks “buy food for dog” and “bring dog to veterinary”.
Participants mentioned links between notes and from notes to knowledge
sources.

Oren (2006) finds “an under-utilisation of the interlinked nature of the in-
formation”. Knowledge models should allow for precise and effective linking -
and browsing (→ Req. 27 follow links and browse). While browsing associatively,
it should be easy for a user to “bookmark” found things, that is, create a
link from a known starting position (→ Req. 17 naming) to the newly found
knowledge cue.

This requirement depends on requirements: 7 addressability

Effect on knowledge cue life-cycle: Augment, import, retrieve, export

Requirement 21: Hierarchy Requirement
21Motivation: Shneiderman (1996, p. 336) emphasizes the need to get “Over-

view first, zoom and filter, then details-on-demand.” Users in the survey
required being able to hide level of details to get an overview of the con-
tent. Others wished a graphical overview that represents connections and
interactions between notes.

102 ANALYSIS AND REQUIREMENTS

Hierarchies of all kind are commonly used in user interfaces to let the user
narrow down his interests step-by-step.

For Noirhomme-Fraiture and Serpe (1998) hierarchical links constitute
one half of the category of structural links, cross references are the second
half.

This requirement depends on requirements: 7 addressability

Effect on knowledge cue life-cycle: Augment, import, retrieve, export

Requirement 22: Simultaneous use of multiple levels of detailRequirement
22 Motivation: Users need ways to see multiple levels of detail at once (Frank,

1988):

Another problem with this arrangement is that the user can see
the entire document at only one level. [. . .] there is no way
to zoom in and out of the document structure, examining its
contents at different levels of detail. This capability is commonly
found in outline processors and is a critical component in many
writing and information organization tasks.

This requirement depends on requirements: 21 hierarchy

Effect on knowledge cue life-cycle: Augment, retrieve

Requirement 23: Annotating contentRequirement
23 Motivation: When using documents, a field study of O’Hara and Sellen

(1997) concludes that annotating documents is frequently a part of the
document reading and understanding process.

Personal annotations are changed radically before being shared with oth-
ers (Marshall and Brush, 2004).

Peter et al. (2006) argue for making structures within documents explicit
via annotations.

This requirement depends on requirements: 7 addressability

Effect on knowledge cue life-cycle: Augment, import, retrieve, export

Requirement 24: TaggingRequirement
24 Motivation: Tagging, which can be seen as a specific kind of annotating,

is the basic assignment of easy-to-type keywords to information artefacts.
Tag names contain usually no whitespace and tend to be really short. A
common representation is a tag cloud, showing all tag names at once, with
a font size proportional to their usage frequency.

People have problems in using strict hierarchies (Oren, 2006). Therefore
less strict methods such as tagging (→ Req. 24 tagging) and categories (→
Req. 25 categories) are required.

This requirement depends on requirements: 7 addressability

Effect on knowledge cue life-cycle: Augment, import, retrieve, export

Requirement 25: Classifying into categoriesRequirement
25 Motivation: Categories are usually used slightly different than tags: Cate-

gories tend to have longer, encyclopedia-like names. E. g., elephant would
be a typical tag name (lowercase, no spaces, rather short), whereas Indian

3.4 Requirements for Knowledge Models from literature 103

Elephant would be a typical category name (title casing, contains spaces,
more specific).

In most category-systems, there is a weak hierarchy, i. e., categories can
often be nested into (several) other categories. In practice, the boundaries
between tags (short, easy-to-type, not nested) and categories (nice to read,
nested) are blurred sometimes.

In the survey, users prefer categories over strict hierarchies (mentioned
three times). One participant described this as being able to put the same
content to different locations simultaneously.

This requirement depends on requirements: 7 addressability

Effect on knowledge cue life-cycle: Augment, import, retrieve, export

3.4.2. Interaction for retrieval process
Requirement 26: Queries Requirement

26Motivation: Besides browsing a user also needs the ability to search and
query the data (Frank, 1988).

A number of different types of queries are required:

Full-text queries lower the costs of retrieval if textual parts of knowledge
cues are remembered. Query formulation costs are low and full-text
query capabilities are well known.

Aggregate queries operate on structured data and can return, e. g., a
result table which is composed of many small knowledge cues scattered
in a knowledge model.

Structured queries can, e. g., create result tables and aggregate knowl-
edge cues. Aggregation is, e. g., summing up individual numbers.
They can thus save a lot of manual work and lower the costs even
further.

Metadata queries allow retrieving items based on semantic properties.
Thanks to the higher precision, compared to full-text queries, meta-
data queries can lower the retrieval costs.

Formal queries can exploit formal semantics to return more precise re-
sults, including inferred facts. Hence retrieval costs are lowered again.

This requirement depends on requirements: 5 formal articulation

Effect on knowledge cue life-cycle: Lower costs of retrieval

Requirement 27: Following links and browsing collections Requirement
27Motivation: Following links is one of the three core strategies of information

retrieval described by (Bates, 2002), cf. Sec. 3.3.3. It becomes necessary if
only vague associations are remembered, but the desired knowledge can
neither be retrieved by full-text search nor by complex queries. There is
a fundamental difference between search (where you know what you are
looking for) and browsing (where you find things that you placed there)

104 ANALYSIS AND REQUIREMENTS

(Jones, Phuwanartnurak, Gill, and Bruce, 2005). Oren (2006) summarizes:
exploit the interlinked nature, do not rely only on search, and allow people
to associate freely.

This requirement depends on requirements: –
Effect on knowledge cue life-cycle: Lower the costs of retrieval

Requirement 28: Inverse RelationsRequirement
28 Motivation: Many wikis allow traversing hyperlinks not only forward, but
Inverse links also in backward mode. For each page they list all pages linking to the page.

Similar feature are provided by major web search engines and blog systems
(“trackback”). The tabulator semantic web browser14, uses inverse relation
labels to enhance the browsing experience. In most semantic GUIs incoming
links are rendered different from outgoing links. Therefore it makes a differ-
ence for browsing whether a user stated

(
[SAP], [employs], [Dirk]

)
or

(
[Dirk],

[works for], [SAP]
)
. For the user, this is often an artificial distinction.

In order to allow browsing semantic links in a knowledge model, links
must be traversable in both directions. Therefore, it is desirable that link
types have labels for both directions, e. g., “works for” and “employs”.

Note: In OWL and NRL (cf. Sec. 2.6), inverse relations are allowed but
not mandatory. Therefore a tool cannot rely on inverse relations and need
to provide (sometimes cumbersome) work-arounds.

This requirement depends on requirements: 20 (hyper)-links; relation instances are
typed links
Effect on knowledge cue life-cycle: Retrieve

3.4.3. Expressivity
Requirement 29: Flexible schemaRequirement

29 Motivation: The survey paper of Oren (2006) states a requirement for flexi-
ble schemas: Leave users their freedom and do not constrain them into rigid
schemas. This is not only relevant for authoring but also for importing from
other data models to be able to represent as much of the given structure
and formality as possible.

This requirement depends on requirements: Req. 5 formal articulation

Effect on knowledge cue life-cycle: Augment: Higher expressivity → better retrieval
possible. Import: Can represent more of the existing structures → better retrieval
at lower costs

Requirement 30: TransclusionRequirement
30 Motivation: Users often loose structure of knowledge cues when transform-

ing from one tool to another. E. g., text snippets from a hypertext context
loose their identity when pasted into a document. Instead of copying the
value of an item it is more elegant to copy a reference to the item. If the
content item is changed, the change is reflected in all parts where it is em-
bedded. This ultimately lowers the cost of augmentation, as changes in one
knowledge cue have not to be propagated manually. Embedding a reference
and rendering the content is called transclusion. The need for transclusion

14http://www.w3.org/2005/ajar/tab (accessed 06.01.2010)

3.5 Analysis of relations from conceptual models of PKM-tools 105

is further explained by Ludwig (2005), Nelson (1995) and in the evaluation
of Popcorn described by Davies, Allen, Raphaelson, Meng, Engleman, King,
and Lewis (2006, p. 155).

This requirement depends on requirements: 7 addressability

Effect on knowledge cue life-cycle: Augment: Lowers the cost of maintenance

Requirement 31: Meta-Modelling Requirement
31Motivation: If knowledge cues become old, but not outdated, they become

just harder to understand. The meaning of terms shifts. It is therefore
required to let the user describe and annotate all aspects of knowledge cues.
Even annotation on annotations, statements and relations are sometime
required, e. g., annotating a statement with the justification for stating it.
This allows a user to create a more self-describing knowledge model.

The data model must allow annotating (and therefore addressing) all of
its elements, in order not to limit expressivity.

This requirement depends on requirements: 7 addressability

Effect on knowledge cue life-cycle: Augment: Higher expressivity → better retrieval

This concludes the general requirements list, which was gathered from
literature studies. As with every requirements list, there are certainly even
more requirements that could be added. However, if the conceptual model
of a PKM tool and the PKM tool itself would fulfill all the requirements
stated here, its users would likely be quite happy already. The next section
analyses the conceptual models of existing tools used for PKM tasks, in order
to extract the most commonly used relation types.

3.5. Analysis of relations from conceptual models of
tools used for PKM

As required by requirement 2 super-set, the knowledge model should be a Methodology
super-set of existing conceptual models. This section analyses the concep-
tual models of a number of existing tools used for PKM tasks.

Learning a new tool requires a user to understand the conceptual model Cost of
learningof the tool. It is easier to learn a tool with a familiar conceptual model.

Hence, the formalism of a good PKM tool should be similar to those of
other tools in use (→ Req. 2 super-set).

This section looks only in domain-free (cf. Req. 29 domain-free) PKM tools.
Additionally, one can assume that the conceptual model of those tools that
are used most for PKM tasks, are those that are suited rather well. It
is possible that new, different conceptual models will once be developed,
which will be adapted much better to the human psychology and PKM
tasks in particular. However, those imaginary models are likely to suffer
from (a) a longer learning curve (it takes longer to learn something that
does not resemble known things) and (b) an incompatibility to existing
tools and content stored in the models of them. A knowledge model should
be expressive enough to represent existing application data models to enable
re-use of external structures.

106 ANALYSIS AND REQUIREMENTS

The approach is instead to consolidate existing structures under the as-
sumption that those have been “proven” to work. The conceptual models
of user interfaces, data structures, and document models have been anal-
ysed. From this analysis a number of requirements for a common knowledge
model are distilled. In detail, the following steps have been performed:

• Relevant categories – Select relevant formalism and tool categories used
in PKM contexts. Relevant is defined in this context as being used by
a large number of knowledge workers to manage knowledge cues. For
details on knowledge cues, refer to Sec. 1.2.3.

• Popular instances – Select a popular formalism or tool instance from the
category.

• Analyse the conceptual model (cf. Sec. 2.13) and extract common rela-
tions (Sec. - Sec. 3.5.6).

• Create a subsumption hierarchy of relations. This hierarchy is presented
in Sec. 4.2.

The remainder of this section details each step that has been performed.

Relevant categories What approaches are used in practice to organise
personal information and knowledge? What approaches deal with the rep-
resentation of vague knowledge, allow stepwise formalisation or expose a
modelling language to and end-user? A comprehensive list is hard to de-
fine precisely, yet the following category list is broad enough, to cover all
relevant (vague knowledge, stepwise formalisation, exposing modelling lan-
guage) approaches used in practice to organise information and knowledge:

• Personal notes. Popular examples of notes on paper are to-do lists, shop-
ping lists, diaries, and lab books.

• Documents. An interesting aspect of documents is the way structure
is created in word processors in an integrated fashion with typing the
main text. By exploiting these structures and codifying the explicitly in
a knowledge model, the costs for creating structures are lowered. Such a
mapping is detailed in Sec. 4.3.

• Hypertext.

• Desktop information management tools.

• Data structures: Data structures in programming languages are likely
to contain re-usable building blocks to represent many kinds of basic
semantics.

• Tools for Structuring Knowledge and Creativity Tools, such as mind
mapping and concept mapping.

• Collaborative information organisation tools.

3.5 Analysis of relations from conceptual models of PKM-tools 107

Popular instances This paragraph identifies a popular formalism or tool
within each category, in order to distil the essentials of their data model
concepts.

Personal Notes: Although they are used by virtually every knowledge
worker, the relation types used on paper are highly individual and
hard to categorise and describe. They have therefore to be omitted
from this analysis of commonly used relation types. A background on
personal notes is given in Sec. 2.7.

Documents: A background on documents is given in Sec. 2.2. Documents
exist on paper as well as in electronic form. The conceptual model
behind them is the same in both cases. Which text features are com-
monly used? This section models the most important structural as-
pects of documents, namely sequential navigation, logical structure,
argumentative structure and content semantics.

Hypertext: A background on hypertext is given in Sec. 2.4. By far the
most prominent example of hypertext in use is the World Wide Web
with its main representation format HTML. Among the most popular
tools to create interlinked HTML documents are probably wikis and to
some extent blogs. Both tools offer a rich subset of HTML features.
Of course, other tools allow to create more beautiful HTML pages,
looking like printed magazines. However, such design-oriented tools
are rarely used for managing personal content.

Desktop information management tools: Most popular operating sys-
tems today (Windows, Mac OS, Linux/KDE, Linux/Gnome) still fol-
low the WIMP-metaphor (cf. Sec. 2.3). All of them contain a desktop
with icons and a file browser (Windows: Explorer, Mac OS: Finder,
Linux/KDE: e. g., Konqueror).
The Microsoft Windows Explorer is likely the most used tool, as it is
present in all Windows versions which have a market share of ∼ 90%15

Data structures: A background on models and modelling is given in
Sec. 2.1 and on software engineering in Sec. 2.5.

Structuring and Creativity: Popular creativity tools are mind-maps and
concept maps. Both are popular graphical approaches for structuring
information and helping the user to get an overview. Mind maps
can also be used to present information to others. A background on
mind-maps is given in Sec. 2.10. Mind-maps are mostly used for (re-
)structuring (→ Req. 10 refactor) information atoms for rather short
term-use. Not many people use mind-maps to take notes to be read
later weeks, months or years later.

1589.6% on 1.12.2008 according to Net Applications

108 ANALYSIS AND REQUIREMENTS

A non-scientific poll16 of five popular mind-mapping tools voted Free-
mind17 as the most popular tool.

Collaborative Information Organisation Tools With the advent of
“Web 2.0”, some web sites dedicated to collaborative information man-
agement became popular. Among these, Delicious18, for organising
bookmarks and flickr19, for organising pictures have been chosen for
further analysis.
Both systems allow users to “tag” their content and to browse the
implicitly created sets of items which share a common tag. Many
other popular web 2.0 sites for collaborative information organisation
also offer tagging as a lightweight means to structure information.
Some systems even allow adding structure to the tags themselves (e. g.,
Soboleo20 and Bibsonomy21).

Notational convention In the remainder of this chapter, the concepts and
relations of tools are summarised in a standardised way. Tab. 3.2 shows an
example for the typographic conventions used.

Concepts
List of concepts used in the tool, e. g., A, B, . . .
Relations
From concept/to concept Semantics
A/B Describes the relation from concepts of type A to

concepts of type B.
C/C Describes a recursive nesting of concepts of type

C to themselves.
.

Table 3.2.: Typographic conventions used in this thesis for summarising
concepts and relations

16Poll conducted in a blog post at http://lifehacker.com/5188833/hive-
five-five-best-mind-mapping-applications (accessed 09.04.2009)
from Jason Fitzpatrick on March 2009. Based on answers from 3510 readers, the
results are: MindMeister 11% (401 votes), MindManager 25% (878 votes), XMind
20% (715 votes), FreeMind 27% (938 votes), iMindMap 4% (136 votes), Other 13%
(442 votes).

17freemind.sourceforge.net (accessed 06.01.2010)
18www.delicious.com (accessed 06.01.2010)
19www.flickr.com (accessed 06.01.2010)
20www.soboleo.com (accessed 06.01.2010)
21www.bibsonomy.org (accessed 06.01.2010)

3.5 Analysis of relations from conceptual models of PKM-tools 109

3.5.1. Documents
The core concepts and relations for structuring documents are shown in
Tab. 3.3. A detailed introduction to documents can be found in Sec. 2.2.

There are many popular document formats. In the digital world, variants
of HTML22 are likely to be among the most popular ones. HTML is analysed
in the next section.

Concepts
document, section, paragraph, sentence, word, style, reference, title
Relations
From concept/to concept Semantics
document/title, sec-
tion/title

Some elements can have a title.

word/word, sen-
tence/sentence, para-
graph/paragraph, sec-
tion/section, . . .

All parts of a document can be traversed in se-
quential order (→ Req. 19 order).

document/section, sec-
tion/paragraph, para-
graph/sentence, sen-
tence/word

The logical structure can be modelled (cf.
Groza et al. (2007)) as a hierarchical tree (→
Req. 21 hierarchy).

. . . /style Any element in a document can have a different
style, which defines, e. g., bold, italic, underline
typesetting, the font family and font size.

sentence/sentence Some formats, e. g., SALT (Groza et al., 2007),
allow encoding the argumentative structure as
well (→ Req. 5 formal articulation).

Table 3.3.: Core concepts and relations of documents

3.5.2. Hypertext
The main concept in HTML and the WWW is the notion of a hyper-link
which – when activated – moves the focus away from the document the user
is looking at towards another document (→ Req. 20 (hyper)-links). Hyperlinks
in WWW are directed. They have a single source and a single target.

Before the broad use of WWW there were a number of other hypertext
systems that seem to have been harder to deploy on a global scale, but which
might also contain a number of interesting concepts for PKM. Therefore
this thesis looks also into the Xanadu data model. The core concepts and
relation types of hypertext are shown in Tab. 3.4.

22Even estimating the number of publicly hosted web pages is difficult. By combining
number of registered web sites and average number of pages per site, an estimate
of 29.7 billion pages seems reasonable. Source: http://www.boutell.com/
newfaq/misc/sizeofweb.html, accessed 09.04.2009. This number can be
contrasted with the number of all book titles published in the world ever, estimated
as 65 millions. Source: A study from the University of California in 2000, http:
//www2.sims.berkeley.edu/research/projects/how-much-info/
print.html, accessed 09.04.2009.

110 ANALYSIS AND REQUIREMENTS

Concepts
document, element, hyperlink
Relations
From concept/to concept Semantics
document/element A document contains elements (→

Req. 16 containment).
element/hyperlink An element can act as a hyperlink (→

Req. 20 (hyper)-links).
hyperlink/element, hy-
perlink/document

A hyperlink can link to another element in the
same document or to another document. A link to
an element in another document is also possible in
HTML.

Table 3.4.: Core concepts and relations of hypertext

A central idea of Xanadu is transclusion, as defined by Nelson (1995):Xanadu,
Transclusion

The central idea has always been what I now call transclusion, or
reuse with original contexts available, through embedded shared
instances (rather than duplicate bytes).

Transclusion allows using a piece of content inside many documents. If
the content piece is changed, it changes in all documents that use it (→
Req. 30 transclusion). The same feature is requested, e. g., by Ludwig (2005).

NoteCards (Halasz, Moran, and Trigg, 1987) was one of the first andNoteCards
very popular hypertext systems. It was designed to run on an individual’s
workstation. One of its designers summarizes open issues of the system
(Frank, 1988), of which some apply to PKM tools:

1. Users need search and query functionality (→ Req. 26 queries), i. e.,
associative browsing (→ Req. 27 follow links and browse) is not enough.

2. Users need composition (→ Req. 15 grouping) and ways to see multiple
levels of detail at once.

3. Do not require a user to name all items (→ Req. 17 naming). Segmenta-
tion of content, titling and filing happen step-by-step (→ Req. 9 stepwise).

An hypertext study by Shneiderman (1989) found out that users are bet-
ter able to answer questions when a text is modelled as more-fine grained
(here: 46 articles) hypertext instead of large chunks (here: 5 articles) (→
Req. 6 granularity).

3.5 Analysis of relations from conceptual models of PKM-tools 111

3.5.3. File explorer

Figure 3.11.: Microsoft Windows XP Explorer

The file browser basically shows a strict hierarchy of directory names
(cf. Fig. 3.11, left) and the files contained therein (right side). File and
directory properties such as size, file type, and change date are also shown
in this tool (right side).

In the explorer, users can browse a tree (→ Req. 19 order) (→ Req. 21 hierarchy))
and thus narrow down their search and discover related, yet unexpected
items. As summary of core relations is given in Tab. 3.5

Concepts
drive, folder, file, shortcut, size, file type, date
Relations
From concept/to concept Semantics
file/name, folder/name human-readable name, can be changed (→

Req. 17 naming)
drive/folder,folder/folder nesting, hierarchy (→ Req. 21 hierarchy)
drive/file, folder/file container membership (→ Req. 15 grouping)
shortcut/file a shortcut is an alternative name for a file (→

Req. 17 naming)
file/size computed attribute
file/file type formal type that determines what happens when

users click (→ Req. 5 formal articulation)
file-change date computed attribute, last time the file was edited

with changes (→ Req. 12 context)

Table 3.5.: Core concepts and relations of file explorers

112 ANALYSIS AND REQUIREMENTS

3.5.4. Data structures
Structures that are deeply built into modern mainstream programming lan-
guages, seem to have worked well in the past to moderate between humans
and computers.

• Java is one of the most popular all-purpose programming languages.
It has native support only for arrays. The included Java Collections
Framework adds support for sets, lists and maps.

• Python is a scripting language with dynamic typing. It is often recom-
mended as a language for beginners, as it has built-in support for many
data-structures: arrays (lists), sets and maps (dictionary).

The relation types needed to represent these data structures are:

Unordered collection Does not imply or require an order among items.
This is the same as (→ Req. 15 grouping).

Lists Membership in a collection (→ Req. 15 grouping) plus a total order
(→ Req. 19 order) among its elements.

Maps A map is a collection of items which has for each item (map key)
a defined corresponding item (map value). The corresponding item
is usually not a map key itself. The functionality of a map requires
grouping the set of assignments (→ Req. 15 grouping) and linking values
to keys (→ Req. 20 (hyper)-links).

The core concepts and relations are summarised in Tab. 3.6.

Concepts
element, collection, list, map, set
Relations
From concept/to concept Semantics
collection/element A collection in general is a multi-set. An element

is contained in a collection zero, one or several
times. Does not imply or require an order among
items. This is the same as (→ Req. 15 grouping).

element/element in a list In a list, there is a total order among elements (→
Req. 19 order).

element/element in a
map

A map is a collection of items which has for
each item a defined corresponding item (key-
value-pairs). The functionality of a map requires
grouping (→ Req. 15 grouping) and linking (→
Req. 20 (hyper)-links).

Table 3.6.: Core concepts and relations of data structures in programming
languages

3.5 Analysis of relations from conceptual models of PKM-tools 113

3.5.5. Mind- and Concept Maps
Conceptually, a Mind Map (cf. Sec. 2.10) is a tree (→ Req. 21 hierarchy) Mind Maps in

Freemindof nodes, centred around a central root node. In many popular tools such
as FreeMind and Mind Manager only the nodes can carry labels, the arcs
cannot. The data-model of FreeMind is summarised in Tab. 3.7.

Concept Maps can be edited, e. g., in CMap Tools. In this tool the user Concept Maps
in CMap Toolscan label nodes and links. There is not a distinguished central node. The

data model of CMap Tools can be decomposed as shown in Tab. 3.8.

Concepts
map, node, icon, description
Relations
From concept/to concept Semantics
map/root-node every map has a root-node
node/node nodes are connected either hierarchical (→

Req. 21 hierarchy) or by cross-cutting links (→
Req. 20 (hyper)-links)

node/node within a parent node the list of nodes is ordered
(→ Req. 19 order)

node/icon each node can have a number of icons (→
Req. 23 annotation)

node/text a node can have a full-text description

Table 3.7.: Core concepts and relations of Mind Maps

Concepts
node, line, label
Relations
From concept/to concept Semantics
node/node two nodes can be connected via a line (→

Req. 4 informal articulation)
node/label, line/label nodes and lines can be labelled (→ Req. 17 naming)

Table 3.8.: Core concepts and relations of Concept Maps

114 ANALYSIS AND REQUIREMENTS

3.5.6. Collaborative information organisation tools
The data model of tagging sites consists of items which can have zero, one
or more tags. Core concepts and relations of tagging systems are shown in
Tab. 3.9.

A knowledge model should allow tagging items (→ Req. 24 tagging). Sim-
ilar to Bibsonomy (cf. Sec. 2.11), users should be able to create structure
between tags (→ Req. 5 formal articulation).

Concepts
resource (URL or digital image), tag, user
Relations
From concept/to concept Semantics
resource/tag annotation of resource with tag (→

Req. 24 tagging)
tagging/user which user tagged which resource with which tag?

(→ Req. 31 meta-modelling), (→ Req. 12 context)
tag-bundle/tag nesting of tags, in Delicious used as conjunctive

queries and for hierarchical browsing of tags (→
Req. 21 hierarchy)

Table 3.9.: Core concepts and relations of tagging systems

3.5.7. Summary of common relations
The main relations used in the different conceptual models are summarised
in Tab. 3.10.

Relation D
oc

um
en

ts

H
yp

er
te

xt

Fi
le

Ex
pl

or
er

D
at

a
st

ru
ct

ur
es

M
in

d-
an

d
C

on
ce

pt
M

ap
s

C
ol

la
bo

ra
tiv

e

Generic relatedness +
(Hyper-)links + + + + +
Order + + + +
Generic hierarchy + + + +
Formal typing + +
Type hierarchy + +
Annotation +
Tagging +

Table 3.10.: Summary of common relations in different conceptual models

3.6 Knowledge representation 115

3.6. Knowledge representation
As the knowledge model designed in this thesis should be able to represent
knowledge cues and formalised knowledge in a domain-independent way, this
section looks into existing knowledge representation formalisms to gather
further requirements.

Existing knowledge representation languages are very general (RDF, RDF Ontologies for
PKM?Schema, OWL, SKOS) and feature few semantic relations suited to directly

model and structure personal knowledge. Furthermore, dealing with them
requires quite a technical mind-set, e. g., thinking about the distinction
between literals, blank nodes and URIs (RDF, OWL).

Note that this is not a matter of just a good ontology editor missing! If
an ontology editor really allows a person to model any kind of RDF data-
structure, then the concepts URI, blank node and language-tagged literal
need to appear somewhere in the user interface, which means that a user
has to learn and understand these concepts. If, on the other hand, the user
is only able to model a subset of an ontology language, then this is a loss
of expressivity. And in fact, such a tool is no longer an, e. g., RDF-editor
but an X-editor, where X is some language, based on a subset of RDF. This
thesis aims to identify a language X – not necessarily a subset of RDF –
that is easy enough to be used directly by end-users for their PKM tasks,
as well as expressive enough to automate some of the PKM tasks, e. g., by
powerful queries.

This thesis looks into XML and RDF as basic data model representations.
Then, ontology languages are analysed, namely RDF schema and OWL.

3.6.1. Data exchange formats
The structures used in data exchange languages must work for all use cases
of that data format. Many parts in a data format vary, but some struc-
tures cannot be changed. This section analyses these built-in structures. In
particular, XML and RDF are analysed.

XML For data exchange, XML (introduced in 2.5) is probably one of the
most popular languages today. The data model used in XML is the so-called
XML info-set. This is a strict tree of elements. Elements may contain text
and a number of attribute-value pairs. Basically XML encodes a labelled
tree with ordered children.

Representing XML requires hierarchical (→ Req. 21 hierarchy) nesting of
elements, unique names for the elements and attributes (→ Req. 17 naming),
and modelling of attributes. An attribute is basically a key-value-pair con-
nected to an element. As an example, the image element IMG of XHTML
has an attribute SRC to state the source URL of an image. The attribute
is a part-of the element, a case of hierarchical nesting (→ Req. 21 hierarchy).
Furthermore, the key of the attribute denotes the semantics of the attribute.
In fact, not the complete key-value-pair is part of the image, only the URL
value is. The key is only stating the role or type the value plays.

116 ANALYSIS AND REQUIREMENTS

More formally, the semantics of

<aaa bbb="ccc"> ... </aaa>

can be modelled as three formal statements: (aaa, hasPart, bbb), (bbb, has
Value, “ccc”), (bbb, hasType, key). As requirements we get the need for
representing part-whole-hierarchies (→ Req. 21 hierarchy) and for assigning
types to items (→ Req. 5 formal articulation).

Concepts
document, element, attribute, key, value, text
Relations
From concept/to concept Semantics
document/element Each document has a root element
element/element Elements can be nested into each other, forming a

tree (→ Req. 21 hierarchy)
element/attribute Each element can contain any number of at-

tributes. Within one element, each attribute-name
(→ Req. 17 naming) may be used only once.

element/text An element may contain text of any length (→
Req. 6 granularity).

Table 3.11.: Core concepts and relations of XML

RDF A background on RDF is given in Sec. 2.6. As RDF (i. e., the core
triple model) is itself a generic model to represent typed relations, there are
no particular relations types present (see also RDFS).

RDF allows several kinds of meta-modelling, i. e., besides annotating rei-
fied statements, one can assign types to types (→ Req. 31 meta-modelling).

3.6.2. Ontology and schema languages
A background on semantic technologies is given in Sec. 2.6. This section
analyses RDF Schema, OWL and SKOS.

RDF Schema and OWL RDF Schema (Dan Brickley, 2004) does not dis-
tinguish between class and instance. Every resource can be used as a type of
another resource. OWL is stricter, and mandates a clear separation of mod-
elling layers. A knowledge model should be able to assign types to items (→
Req. 5 formal articulation). A knowledge model should allow meta-modelling,
i. e., assigning types to types (→ Req. 31 meta-modelling).

Both RDF Schema and OWL have inheritance hierarchies of classes and
properties. Both have the notion of domains and ranges for properties; they
are used in a reasoner to infer types of instances on which theses properties
are used. OWL offers a construct to state equality between concepts, RDF
Schema lacks such a construct.

3.6 Knowledge representation 117

Concepts
Resource, Property, Class, Literal, List, Statement
Relations
From concept/to concept Semantics
Resource/Class Each resource can have any number of classes

(type) (→ Req. 5 formal articulation).
Class/Class, Proper-
ty/Property

Classes and properties can be arranged
in formal type hierarchies (subClassOf,
subPropertyOf) (→ Req. 21 hierarchy).

Property/Class Properties allow inferring the type of a resource
used as a subject (domain) and object (range)
of a triple.

Resource/Literal One or several human-readable labels
(→ Req. 17 naming) and comments (→
Req. 23 annotation) can be attached to any re-
source.

List/Resource, List/List Lists allows for ordered (→ Req. 19 order) collec-
tions of resources.

Resource/Resource A resource can be a member of a non-ordered
collection (→ Req. 15 grouping).

Resource/Resource A resource can also be linked to another
one in a non-semantic way (value), merely
providing and addressable set of values (→
Req. 4 informal articulation).

Resource/Resource A kind of unspecified hyperlink is modelled as
seeAlso (→ Req. 20 (hyper)-links).

Resource/Resource A resource can be linked to formal definitions via
isDefinedBy. This is used to model, e. g., on-
tologies (→ Req. 5 formal articulation).

Statement/Resource To allow meta-modelling (→
Req. 31 meta-modelling), a resource of type
Statement can link to its parts via subject,
predicate, and object.

Table 3.12.: Core concepts and relations of RDF

118 ANALYSIS AND REQUIREMENTS

Simple Knowledge Organisation System (SKOS) SKOS is a W3C rec-
ommendation (Miles and Bechhofer, 2008) for a common data model for
sharing and linking knowledge organization systems via the Web. SKOS is
meant to represent domain-free thesauri, term hierarchies and vocabularies.
From a usage point of view, SKOS acts as a rather generic representation
formalism itself. In PKM systems, a clear modelling of terms and their
relations to other terms, might be required to allow long-term usage.

Concepts for identity and relatedness are important for PKM applica-
tions, where knowledge models emerge and only later one finds out that
two concepts can be considered to denote more or less the same topic.

The concept and relation names in Tab. 3.13 and Tab. 3.14 are taken di-
rectly from the official namespace published at http://www.w3.org/2004/
02/skos/core#. SKOS defines some inverse relations, those names are
given in brackets.

Concepts
RDF literal, Concept, ConceptScheme,Collection, OrderedCollection
Relations
From concept/to concept Semantics
Concept/literal A concept can have zero or one preferred labels

“prefLabel” (→ Req. 17 naming)
Concept/literal SKOS allows for an unlimited amount of alterna-

tive names (→ Req. 18 alias names), which can be
visible “altLabel” or hidden “hiddenLabel”.

Concept/literal One or several unique identifier “notation” per
SKOS concept. Those identifiers are considered to
be technical notations.

Concept/literal Seven ways to annotate (→ Req. 23 annotation)
a SKOS concept with an informal descrip-
tion, namely changeNote, definition,
editorialNote, example, historyNote,
note, and scopeNote.

Concept/ConceptScheme inScheme — groups concepts to administrative
units (→ Req. 15 grouping)

ConceptScheme/Concept hasTopConcept (inverse: topConceptOf) re-
lates a ConceptScheme to a concept at the root of
a concept hierarchy

Concept/Concept semanticRelation models the existence of any
kind of semantic relation between two concepts.

Concept/Concept The generic relation related (symmetric) indi-
cates that two concepts are related semantically,
but not in a hierarchical fashion.

Concept/Concept broader (inverse: narrower) allows ar-
ranging concepts in a non-strict hierarchy (→
Req. 21 hierarchy). Such a hierarchy may contain
cycles. 23

Table 3.13.: Core concepts and relations of SKOS (part 1)

3.6 Knowledge representation 119

Concepts
RDF literal, Concept, ConceptScheme,Collection, OrderedCollection
Relations
From concept/to concept Semantics
Collection/Collection,
Collection/Concept

A collection is a grouping (→ Req. 15 grouping)
within a ConceptScheme that can contain
(member) any number of concepts or other col-
lections. Such a nesting of collections imposes
another kind of hierarchy (→ Req. 21 hierarchy).

Ordered-
Collection/Concept

An ordered collection has a total order among
concepts (→ Req. 19 order), which is represented in
an RDF list (memberList).

Concept/Concept in an-
other ConceptScheme

broadMatch, narrowMatch and
relatedMatch model the same semantics
across concept schemes as broader, narrower
and related within a concept scheme.

Concept/Concept in an-
other ConceptScheme

There are two constructs for similarity between
concept schemes: The relation exactMatch de-
notes two concepts to be completely identical;
this relation is transitive. For weaker similarity,
closeMatch can relate two concepts. This is a
non-transitive property to avoid a conceptual drift
when propagated over many concept schemes.

Table 3.14.: Core concepts and relations of SKOS (part 2)

3.6.3. Common relations
This section briefly analyses common relations created by end-users in tools
that allow creation of arbitrarily labelled relations.

About 1400 concept maps created with CMap tools by 114 students have Concept Map
usage studybeen analyzed by Marshall, Zhang, Chen, Lally, Shen, Fox, and Cassel

(2003). Although the concept map system was pre-configured with a set of
relations, the users chose to create their own link-types for over two thirds
of the links. A total of ca. 40,000 links was created, of which Marshall et al.
(2003, p. 9) found only 5,300 distinct link names. So on average, each link
type has been used slightly over seven times. By manually categorising the
links into 120 types, Marshall et al. (2003) found that over 50% of the links
are hierarchical. Interestingly, the concept maps based on class lectures had
a higher number of hierarchical links than those concepts maps created by
students from content acquired from text books. This might indicate that
more refined material has a more hierarchical structure. A knowledge model
should be able to represent hierarchical links (→ Req. 21 hierarchy).

120 ANALYSIS AND REQUIREMENTS

7

5

188

4

13

31302523 24212019171512116

2226 29

19

16 28

2 3 10 271413

Figure 3.12.: Requirements dependency graph

3.7. Requirements summary
This section just briefly lists all requirements stated in the previous sections.
As the requirement summary table shows (cf. Tab. 3.15), ultimately, a PKM
tool must be a general purpose modelling tool. Fig. 3.12 shows the require-
ments dependency graph. Requirement 7 addressability is the pre-requisite
for many other requirements. Requirement 5 formal articulation is necessary
to achieve a certain level of automation in knowledge model tasks. Some
requirements are completely orthogonal to others: 2 super-set, 3 fast entry,
10 refactor, 13 maintenance, 14 easy to learn and 27 follow links and browse.

3.8. Conclusions
This chapter has presented a survey on PKM tools. Then a number of
existing process models for PKM has been presented and a new model for
describing the knowledge cue life-cycle has been developed. Based on the
new model, a novel economic analysis of the different steps has been con-
ducted. Survey, process model and economic analysis have been used to
gather requirements for knowledge models. Additional known requirements
from literature for knowledge models have been presented. Then a detailed
analysis of the conceptual models embedded in popular tools used for PKM
tasks led to requirements for relation semantics.

3.8 Conclusions 121

Requirement Description (this is a requirement for . . .)
Economic Analysis
1 auto-query System should run queries automatically (tool)
2 super-set Super-set of PKM data models (model)
Interaction for codify and augment process
3 fast entry Fast entry (tool)
4 informal articulation Informal articulation (model and tool)
5 formal articulation Formal articulation (model and tool)
6 granularity User decides on modelling granularity (model

and tool)
7 addressability Entities need to be addressable (model and

tool)
8 formality levels Sim. use of different levels of formality (model

and tool)
9 stepwise Stepwise formalisation (model and tool)
10 refactor Knowledge model refactoring (tool)
11 versioning Versioning (model and tool)
12 context Capture the context for cue creation and import

(model and tool)
13 maintenance Active assistance in maintenance tasks (tool)
14 easy to learn Easy to learn (model and tool)
Ways of adding structure and formality
15 grouping Grouping of items (model and tool)
16 containment Containment relationship (model and tool)
17 naming Optional naming of knowledge cues (model and

tool)
18 alias names Alternative names (model and tool)
19 order Order knowledge cues (model and tool)
20 (hyper)-links Linking (model and tool)
21 hierarchy Hierarchy (model and tool)
22 levels of detail Sim. use of multiple levels of detail (tool)
23 annotation Annotating content (model and tool)
24 tagging Tagging (model and tool)
25 categories Classifying items into categories (model and

tool)
Interaction for retrieval process
26 queries Queries (model and tool)
27 follow links and browse Browsing (model and tool)
28 inverse relations Inverse relations (model and tool)
Expressivity
29 domain-free Flexible schema (model and tool)
30 transclusion Transclusion (model and tool)
31 meta-modelling Meta-modelling (model and tool)

Table 3.15.: Requirements summary

4. Conceptual Data Structures

This chapter presents the building blocks of the solution, called the Concep-
tual Data Structures (CDS). The logical structure of the chapter is depicted
in Fig. 4.1.
The core ideas of CDS have been presented by Völkel and Haller (2009);

Völkel, Haller, and Abecker (2007); Völkel and Haller (2006). The CDS
data-model is originally based on the combination of the RDF data-model
(cf. Sec. 2.6) with the way content is handled in the World Wide Web
(cf. REST, Sec. 2.4). This has been published as Semantic Web Content
Model (SWCM) at the I-Semantics conference (Völkel, 2007b). The ideas
and proofs for representing RDF in a model where each literal has a URI
are described in detail by Heitmann, Oren, and Völkel (2006).

Section 1:
CDS Datamodel

(items, relations, statements)

Section 4:
Using CDS

Section 2:
CDS Relation Hierarchy

(relations between items)

Section 3:
Syntax and Structured Text

(content within items)

Figure 4.1.: Overview of Chapter 4

124 CONCEPTUAL DATA STRUCTURES

The main idea is to create a super-set (→ Req. 2 super-set) of conceptual
models of common PKM tools via a two-layered strategy: A generic, ex-
pressive yet simple data-model (CDS Data Model (D), see Sec. 4.1) for the
representation of knowledge models is presented. The data-model allows
representing pieces of content connected by typed relations.

• The main concern addressed by the data-models is expressivity. It serves
as a representational layer for any kind of content and structure in a
knowledge model. It can be used without the other parts of CDS.
As a result of the overall design, the data-model must address the re-
quirements 17 naming, 6 granularity, 12 context, 26 queries, 31 meta-modelling,
and 11 versioning.

• The Relation ontology (CDS Relation Ontology (R), see Sec. 4.2) is
represented as a set of Relations in the data-model. This layer defines
the semantics of relations. The Relation ontology addresses concerns
of scalability as it allows handling a large number of relations in a sys-
tematic and simple way.
R has been designed to be compatible yet not depending on D. E: g. R
can also be used in RDFS or OWL.
The Relation ontology is mainly responsible for requirements such as
19 order, 20 (hyper)-links, 21 hierarchy, 23 annotation, 24 tagging, and 25 categories.

• The inner structure of content is defined in a Structured Text Interchange
Format (STIF). STIF (Sec. 4.3.1)) is a formal model of structured text.
It is needed to define conversions from textual syntax to structured text.
An actual textual syntax is presented as well.
The main concern here is re-use of structures in text and of structured
content from other sources.

• Finally, transformations from structured text within one knowledge cue
to structures between several smaller knowledge cues are shown. The
main goal of this is lowering articulation costs, especially for structures
between knowledge cues.

CDS is a conceptual model (cf. 2.13) designed for end-users. It is described
in terms of its entities and their semantics for a user.

Implementation aspects are discussed in Chapter 5. Since CDS is designed
for knowledge modelling tools, some requirements on user interfaces are
discussed as well. Prototypical user interfaces built on CDS can be found
in Sec. 5.2, Sec. 5.3.1, and Sec. 5.3.2.

4.1. CDS data model
This section describes D (the CDS data model) for representing personal
knowledge models. The role of D is to represent all kinds of knowledge cues.
Sec. 4.2 describes a second layer on top of D: an ontology of relations (R).
D is described in terms of its entities and their semantics.

4.1 CDS data model 125

The data model allows representing knowledge cues and statements about
them. All user-authored entities are called Items and have an author, a
creation date and a last change date. Statements are special Items which
additionally inherit the properties of triples. The model further supports
the use of an inference engine. Inferred1 or imported triples have no author
as they might exist solely during a query, e. g., by backwards-chaining.

4.1.1. Informal description and design rationale
The basic idea of CDS is to represent knowledge cues either as items or as
connections between such Items. An Item is essentially an addressable,
human-readable symbol. For teaching CDS, iconic representations have

Figure 4.2.: Iconic representations for the five building blocks of the CDS
data-model, as they have been used to teach CDS.

Overview
been developed (c. f. Fig. 4.2). Miniature versions of these images are used
in the HKW user interface (cf. Sec. 5.2.1). Pras and Schoenwalder (2003)
distinguish information models from data models. Information models are
more abstract and contain no implementation details such as protocols or
index structures. In this terminology, D is an information model, despite
its name.
D can be described from different viewpoints. D is designed as a model

that allows users encoding their knowledge cues. For a user, a spreadsheet
can be used as an (almost) infinite table of cells. Each cell can contain
numbers, text, formulas and other data types. For using a spreadsheet,
it is irrelevant whether cells are internally represented by one value plus a
formatting instruction, e. g., to render “0,634” as “63,4%”. In an analogue
way, D can be described on different levels of abstraction.

Fig. 4.3 shows a high-level conceptual view with abstract classes rendered
in italics. This is the mental model a user has to learn before being able
to use CDS. One immediate axiom from the figure is for example “each
instance of a Relation is also an instance of Item”.

1Produced by deductive rules, see Reasoning in Sec. 2.6.

126 CONCEPTUAL DATA STRUCTURES

ContentItem

source
Triple

target

Relation

relation

inverse

NameItem

Item

Statement

Legend: As usual in UML class diagrams, lines with a triangle denote inheritance, e. g.,
the type Relation inherits from NameItem.

Figure 4.3.: The data model in a nutshell: All Items are addressable (via
a URI), Triples are not. ContentItems have a snippet of con-
tent. So do Statements, which additionally have a Triple. A
Triple has a source Item, a target Item and a relation of type
Relation. The content of a NameItem is a short, unique string
(it’s name). A Relation is a NameItem that has always a de-
fined inverse Relation.

Fig. 4.4 shows the complete CDS data model (D). The remainder of this
section describes D from a user’s perspective and explains top-down the
design rationales. Sec. 4.1.2 gives a precise bottom-up definition.

Item

Items are the main building block of D. An Item is an addressable unit of
content. Much different from other data models, D has no way to represent
content which is not addressable. This comes at the cost of managing a
larger space of identifiers but has many positive effects for handling changes
and synchronising state (cf. Req. 7 addressability). Comparing Items for
equality within a Model is reduced to comparing their identifiers, which
can be implemented much faster.

Conceptually, each Item corresponds to the notion of a Resource in the
REST-sense (Fielding, 2000, p. 88):

The key abstraction of information in REST is a resource. Any
information that can be named can be a resource: a document or
image, a temporal service (e. g., “today’s weather in Los Ange-
les”), a collection of other resources, a non-virtual object (e. g.,
a person), and so on.

Metadata

Each Item has a defined author, who is represented as another Item. If aAuthorship
user creates an Item x, she is the author of that Item. If now another user

4.1 CDS data model 127

Model
0..n

Entity

URI

Content

Content Type

Creation Date

author Bitstring (0,1)*

Modification Date

ContentItem

source
Triple

target

Relation

relation

inverse

NameItem

Item

Statement

Legend: As usual in UML class diagrams, lines with a triangle denote inheritance, e. g.,
the type Triple inherits from Entity. A simple arrow denotes association, read “a Model
has zero to n Entitys. Lines without explicit cardinality information are 1:1 by default.

Figure 4.4.: The diagram shows a Model that contains a set of Entity ob-
jects. Both Model and Item have a URI by which they can
be addressed. An Item has content (which in turn has a bit-
string plus a content-type) and meta-data (author, creation
and modification date).

changes the content of x, who should be the author of x? The initial creator
or the one who changed its content? In CDS, the last person who changed
an Item is considered the author. If all Item creation and change events are
versioned, it is possible to answer questions like “which people ever changed
the Item?”. This authorship model is inspired from wiki pages, where it
has been widely adopted.

Each Item has also a creation date and modification data. The creation Creation Date
date is set, when an Item is initially created. The modification date is
updated each time the content of an item changes. The modification dates
allow producing a list of all Items that have been changed after a certain
point in time. Such lists are used widely on the internet for so-called news-
feeds (or just feeds), e. g., on news sites or as a list of changes in a wiki.

URIs as identifiers

Addressing in D is realised with Universal Resource Identifiers (URI, cf.
Sec. 2.4). Each Item has a URI.

URIs are standardised, widely used in the world wide web as resource
locators and in RDF as resource identifiers. Furthermore, there is an estab-
lished social process for managing globally unique identifiers, i. e., by split-
ting the namespace hierarchically. For the http scheme a domain name is

128 CONCEPTUAL DATA STRUCTURES

used. Domain names are sold to individuals on established market place
and their character sequence is part of the http-URIs. This reduces the
problem of global uniqueness to uniqueness of identifiers managed by single
individuals.

Content and content-types

The content of an Item is ultimately represented as a binary string in a
computer. To render and manipulate this bitstring in a meaningful way,
some metadata denoting the semantics of the bitstring is required. The
world wide web (WWW) faced a similar problem in HTTP when a browser
requests the content of a resource. In HTTP this is solved by sending a
content type descriptor before sending the actual byte stream. To be com-
patible with existing approaches, D uses the same approach and the same
set of content identifiers as the WWW: MIME-types (Freed and Borenstein,
1996). MIME-types have originally been designed to denote the file type
of email attachments and have subsequently been used in HTTP for the
same purpose. MIME-types are standardised and there is an existing global
registry, the IANA2. 3

In CDS implementations, all textual content is represented in Unicode
(Unicode, 2007). The characters must be encoded using the UTF-8 (Yergeau,
1998) encoding from unicode characters to bytes. This is the encoding most
often used on the internet.

Naming

A simple collection of addressable content units is neither convenient to
use nor expressive. Although a computer can address each Item, humans
do not remember easily a large set of (sometimes cryptic) URIs. Instead,
humans are good at mentally managing a (smaller) set of concept names
and following associations between concepts. Therefore D has a concept
of names. To manage the names properly, they are represented as Items,
too. Consistent with Fig. 4.4, the super-type of all Items with a content
that denotes a name are called NameItems. Relations are like Name-
Items, but have additional properties which are explained in Sec. 4.1.1. All
descriptions of NameItems apply to Relations as well.

The naming concept has been inspired from wikis in general (cf. Sec. 2.9)
and from Wikipedia4 in particular: e. g., a single technical namespace is used
to manage collaboratively over one million articles in the English Wikipedia.

A NameItem represents both a symbol for the computer (via its URI)
and a term of the user’s vocabulary (via its content). Using NameItems,

2http://www.iana.org/assignments/media-types/ (accessed
06.01.2010)

3Note that MIME-types are used for semantics of textual or binary content, whereas
XML Schema Types are used, e. g., in RDF and OWL to denote the semantics
of text-based data values. A W3C Note describing an extension to XML Schema
for specifying MIME-encodings is given in http://www.w3.org/TR/xml-
media-types/ (accessed 06.01.2010).

4www.wikipedia.org (accessed 06.01.2010)

4.1 CDS data model 129

an application can (and should) hide URIs completely from user interfaces.
Instead, the unambiguous human-readable names should be used. From
a user’s perspective, a NameItem is simply a short unambiguous string.
More on the usage of NameItems can be found in Sec. 4.4.

ContentItem

All Items where the content is not a name, but any other kind of content,
have a common super-type called ContentItem. Statements have all
properties of ContentItems, but the opposite is not true. Statements
are explained in Sec. 4.1.1.

A ContentItem is the simplest kind of Item, it represents a piece of
addressable content. From a user’s point of view, a ContentItem rep-
resents a distinguishable symbol. The user may attach a human-readable
representation to it, which can be text or, e. g., an image. This allows a
ContentItem to act as a knowledge cue. If a ContentItem has no con-
tent, the meaning for a user is encoded solely in the way this ContentItem
is used, e. g., connected to other Items.

Examples for content of a ContentItem are: A sentence like “John was
the best player in his team in 1996”, a single word like “exothermic”, a
paragraph, the whole thesis that you are reading just now, a figure from
this thesis, or even an audio or video sequence. Additionally, any content
one can find on the web could be used as the content of a content item.

NameItem

There are a number of constraints for NameItems:

• The content type for all NameItems is always fix (cNAME). Consistent
with MIME-types, cNAME should be represented as “text/plain+name”.

• The content of NameItems can never be empty. This constraint sim-
plifies handling of NameItems in user interfaces. Pragmatically, user
interfaces should also discourage names containing, e. g., only whites-
pace.

• The name should not contain formatting instructions to be easy to type
and compact to display.

• As stated in Sec. 4.1.2, the name must be unique within a Model. This
allows comparing NameItems by URI and by name. Most importantly,
this allows mapping human-readable names unambiguously to machine-
processable URIs.

Creation of a NameItem is cognitively more costly than creating a Content-
Item with the same content, because the content of a NameItems must
be unique within a model. Therefore a user interface might have to tell
a user that a certain name is illegal (e. g., because it contains formatting
instructions or line-breaks), or simply that it is in use already. If the name
is in use, the user must decide if the existing and to-be-created NameItems

130 CONCEPTUAL DATA STRUCTURES

represents the same concept or whether one of the two needs to get a differ-
ent name to reflect a more precise modelling of the world. If the user first
creates a ContentItem and later converts it into a NameItem, then this
an operation in the process of stepwise formalisation.

For a user, a NameItem represents a symbol. In contrast, a Content-
Item can represent larger text snippets or even non-textual content such as
images. Both kinds of Items are knowledge cues.

NameItems resemble more file names, folder names, person names, lo-
cation names, tag names, keywords, or paper titles. They are so short that
they can act as a reference handle for other Items, linked to them via
Statements.

ContentItems resemble more file contents, e. g., a picture of a person,
the full text of a document, etc. . . A typical text document has a file name
and a file content. In D, the file name would map to a NameItem, which is
connected via some relation to a ContentItem, in which the file contents
would be represented. This mapping allows, e. g., to have several different
NameItems to be connected to the same ContentItem, which would
represent a document with multiple names.

Several alternative definitions for naming have been evaluated. The name
spaces for NameItems and Relations can be united, as it is the case in D,
or they could be separated. From a user’s point of view, a single namespace
is easier to manage. First of all, there is no concept of name spaces to be
learned. Second, in user interfaces which offer auto-completion there is no
need for further visual clues to distinguish between a proposed Item “A” as
an Item or “A” as a Relation. Third, using a single namespace the user
can introduce the concept of name spaces himself by using syntactic con-
ventions on the names, e. g., by prefixing Relations with rel:. Therefore
D uses a single name space for NameItems and Relations.

Examples for NameItems are “Heiko Haller”, “FZI”, “FZI Karlsruhe”,
“Heiko”, “My Pictures”, “Evaluation of the central effects of alcohol and
caffeine interaction”, etc.

Triples as links and formal statements

So far only atomic entities have been introduced. Mappings between machine-
readable identifiers (URIs), content units (bit-strings) and human-readable
names have been established.

Triples represent both labelled links as well as formal statements. The
difference lies in the used Relations. The semantics of Relations are
defined in Sec. 4.2. In D, Triples are just structural elements, connecting
Items in a knowledge model. Each Triple consists of

source This is an Item where the link starts. In RDF, this is called the
subject of a triple.

relation This is an Item that represents the kind of relation. One kind of
relations is simply hyperlink with no further semantics, other Items
can represent formal relations such as sub-type-of. Not all Items can
be used as the Relation. Restrictions for relations are motivated

4.1 CDS data model 131

and explained in Sec. 4.1.1. In formal facts, this Item is the predicate
or property of a formal fact.

target This is an Item representing where a link points to. In formal
facts, this is the object of the formal fact.

There is a problem associated with encoding knowledge in Triples: The
“direction” in which a Triple was stated does not constitute to its truth,
but has implications on queries. As an example, consider a person named
Dirk working for SAP. One way to state this in a Triple is:(

[Dirk], [works for], [SAP]
)

Another way to state exactly the same fact would be:(
[SAP], [employs], [Dirk]

)
.

When the user later has the information need to find out where Dirk works,
she might verbalise it at “Where does Dirk work?” and consequently try
to formulate a query starting with the Dirk-Item. If she has stated the
knowledge as

(
[SAP], [employs], [Dirk]

)
she will not find an answer.

The solution offered by D is to make the connection between the Re-
lation (here: “works for” and “employs”) explicit. Details on Rela-
tions are explained in the next section.

Inverse Relations and inverse Triples work together. Each Triple has
the structure (Item, Relation, Item). A Triple (source, relation,
target) implies a Triple (target, inverse relation, source).

Two Triples are considered equal if their components are equal. Two
Items are equal, if their URIs are equal.

Relation

The middle part of a Triple is called the relation of the triple. Relation
is also the name for the type of Items that may be used as the relation of
a Triple. There are several desirable features for a Relation:

• It should be possible to annotate Relations in D– therefore a Rela-
tion should be a kind of Item, too.

• It should be easy to select a Relation by its unique name – therefore a
Relation is a sub-type of NameItem.

• As explained in the last section, each Relation should have an inverse
relation.

Each relation has an inverse relation (via a bijective function r in Sec. 4.1.2). Inverse
relationsLike all Items, each relation has a URI, so does the inverse relation. The
Symmetric
relations

inverse relation of a relation may be itself. This is required to model sym-
metric relations.

Examples for Relations are “works for”, “is located in”, “knows”, “should
be explained before”, “belongs to”, “see also”, “has wiki article”, “supports”,
etc.

132 CONCEPTUAL DATA STRUCTURES

Statement

Statements are Entities which connect Items. Each Statement plays
a dual role as addressable Item and as a Triple, connecting other Items.
Two statements with different URIs might state the same triple.

A statement is itself an Item, thus the user can annotate statements asAnnotating
statements well. This adds a complete level of expressivity to the Model. As a result,

a user can annotate and link any Item in the model. E. g., she can link
from a Statement to a ContentItem which includes a discussion for the
design rationale of the Statement. This is a desired feature for technical
models or formal argumentation.

Why are only binary relations allowed, i. e., why can a statement not haveBinary vs.
N-ary relations several sources and targets like, e. g., links in XLink (Orchard, Maler, and

DeRose, 2001)? First of all, 3-tuples are believed to be expressive enough to
encode any order of relations (Dau and Correia, 2006), (Peirce, 1958, 3.483,
1). Second, triples comply better with existing semantic web technologies,
i. e., the RDF data model, and hence are better suited for interoperability
with existing tools.

More on semantics of Relations is explained in Sec. 4.2.
Examples for Statements are “Process control block” “has definition”

“. . . ” or “Heiko” “knows” “‘Max”.

Entity

An Entity is either an Item or a Triple. This super-concept just denotes
any kind of object that can be part of a model. All Entities are used to
represent knowledge cues. Note how Entities differ in the way they can
be addressed:

Triples cannot be addressed in any way, besides completely enumerating
their content.

Items can be addressed by their URI.

NameItems and Relations can be addressed both by URIs and by human-
type-able names.

Model

A Model is a container for Entities. It is important to have a Model-
concept in order to model different world views or simply different use cases.
In this respect a Model is much like a file or database. Only the existence
of multiple sets of Entities allows, e. g., to compare such sets.

A Model has a URI, which makes it possible to uniquely identify models.
Additionally, this simplifies the mapping of Models to RDF (cf. Sec. 2.6).
RDF has the notion of data sets in SPARQL (Prud’Hommeaux et al., 2007).
Another name for the same concept in RDF is Named Graphs (Carroll et al.,
2004).

4.1 CDS data model 133

Summary

An Item is the basic building block to represent either a name or another
unit of content. Triples, which are the only Entities in a Model that
are not Items, connect Items. A Statement is an addressable Triple
which can additionally have a content unit attached to it. Referring to
sketches, Items represent the nodes and Statements represent arrows be-
tween them. The Relation of a Statement indicates the kind of arrow.
The content of a Statement can be considered a label for an individual
arrow. A Triple is in this context just the fact that two Items are con-
nected via a certain Relation. Two Triples stating the same are the same
Triple. A Triple has no content. Two Statements stating the same, are
different Statements with different identity and possibly different content.
An alternative view, emphasising different properties of objects is given in Datamodel

comparisonTable 4.1.

4.1.2. Formal definition
The formal definition consists of atomic entities (NameItems, Content-
Items) on top of which compound entities (Relations, Triples, State-
ments) are successively defined.

Atomic entities The building blocks of CDS are addressable content units
and unique names.

Content Units
Let B (binary) be the infinite set of all possible words over the alpha-
bet {0, 1}, i. e., B = {0, 1}∗.
Let CT Y P E be a finite set of content types. A content type denotes
a description how a given bit-string should be interpreted, e. g., as
characters of a string, pixels in an image or parts of an executable
program. For now it is sufficient to define that a program can inter-
pret bit-strings for some content types. Let cε be the empty content
type for content of zero length.
A pair of a bit-string and a content-type is a unit of content. The set
of all content units is B × CT Y P E .
Let F be an arbitrary index set to denote unique identifiers, e. g., the
natural numbers. F represents the class ContentItem in Fig. 4.4.
Several ContentItems or Statements can have the same content.
Let f be a function f : F → B × CT Y P E that assigns to each
ContentItem a content unit.

Names
Let Q be a finite set of characters.
Let A be the infinite set of all possible words over the alphabet Q.
The set A represents names in the CDS data model (D). More pre-
cisely, the set A represents the class NameItems in Fig. 4.4, i. e.,

134 CONCEPTUAL DATA STRUCTURES

each element in A is a different member of the class NameItems, due
to the uniqueness of names.

Compound entities Here the CDS entities are described. Note that the
names refer to CDS names introduced in the beginning of this chapter. E. g.,
Relation refers to a CDS concept and not a relation in the mathematical
sense.

Relation
Let R be the set of all Relations, which is defined as a subset of
names A, i. e., R ⊆ A. Let r be a bijective function r : R → R
that maps each Relation to an inverse Relation, i. e., ∀x ∈ R :
r(r(x)) = x. As a simplification of notation, “-x” is also used to
denote r(x).

NameItem
The set N of all NameItems is defined as N = A \ R.

Statement
Let S ⊂ F be the set of all Statements.
Let T be a set of Triples, which are defined shortly. Due to the self-
referential nature of D 5, the term Statement needs to be defined
first.
Let striple be a function that assigns to each Statement a Triple,
striple : S → T . striple is not injective, i. e., the same triple can be
stated by different Statements.

ContentItem
Let C be the set of all ContentItems with C = F \ S.

Item
Let I be the set of all Items which is defined as the set union of
ContentItems, NameItems, Relations and Statements. This
is by definition equivalent to the set union of all names (A) and all
content units (B × CT Y P E). Hence, I = A ∪ (B × CT Y P E).

Triple
Let T be the set of all Triples. Formally, T = I × R × I.
The components of a Triple are named from left to right: source,
relation, and target.
For every Triple (s, p, o), an inverse Triple (o, −p, s) is inferred.
Practical considerations when the inference engine is running and how
it can be constructed are discussed in Sec. 5.1.
Formally, given a finite set of Triples Mexplicit ⊂ T the set Minferred

of inferred Triples is defined as: ∀(s, p, o) ∈ Mexplicit : (o, −p, s) ∈
Minferred.

5A Statement connects Items, but a Statement is also itself a kind of Item. Such
a self-referential structure is quite common for meta-models.

4.1 CDS data model 135

Mtrue = Mexplicit ∪ Minferred is the set of all true Triples in a
Model M .

Entity
Let E, the set of all Entities, be the set union of all Items and all
Triples, i. e., E = I ∪ T .

Model
A Model M is a finite subset of Entities e ∈ E, i. e., M ⊂ E.
The subset of all Triples in M is called Mexplicit = M ∩ T for which
a corresponding set Minferred is defined.
The space of possible Models M can be summarised as:
M ⊂ E = I ∪ T = I ∪ (I × R × I)
with I = A ∪ (B × CT Y P E) and R ⊂ A.
A choice of a character set Q, a set of content types CT Y P E defines
the space of possible models. With Unicode as the character set Q
and the MIME-types as CT Y P E , the set of possible models is fully
specified.
Each Model M can thus be seen as a tuple of finite sets
(NM , RM , CM , SM , TM) with

NameItems NM ⊂ N
Relations RM ⊂ R

ContentItems CM ⊂ (B × CT Y P E)
Statements SM ⊂ S ⊂ (B × CT Y P E) with stripleSM → TM

Triples TM ⊂ T = I × R × I

Identifiers
Let UID be an infinite set of identifiers.
A bijective function uid assigns to each Model and each Item in a
Model a globally unique ID, i. e., uid : M ∪ E → UID and ∀x, y ∈
(M ∪ E) : uid(x) = uid(y) ⇒ x = y.

Helper functions for content and content types Let c be a function that
returns the content of an Item. Formally,

c : I → A ∪ B and c(x) =
{

x, x ∈ A
b, x = (b, t) ∈ (B × CT Y P E)

Let ctype be a function that returns the content type of an Item.
Let cNAME ∈ CT Y P E denote content with name semantics.
Then ctype : I → CT Y P E is defined as

ctype(x) =
{

cNAME , x ∈ A
t, x = (b, t) ∈ (B × CT Y P E)

Let cBINARY ∈ CT Y P E represent generic binary content. The content
is a bit-string. The semantics are the same as those for the MIME-type
application/octet-stream, the most generic binary content type de-
fined by Freed and Borenstein (1996).

136 CONCEPTUAL DATA STRUCTURES

Metadata Each Item i ∈ I has a creation date. Formally:
Let T be a totally ordered set (∀t1, t2 ∈ T : t1 < t2 or t2 < t1 or t1 = t2).
Members of T denote discrete time points. There is no metric defined on
T .
Let mcreation be a function that assigns to each Item i ∈ I a creation date,
i. e., mcreation : i → tk ∈ T .

Each Item i ∈ I has also an author. Let mauthor be a function that
assigns to each Item an author. Authors (a) are represented as Items.
Formally: mauthor : i → a ∈ I.

Axioms As each Item has an author, also each Item representing an au-Built-in item
to represent
the “system”
author

thor needs to have an author. If a user u creates an Item x, u is the author
of x. Who is the author of the Item u? To avoid recursion, the Model
contains a built-in ContentItem x representing the data model D itself.
D is the author of all system-created Items, such as u.

For the Item D, the following properties are defined. The author of
D is D itself. The creation date of D is defined as the publishing date
of this thesis. Formally, UID(x) =http://www.semanticdesktop.org/

ontologies/2007/09/swcm#author:system.
When a user opens a Model to start associative navigation, she mustRoot item

have a starting point. Most navigational user interfaces focus always on
one certain entity. E. g., a file system explorer shows by default the folder
“My Files”. For each domain name, a browser tries first to load a file called
“index.html”. A similar convention of a “root” Item also exists in CDS.
Each Model should contain a root NameItem x with the following prop-
erties c(x) =“RootItem”, ctype(x) = CNAME , uid(x) =cds:rootItem,
mautor(x) =D.

Summary The Table 4.1 shows a comparison of the different D entity
types. The main distinction to keep in mind is between Items representing
basic building blocks (NameItems, ContentItems, and Relations) and
those representing connections between the basic building blocks (Triples
and Statements).

Formal interpretation of a CDS model

This section defines the formal interpretation of the set of its Triples MT ,
which has been defined in Sec. 4.1.1 and formalised in Sec. 4.1.2.

Let V , the vocabulary used in MT , be the set of all Items that occur
in MT either as a source, relation or target. Note that this must be a
subset of all Items used in M (called MI), hence V ⊆ MI . Formally,
V = {s|(s, r, t) ∈ MT } ∪ {r|(s, r, t) ∈ MT } ∪ {t|(s, r, t) ∈ MT }.

An interpretation I of the vocabulary V is defined analogous to the def-
inition in RDF by Hayes (2004)). It defines extensional semantics, i. e., a
relation and the pairs of elements it relates are considered to be different
objects. An interpretation H is defined by:

• A non-empty set U , the universe of the interpretation H

4.1 CDS data model 137

C
on

te
nt

It
em

N
am

eI
te

m

R
el

at
io

n

T
ri

pl
e

St
at

em
en

t

M
od

el

URI UID yes yes yes – yes yes
Content c any name only name only – any –
Content-Type ctype any fixa fixa – any –
Meta-data such as au-
thor and creation date

yes yes yes – yes –

Association to source,
relation, target

– – – yes yes –

a Content-Type = “text/plain+name”

Table 4.1.: Comparing objects in the CDS data model by properties

• A sub-set of U , which is called the set of properties P with P ⊆ U

• A mapping IREXT : P → powerset(U × U),
i. e., the set of sets of pairs (x, y) with x and y in U .

• A mapping S from Items to the universe, S : V → U

Let VR be the vocabulary of Relations, i. e., VR = V ∩ R. For each
Relation x in VR, the Relation extension IREXT of −x must contain
exactly the same set of pairs as IREXT of x, but each pair in reverse order.
Formally, ∀x ∈ VR : ∀(a, b) ∈ IREXT (x) : (b, a) ∈ IREXT (−x). This defini-
tion is analogue to the definition of inverse relations in OWL6.

For each Item x ∈ V : H(x) = S(x), i. e., the interpretation of x is de-
fined by the mapping function S.

For each Triple (s, r, t) ∈ MT :

H ((s, r, t)) =
{

true, if H(r) ∈ P ∧ (H(s), H(t)) ∈ IREXT (H(r))
false, otherwise

A whole Model is said to be true, if it contains only true triples.
This definition of interpretation still leaves much freedom. Only when

the semantics of particular vocabulary Items is considered and formalised,
too, more restricted interpretations can be defined. In CDS, semantics of
the vocabulary is defined in R, in Sec. 4.2.

Simplifying the state-space

The state-space E = I ∪ T = (A ∪ B × CT Y P E) ∪ T can be mapped to an
isomorphic structure with less sets involved. This simplifies implementing
D in an application programming interface (API). The basic idea is to unify

6http://www.w3.org/TR/owl-ref/#inverseOf-def (accessed 06.01.2010)

138 CONCEPTUAL DATA STRUCTURES

the set of character strings A with the set of binary strings B by means of
an encoding and decoding function.

• Let enc : Q → B′ ⊆ B be an encoding function that maps characters to
bit strings.

• Let dec : B′ → Q be the inverse decoding function of enc.
It holds that ∀q ∈ Q : dec(enc(q)) = q. Note that in most computer
systems for most configurations, not all binary strings can be interpreted
as characters in a given encoding, so usually B′ ⊂ B. This is especially
true for Unicode and the encoding UTF-8 (cf. Sec. 4.1.1).

• Let cNAME ∈ CT Y P E denote content with name semantics with the addi-
tional constraint that only NameItems and Relations use the content-
type cNAME , i. e., it must hold that {x|ctype(x) = cNAME} = A.

This mapping allows simplifying the set I from A ∪ (B × CT Y P E) to I =
B × CT Y P E . This mapping is exploited later in the API design in Ch. 5.

4.1.3. Queries
This sections explains typical queries, i. e., read-operations, on a Model.
Operations that change the state are explained in Sec. 4.1.4.

Content display A typical read operation, which is likely not perceived
as a query in the mind of a user, is to retrieve (and likely display) the
content of an Item. For an Item x, this can be done by calling c(x)
and decoding the obtained bit-sequence according to the semantics
defined for the type ctype(x).

Full-text search User-perceived queries are either full-text search over
the content of Items, possibly restricted by Item type (Content-
Item, NameItem, Relation, Statement) or by content type (name,
STIF7, other . . .). Such queries can only be answered if the CDS-based
tool using D can understand the semantics of the content types and
successfully extract full-text (in characters) from the raw bit string.
E. g., extracting the textual content from a slide show stored as the
content of a ContentItem. Queries for NameItems and Relations
are always possible, as the mapping from the bit-string to a character
sequence to match against is defined by D (see Sec. 4.1.2).

Structural queries The next level of expressivity are structural queries,
i. e., queries over the graph induced by the Triples. There are eight
basic patterns to filter the set of all triples (c. g. Tab. 4.2), where a
star denotes a wild-card to match any Item.

7Structured Text Interchange Format, introduced in Sec. 4.3.1

4.1 CDS data model 139

source relation target
s r t
s r *
s * t
s * *
* r t
* r *
* * t
* * *

Table 4.2.: All triple query patterns

The pattern (source, relation, target) only tests if such a
Triple exists or not. It can be used to query the Model for the
existence of certain facts. The other seven patterns result in a set
of matching Triples. Such a result set can be used in several ways.
Triple result sets can be rendered of projected to sets of Items.
As an example, a query such as (Dirk, worksFor, *) can be
projected to a set of employers of Dirk.

Browsing A special case of structural queries is browsing a Model. As-
sume the user starts with a certain Item x, then the following queries
can be posed automatically: (x,*,*) and (*,*,x). If x is a Re-
lation, the additional query (*x*) can be posed, otherwise the re-
sult of this query is empty. The queries (x,*,*) and (*,*,x) can
be reduced to just (x,*,*) as the other query returns only redun-
dant information because of the inferred inverse triples (see Sec. 4.1.2).
The result of the pattern (x,*,*) can be rendered as a segmented
list of Items (the targets), sorted by Relations (the relation part
of a result tuple). The user can then select on of the Items from the
target position of an Item and continue browsing. As Relations are
Items, too, they can be browsed in a similar fashion. For Relations
the user interface can additionally show a list of all Triples where
the Relation x is used.

Semantic queries In systems using D, the semantics of inference may be
extended by applying semantics to Relations. As a result, the set of
inferred triples, Minferred, can contain many more Triples which are
the result of sophisticated inference algorithms. The user should have
the option to decide if she wants to query only the explicitly stated
Triples, i. e., those in Mexplicit or the complete set Mtrue.

Complex queries More complex queries can be formulated by combin-
ing basic triple query patterns using variables and join operations.
The definition and execution of such queries is outside the scope of
the definition of D. In implementations, the constructs offered by the
SPARQL query language (Prud’Hommeaux et al., 2007) should be re-
used. E. g., SPARQL defines conjunctive queries such “?x :livesIn

140 CONCEPTUAL DATA STRUCTURES

:Karlsruhe. ?x :worksAt :SAP” which would return all re-
sources ?x for which both a triple “?x :livesIn :Karlsruhe”
and a triple “?x :worksAt :SAP” exists. SPARQL also offers con-
structs to filter results sets according to some criteria or to create the
union of two results (disjunctive queries).

4.1.4. Operations
There are several operations a user can perform to change the state of
her Model. They can be grouped into content operations, add/remove
operations for each Item type and conversion operations between Item
types.

Each operation that changes that state of a Model has an author, which
is an Item that stands for the real-world entity that is the originator of that
change operation.

Adding and removing ContentItems

Adding a ContentItem The simplest possible operation is creating a
new ContentItem in a Model. The new ContentItem must have
a new, unique URI. After this operation, there is a ContentItem x
for which x ∈ M . If no content has been specified on creation, the
content is empty, i. e., ctype = cε. The creation date is set to the time
of Item creation. The author is an Item representing the creator of
the Item.

Removing a ContentItem Removing a ContentItem from a Model
can cause to recursively remove further Items. If a ContentItem
is removed, first all Statements using this ContentItem as source
or target need to be removed. See Adding and Removing Statements
for details on removing statements. Finally, the ContentItem itself
is removed from the model.

Content operations

Changing the content A typical operation is to edit the content of an
Item. This results in a new content unit attached to the Item, to-
gether with the author and time of change - recorded as creation date
of this content unit.
When the content of a NameItem or Relation is changed – which
is the same as to say that the content-type is cNAME – then the
same rules apply as for creating such units of content from scratch:
The new name may not be empty and the Model may not contain
another NameItem or Relation with the new desired name.

Changing the content type Changing the content type is not a useful
operation. A user should always supply a complete unit of content
consisting of bit-string, content-type and author to edit an Item.

4.1 CDS data model 141

The creation date should be set to the time when the operation is
performed on the Model.

Formally, it is not possible to change the author or creation date without
changing the content. However, it is possible to “touch” an Item by editing
it and setting the same content. This results in a new content (although with
the same bit-string) and a new author and a new creation date, reflecting
the time of the edit operation.

Adding and removing NameItems

Adding a NameItem A new NameItem must ensure that name re-
mains unique throughout the Model, i. e., that n(x) remains injective.
Furthermore, the new NameItem must also use a new, unique URI.

Removing a NameItem Again, first all Statements using this Name-
Item need to be removed. See Adding and Removing Statements for
details on removing statements. If no Statement uses the Name-
Item, it is simply removed from the Model.

Adding and removing relations

Adding a Relation A new Relation must have two new unique names
and two unique URIs. It is possible to re-use existing NameItems
in the process of creating a Relation. The advantage is that those
NameItems have already the feature of unique names and URIs so
that this check can be omitted. Therefore it is cognitively cheaper to
create new Relations out of existing NameItems.
If a Relation is created using existing NameItems, then those
NameItems are converted to Relations. Existing Triples and
Statements which uses these NameItems are kept intact and now
link to Relations of the same name instead.8

Creating a Relation always requires creation of an inverse Rela-
tion. When the user creates a new Relation p she also creates a
Relation −p. It holds: r(p) = −p and r(−p) = r. For symmetric
Relations, p = −p.

Removing a Relation Removing a Relation, no matter how it was
created, removes it from the Model. I., e. if the Relation was
created using NameItems, those NameItems do not reappear ever
again. Before the Relation is removed, all Statements using this
Relation as their source, relation or target part, are removed. See
Adding and Removing Statements for details on removing statements.

8Example: If there was a Statement “Heiko” “enjoys his” “drink” where “drink” was
a NameItem; and now “drink” is converted to a Relation; then the existing Sta-
tement is kept intact. Only the type is changed from NameItem to Relation and
there is now an inverse Relation, e. g., “drunk by”.

142 CONCEPTUAL DATA STRUCTURES

Adding and removing explicit triples

Adding an explicit triple The identity of a Triple is defined by its
source, relation and target. If a Triple (a, b, c) exists already in
the Model adding it a second time does not change the state of the
Model in any way. Otherwise the new triple is added to the Model
and the corresponding inverse Triple is added to Minferred.

Removing an explicit triple Removing a Triple is much simpler than
removing any kind of Item. As the Triple cannot be used in other
Entities, the Triple to be removed is simply removed from the
Model.

Adding and removing statements

Adding a Statement Statements, like any other Item, are identified
by their URI. Therefore adding a Statement to a Model requires
only that its URI has not been used before in this Model. The
source, relation and target must be any existing Item in the Model.
Together with other definitions, this ensure that no Statement can
point to itself or in other ways create cyclic structures.

Removing a Statement A user can choose to remove a Statement or
the removal of a Statement can be caused by the desired removal of
Item using this Statement as their source, relation or target. Note
that also Statements can be used as the source or target of other
statements. Therefore, before a Statement x can be deleted, all
other Statements which use x as source or target must be deleted.
As only the creation of Statements referring to existing Items is
allowed, the recursive process of deletion always terminates. Finally,
the Statement is removed from the Model.

Changing statements

Changing the source of a Statement The source of a Statement may
be changed. However, to avoid creating cycles the new source of a
Statement may only be a NameItem or a ContentItem. This
restricts the flexibility of the model to ensure cycle-free structures in
a simple way. Theoretically, the new source could also be another
Statement as long as no cycles are directly or indirectly created. As
such cycle-checks are rather expensive in algorithmic terms and most
users are unlikely to easily understand the resulting warnings, this is
not allowed in D.

Changing the relation of a Statement The relation of a Statement
can be changed to any other Relation. In fact, this is one of the
most important ways to gradually add more semantics to a Model.
Of course, switching from any Relation back to the “no semantics”
Relation is possible. Details about the Relation ontology are ex-
plained in Sec. 4.2.

4.2 CDS relation ontology 143

Changing the target of a Statement For the target of a Statement
the same rules apply as for changing its source: Only ContentItems
and NameItems are allowed to guarantee cycle-free-ness in an easy
to understand and easy to implement way.

Conversion operations Conversion operations retain all Statements us-
ing the Item as source or target.

Converting a NameItem to a ContentItem This is always possible.
The new ContentItem has the same character string as the Name-
Item. The new content type is set to cST IF , a content type to denote
textual content. STIF is introduced and defined in Sec. 4.3.1. Note
that this content type allows, but does not require, formatting instruc-
tions.

Converting a ContentItem to a NameItem This conversion is not al-
ways possible, as the ContentItem might currently contain binary
content or character content with formatting instructions. Even if
both is not the case, the ContentItem might have a content which
is already used as a name for another existing NameItem or Re-
lation. There is no predefined way to obtain a new name from the
content of a ContentItem. To convert a ContentItem to a Name-
Item, the user must supply a name which is not already used for any
other NameItem or Relation.

Converting a symmetric relation to an asymmetric relation This con-
version creates a new Relation which serves as the inverse Rela-
tion of the existing Relation. All existing Statements remain
unchanged.

Converting an asymmetric relation to a symmetric relation For a
Relation p and its inverse Relation q, this operation requires to
replace all occurrences of q by p and to set the inverse of p to p itself.
The Relation q is deleted in the process.

Higher-order operations Based on these primitive operations, higher or-
der operations such as copy and move can be defined. A copy operation
simply re-creates an existing set of Items

4.2. CDS relation ontology
This section presents a carefully selected set of Relations. The main
intention is to use these on top of D, which is described in Sec. 4.1. How-
ever, the resulting relation ontology is generic enough to be used in other
formalisms, such as OWL (Schreiber and Dean, 2004), the NEPOMUK Rep-
resentation Ontology (NRL) by Sintek et al. (2007), Topic Maps (Durusau
and Newcomb, 2005), or Concept Maps (Jüngst, 1992).

144 CONCEPTUAL DATA STRUCTURES

is related to

is same as is alias for
(has alias)

annotates
(has annotation

comes before
(comes after)

has detail
(has context)

has subtype
(is suptype of)

has part
(is part of)

has instance
(has type)

is similar tolinks to
(is linked from)

is tag of
(has tag)

replaces
(is replaced by)

Figure 4.5.: The complete CDS relation subsumption hierarchy

Each Relation is defined with a corresponding inverse relation, as re-
quired by D, and as supported by OWL, NRL, and Topic Maps. Further-
more, the Relations in CDS are arranged in a subsumption hierarchy, i. e.,
Relations with more specific semantics imply Relations with more gen-
eral semantics. This semantic construct of sub-Relations is also present
in OWL and NRL. The resulting artefact is the CDS Relation Ontology, or
R for short.

R is the result of an extensive analysis of existing conceptual knowledge
organisation models. The complete analysis is in Sec. 3.5. First all Rela-
tions are introduced informally, then Sec. 4.2.2 gives a formal summary.

4.2.1. Informal description
The core relations deal with identity, order, hierarchy, different forms of
annotation (i. e., free-text annotations, tagging, and formal typing), and
generic hyper-links. As the Relation ontology is represented in D, the user
can (and should) extend it in CDS-based tools. A typical user is expected
to use D together with the relations defined in R.

The Relation names are chosen in a way that a triple (s, r, t) in which
s and t are NameItems can be verbalised as an English sentence. E. g., the
triple ([Dirk], [has context], [SAP]) can be pronounced as “Dirk has context
SAP”. As a notational convention, Relation names are typeset in square
brackets. As defined in D, the names suffice to uniquely identify them.

The complete relation ontology is depicted in Fig. 4.5. The Relations
and the subsumption arrangement is explained informally in the rest of the
section. In Sec. 4.2.2 a formal description is given.

As a notational convention, square brackets (“[” and “]”) are used to
indicate the names of NameItems and Relations.

4.2 CDS relation ontology 145

Related or not?

The Relation [is related to] is the top-relation. Whenever two Items are [is related to]
connected with a Statement, this implies also a [is related to] Triple
between those Items. All relations are sub-relations of this top-relation
by default. This relation allows stating very vague knowledge, i. e., “these
Items are related, but I can’t or wouldn’t tell why”.

Linking

If two Items are related in any way, the next step towards a more formal [links to],
[is linked from]representation is to decide on a direction. Once the direction of a connec-

tion between two Items has been defined, this connection is considered a
hyperlink in CDS. The semantics of a hyperlink is pretty generic. A user
interface can distinguish between incoming and outgoing links. Most web
pages show only outgoing links as underlined parts of the text. Many wiki
systems on the other hand, show the incoming links (often called “back-
links”) in a special section of the page. R supplies the Relation [links to]
with the inverse [is linked from] for hyperlinks. If there is no direction of the
connection between two Items, it might be the case that both Items refer
more or less to the same conceptual entity. See Sec. 4.2.1 for these cases.

Order

The Relation [comes before] and its inverse [comes after] model order- [comes before],
[comes after]ing relations. It might be order in space, time or by other means, e. g.,

priority or rank. Sequences such as arrays and lists are used in virtually
any information system. This Relation allows representing partial order
or even cyclic order. Such freedom is important to let a user experiment
with different orders, e. g., for prioritising tasks or sequencing parts of a
document.

This Relation is used, e. g., to represent order among parts of a docu-
ment, as explained in Sec. 4.3.3.

Hierarchy

The Relation [has detail] and its inverse [has context] represent any kind [has detail],
[has context]of hierarchy and nesting. Hierarchies are very common information struc-

tures present in documents, organisational charts, file systems, and user
interfaces. A hierarchical nesting is also directly present in nature: Ev-
ery physical area or volume of space can be sub-divided into smaller parts
therein. The typical organisation of physical space also uses hierarchically
nested sub-spaces, e. g., for mail services (country, city, street, street num-
ber, name).

This Relation models hierarchies in a generic, non-strict way. It is, e. g.,
perfectly legal to have cycles in the hierarchy or have Items with multiple
parents. Note that each CDS Model can represent only one hierarchy with
one Relation. A user can create different sub-Relations of [has detail]
to represent different hierarchies or use multiple Models for this purpose.

146 CONCEPTUAL DATA STRUCTURES

The Relation [has subtype] and its inverse Relation [is subtype of][has subtype],
[is subtype of] model subsumption hierarchies between Items and Relations. Different

from other ontology languages, CDS models both type-hierarchies as well
as Relation-hierarchies with the same Relation. As type-hierarchies of
all kind are also hierarchies after all, the Relation [has subtype] is itself
a sub-Relation of [has detail]. The inverse, [is subtype of] is a sub-Rela-
tion of [has context]. This leads formally to a self-referential assertion:
[has detail] [has subtype] [has subtype]. This allows to, e. g., browse type
hierarchies in the same way as all other kind of hierarchies. The formal
semantics of [has subtype] is defined in Sec. 4.2.2.

Another sub-Relation of [has detail] is [has part] with its inverse [is[has part],
[is part of] part of]. Part-whole relations have an implication about the semantics of

copy, move and delete. If an Item is deleted, all of its parts should be
transitively deleted, too. User interfaces should show all Items that would
be deleted and let the user decide if the parts should be deleted as well
or not. The default semantics for [has detail] is to keep the details of an
Item and optionally and on special request delete recursively the details,
too. CDS does not define stronger semantics for [has part], as it varies a lot
in different contexts.

Annotating and typing

The Relations [annotates] and its inverse [has annotation] models an-
notations of Items. The ordering Relations [comes before] and [comes
after and the hierarchical Relations [has detail] and [has context] both
relate typically Items of the same kind. E. g., it makes sense to state or-
der between tasks or document sections, but less so between a task and a
document section. The same is true for hierarchies, which often contain
Items of the same kind, also probably in a broader sense, e. g., an organisa-
tional hierarchy might contain divisions and people. However, both ordering
and hierarchical statements usually do not relate things such as a person
and a note about this person or an Item and the type of that Item. The
annotation-Relations share that they relate typically Items from differ-
ent conceptual modelling layers. Annotating Items covers everything from
virtual sticky notes up to tagging and formal typing.

If one Item annotates another one, the intuitive equivalent is having put[annotates],
[has
annotation]

a virtual sticky note on the first Item, where the second Item represents
the content of that note. In user interfaces, whenever the Item is rendered,
the user should be reminded about the annotation, either by showing the
annotation directly or by showing an indicator of the presence of annota-
tions. To allow meaningful browsing of annotations, each annotation implies
a link from the annotation to the Item it annotates, i. e., [annotates] is a
sub-Relation of [is linked from].

With the rise of “Web 2.0” an old technique used for categorising books in[is tag of],
[has tag] libraries becomes popular for digital information items such as web pages or

photos: tagging. A tag is essentially a short, unique, easy-to-type keyword
that is applied to another information item. In CDS, [is tag of] is a special
kind of annotation, hence it’s a sub-Relation of [annotates]. Similarly,

4.2 CDS relation ontology 147

[has tag] is a sub-Relation of [has annotation]. As tags inherently have the
characteristics of being a unique name, users in CDS should tag with Name-
Items. Tagging in practice is not restricted to text. E. g., the ImageNotion
project9 let’s people tag images with images. To allow such cases, too, CDS
does not restrict tagging to NameItems.

Tagging can also be used as a generic way to highlight or emphasize a an
arbitrary sub-set of Items in a model: A user simply adds a new, common
tag to the collection.

A user interface should represent tags in a way familiar to users of other
tagging system, e. g., often a tag-cloud is shown, in which all strings used
as tag names occur and the font size is proportional to the usage frequency
of the tag.

Annotations are very generic, tagging encourages already the usage of [has instance],
[has type]short, descriptive names. The next step in a process of gradual formalisation

is to formally type Items. The Relation [has instance] and its inverse [has
type] are designed for just that. Whereas tagging has no formal semantic
consequences, typing does. If an Item a is typed with an Item b (i. e., a
[has type] b) then a implicitly gets also – transitively – all super-types of b.
The formal definition can be found in Sec. 4.2.2. Modelling formal typing
as a sub-Relation of tagging has the consequence that each assignment
such as “[Peter] [has type] [Person]” implies a Triple “[Peter] [has tag]
[Person]”. This in turn allows a user to click on the tag “Person” in, e. g., a
tag-cloud and find “Peter” listed in the result set. For a user the navigation
from tags to tagged Items and type to instances of the type just happens
in the same user interface which reduces the amount of concepts to learn at
no cost in expressivity. It also allows one user to successfully browse and
explore a Model with types without requiring an understanding of even
the existence of formal types.

Note that many data models distinguish between primitive data-types Primitive data-
typessuch as boolean, integer, and float and object-types such as Person,

Customer, and Product. In CDS, there is no such distinction. Each
ContentItem has some content of which the formal semantics can be
stated using [has type]. E. g., typing a number as a “price in Euros” or as
a “phone number” is treated in the same way as typing an instance as a
“person” or “friend”.

Identity

After having several ways in which Items can relate to each other, this
section discusses Relations between Items that represent the same or
similar conceptual entity.

Several things that have been conceptualised differently, might turn out [is same as]
later to represent in fact the same object. A popular example for this is the
“evening star” and the “morning star” which both turned out to be what is
called today “Venus”. R represents this with the [is same as].

To allow a stepwise path from two entities that turn out to be related in a [is similar to]

9http://www.imagenotion.com/ (accessed 06.01.2010)

148 CONCEPTUAL DATA STRUCTURES

way of similarity, rather than difference, R offers the Relation [is similar
to]. This symmetric Relation captures the vague notion that two entities
represent a similar, maybe even the same, conceptual entity. Only [is same
as] has formal consequences, cf. Sec. 4.2.2.

Another form of similarity is one Item being a shorthand name for an-[is alias for],
[has alias] other one. Nicknames and abbreviations are examples for this. In CDS,

this is modelled with the Relation [is alias for] and its inverse [has alias].
A Statement about an alias is treated as if it has been made about the
Item with the longer name. If a user had defined(
[BaWü], [is alias for], [Baden-Württemberg]

)
and later creates a State-

ment(
[BaWü], [is located in], [Germany]

)
, then a Statement(

[Baden-Württemberg], [is located in], [Germany]
)

is added to the Model.
So aliases allow a user to interact more efficiently with a CDS-based tool.
If the Statement

(
[BaWü], [is alias for], [Baden-Württemberg]

)
is later

removed, nothing in the Model changes.
This is different from [is same as]-Statements. They influence the in-

ferencing behaviour and hence the way queries are answered. If the Model
of a fictional user Dirk contains three Statements like(
[SAP], [has detail], [Claudia]

)
,(

[SAP], [is same as], [my employer]
)
, and(

[my employer], [is located at], [Karlsruhe]
)
, then a query(

[SAP], [*], [*]
)

would return(
[SAP], [employs], [Claudia]

)
and(

[SAP], [is located at], [Karlsruhe]
)
. If later the [is same as]-Statement is

removed, the same query returns only(
[SAP], [employs], [Claudia]

)
. So the fact that [SAP] and [my employer]

represent the same conceptual entity can end to be true.
The Relation [replaces] with the inverse [is replaced by] is even stronger[replaces],

[is replaced by] than [is alias for] and applies only to textual user interfaces. If a State-
ment a [replaces] b is in a Model, then, when a user types the word b, the
editor replaces the string with a. This feature is only relevant if State-
ments can be entered using some kind of syntax. Such a syntax is explained
in Sec. 4.3.2. If a user later edits the text again, it contains only a.

4.2.2. Formal definition
R is defined as a set of Relations and axiomatic Statements in D. The
notation from Sec. 4.1.2 is thus re-used.

Let x1 . . . xn ∈ R be CDS Relations.
Let the namespace prefix (cf. 2.6) “cds:” be mapped to the URI
http://www.semanticdesktop.org/ontologies/2007/09/01/cds#.
The functions UID(x), c(x), and r(x) are defined on page 134. The Rela-
tions in R are defined formally as follows:

is related to
Unique Identifier UID(x1) = cds:hasRelated
Unique Name c(x1) = “is related to”
Inverse Relation r(x1) = x1 (symmetric)

4.2 CDS relation ontology 149

links to
Unique Identifier UID(x2) = cds:hasTarget
Unique Name c(x2) = “links to”
Inverse Relation r(x2) = x3
Inverse Identifier UID(x3) = cds:hasSource
Inverse Name c(x3) = “is linked from”

annotates
Unique Identifier UID(x4) = cds:hasAnnotationMember
Unique Name c(x4) = “annotates”
Inverse Relation r(x4) = x5
Inverse Identifier UID(x5) = cds:hasAnnotation
Inverse Name c(x5) = “has annotation”

is tag of
Unique Identifier UID(x6) = cds:hasTagMember
Unique Name c(x6) = “is tag of”
Inverse Relation r(x6) = x7
Inverse Identifier UID(x7) = cds:hasTag
Inverse Name c(x7) = “is tagged with”

has instance
Unique Identifier UID(x8) = cds:hasInstance
Unique Name c(x8) = “has instance”
Inverse Relation r(x8) = x9
Inverse Identifier UID(x9) = rdf:type
Inverse Name c(x9) = “has type”

The semantics of this Relation are described in “[has subtype]”.

comes before
Unique Identifier UID(x10) = cds:hasAfter
Unique Name c(x10) = “comes before”
Inverse Relation r(x10) = x11
Inverse Identifier UID(x11) = cds:hasBefore
Inverse Name c(x11) = “comes after”

This Relation is transitive. It models partial ordering.

has detail
Unique Identifier UID(x12) = cds:hasDetail
Unique Name c(x12) = “has detail”
Inverse Relation r(x12) = x13
Inverse Identifier UID(x13) = cds:hasContext
Inverse Name c(x13) = “has context”

has subtype
Unique Identifier UID(x14) = cds:hasSubType
Unique Name c(x14) = “has subtype”
Inverse Relation r(x14) = x15
Inverse Identifier UID(x15) = cds:hasSuperType
Inverse Name c(x15) = “is subtype of”

This Relation, which models both subsumption hierarchies of types

150 CONCEPTUAL DATA STRUCTURES

as well as Relations, is transitive. Formally,
∀u, v, w : (u, x14, v), (v, x14, w) ∈ Mtrue ⇒ (u, x14, w) ∈ Mtrue.
An Item inherits super-types of a type. Formally,
∀a, b, c ∈ I : (a, x9, b) ∧ (b, x15, c) ∈ Mtrue ⇒ (a, x9, c) ∈ Mtrue.
Furthermore, to make sub-Relations consistent with inverse Rela-
tions, the inverse Relation of a Relation must also be a sub-Re-
lation of the Relation. Formally,
∀u, v ∈ R : (u, x14, v) ∈ Mtrue ⇒ (−u, x14, −v) ∈ Mtrue. This is
possible, because each Relation in D is required to have a defined
inverse Relation.
Note that the type-system can also be used to denote data-types such
as integer, float, string, or boolean.

has part
Unique Identifier UID(x16) = cds:hasPart
Unique Name c(x16) = “has part”
Inverse Relation r(x16) = x17
Inverse Identifier UID(x17) = cds:isPartOf
Inverse Name c(x17) = “is part of”

is similar to
Unique Identifier UID(x18) = cds:hasSimilar
Unique Name c(x18) = “is similar to”
Inverse Relation r(x18) = x18

is same as
Unique Identifier UID(x19) = cds:sameAs
Unique Name c(x19) = “is same as”
Inverse Relation r(x19) = x19

This transitive relation effectively defines one Item to be an alterna-
tive symbol for another one. Definition: A Model that contains no
Triples of the form (a, x19, b) for any a, b ∈ Model is called lean. If
it does contain such triples it is called non-lean.
A non-lean model can transformed into a lean model in the following
way:

1. Compute the transitive closure over (a, x19, b) for all as and bs.
2. For each triple (a, x19, b) in Mtrue:

2a. Replace each occurrence of a in the Model with b.
2b. Remove the triple (a, x19, b) from Mtrue.
This can mean to remove it from Mexplicit or Mimplicit.

The transformation can be thought of as a syntactic pre-processing
step. The same replacement operations have to be carried out for
answering queries, so that the same normalisation takes place.

4.2 CDS relation ontology 151

striple(a1) = (x1, x14, x2)
striple(a2) = (x2, x14, x4)
striple(a3) = (x4, x14, x6)
striple(a4) = (x6, x14, x8)
striple(a5) = (x2, x14, x10)
striple(a6) = (x2, x14, x12)
striple(a7) = (x12, x14, x14)
striple(a8) = (x12, x14, x16)
striple(a9) = (x1, x14, x18)

striple(a10) = (x18, x14, x19)
striple(a11) = (x18, x14, x20)
striple(a12) = (x18, x14, x22)

Table 4.3.: Axiomatic CDS Statements

is alias for
Unique Identifier UID(x20) = cds:isAliasOf
Unique Name c(x20) = “is alias for”
Inverse Relation r(x20) = x21
Inverse Identifier UID(x21) = cds:hasAlias
Inverse Name c(x21) = “has alias”

The semantic of this Relation applies only when new Triples are
created either explicitly by a user or indirectly by processing text
syntax which implies the creation of Triples. In both cases, each oc-
currence of an Item a for which an alias has been defined by (a, x20, b)
is replaced with b. To guarantee consistent Models, b must be a Re-
lation if a is a Relation. If this is not the case, the alias directive
is not in effect for Statements.
Formally, the following rules apply at Statement insertion time if
the Model contains a Triple (a, x20, b):
(a, r, t) �⇒ (b, r, t)
(s, a, t) �⇒ (s, b, t) (Note: here b ∈ R is required.)
(s, r, a) �⇒ (s, r, b)

replaces
Unique Identifier UID(x22) = cds:replaces
Unique Name c(x22) = “replaces”
Inverse Relation r(x22) = x23
Inverse Identifier UID(x23) = cds:replacedBy
Inverse Name c(x23) = “is replaced by”

The semantics of this Relation applies only when a user edits text in
a CDS-based tool. If the Model contains a Statement of the form
(a, x22, b) and b is a NameItem (b ∈ N ∪ R), then after the last char-
acter of b’s name has been typed the editor should replace the string
b with the string a. a needs not to be a NameItem. The requirement
b ∈ N ∪ R is necessary to guarantee unambiguous replacement.

152 CONCEPTUAL DATA STRUCTURES

The subsumption hierarchy can be expressed as a set of axiomatic State-
ments, which are depicted in Table 4.3.

For Relations that are, e. g., sub-Relations of a non-symmetric Re-
lation, there are implications for navigation in Model. E. g., [links to]
has the sub-Relation [has detail], (x2, x14, x12). Thus if a pure hypertext-
based tools renders a Model, a user can navigate from an Item to its detail.
This implies a kind of natural linking direction from generic to specific.

Formal semantics

This definition builds upon the formal semantics of D, described in Sec. 4.1.2.

• Let G be the set of all formal types in a Model. That is, G contains
all Items used as a type, either in a Triple with [has type] or [has
subtype]. G is a subset of the vocabulary V , G ⊆ V . Formally,
F = {v|(u, x9, v) ∈ Mtrue} ∪ {x, y|(x, x14, y) ∈ Mtrue}.

• Let IGEXT be the type extension in the interpretation H,
with IGEXT : H(G) → powerset(U).

A triple (x,[has type], y) in interpreted as x ∈ V having the formal type
y ∈ G.
Formally, x ∈ IGEXT (y) if and only if (x, y) ∈ IREXT (H([has type])).

• IREXT (H([has subtype])) is transitive and reflexive on R ∪ G.

• Next the semantics of sub-Relations can be formalised as:
∀x, y ∈ R, (x, y) ∈ IREXT (H([has subtype])) : IREXT (x) ⊇ IREXT (y).

• In a similar way the more generic sub-type relationship can be defined:
∀(x, y) ∈ IREXT (H([has subtype])) : x ∈ IG, y ∈ IG, IGEXT (x) ⊆
IGEXT (y).
Note that a sub-Relation-Triple has both implications for its Rela-
tion extension (IREXT) as well as for its type-extension (IGEXT).

4.3. Syntax and structured text
This section describes handling of textual content in CDS. First STIF, a
model for structured text, is presented. STIF can be used independent of
CDS to represent structured text, as it occurs, e. g., in word processing, web
pages, content management systems, the text field of mind-map nodes, or
within blog comments.

STIF is used as a content-type in the content of Items in several CDS
tools. STIF can also be used for import from and export to other formats.

STIF can be edited in a textual syntax, which is also presented in this
section. The syntax is thus used to create and augment knowledge cues.

4.3 Syntax and structured text 153

Furthermore, a single content in STIF can be transformed to multiple in-
terlinked Items, each having a part of the original content as their con-
tent. Taken together, the transformations from syntax to structure and
from structure to CDS allow a user to work always in the most convenient
formalism.

Former research on STIF has been published by Völkel and Oren (2006).
A previous version of STIF has been published as Wiki Interchange Format
(WIF, Völkel and Oren, 2006). STIF is also used outside CDS, e. g., for an
open source wiki migration and access framework called WikiPipes, available
at http://code.google.com/p/wikipipes (accessed 06.01.2010).

4.3.1. Structured text interchange format (STIF)
STIF is a representation language for structured text. It is designed as a
simple markup language allowing to represent only structural features (i. e.,
headlines, list, tables, images and links), but not visual features (such as
font style, font size and colour).

Design goals and decisions One of the most prominent document formats HTML as basis
today is HTML (cf. 2.4). Therefore HTML is taken as a basis for represent-
ing structured text. HTML provides many elements; for STIF only those
representing document structures (cf. 2.2) are relevant. Therefore, STIF
is a strict subset of HTML. Being a subset of HTML allows all STIF
documents to be rendered by all HTML browser engines. This simplifies
implementation of CDS tools.

The design of STIF is a trade-off between usability and expressivity. It
must be small, so that it is easy to learn and simple to write transformation
procedures to and from other data formats. Transformations of structured
text to other formalisms can help to create semantic statements cheaper,
as explained in Sec. 4.3.3. It must be expressive, so that a user can express
all kinds of textual structures and so that all kinds of existing text content
formats can be represented in STIF. STIF is a small subset of HTML, which
is easy to learn and use. On the other hand, STIF allows arbitrary other
elements to be present - those are legal to be ignored by STIF and CDS
tools.

XML is the de-factor standard for representing semi-structured data.
With XSLT a powerful language standard for writing transformations from
XML to XML and from XML to text is available. The current version of
HTML is already specified as a subset of XML, namely XHTML. STIF is
a subset of XHTML, and hence XML, too.

To be precisely, STIF is a strict subset of XHTML 1.1 (Altheim and
McCarron, 2001). It uses the structure module, hypertext module, list
module, table module, image module and parts of the text module and
presentation module. Appendix A.3.2 shows the formal document type
definition (DTD) of STIF which states clearly which elements are used and
how they can be nested.

154 CONCEPTUAL DATA STRUCTURES

Used in WikiCreole Added in STIF
Inline for-
matting

, ,
 <code>

Headings <h1>, <h2>, <h3>, <h4>, <h5>,
<h6>

–

Links <a> with attribute href –
Block-level <p>, <hr> <pre>
Lists , , <dl>, <dd>,

<dt>
Images with attributes src and alt –
Tables <table>, <tr>, <th>, <td> –

Table 4.4.: Comparing Wiki Creole and STIF

In 2007, a unified wiki syntax, called Wiki Creole, was created (Sauer,Restricting to
WikiCreole Smith, and Benz, 2007). The syntax was created after investigating the syn-

tax of the twenty most popular wiki engines followed by an open discussion
among many wiki users and wiki engine authors for a period of almost one
year. Therefore, Wiki Creole represents the most important concepts for
authoring structured text. Wiki Creole supports 20 HTML elements, which
all contribute to the document structure. The set of Wiki Creole elements
is depicted in Tab. 4.4.

STIF uses Wiki Creole as a base but adds some few more elements, which
are depicted in the right column in Tab. 4.4. Wiki Creole supports two kinds
of lists, numbered and bulleted, but leaves out definition lists, which are
added to STIF to allow representing all three common list structures present
in HTML. Furthermore, definition lists are the most structured kind of list.
Wiki Creole has syntax for escaping wiki parsing, but does not prescribe how
such sections should be rendered in HTML. STIF adds the HTML elements
for inline verbatim text (code) and block-level verbatim text (pre). These
elements allow STIF to represent unformatted text, which is important to
allow representing text on all levels of formality.

Linking in STIF One design goal of STIF is interchange between different
systems. Most hypertext systems allow linking within itself as well as to
other systems.

In the World Wide Web, there are links to other parts of the same web
page (with href="#...") and links to other web pages or parts thereof
(e. g., with href="http://..."). In wikis, there are links to other wiki
pages or links to other WWW pages.

Usually all entities in one hypertext system share a common layout or
navigation approach. Therefore the user is interested before clicking a link,
whether it will be an inter-system-link or an intra-system-link. STIF en-

4.3 Syntax and structured text 155

Inline formatting , ,
, <code>
Headings <h1>, <h2>, <h3>, <h4>, <h5>, <h6>
Links <a> with attribute href
Block-level <p>, <hr>, <pre>
Lists , , , <dl>, <dd>, <dt>
Images with attributes src and alt
Tables <table>, <tr>, <th>, <td>

Table 4.5.: Summary of STIF elements. Inside the <a>-element, the at-
tribute class must (compatible with the CSS-specification,
see 2.4) contain stif-internal for links within the same
system or knowledge base and stif-external for links to
another system or knowledge base. Only one of the two classes
may be used for one element.

codes this distinction by using the class-attribute of the <a>-element10.
For internal links, i. e., those linking to other entities in the same system or
knowledge base, the class stif-internal is used. For external links, the
class stif-external is used.

Specification

The complete list of elements and attributes used in STIF is depicted in
Tab. 4.5

STIF is intended to be used as a markup language within other knowl-
edge representations, especially for the content of CDS Items. There is no
required document header which turns each plain text string that does not
use XML special characters into a valid STIF string. E. g., “Hello World” is
a valid STIF document. This allows using STIF for all phases in the gradual
migration from plain text to fully-fledged structured documents.

STIF string A valid STIF string is any sequence of characters s with the
following properties:

• Either “s” itself or embedded in an XML root element, “<root>” +s+
“</root>”, is well-formed XML 1.1, as defined by Paoli, Cowan, Bray,
Yergeau, Maler, and Sperberg-McQueen (2006, Sec. 2.1).

• The STIF-elements that are used in s – if any – follow the nesting rules
of HTML 4.01 Strict (Raggett, Hors, and Jacobs, 1999). The nesting
rules, e. g., dictate that a <table> element is not allowed within a list
element . Note: using DTDs it is not possible to formally describe,
e. g., “this element may contain recursively any element except this and
that element”.

10HTML defines that the class-attribute of any HTML element may take an infinite
set of values, separated by the space character. Therefore STIF does not limit the
expressivity by adding some elements to this set.

156 CONCEPTUAL DATA STRUCTURES

Note that this definition does not require valid HTML or XHTML. A study
in 2002/2003 (Noga and Völkel, 2003) found that less than one percent of
all web pages are valid (X)HTML as defined by W3C.

STIF document A STIF document is an XML 1.1 document that is valid
(as defined by Paoli et al. (2006, Sec. 2.8 pp)) s with respect to the STIF
Document Type Definition (DTD). The complete STIF DTD is shown in
appendix A.3.2. The STIF DTD is essentially a stripped-down HTML 4.01
DTD with lowercase element names, to remain XHTML-compatible. HTML
(but not XHTML) allows uppercase and lowercase element names. A typical
body of a strict STIF document is depicted in Fig. 4.6. Every valid STIF
document contains a valid STIF string inside the <stif>-element.

<?xml version="1.1"?>a

<!DOCTYPE stif PUBLIC "-//XAMDE//DTD STIF 1.0//EN">
<stif> . . . a STIF string . . .</stif>
aXML 1.1 is XML 1.0 with improved Unicode support

Figure 4.6.: Document template for validating STIF strings

STIF-compliant processor A STIF-compliant processor is defined ana-
log to HTML-compliant user-agents (browsers) as defined by (Pemberton,
2000, Sec. 3.2): In valid STIF strings or STIF documents, a STIF-compliant
processor must process all elements defined for STIF. Behaviour for other
elements can be chosen freely as long as the general guidelines for user-
agents stated by (Pemberton, 2000, Sec. 3.2) are met. The most important
of those rules are:

• If a user agent encounters an element it does not recognize, it must
process the element’s content.

• If a user agent encounters an attribute it does not recognize, it must
ignore the entire attribute specification (i. e., the attribute and its value)

• If a user agent encounters an attribute value it does not recognize, it
must use the default attribute value.

These rules ensure that all STIF strings can be rendered as part of HTML
pages.

4.3.2. From syntax to structured text
The syntax for STIF is based on the CommonSyntax of the open-source
project WikiModel11. WikiModel provides a powerful framework for parsing
wiki syntax. Note that most wiki engines do not provide a re-usable parser,
but instead intertwine text parsing and specific wiki business logic deeply.

11http://code.google.com/p/wikimodel/ (accessed 06.01.2010)

4.3 Syntax and structured text 157

The appendix A.3.1 lists the STIF wiki syntax for creating STIF content
in a set of comparison tables. The STIF wiki syntax is a refined version of
CommonSyntax. I. e., CommonSyntax does not define link parsing within
“[” and “]” markers. Note that STIF can also be used with another wiki
syntax or without any wiki syntax, e. g., for migrating structured text from
one tool to another one.

4.3.3. From structured text to CDS
This section describes transformations between structured text (which can
be created with a textual syntax as explained in the previous section) and
formal statements. The overall idea is depicted in Fig. 4.7.

Structured Text (STIF)

contains

split/ combine

CDS Statements

Structured Text (STIF) Structured Text (STIF)

CDS ContentItem

contains

CDS ContentItem

contains

CDS ContentItem

Figure 4.7.: Transformations between structures in text and structures in
relations

Using STIF in CDS

There are two prerequisites to use STIF as content in CDS Items:

• Sec. 4.1.2 introduced a set Q of characters which must now also include
the XML special characters. Formally, let Q′ be the extended alphabet,
with Q′ = Q ∪ { “<”, “>”, “=”, “’”, “"” }. A STIF string is a string
from the set A′, the infinite set of all possible words over the extended
alphabet Q′. The special characters are required to encode the markup
of element names and attributes, as specified by Paoli et al. (2006).

• The content-type for STIF content is cST IF ∈ CT Y P E . This content-type
is added to the set of available content types.

Note that both changes happen within the formal model described in Sec. 4.1.

158 CONCEPTUAL DATA STRUCTURES

Given an Item u with
STIF content:
<h1>a</h1>
<p>b</p>
<h3>c</h3>
<p>d</p>
<hr>
<h3>e</h3>
<pre>f</pre>

HorizontalRule

Headline a

Paragraph b Headline c

Paragraph d

Headline e

PreFormatted f

Notation:
In each node n the type (type(n)) is followed by the content (content(n)). The CDS
model contains at least one Item u with ctype(u) = ST IF and c(u) = the STIF content
listed.

Figure 4.8.: From STIF to a Logical Document Tree

Representing STIF as CDS

STIF → Logical Document Tree STIF content implies a logical docu-
ment structure (cf. Sec. 2.2).
The HTML block-level elements such as headings (<h1>, <h2>, <h3>,
<h4>, <h5>, <h6>), paragraph (<p>), horizontal rule (<hr>), pre-
formatted block (<pre>), and tables (<table>, <tr>, <th>, <td>)
impose a logical structure. Note that all structural elements ex-
cept horizontal rules have content of their own. E. g., a headline
<h2>Introduction</h2> has the content “Introduction” and maybe
a paragraph underneath. A hr-command has potentially also a para-
graph underneath, but never content within the logical node repre-
senting the hr-command itself.
Paragraph, pre-formatted block and table can only appear as leaves of
a logical document tree. Within those, inline formatting (,
,
, and <code>), links (<a>), images () and lists
(, , , <dl>, <dd>, <dt>) may occur.
Fig. 4.8 shows STIF content (left) and a corresponding logical docu-
ment tree (right). The different levels of headlines (<h1>-<h6>) have
been abstracted away. Only the relative structure between the head-
lines is captured in the structure of the tree. Each node of the tree
contains an ordered list of children in order to represent the order of
elements in the source document.
This analysis leads to this set of logical document tree types: “STIF”
for content that has not been split up; “HorizontalRule”, “Headline”,
“Paragraph”, “Table” and “PreFormatted” otherwise.

4.3 Syntax and structured text 159

Each Node n is mapped to an Item i such that:
// representing content
content(i) = content(n)
// representing types
create a Statement (i, [has type], matching type from Tab. 4.6)
for each child nc of n create a corresponding Item ic recursively and

// representing hierarchy
create a Statement (i, [has part], ic)

// representing order
for each pair of child nodes ni, nj in n.L:

if (i + 1 = j)
create a Statement (ni, [comes before], nj)

Figure 4.9.: Algorithm for representing a Logical Document Tree in CDS

STIF Logical Unique Identifier Unique Name
element Document

Tree
<hr> HorizontalRule cds:stif-HorizontalRule Horizontal Rule
<h1> Headline cds:stif-Headline Headline
<h2> Headline cds:stif-Headline Headline
<h3> Headline cds:stif-Headline Headline
<h4> Headline cds:stif-Headline Headline
<h5> Headline cds:stif-Headline Headline
<h6> Headline cds:stif-Headline Headline
<p> Paragraph cds:stif-Paragraph Paragraph
<pre> PreFormatted cds:stif-PreFormatted Pre-formatted Block
<table> Table cds:stif-Table Table

Table 4.6.: Mapping from STIF elements to CDS types represented as
NameItems

Logical Document Tree → CDS A logical document tree can be rep-
resented in CDS by representing order, hierarchy, and types of tree
nodes. Order can be represented with [comes before], hierarchy with
[has part], and typing with [has type]. For each kind of logical doc-
ument tree node, an Item representing that type must be created.
Given the NameItems defined in Tab. 4.6, an algorithm for repre-
senting a logical document tree can be defined (cf. Fig. 4.9.

Normalisation A STIF string can be normalised by transforming it into
a logical tree and back to a STIF string. The logical tree contains by
definition all information of the structure and content of a STIF string,
but looses the exact definition of <h1> . . .<h6> and retains only the
relative nesting of these elements. Thus on representing the logical
tree back to a STIF string, effectively only the headline numbering
has changed. Example: If the initial STIF string was
<h1>a</h1><h3>b</h3> the normalized STIF string is
<h1>a</h1><h2>b</h2>.

160 CONCEPTUAL DATA STRUCTURES

Splitting and merging CDS items with STIF content

So far a single STIF content has been represented very fine-granular as
CDS. In practice, a user will rarely want to transform a single document
represented as STIF into hundreds of Items. However, being able to split
big Items apart and merge several small Items into a single one is an
important feature to let the user control the size of Items.

Headline a

Paragraph b Headline c

Paragraph d

Headline e

PreFormatted f

Figure 4.10.: Splitting a Logical Document Tree

The last section explained how a logical document tree can be represented
both as STIF and as CDS. By defining how to split and merge logical
document trees, a split and merge for Items with STIF content is implied.
Given the tree from Fig. 4.8, it can easily be split into smaller trees, depicted
in Fig. 4.10. The resulting CDS Items and Statements are depicted in
Fig. 4.11. In general, the root node becomes an Item with few or no content
and all children of that node become Items containing the corresponding
sub-part of the logical document tree, encoded as STIF.

This process can be reverted in order to merge (combine) several Items.Merging
However, if a user deletes, e. g., the [has part]-Statement, then the reverse
process is no longer possible, as information is lost.

Both processes ease the creation of structured content, as one can startSummary
to write structured documents, e. g., while sitting in a meeting and later
transforming the text into a more fine granular CDS model.

Resulting CDS Items (note the normalisation of headline-numbering):

Item ctype c

u STIF –
v STIF <h1>a</h1> <p>b</p> <h2>c</h2> <p>d</p>
w STIF <h1>e</h1> <pre>f</pre>

Resulting CDS Statements:

source relation target
u [has type] cds:stif-HorizontalRule
u [has part] v
u [has part] w
v [comes before] w

Figure 4.11.: CDS items and statements resulting from a split operation

4.3 Syntax and structured text 161

Interpreting structures as CDS

Besides just representing the logical document structure, further possibilities
to advance from text structures to semantic statements are described in this
section.

Automatic linking Given a textual content like “. . . Dirk works at SAP
. . . ” and a NameItem with content “Dirk”, links can be inserted automat-
ically, leading to “. . .<a href="#d" class="stif-internal
cds-automatic">Dirk works at SAP”, where d is the URI of the
Dirk-Item.

Interpreting links in STIF First of all, each wiki-link inside square brack-
ets, e. g., [Dirk], is interpreted as a link to the NameItem with matching
content, e. g., “Dirk”. If no such NameItem exists, it is automatically cre-
ated with a random URI.

Example:
Let a be a NameItem with content AAA and URI aaa.
Let b be a NameItem with content BBB and URI bbb.
Let c be a ContentItem with textual content like

“. . . BBB. . . ”.
Given further the Statements (c, [has alias], a).
Then the a Statement can be extracted in order to represent the link from
a to b: (a, [links to], c).

Semantic links via wiki syntax Similar to the syntax used in Semantic
MediaWiki (cf. Sec. 2.9), the syntax presented in Sec. 4.3.2 is extended
with semantic links. A normal link to a NameItem with content AAA can
be created with

“. . .[AAA] . . . ”.
A semantic link with type ttt can be created via

“. . .[ttt::AAA] . . . ”.
In STIF, semantic links are represented in a way compatible with a way
of embedding RDF in HTML (cf. eRDF, Sec. A.1). CDS uniformly puts
relations in the cds.-namespace. This works, because Relations must be
named uniquely in CDS. The STIF fragment for the example looks like this:

... <a href="#urn:example:dirk"
class="stif-internal cds-explicit"
rel="cds.knows"
>Dirk ...

162 CONCEPTUAL DATA STRUCTURES

wikiTurtleDoc ::= statement*
statement ::= triples ’.’ | ws+
triples ::= subject predicateObjectList
subject ::= resource | blank
predicateObjectList ::= verb objectList (’;’ verb objectList)* (’;’)?
verb ::= resource
objectList ::= object (’,’ object)*
object ::= resource | literal
literal ::= ’"’ any characters except quotation mark ’"’
ws ::= whitespace characters
resource ::= ’[’ any characters except closing brace ’]’

Figure 4.12.: Semantic Wiki Turtle Syntax

Interpreting list structures Often lists are used to express semantic rela-
tions as well. The CDS syntax framework interprets lists like this:

* [AAA]

** [knows]

*** [BBB]

*** [CCC]

as the Statements (aaa, [knows], bbb) and (aaa, [knows], ccc) with aaa be-
ing the URI of a NameItem with content “AAA” etc.

Advanced semantic syntax A popular yet compact syntax for RDF is Tur-
tle (Beckett and Berners-Lee, 2008). Analogous to turtle a corresponding
semantic wiki syntax has been designed for CDS.

As an example, the syntax [AAA] [knows] [BBB], [CCC]; [likes]
[DDD].” is interpreted as the Statements (aaa, knows, bbb), (aaa, knows, ccc),
and (aaa, likes, ddd). The EBNF grammar of Semantic Wiki Turtle Syntax
is shown in Fig. 4.12.

Provenance For each semantic Statement s created from wiki syntax in
a ContentItem a, CDS creates an additional Statement (s, [has provenance], a).
The inverse of [has provenance] is [defines]. The Relation [has provenance]
is a sub-Relation of [is related to].

4.3.4. Summary
Creating knowledge cues with inner structure at low costs is an appealing
feature. Using a formal representation of structured text, such structured
documents can transformed. In particular, structured text can be split up
into several smaller, interlinked parts, retaining the structural links but rep-
resenting them differently. This transforms structures within a knowledge
cue into structures between knowledge cues.

4.4 Using CDS 163

4.4. Using CDS
This section presents how the different parts (D, R, and STIF) are used
together for PKM. First authoring is presented, then a mapping to semantic
technologies, especially Resource Description Framework (RDF), is given.
Finally retrieval in the knowledge model and some modelling examples are
shown. A more concrete example for using CDS embedded in the tool HKW
is shown in Sec. 5.2.1.

4.4.1. Authoring and stepwise formalisation
There are several ways for stepwise formalisation possible in CDS: Taking a note

in CDS
• The simplest thing a user can do is to create a plain Item. This is

equivalent to take a piece of paper and write the date on it.

• Next the user can write text in this Item. Or set the content to contain
an image. In any case, some piece of content becomes an addressable
entity in the model.

• The user can turn the Item into a NameItem. The system has to check
if another NameItem with the same name (content) exists already, and
if so, the user has to decide what should happen: Delete the new Item?
Rename it? Merge the two? Even small formalisation steps can come at
some cost.

• A user can link any two existing Items via one of the built-in relations.
The simplest possible link is an undirected [is related to]-link between
two Items. It is analogous to drawing a line between two pieces of paper.
E. g., sometimes it is easy to say that two Items are related but it is hard
to say how.

• The user can refine any existing relation. For [is related to]-relations,
the user might, as a next step, choose a directed hyperlink ([links to]) or
express a kind of similarity ([is similar to]).

• The user can also create new relations, as they are needed. Browsing
a knowledge model is easier when the most suitable parent relation is
chosen from the existing relations (cf. Fig. 4.5).

• The user can structure the content of an Item using wiki syntax, e g.
format text in sections, lists and tables.

• The user can add formal statements to the STIF-content (cf. Sec. 4.3.3).

How to use? To clarify the semantics of new Relations, a user should Creating
relationscreate a sub-Relation of the existing Relations given in R. E. g., to

indicate that [is located in] has semantics of hierarchical nesting it should
be made a sub-Relation of [has context].

164 CONCEPTUAL DATA STRUCTURES

Extending the built-in relation ontology The user is expected to extend
the provided relation ontology R all the time. In most CDS-based tools (cf.
Ch. 5), new Relations ce be introduced simply by using them. These new
Relations are by default a sub-type of [is related to].

Extending the built-in relation ontology is easy, one just needs to create
new Relations as sub-Relations of existing Relations (via [is subtype
of]). This allows tools falling back on more generic semantics, if the new
Relation cannot be understood. E. g., [met at a conference] could imply
[knows], which in turn might be layered underneath [links to]. Creating
sub-relations of existing Relations is simply performed by adding a Sta-
tement (x, [has super-relation], y).

One example would be the introduction of a Relation [comes directly
before] as a sub-Relation of [comes before]. For the user, the semantics of
[comes directly before] could characterise total ordering, e. g., of chapters in
a book. It makes a difference to say that a chapter on chemical components
comes somewhere before a chapter on polymers or directly before. Ulti-
mately, an author must decide on the total order of chapters, before a book
can be finished. Next the author might realise that she needs to represent
two orderings: one for the order in the book and one for herself, the order
of writing. So she creates another Relation [write before] to record her
thoughts about the dependencies of the chapters in writing order.

4.4.2. Mapping to semantic technologies
This section explains a representation of CDS data-model (D) in the RDF
data model. In a second step, the relation ontology R is mapped to existing
ontologies.

Representing the CDS data-model in RDF Mapping CDS to RDF al-
lows knowledge models to be exported into other semantic technology-based
tools. The following namespace bindings (Turtle syntax, described by Beck-
ett and Berners-Lee (2008)) are used:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix cds: <http://www.semanticdesktop.org/ontologies/2007/09/
01/cds#> .
The examples given in this section use random URIs, encoding the current
system time and a locally unique disambiguation number, allowing several
random URIs to be created at the same time point. An example for such a
random URI is urn:xam.de:t20090816-11.18.25.824-0.

ContentItem Each ContentItem with URI i is represented as i rdf:type
cds:ContentItem. If the ContentItem has content attached to
it, it is represented as i cds:hasContent content. Additionally,
each ContentItem has a change date (cds:hasChangeDate) and
an author (cds:hasAuthor).
An example of an ContentItem with content:

4.4 Using CDS 165

<urn:xam.de:t20090816-11.18.25.824-0> rdf:type cds:ContentItem;
cds:hasContent "Lorem ipsum dolor sit amet,

consectetuer adipiscing elit. Proin id enim a
velit cursus tempor. Aenean non erat. Mauris
imperdiet, sem in iaculis interdum, velit libero
aliquam nisi, scelerisque tincidunt leo dui eget pede.";

cds:hasChangeDate "2010-11-26T14:48:12Z"^^xsd:dateTime;
cds:hasAuthor <urn:xam.de:t20090714-12.37.55.890-0> .

NameItem NameItems are represented almost like Items. They have
the type cds:NameItem assigned. An example:

<urn:xam.de:t20090816-12.27.33.109-0> rdf:type cds:NameItem;
cds:hasContent "Dirk Hageman";
cds:hasChangeDate "2010-11-26T14:37:09Z"^^xsd:dateTime;
cds:hasAuthor <urn:xam.de:t20090714-12.37.55.890-0> .

Relation A Relation has an inverse relation specified via cds:hasInverse.
And it has the type cds:Relation assigned. An example:

<urn:xam.de:t20090816-11.19.25.798-0> rdf:type cds:Relation;
cds:hasContent "writes PhD at";
cds:hasChangeDate "2010-11-26T14:38:09Z"^^xsd:dateTime;
cds:hasAuthor <urn:xam.de:t20090714-12.37.55.890-0>;
cds:hasInverse <urn:rnd:252f391c:1167c5d5744:-7fcf> .

Statement A Statement has the type cds:Statement assigned. A
Statement may not be a NameItem or Relation at the same time.
A Statement, just like a normal Item, may have content. Below
is an example of a statement without content attached. Note that
the statement is in RDF terms “reified”, to allow addressing it. The
plain, un-reified statement is also recorded in RDF to allow answering
of SPARQL queries:

<urn:xam.de:t20090816-11.46.15.777-0> rdf:type cds:Statement;
cds:hasChangeDate "2010-11-28T15:18:19Z"^^xsd:dateTime;
cds:hasAuthor <urn:xam.de:t20090714-12.37.55.890-0>;
cds:stmtSource <urn:xam.de:t20090816-11.28.31.396-0>;
cds:stmtRelation <urn:xam.de:t20090816-11.34.32.754-0>;
cds:stmtTarget <urn:xam.de:t20090816-11.46.15.772-0> .

<urn:xam.de:t20090816-11.28.31.396-0>
<urn:xam.de:t20090816-11.34.32.754-0>

<urn:xam.de:t20090816-11.46.15.772-0> .

Triple A Triple is not a kind of Item. A triple is almost the same as
an RDF triple. The only difference is that a CDS triple contains only
URIs and no literals or blank nodes.

<urn:xam.de:t20090816-11.28.31.396-0>
<urn:xam.de:t20090816-11.34.32.754-0>

<urn:xam.de:t20090816-11.46.15.772-0> .

As an example, Claudia wants to express the facts that Dirk works at SAP Example
and that SAP has the context Karlsruhe. In CDS, she could use Name-
Item to represent Dirk, SAP and Karlsruhe, as they are unique concepts for
her. 4.13 shows a CDS model representing this example. The same model,
encoded in RDF is shown in 4.14 on page 173.

166 CONCEPTUAL DATA STRUCTURES

Mapping the Relation Ontology to existing Ontologies Most of the CDSMapping to
RDF Schema semantics are close to RDFS and can be mapped to corresponding con-

structs. RDFS has no way to represent the NameItem idea of human-
readable strings serving as unique names. RDFS also has no inverse prop-
erties. However, RDFS does provide a class and property hierarchy, which
maps well to CDS. Types in CDS map to classes in RDFS. Therefore CDS
uses already rdf:type as the URI for [has type]. Sub-typing in CDS
can be modelled as a special case of sub-classing in RDFS. This axiomatic
triples provides the mapping:

cds:hasSubType rdfs:subPropertyOf rdfs:subClassOf.

In a similar way, a sub-relation in CDS maps to a sub-property in RDFS.
A second axiomatic triple is needed:

cds:hasSubType rdfs:subPropertyOf rdfs:subPropertyOf.

Note how CDS is different from, e. g., RDFS where separate class and prop-
erty hierarchies are established. In CDS, only one type hierarchy is used.
The usage of the types determines the role as Relation (second part of
triple) or type (first or third part in a triple). This mapping maps the CDS
hierarchy to both the RDFS class and the RDFS property hierarchy.

More about the relation from CDS to RDFS and OWL is given in Sec. 6.4.

4.4.3. Retrieval
CDS offers by its design three parallel ways to work with personal knowl-
edge:

1. Content of Items, e. g., simple keyword search for Item retrieval,
using structural and formal knowledge only to improve ranking,

2. Relation structure for retrieval by associative browsing as well as for
composing documents from existing Items, and

3. Semantics of Items and Relations for reasoning.

Navigation in CDS knowledge models NameItems allow a user to jump
directly into certain nodes of their Model, similar to the world wide web,
where a user can reach any node directly if she knows the URL. From there
on, content can be explored by associatively following links. The same works

NameItems:
[Dirk], [SAP], [Karlsruhe].
Relations:
[works at]/[employs].
Statements:
[Dirk] [works at] [SAP].
[SAP] [is located in] [Karlsruhe].

Figure 4.13.: A simple CDS model

4.4 Using CDS 167

in CDS Models: After selecting a NameItem via its name, the user can
follow Statements about that Item. The Statements can also lead her
to Items that have no name, e. g., to other ContentItems, Relations
or Statements.

Queries A CDS knowledge model can be queried in several ways. First,
the data-model D clearly separates addressable entities (Items) and content
(one per Item). Textual content is thus modelled separate from structural
information. All structures are stored as Statements or Triples, con-
necting other Items.

Second, as the model can be embedded easily in RDF, existing query
languages for RDF can be reused. SPARQL (Prud’Hommeaux et al., 2007)
is the most popular RDF query language and released as a technical recom-
mendation from W3C. In principle, the full power of SPARQL can be used
to query CDS models. However, as SPARQL is rather complex, a subset of
SPARQL has been developed to allow query formulation by casual users.

Queries in CDS are basically SPARQL SELECT queries with only one CDS Query
Language
(CDS-QL)

projected variable. This allows them be used in set-like operations such as
intersection, union and set difference.

The formal query language is based on atomic triple patterns p ∈ P
composed of Items i, Relations r and the wildcard ∗. Note that all
Items and Relations in CDS are identified with a URI. Formally,

P = {(i, r, ∗), (i, ∗, i), (∗, r, i)}, i ∈ I, r ∈ R

where the first parameter of the pattern denotes the source Item of a State-
ment, the second the Relation of a Statement and the third parameter
the target Item of the Statement.

A query q ∈ Q is either an atomic pattern, a negated query (¬), or the
intersection (∩) or union (∪) of two queries. Formally,

Q = {p, ¬q, qa ∪ qb, qa ∩ qb}; p ∈ P ; qa, qb ∈ Q.

As an example, all friends of Dirk living in Karlsruhe that do not work at
SAP, would be represented as the query:

q1 = q2 ∩ q3

q2 = q4 ∩ q5

q3 = ¬p1

q4 = p2

q5 = p3

p1 = (∗, worksAt, SAP)
p2 = (Dirk, knows, ∗)
p3 = (∗, livesIn, Karlsruhe)

or in one query:

q = ((Dirk, knows, ∗) ∩ (∗, livesIn, Karlsruhe)) ∩ (¬(∗, worksAt, SAP)).

168 CONCEPTUAL DATA STRUCTURES

Mapping to SPARQL The query language CDS-QL can be mapped to
SPARQL as follows:

• CDS-QL patterns are mapped to SPARQL patterns by replacing each ∗
with ?var and each Item or relation with its URI put between angle
brackets, that is <URI(item)>.

• Negation can be represented in SPARQL via OPTIONAL and FILTER.
For any pattern p = (x, y, z) where one of the components (which is now
called v) is a wildcard ∗, the mapping to SPARQL is

OPTIONAL { x y z } .
FILTER(!bound(?v))

• Intersection of two patterns is expressed as simply separating the two
corresponding SPARQL patterns via a single dot (“.”).

• Union in CDS-QL is mapped to SPARQLs “UNION” keyword.

An example for a CDS-QL query mapped to SPARQL is given in Fig. 4.15
on page 174.

When running the queries, the semantics of the relation ontology R need
to be taken into account. Two aspects are relevant:

Inverses For each Statement its inverse triple is part of the query an-
swering process.

Type Hierarchy For the hierarchies implied by [has subtype] the transi-
tive closure needs to be calculated and used.

4.4.4. Modelling examples
PIM example As a small example, consider a person called “Dirk Hage-

mann” with a birthday on April 2nd 1975. In CDS, this can be mod-
elled as a NameItem a with content “Dirk Hagemann”, a Content-
Item b with content “02.04.1975”, and Statements (a, [has birth-
day], b), and ([has birthday], [has super-relation], [has detail]).

Representing Node-and-Link Diagrams Items and Statements al-
low representing node-and-link diagrams, e. g., like concept maps.
Comparing CDS with nodes and links, a link is modelled as a Sta-
tement. Each Statement links a source Item with a target Item.
The label of the link can be stored as the content of the Statement.
Such Statements should use [is related to] as the Relation type
for undirected links and [links to] for directed links.

Importing a Wiki To allow for collaborative usage, CDS assigns to each
piece of content an author, denoted by a URI and a time stamp which
records the change date of the content. This collaboration model has
been inspired from wikis. Can a CDS knowledge model import the
content of a wiki? Yes, in the following way: Each wiki-page a with
a title a.title and content a.content is represented as a NameItem

4.5 Summary and conclusions 169

b with content a.title, a ContentItem c with its content being a
STIF-representation of a.content12. A Statement (b, [is alias of], c)
connects the name and the content.

Fuzzy Knowledge In order to record vague knowledge as well, one could
state the truth value of each Statement as a numeric floating point
value between 0 and 1. By default, a degree of 1 (100%) could be as-
sumed. Technically, a new [has truth value]-relation could be assigned
to each Statement. The linked ContentItems would then carry
the numeric value.

4.5. Summary and conclusions
This section presented the core of the thesis. Together, the CDS data-model
D, the CDS relation ontology R, and the STIF model for structured text
realise a number of features, which are summarised in the next section.

4.5.1. Feature summary
In brief, CDS are a lean model suitable for representing and using personal
knowledge in various degrees of formalisation in a uniform fashion, allowing
stepwise formalisation.

Feature 1: Addressable entities All entities in CDS are addressable. This
enhances significantly the ability to define mappings to other knowledge
models and transformations to other formalisms. Advanced features, such
as automatic synchronisation with other people’s models, versioning and
access rights are also easier to implement.

Feature 2: Meta-modelling in CDS data models There are several ways Expressivity
in which meta-modelling can be done. The most common kind of meta-
modelling is to assign model entities a type (via [has type]) and then describe
this type in terms of higher-level types. CDS supports this, as no strict
separation of modelling layers is required.

A second way to do meta-modelling is to make formal statements about
formal statements, which is rarely done in software engineering. CDS allows
this, too, although it is up to users of the model to define semantics for it.
CDS supplies only the structural ability to treat Statements as Items,
and hence make Statements about Statements ad infinitum. A realis-
tic usage scenario could be an annotation of Statements with subjective
votes such as “I believe this is true/false” and then run a query under the
constraint to treat only Statements from a certain author or group of
authors as true.

12Such a representation can be obtained for many popular wiki engines with the
WikiPipes-project.

170 CONCEPTUAL DATA STRUCTURES

Feature 3: Stepwise formalisation One case of stepwise formalisation is
the usage of NameItems. First, a NameItem can be used like a named
container. A user just links snippets of content underneath the NameItem,
e. g., via [is related to]. When navigating to the NameItem, all the snippets
are accessible. Later, the user might start to consider the NameItem a tag
and relates things via [has tag] to it. In CDS tools that show, e. g., “tag
clouds”, the NameItem would now appear in the tag cloud. As the next
formalisation step, the user can promote the tag to a type, simply by linking
it via [has type] to another Item. The NameItem itself stays the same all
the time and can play all three roles (named container, tag, formal type) at
the same time.

Feature 4: Lean Model CDS is a quite lean model, as it consists of
very few conceptual entities. The data-model has only five key elements
ContentItem, NameItem, Relation, Statement and Triple. The
basic XML info-set model has already seven elements (element, attribute,
comment, processing instruction, entity declaration, entity reference, and
document type declaration).

The relation ontology is slightly more complex, however, users can learn
it gradually, as they need it. On the other hand, R has only 13 Relation
types defined.

Feature 5: Retrieval CDS models can be used by following links associa-
tively, asking formal queries or performing full-text search over the content
of Items. Furthermore, CDS models can be exported into other formats.

Feature 6: Degrees of Granularity CDS allows representing a wide range
of granularity. Many Items, especially NameItems, are usually very short,
denoting concepts. Other Items, i. e., ContentItems, can represent com-
plete documents or parts thereof.

Feature 7: Degrees of Formality Knowledge cues in CDS can range from
being very informal (plain text) to more formal (structured text) up to fully
“semantified” knowledge bases. The different artefacts co-exist and can be
authored and queried in a uniform fashion.

CDS allows not only structuring but also to formalising knowledge. This
allows to retrieve, e. g., “white shark” using an expression like
(?x, [has type], [Lamniformes]) although no one ever told the system that
this is true. One might just have entered
([white shark], [has type], [Lamnidae]) and also
([Lamnidae], [is subtype of], [Lamniformes]).
This allows CDS to infer that white sharks also belong to the Lamniformes.
It remains the responsibility of the user to decide which content should be
formalised up to which degree.

Feature 8: Multiple perspectives As structures can be transformed from
STIF to CDS and vice versa, the user gets more freedom to author knowl-

4.5 Summary and conclusions 171

edge cues in the formalism of choice. The re-use of structures in text lowers
the cost of authoring structured knowledge models.

Feature 9: Consistent naming scheme CDS uses a simple, consistent
naming schema for NameItems and Relations. No content must be
named, but any content can be named. The only exception are Rela-
tions, which are required to be named. Conceptually, Relation names
are also names from the same namespace, i.e. there cannot be a relation
named ’knows’ being something different from a NameItem ’knows’. The
explicit handling of names as addressable entities allows meta-modelling for
names, too. Is the name out-dated? Has it been replaced by another name?
Does it refer to more than one entity? The user can model these things as
desired.

Feature 10: Extensible relation ontology The relation ontology is exten-
sible by a user. This allows modelling any domain and makes sure that the
user is not restricted. The hierarchical design of the relation ontology allows
a gradual refinement of Statements. A user starts with [is related to], then
decides on the direction of the link by choosing [links to] or [is linked from].
In a next step, an sub-relation can be chosen, e. g., [has detail], [annotates]
or [comes before] (or their inverses). Alternatively, a new sub-relations of
[links to] (or its inverse) can be created. With each refinement step, more
precise semantics are present in the model. The soft migration from [is re-
lated to] to more precise relations makes it easier for the user to create such
formal Statements.

Feature 11: Semantic queries Queries allow exploiting the semantic state-
ments modelled in a personal knowledge model. Examples for queries are
given in Sec. 4.4.3.

Feature 12: Context tracking Each Item has meta-data about the cre-
ation date and its author. This allows them to become more powerful
knowledge cues, as the meaning is often clearer in a context of other knowl-
edge cues. Items created by the system are marked with a different author
and are thus clearly distinguishable.

Feature 13: Hyper-Linking The link is one of the five core CDS relation
types. As a knowledge model represents the content of many documents,
represented as many, interlinked small Items. Thus the classical document
boundary is crossed: One Item can be linked from many other Items (like
transclusion in hypertext research). As all Items are addressable, links can
go from and to any Item. Using STIF, Item can also create links to any
other WWW resource.

Feature 14: Ordering One of the five CDS relations types is [comes before]
and [comes after] which models partial order. Used consequently, a partial
order can also be a total order.

172 CONCEPTUAL DATA STRUCTURES

Feature 15: Hierarchy Hierarchical modelling is a core principle in CDS.
CDS provides several hierarchical Relation types.

4.5.2. Summary
CDS, consisting of a data-model (D), a relation ontology (R) and model
for structured text (STIF), is a general-purpose modelling language. It
emphasises modelling in text (STIF), structured text (STIF) and typed
relations (STIF, D, R) over graphical modelling. CDS can handle semi-
structured data (STIF, D, R). Authoring in structured text is a means
to cut down the costs of externalising structured artefacts, which in turn
lowers the cost of retrieval.

To sum up, CDS can

• (1) act as a formalism for recording, managing, and sharing personal
knowledge,

• (2) bridge the gap between informal/unstructured information and fully
formal semantic models in PKM;

• (3) serve as the least common denominator for knowledge exchange among
humans and among different tools, and

• (4) encode vague structures (e. g., “this is nested within that, but I can’t
say how”).

• (5) CDS can act as a guideline for PKM tools: Each tool should be
able to create, represent and manipulate at least the structural elements
defined in CDS.

4.5 Summary and conclusions 173

Define Items (in this case: NameItems):

<dirk> rdf:type cds:NameItem.
<dirk> cds:hasContent "Dirk".
<sap> rdf:type cds:NameItem.
<sap> cds:hasContent "SAP".
<ka> rdf:type cds:NameItem.
<ka> cds:hasContent "Karlsruhe".

Define Relations and their inverse Relations:

<wa> rdf:type cds:Relation.
<wa> cds:hasContent "works for".
<wa> cds:hasInverse <emp>.
<emp> rdf:type cds:Relation.
<emp> cds:hasContent "employs".

Make two Statements:

<s1> rdf:type cds:Statement.
<s1> rdf:subject <dirk>.
<s1> rdf:property <wa>.
<s1> rdf:object <sap>.
<s2> rdf:type cds:Statement.
<s2> rdf:subject <sap>.
<s2> rdf:property cds:hasContext.
<s2> rdf:object <ka>.

Figure 4.14.: A CDS model represented in RDF (N3 Syntax)

174 CONCEPTUAL DATA STRUCTURES

Given this URI mapping:

worksAt �→ http://example.com/worksAt
SAP �→ http://example.com/SAP
Dirk �→ http://example.com/Dirk
knows �→ http://example.com/knows
livesIn �→ http://example.com/livesIn
Karlsruhe �→http://example.com/Karlsruhe

the CDS-QL query all friends of Dirk living in Karlsruhe that do not work
at SAP results in the SPARQL patterns:

p1 �→ ?var,
<http://example.com/worksAt>,
<http://example.com/SAP>

p2 �→ <http://example.com/Dirk>,
<http://example.com/knows>,
?var

p3 �→ ?var,
<http://example.com/livesIn>,
<http://example.com/Karlsruhe>

The full CDS-QL example query as a SPARQL query:

SELECT ?var WHERE {
<http://example.com/Dirk>

<http://example.com/knows>
?var .

?var
<http://example.com/livesIn>

<http://example.com/Karlsruhe> .
OPTIONAL {

?var
<http://example.com/worksAt>

<http://example.com/SAP>
} .
FILTER(!bound(?var))

}

Figure 4.15.: Example for mapping CDS-QL to SPARQL

5. Realisation

This chapter presents a realisation of the concepts presented in Chapter 4.
The realisation is split into two main parts: First, the CDS API and a refer-
ence implementation of the CDS model (CDS-RI), targeted for developers.
Second, the PKM tool Hypertext Knowledge Workbench (HKW), targeted
for end-users, is presented.

Hypertext
Knowledge

Workbench (HKW)

CDS API

iMapping
Prototype QuiKey

uses

CDS Reference Implementation (CDS-RI)

is implemented by

Figure 5.1.: High-level view on the CDS software eco-system

Fig. 5.1 gives a high-level overview on the realised architecture. Three
different tools access the CDS-RI through the same CDS API. The differ-
ent tools and different implementations are detailed in this chapter: Hy-
pertext Knowledge Workbench is a browser-based prototype described in
Sec. 5.2. iMapping is a desktop application based on a zooming user inter-
face metaphor. It is described in Sec. 5.3.1. QuiKey is a command-line-like
desktop application, described in Sec. 5.3.2.

5.1. CDS Reference Implementation
This section presents the CDS Application Programmer Interface (API) and
CDS reference implementation (CDS-RI).

The architecture of CDS-RI consists of three parts: The content layer Generic
architectureneeds to be able to persist CDS content, which is a URI mapped to a content-

type plus the actual content itself. The content itself may be a string or
a binary format. The structure layer manages structured data such as
Relations and their inverses, Statements and their components, and the
metadata of Items. The semantics layer is a component responsible for
interpreting Statements and inferring new Triples.

This separation into layers allows the content layer to stay very simple and
hence easy to implement, use and maintain. The structure layer becomes
smaller and hence is easier, e. g., to keep in memory for knowledge models

176 REALISATION

up to a certain size. Furthermore, each lower layer can be re-used without
the higher layers.

Application Programmer Interface (API) The Conceptual Data Struc-
tures API is a Java API for creating and manipulating CDS Models. The
conceptual model of CDS itself has also been described in (NEPOMUK
Consortium et al., 2008) and (Völkel, 2007b).

The API consists mainly of two layers, namely the CDS model layer
(corresponding to D) and the CDS semantics layer (corresponding to R
and STIF). The CDS model layer is the content and structure layer. ItContent and

structure –
The CDS data
model layer

represents the state of a CDS data model (D). This layer can be used
without the higher CDS semantics layer.

The concept of a re-usable, stand-alone Semantic Web Content Repository
has been described by Völkel (2007b).

The main interface, IModel gives access to all operations described in
Sec. 4.1.4. Furthermore, the IModel can be queried for all NameItems,
all ContentItems etc. There are also some query operations to facilitate
auto-completion in user interfaces such as getAllNameItemsMatching(String
regex, long limit) which returns all NameItems up to the given limit
that match the given regular expression. Each Item type is represented by
its own interface, arranged in an inheritance hierarchy. The API is thus
completely type-safe, making heavy use of Java Generics. Furthermore, the
API is based on RDF2Go which has been developed to abstract away dif-
ferent triple store implementations.1 For binary content a component called
BinStore is used.2 On top of RDF2Go, a component called RDFReactor
(Völkel, 2006) has been developed3 to generate object-oriented wrappers for
accessing triple-based RDF data.

The semantics layer is an extension of the CDS model layer. It providesSemantics
layer mainly three additions: Constants for all CDS built-in Relations, handling

1RDF2Go is a triple store abstraction layer, developed by the author of this thesis,
which allows switching between, e. g., Sesame and Jena implementations at startup
time. RDF2Go is used by several other projects such as SemVersion, Aperture,
Hyena, NEPOMUK, SemFS and Theseus. RDF2Go is available under an open
source BSD license at http://semanticweb.org/wiki/RDF2Go (accessed
06.01.2010). In November 2009, the RDF2Go home page has had over 22.800 page
views since its creation in June 2006.

2The BinStore component, also created by the author of this thesis, is modelling a
map from URIs to blobs (binary large objects). Different from other content man-
agement APIs for Java, BinStore allows random-access to the binary blobs, which
makes it suitable for layering, e. g., virtual file systems on top of it. For each en-
try, the BinStore records content-type and creation date. BinStore is a re-usable
component. The API together with a file-backed implementation is available un-
der a liberal BSD license at http://semanticweb.org/wiki/BinStore
(accessed 06.01.2010). BinStore is used in the Semantic File System (SemFS) (Bloe-
hdorn et al., 2006).

3RDFReactor has been developed by the author of this thesis from 2004 to 2009. It
is available at http://semanticweb.org/wiki/RDFReactor (accessed
06.01.2010) under a BSD open source license. The home page has been accessed
over 11.300 times as of November 2009. RDFReactor is used in SemFS, NEPOMUK
and the MEDICO project, which is a part of the Theseus program.

5.1 CDS Reference Implementation 177

of wiki syntax and STIF, and support for queries with inferencing according
to the CDS semantics.

The Java source code consists of 48 files with just 1,370 lines of code (plus Code statistics
2,243 lines of comments, all excluding blank lines).

The complete CDS API description can be found online at http://

semweb4j.org/site/cds.api/apidocs/ (accessed 06.01.2010).

Reference Implementation (CDS-RI) The reference implementation is
used in HKW, iMapping and QuiKey. The CDS API has been implemented
several times during the course of this thesis. In order to justify and illumi-
nate the final design, a little bit of history is necessary:

RDF-based implementation This implementation used a local RDF
model for the state (running in Sesame), RDFReactor for the map-
ping to CDS concepts and an adapted rule-based RDFS reasoner for
the inference.

NEPOMUK implementation During the course of NEPOMUK, an in-
tegration with NEPOMUKs back-end was needed.
The goal of RINEPOMUKwas a CDS API implementation that could
transparently read NEPOMUK data, interpret it as a CDS knowledge
model, manipulate it in CDS tools and write it back to the NEPOMUK
store according to the semantic desktop ontologies.
NEPOMUK has the architectural concept to connect third-party ser-
vices, such as a CDS-based tool, via a web service interface. This has
the advantage that a malicious or malfunctioning component in the
third-party part cannot damage the NEPOMUK server part.
However, the web service interface turned out to be a serious perfor- Minimising

HTTP callsmance bottleneck, especially when used in a fine-granular way. Unfor-
tunately, the design of RDFReactor results in a high number of very
fine-granular calls. To remedy for this problem, a work-around has
been designed. At startup time, the RINEPOMUKloads all relevant
data with one special SPARQL query from the NEPOMUK server.
At runtime, all calls to the underlying RDF store are sent both to the
internal store as well as to a dedicated buffer. Two new commands
save and load have been introduced in the CDS API to give tools
control about when to commit the buffer back to the NEPOMUK
server and when to reload data from it. Unfortunately, even with this
design where HTTP calls had been reduced to the absolute minimum,
the overhead of transporting data over HTTP was still too high and
resulted in lagging user interfaces.
In 2008, applications based on RDF requiring very many or very large
queries and update operations did not run fast enough over HTTP,
even when client and server were running on the same desktop ma-
chine. The technical details of these problem are described in (NEPO-
MUK Consortium et al., 2008, Sec. 4.5.2).

178 REALISATION

1. (x, nrl:inverseProperty, y) ∧ (a, x, b) ⇒ (b, y, a)

2. (p, nrl:inverseProperty, q)∧
(p, rdfs:subPropertyOf, t)∧
(t, nrl:inverseProperty, u) ⇒
(q, nrl:inverseProperty, u)

3. (p, nrl:inverseProperty, q) ⇒
(q, nrl:inverseProperty, p)∧
(p, rdf:type, rdf:Property)∧
(q, rdf:type, rdf:Property)

Figure 5.2.: Examples for rules used in CDS inferencing that are not in-
cluded in RDFS or OWL

JavaScript implementation Within HKW most parts of CDS have been
re-implemented for performance reasons: A triple store, an inference
engine, unique names, etc. However, the runtime performance of the
JavaScript-based reasoner was still too slow for an acceptable perfor-
mance. Although not systematically tested, JavaScript seems to have
a penalty factor of about 10 in terms of memory requirements and run
time compared to Java.

After these three mistakes, the final, fourth implementation has been cre-
ated. It is not integrated into NEPOMUKs back-end. As it uses custom
data structures for maximal performance, it is called the native CDS im-
plementation (RINative).

Native implementation No internal RDF store is used, instead, all func-
tionality has been implemented from scratch, for better runtime perfor-
mance and memory usage. It has the following components, from top to
bottom:

MemCdsModel implements the convenience methods declared in theFacade API for
ease-of-use CDS API and delegates all non-trivial calls to a MemCdsCoreModel.

MemCdsCoreModel uses a MemModel for persistence and a MemIn-
ferenceModel for inferencing.

MemInferenceModel listens for change events from a MemModel andSemantics
layer
implementation

keeps an index of inferred Statements up to date. The basic concept
of the MemInferenceModel is thus similar to a Truth Maintenance System
(Doyle, 1987). Inference is triggered at query-time, to prevent calculating
inferences. E. g., if a Statement is created and deleted afterwards, it would
be a loss of performance to calculate inferences after the Statement has
been created.

The inference engine is based on a rule-based RDFS-inference engine from
the OpenRDF (Sesame) project. The inference engine uses incremental

5.1 CDS Reference Implementation 179

materialisation, that is, when adding a Statement, very few rules are
triggered.

For every Statement that is inserted, a number of – potentially recursive
– further add-Triple events are triggered, according to hard-coded infer-
ence rules. The process always terminates, as there are no infinite recursions
in CDS semantics and each inferred Triple is marked as such.

However, after Statement deletion the complete inference cache has to
be re-materialised. 4 The OpenRDF-RDFS-algorithm has been reduced to
calculate only the inferences required by CDS semantics. This improves per-
formance. Furthermore, some rules have been added to cover the complete
CDS semantics. These rules are depicted in Fig. 5.2.

MemModel is the implementation of the CDS data layer in the CDS Content and
structure layer
implementation

API. It manages listeners on change events, provides methods for all SWCM-
related tasks such as adding or deleting any kind of Item, and allows query-
ing the data. MemModel delegates persistence to BinStore and MemStore.

MemStore represents the state of a CDS model (together with the data
in BinStore). It maintains indices from name to NameItem, from URI to
Item, and a TripleIndex. State in MemStore can only be changed by change
events, which ensure a very compact API, abstracting away many variants
for creation Items, supported by MemModel.

MemStore supports optional GZip-compression of strings in Content-
Items to preserve memory. However, compressed strings cannot be matched
against regular expressions.

For persistence a custom XML serialisation has been created for Mem-
Store, using XStream5. The resulting XML-based persistence format is
depicted in Appendix A.4.

For interoperability, CDS-RI has an export function to RDF. This ex- Export to RDF
port can be customized to use certain URIs for certain Items by adding
Statements of the form (x, [export as], y). The content string of y is
used as the export URI for x. The built-in properties are mapped to
SKOS properties, this allows generic SKOS browsers to browse CDS’ [has
context/has detail] structures. For the SKOS export, content is not
exported as cds:hasContent but as rdfs:label.

TripleIndex is a space-efficient index from triples to Statements. It
has to (a) store triples and (b) index the triple data for faster access. To
allow arbitrary query patterns, several indices are used. Inspired by a paper
by Harth and Decker (2005), a minimal number of indices has been used.
Three indexes are enough to answer all eight triple patterns (cf. Tab. 4.2
on page 139). One possible mapping (the one implemented) from triple
patterns to indexes is given in Tab. 5.1.

The code of the implementation consists of 32,956 non-whitespace lines Source code
statistics(of which 10208 are comments) in 267 files.

4Of course, this is a performance bottleneck. The same forward-chaining strategy is
used, e. g., in OpenRDF (Sesame) project. Backward-chaining in general has slower
query answer performance, although it handles delete operations faster. In the end,
such decisions are always a trade-off. As adding Items to a knowledge model will be
much more frequent compared to deleting Items, forward-chaining was chosen.

5http://xstream.codehaus.org/ (accessed 06.01.2010)

180 REALISATION

Pattern Index
(s, r, t) Index 1: s → (r → (t → Statement))
(s, r, ∗) Index 1: s → (r → (t → Statement))
(s, ∗, ∗) Index 1: s → (r → (t → Statement))
(∗, ∗, ∗) Index 1: s → (r → (t → Statement))
(∗, r, t) Index 2: r → (t → Statement)
(∗, r, ∗) Index 2: r → (t → Statement)
(s, ∗, t) Index 3: t → (s → Statement)
(∗, ∗, t) Index 3: t → (s → Statement)

Table 5.1.: Mapping query patterns to indexes

5.2. Hypertext Knowledge Workbench
This section presents a tool that allows end-users to work with CDS-based
knowledge models. The tool is called Hypertext Knowledge Workbench
(HKW) and is based on the CDS RI presented in the last section. The tool
has been built for validating the CDS model (cf. Ch. 6).

5.2.1. User interface
The user interface is presented in three scenarios: Note taking, personal
social network and the HKW internal help system.

Scenario: Note taking

The user interface is introduced with a scenario of a fictional biological
scientist called Linda, who manages her personal notes with HKW.

The next pages give a step-by-step explanation of using the Hypertext Knowl-
edge Workbench.

5.2 Hypertext Knowledge Workbench 181

Fig. 5.3 shows the initial screen after starting HKW for the first time. Step 1:
Creating initial
items

Linda starts a new project on “Shark Research” so she enters this into the
top bar and hits enter. As a result (c.f. Fig. 5.4) she just created a new
NameItem with the name “Shark Research”. If she later repeats the same
procedure, she is being taken to the same NameItem, as NameItems are
identified by their name.

The nature of the Item is indicated with the little icon on the top left
corner above. It shows an sticky note with an “N” for NameItems. For
other item types it shows an empty sticky note for a ContentItem, a pink
arrow for a Relation, and two sticky notes connected via a pink arrow to
symbolise a Statement.

Figure 5.3.: The initial screen in HKW (step 1)

Linda’s primary research subject is the “‘Great white shark”, so she adds Step 2:
Creating linked
items

it within the Shark Research context by clicking on the plus-icon behind
“has detail”.

A pop-up widget with a larger font for entering text comes up (cf. Fig. 5.5).
She enters Great white shark and commits by clicking the Enter-button or
by using the keyboard shortcut Ctrl-Enter. She could also have cancelled
the creation of a new detail Item by clicking the red X or pressing Esc on
her keyboard.

Figure 5.4.: Creating a new Nameitem (step 2)

182 REALISATION

The new Item Great white shark is placed in the has detail box, justStep 3:
Navigation where Linda created it. A little black arrow behind the Item (as depicted

in Fig. 5.3 behind the word Hypertext Knowledge Workbench) allow her to
navigate to the Statement

(
[Shark research], [has detail], [Great white shark]

)
.

This view, the Statement change widget, is depicted in Fig. 5.6. Here she

Figure 5.5.: Creating a linked Nameitem (step 3)

can navigate to all three components of the Statements (top row) or
change each component of the Statement. In the example scenario, there
is nothing that makes sense to be changed.

Figure 5.6.: Statement change widget (step 3b)

5.2 Hypertext Knowledge Workbench 183

Linda wants to add more information about the great white shark, so she Step 4:
Navigationnavigates to it by clicking on that name. At each time, one Item is the

central item of the HKW application. Now the central Item shifted from
Shark Research to Great white shark, as depicted in Fig. 5.7. She now sees
Shark Research as the context of the current Item. As explained in Sec.
4.1, [has context] is the inverse Relation of [has detail].

Figure 5.7.: Navigation to “Great white shark” (step 4)

Alternatively, Linda could have entered “shar. . . ” in to HKW’s address Auto-
completion
for navigation

bar, to see an auto-completion list with all NameItems or Relations
containing the character sequence “shar” (cf. Fig. 5.8). In the list, she can
navigate with cursor keys or use a single mouse-click.

Figure 5.8.: Auto-completion after entering “shar” (step 4b)

184 REALISATION

Next, Linda wants to express that this shark has a particular sense. SheStep 5:
Creating
relations

considers this as a kind of detail, but a special one. She enters the usual
Item creation dialog, changes “has detail” to “has sense” (cf. Fig. 5.9),
enters “Ampullae of Lorenzini” on the right side and commits.

Figure 5.9.: Extending the relation ontology with custom relations (step
5)

This creates a new NameItem with the name Ampullae of Lorenzini, a
new Relation with the name has sense and a Statement

(
[Great white shark],

[has sense], [Ampullae of Lorenzini]
)
. Additionally, because Linda added

the Item on the [has detail]-box, the new Relation has been stated as a
sub-Relation of [has detail] (cf. Fig. 5.10).

Figure 5.10.: The new item, relation and statement (step 5b)

As each Relation must have an inverse Relation, HKW created oneInverse relation
naming automatically. The inverse Relation name is relation-name-inverse. In

the common case that a name has the form has relation-name (as in the
example), HKW generates is relation-name of. A similar algorithm
is used by the semantic web browser tabulator6.

6http://www.w3.org/2005/ajar/tab (accessed 06.01.2010)

5.2 Hypertext Knowledge Workbench 185

After having entered several other facts, Linda stumbles over an interest- Step 6:
Creating
content items

ing story. She decides to add it as a generic detail to the white shark Item.
She clicks the plus icon again and starts to type. As soon as the text gets
so long that it would require two lines, the text entry widget expands (cf.
Fig. 5.11) and allows Linda to paste the complete story.

Figure 5.11.: Adding a content-item (step 6)

Linda re-reads the story and spots “100 days”. This is important for her
work, so she decides to use some wiki formatting to make this stand out.
She navigates to the new ContentItem by clicking on it (cf. Fig. 5.12).

Figure 5.12.: Navigating to the new content-item (step 6b)

Linda can now edit or delete the Item by clicking Edit or Delete. Generic item
operationsThese operations are available for all Items. For a ContentItem, a special

operation to convert it to a NameItem is offered. However, converting to
a NameItem would truncate the content to make it suitable for a name,
i. e., short enough and not containing line breaks. NameItems can also
be converted to ContentItems. This makes it easier to add new content
from the navigation bar.

186 REALISATION

Linda clicks on “edit” to enter the edit mode of the ContentItem (cf.Step 7:
Semantic wiki
functionality

Fig. 5.13). She re-formats the text “at least 100 days” to “**at

Figure 5.13.: Editing a content-item (step 7)

least 100 days**”. This renders that part of the text in bold. Linda
spots that the white sharks dive down to 900m. She is not sure this is the
maximal dive depth, but at least this is a depth the sharks can dive. She
decides to create a new Statement right from the text, like in a semantic
wiki. The formats “around 900m” to “around [can dive::900m]”
and saves. The result is shown in Fig. 5.14.

Figure 5.14.: A formatted content-item (step 7)

The underlined “900m” indicate a hyper-link. Linda navigates back to
the context Great white shark and sees a new Statement rendered on the
right side:

(
[Great white shark], [can dive], [900m]

)
. She sees that HKW

made the new Relation [can dive] a sub-Relation of [links to], when she
saved the edited text (“. . . at least 100 days . . . ”). The Relation [links to]
is the default super-Relation for all Relations created from parsing wiki
text.

5.2 Hypertext Knowledge Workbench 187

Linda tags the white shark as “dangerous” and records the biological Step 8: Meta-
modellingfamily “Lamnidae”. Then she navigates to Lamnidae and clicks on the

plus behind [has context]. She changes the relation to [is subtype of] and
enters “Lamniformes” into the second field. Now she wonders if she will
ever remember that Lamnidae is the biological family and Lamniformes the
biological order. She uses meta-modelling to type Lamnidae with “family
(biology)”. She chooses the name “family (biology)” to not confuse it with
here private “family” tag that she knows she created earlier. The result is
shown in Fig. 5.15. Linda continues to enter broader biological classifications
as super-types.

Figure 5.15.: Meta-modelling in HKW (step 8)

Navigating back to the Great white shark, she sees the super-types in Step 9:
Inferencelight gray in the [has type] box on the right (cf. Fig. 5.16). These inferred

Items have no black arrow. They are not linked to the Great white shark
by a Statement, but follow indirectly from other Statements in Linda’s
model. Here the transitive closure over her type-hierarchy is the cause.

Figure 5.16.: Meta-modelling in HKW (step 9)

188 REALISATION

Linda adds an alias-name and the fact that white sharks eat tuna fish.Step 10:
Vocabulary
re-use

She investigates a bit and finds out that the largest kind of tuna fish, the
“Thunnus thynnus” can get as large as 4,58m. When she is about to enter
“has maximum size” the auto-completion list shows her already after enter-
ing just “ha” all relations she used before as sub-relations of [has detail] (cf.
Fig. 5.17). This supports consistent usage of her own vocabulary.

Figure 5.17.: Auto-completion for relations restricted by relation ontology
supports consistent usage of terms (step 10)

Linda adds some places where white sharks live. Among them is “Cal-Step 11: Auto-
linking ifornia”. When she goes back to the study which she pasted earlier, she

finds the word “California” linked to that NameItem. HKW auto-links all
expressions in a text that match the content of a NameItem. Matching is
done from left to right, longer NameItems match first. Fig. 5.18 shows the
changed wiki formatting with bold formatting and automatically created
links.

Figure 5.18.: Auto-linking of existing name-items and relations (step 11)

5.2 Hypertext Knowledge Workbench 189

Linda adds the Basking shark as a related Item by clicking on the plus Step 12:
Editing the
relation
ontology

icon behind [is related to]. The result is shown in Fig. 5.19.

Figure 5.19.: Adding a related item (step 12)

She finds out that the basking shark is generally even larger than the great
white shark, although she cannot find an exact value for the maximum size
if the basking shark. So she changes the Statement

(
[Great white shark],

[is related to], [Basking shark]
)

into
(
[Great white shark], [is smaller than],

[Basking shark]
)

via the statement widget. She clicks the black arrow and
changes the text “is related to” to “is smaller than”. She goes back to the
white shark an sees that [is smaller than] (which she just created) became a
sub-relation of [links to]. She decides to change the sub-relation from [links
to] into [comes before]. Auto-completion helps her to save some keystrokes.
The final screen is shown in Fig. 5.20.

Note that the order of Items rendered in the [has detail]-pane takes Sta-
tements between these Items into account that make use of [has before]
or [has after]. Such Statements influence the order in which the Items
are listed. I. e., if there would be several detail-snippets under Great white
shark, they would be display in an order which is as consistent as possible
with [comes before]-Statements among these details.7

7Of course, this algorithm to create a total order out of a set of pairwise comparisons
has to deal with underspecified order (random result for these pairs) and contradic-
tions (resolved by taking into account as many pairs as possible).

190 REALISATION

Figure 5.20.: Final screen about the Great white shark (step 12b)

5.2 Hypertext Knowledge Workbench 191

Scenario: HKW help system

The HKW tool has a built-in help system that is itself represented in CDS.
When the user clicks on the help icon (fifth menu icon), the cursor turns
into a cross-hair and the user can click for help on each button. Linda first
clicks on the help icon, then on the icon with the house on it. The result is
shown in Fig. 5.21.

Figure 5.21.: HKW’s built-in help system

Behind the scenes, the rendered content is a ContentItem with URI
http://www.semanticdesktop.org/ontologies/2007/09/01/cds:hkw-

help-HomeButton and can be edited like any other ContentItem.

Scenario: Personal Social Network Management

In this scenario, Linda records notes about a friend called Dirk Hageman.
Fig. 5.22 shows a screenshot of HKW with Linda’s model of Dirk Hageman.

Note the mix of formal data (type: person) and informal data (is tagged
with: friend, has annotation: a very nice guy), as well as the structured data
that does not fit in usual PIM software data models such as [is supervised
by].

5.2.2. Implementation
This section details the technical realisation of the user interface. To allow High level

design
decisions

for easy deployment and ubiquitous usage, HKW was designed to run in
a browser. A rich user experience in a browser, i. e., one without constant
waiting for the server requires heavy usage of JavaScript on the client. Cou-
pled together with an intelligent caching strategy, this design is often called
AJAX (cf. 2.4).

Technology choice The HKW prototype has been realised with the Google Google Web
Toolkit for
developing
JavaScript

Web Toolkit (GWT), an open-source AJAX-enabled web user interface
toolkit by Google Inc. The HKW prototype uses GWT widgets and some
custom-build widgets. Styling is done via Cascading Stylesheets (CSS).
GWT applications are web-applications, which can run in any servlet con-
tainer.

192 REALISATION

Figure 5.22.: HKW prototype screen shot, focusing on Dirk Hageman

5.2 Hypertext Knowledge Workbench 193

Programming JavaScript, a dynamically typed script language, is not
easy. For dynamically typed languages, there are no IDEs with, e. g., refac-
toring support. The different APIs of different browsers make the problem
even harder. The approach of GWT is to write the code in Java, a statically
typed programming language, for which many mature IDEs exist. GWT
includes a compiler, which translates the Java code into compact JavaScript
code. Additionally, GWT includes a widget library, similar to desktop GUI
frameworks such as Swing or SWT (from the Eclipse project). Program-
ming with GWT relieves the developer from dealing with browser differences
and JavaScript. The GWT toolkit runs on all major browsers, i. e., Firefox,
Safari and Internet Explorer. Firefox is a popular, stable browser available
for free on all platforms (Windows, Linux, Mac). Therefore the choice of
GWT enables end-users on all platforms to use HKW.

Client-Server synchronisation The main concern for usable performance
in the browser is the minimisation of HTTP traffic to the server. Therefore,
a client-side caching system has been implemented. In fact, the JavaScript
code in the browser is an almost complete implementation of the CDS data
model. Communication with the server is based on the change-date of
Items. With each request, the browser sends the highest received Item
changed date. The server responds with all Items that have been changed
since that time-point. Note that this algorithm does not depend on syn-
chronisation of clocks, instead, the server could use any kind of ordered
values.

Caching The main view in HKW shows a central Item an all Items
“around it”. Technically, the screen shows an Item c and all Statements
and Triples (c, ∗, ∗) and (∗, ∗, c). The index in the JavaScript client is
optimized for this usage. The cache is mainly a mapping from ItemURI
strings → a pair consisting of an Item and a cache entry.

AbstractItemData objects. These contain all the data and meta-data
of Items, as well as a link to an ItemInfo object. An ItemInfo is a local
cache with a nested map RelationURI → (TargetURI → TargetInfo). A
TargetInfo contains a Boolean flag to encode if the triple (ItemURI, Re-
lationURI, TargetURI) has been stated. In addition to that, and unlike,
e. g., RDF stores, the TargetInfo has a set of Statements. In CDS, several
Statements can encode the same Triple. For fast access, each State-
ment s = (source, relation, target) is indexed twice in the index: Once
as (sourceURI → (relationURI → (targetURI → {s}))) and again in its
“twisted” form as (targetURI → (inverseRelationURI → (sourceURI →
{s}))). Table 5.2 shows how the eight possible triple patterns are mapped
to the index in JavaScript.

194 REALISATION

Query Lookup pattern O-complexity
(s, r, t) (s, r, t) O(1)
(s, r, ∗) (s, r, ∗) O(1)
(s, ∗, ∗) (s, ∗, ∗) O(1)
(∗, ∗, ∗) (∗, ∗, ∗) O(1)
(∗, r, t) (t, inverse(r), ∗) O(1)
(∗, r, ∗) Exhaustive search over (∗, ∗, ∗) O(n), n = index size
(s, ∗, t) Exhaustive search over (s, ∗, ∗) O(k), k = result size of(s, ∗, ∗)
(∗, ∗, t) (t, ∗, ∗) O(1)

Table 5.2.: Mapping query patterns to index lookup patterns

Inference The formal semantics of the CDS data model (cf. 4.1.2) is imple-
ment in JavaScript in a procedural way. This allows the browser to calculate
the inferred triples without contacting the server. In fact, the server is only
needed for wiki syntax conversions and for persistent storage.

The inference strategy is materialisation, which is forward-chaining cal-
culation of all triples that can be inferred from the given Statements and
storing them in an index. This strategy allows answering queries in O(1)
but requires more memory than, e. g., backward-chaining, which takes a
query and checks backwards which triples fulfill the conditions – this takes
usually more steps than a simple index lookup.

For each new triple, a number of inference steps are calculated. Note that
each triple is indexed twice, once as (s, p, o) and once as (o, −p, s). This
reduces the number of checks to be performed. The incremental, forward-
chaining, recursive algorithm is depicted in Fig. 5.23 in pseudo-code. The
algorithm can handle incremental adding of triples. On deletion of triples,
a complete re-inferencing is required. Note that this is a state-of-the-art
technique which is used also, e. g., in the Sesame OpenRDF RDFS inference
engine (cf. Sec. 2.6). Semantics of [has alias], [is same as] and [replaces] is
not implemented.8

Summary The HKW implementation consists of 329 Java files with a total
of 28.226 lines of code (excluding whitespace lines, including comments). Of
these files, 196 files are compiled to JavaScript, totalling to 17.889 lines. In
JavaScript, this results in 22.228 lines (compiler option: PRETTY) which
is 808 KB, and 296 KB with default compiler options (OBFUSCATED). All
CDS operations are possible in HKW (cf. Tab. 5.3).

8The memory consumption and runtime of the JavaScript-based engine is already
impacting the user interface reactivity in many browsers. Implementation sketch:
An efficient treatment of [has alias] and [is same as] requires a normalisation of the
whole knowledge model before running the materialisation. The normalisation step
needs to replace all a and b with (a, [is same as], b) with a canonical symbol. At
query time, the query needs to run through the same normalisation step.

5.2 Hypertext Knowledge Workbench 195

Let M be the model of true triples.

function inference(s,p,o)

step 0: initialise
Let I be a temporary set of triples being inferred.
I = ∅

step 1: infer
Inverse triples
⇒ (o, −p, s) ∈ I

Propagate sub-relations
∀(p, [is subtype of], x) ∈ M ⇒ (s, x, o) ∈ I

Transitivity of [is subtype of]
IF (p = [is subtype of]) THEN:

∀(o, [is subtype of], x) ∈ M ⇒ (s, [is subtype of], x) ∈ I
∀(x, [is subtype of], s) ∈ M ⇒ (x, [is subtype of], o) ∈ I

Propagate sub-relations
IF isRelation(s) AND isRelation(o) THEN

∀(x, s, y) ∈ M ⇒ (x, o, y) ∈ I

// Apply formal types
∀(x, [has type], s) ∈ M ⇒ (x, [has type], o) ∈ I

ELSE IF (p = [has type]) THEN:
∀(o, [is subtype of], x) ∈ M ⇒ (s, [has type], x) ∈ I

step 2: index and recurse
∀(s, p, o) ∈ I \ M :

Index
Add triple (s, p, o) to M

Recurse
inference(s, p, o)

The algorithm stops when no new triples are inferred within one iteration,
i. e., I = ∅. Since the number of triples that can be inferred is bound (no
rule introduces new Items, the maximal number of triples with n Items
is n3), the algorithm always stops.

Figure 5.23.: Procedural CDS inference in HKW (JavaScript)

196 REALISATION

Item Operation Explained in Sec. 5.2, step
Any Item Delete 6
NameItem Create 1, 2
Relation Create 5
Statement Create 2, 5
ContentItem Create 6
Relation Rename 6
Statement Edit 3

Table 5.3.: All CDS change operations are possible in HKW

5.3. Further CDS-based tools
Besides HKW, there are two CDS-based tools that have been realised by
third parties, but in close collaboration with the author of this thesis. This
section presents these tools briefly in order to demonstrate features of CDS.
Both rely on CDS as their data model and the CDS-RI as their back-end.

5.3.1. iMapping – a zooming user interface tool
iMapping9 (Haller, Abecker, and Völkel, 2010; Haller, 2006; Haller, Völkel,
and Kugel, 2006) is a technique for visually structuring information ob-
jects. It supports the full range from informal note taking over semi-
structured personal information management to formal knowledge models.
With iMaps, users can easily go from overview to fine-grained structures
while browsing, editing or refining the knowledge base in one comprehen-
sive view. An iMap is comparable to a large white-board where informa-
tion Items can be positioned like post-its but also nested into each other.
Nesting of iMap-items is represented as CDS Items linked via [has detail]
Statements. Spatial browsing and zooming as well as graphical editing
facilities make it easy to structure content in an intuitive way. iMapping
builds on a zooming user interface approach to facilitate navigation and to
help users maintain an overview in the knowledge space. A small sample
map is depicted in Fig. 5.24.

Using iMapping To group items, Linda could, e. g., simply move the ItemSpatial
grouping of
items

“New Zealand” close to “Australia”, because the two countries a geograph-
ically close to each other. This would not introduce any kind of statement
in the underlying CDS model but, help her to remember associations with
minimal modelling effort.

To re-find things, e. g., “From what year was that Spielberg movie aboutSpatial and
associative
re-finding

white sharks?”, Linda would first zoom out, then zoom in the upper right
corner for “private stuff” (not in the Figure). In there, she would go to
her “Movies” Item and browse in. As there could be many movies, she
first goes into the “Best Directors Ever” Item inside the “Movies” Item.
In there, she selects “Stephen Spielberg” and can see all outgoing links,

9http://imapping.info (accessed 05.05.2010)

5.3 Further CDS-based tools 197

Figure 5.24.: An sample iMap from the user evaluation on the shark
scenario

labelled with the type. Although there are quite some links, she just looks
at links pointing at movies and quickly identifies the “Jaws” movie. After
zooming onto it, she sees “1975” inside the “Jaws” Item. On hovering over
it, a relation “release date” is shown between the outer “Jaws” Item and
the inner “1975” Item. iMapping allows finding an Item based on spatial
proximity simply by moving around in the infinite 2D space.

To name containers, Linda can create an Item “Related Species” and put Every item is a
containerinside Items named “Mako Sharks”, “Lamna Sharks”, and “Megalodon”.

She can simply click inside an existing Item and thereby gets a cursor to
enter the text of a newly created child Item. She could also create first the
three related species Items and then add a new Item and drag the related
species Items into it.

Users can drag a line from one Item to another one to create a typed Linking by
drawing lineslink. The type of the link can optionally be entered into an auto-complete

widget that appears directly after the drag-drop.
iMapping allows seeing infinitely many levels at once, only limited by Multiple levels

of detailscreen resolution.
In iMapping, the user gets a graphical, zoom-able overview of all his Easy re-

structuringItems and can simply structure his Items by drag-and-drop like on a phys-
ical pin-board. After grouping related Items together and moving them
inside another Item, a number of Items can efficiently be manipulated at
once. In this regard, iMapping has the same re-structuring capabilities like
mind-mapping tools, but with the added value of spatial hypertext, i. e.,
the positions of Items are chosen by the user which allows creating very
lightweight “piles” of related Items, just like on a physical desk.

198 REALISATION

Summary iMapping is an example of a concept that builds on the CDS
ideas. To implement the spatial hypertext feature, additional data has to
be managed. Internally, iMapping uses two stores, one for the 2D positions
and a CDS-RI for the CDS data. The 2D positions are stored in an RDF
model with RDFReactor.

5.3.2. QuiKey – a graphical command-line

Figure 5.25.: QuiKey screen shot

QuiKey (Haller, 2008) is a kind of smart semantic command-line that fo-
cuses on high interaction-efficiency to browse, query and author CDS-based
knowledge bases in a step-by-step manner. It combines ideas of simple inter-
action techniques like auto-completion, command interpreters and faceted
browsing and integrates them to a new interaction concept. QuiKey forms
a generic, extensible user interface for CDS models. Despite its versatility,
QuiKey needs very little screen space, which also makes it a candidate for
future mobile use. A screen-shot of its implementation (as of October 2009)
is depicted in Fig. 5.25.

QuiKey is the fastest tool (out of HKW, iMapping and QuiKey) by meansFast entry
of new items
and extension
of existing
items – Less
optimal for
re-structuring

of mouse clicks and keys typed for entering data. QuiKey is not well suited
for re-structuring existing knowledge.

With one short-cut the tool is brought into focus. Now Linda can simply
enter a new short note such as “white shark: sexual maturity occurring
at about 12-15 years of age”. Alternatively she can write “Great white
shark” <tab>, “sexual maturity” <tab> “12-15 years”<return>. This
will add a CDS statement to her knowledge model without requiring here

5.4 Conclusions 199

to navigate anywhere first and still extend the existing white shark Item.
New Items and relations are created on the fly if needed. Re-use of existing
Items and relations is encouraged with auto-completion. After she wrote
“Great white shark” <tab> QuiKey already presented here a ranked list of
existing statements about the great white shark. Thus QuiKey also includes
browsing of the knowledge base.

QuiKey has advanced query capabilities, e. g., Linda could ask in QuiKey Advanced
search and
query

((
[Great white shark], [has sense], ?x)AND(NOT ([human], [has sense], ?x)

))
to find out that white sharks have a sense for electrical fields that humans
don’t. In systems that do not allow formalising content she would poten-
tially have to read many articles and build up the query results in her
mind. Semantic queries are especially useful for creating list of Items ful-
filling certain criteria. More details about the user interaction for creating
such queries are given by Haller (2008).

Summary QuiKey uses a subset of CDS (no annotation of Statements)
and provides a radically different user experience than HKW or iMapping.
Yet it builds on the same data model. This shows the flexibility of the CDS
model. QuiKey is described in more detail in (NEPOMUK Consortium
et al., 2008).

5.4. Conclusions
This chapter presented the CDS API, its reference implementation and three
applications built upon it.

The CDS API and the reference implementation have been refined several
times. The final version has been used with minor changes and bug fixes
for over ten months and can be considered stable.

The tool Hypertext Knowledge Workbench (HKW) allows end-users to
create and use CDS knowledge models. The tool provides a number of
usability features to allow for efficient authoring. The tool runs in a browser
to be usable in a number of usage settings (local desktop, internet café,
hosting in the cloud, . . .). A walk-through demonstrated how the different
CDS operations can be performed in HKW. All CDS operations are possible
in HKW. Table 5.3 lists the operations and gives a summary where which
operation has been explained.

Two other tools based on CDS show how very different user interfaces
can be realised on top of the flexible CDS model. Table 5.4 compares the
three CDS tools.

The three tools can work on the same CDS model at run-time. This
allows propagating changes made in one tool to other tools instantly via
change events.

200 REALISATION

Item Operation HKW iMapping QuiKey
ContentItem Create + + +
ContentItem Edit + + +
ContentItem Delete + + +
ContentItem Navigate hyperlink + – –
NameItem Create + + +
NameItem Edit + + +
NameItem Delete + + +
Relation Create + + +
Relation Edit + – +
Relation Delete + – +
Relation Navigate to inverse + – +
Statement Create + +a +b

Statement Edit + + –
Statement Delete + + +
Statement Navigate to source + + –
Statement Navigate to relation + – –
Statement Navigate to target + + –
Any Item Show creation date

and author + – –
All Items Queries –c – +

a Statements can only use ContentItems and NameItems as source and target.
b Statements can only use ContentItems, NameItems, and Relations as source
and target.
c QuiKey includes an interactive query-builder. This functionality would be expensive
to port to the web-based user interface. Since all three CDS tools work on the same
model, users can simply create queries in QuiKey to query, e. g., a knowledge model
created in HKW.

Table 5.4.: Comparing CDS operations of HKW, iMapping, and QuiKey

6. Evaluation and Related Work

This chapter presents several kinds of evaluation of the contributions as well
as pointers to related work.

The main result of this thesis is the CDS model with its three elements: CDS: A
modelling
language

data-model (D), relation ontology (R) and structured text model (STIF).
CDS is a conceptual and technical model, designed for usage in PKM tools.
Ultimately, CDS is a modelling language (or meta-model, cf. Sec. 2.1) for
personal knowledge models.

Evaluating modelling languages Evaluating a conceptual model, designed
to help people to manage their personal knowledge cues1 better, is not
straightforward.

Imagine you invented UML (cf. Sec. 2.5) and now you would like to find
out if UML is “good”. Or “better than X”. This obviously depends on the
tasks that UML was designed for. UML was designed for communication
among developers and as a graphical modelling language. How would you
evaluate that the features of UML are required? You would create list of
potential use cases, derive requirements from them and from known litera-
ture, and create a model that fulfills them. Furthermore, you would invite
developers to use UML for communication and for modelling software sys-
tems. If the developers confirmed that the modelled software system had
similar characteristics to a system modelled with another state-of-the art
modelling language, you would accept UML.

Frank (2000) notes that unlike scientific theories, modelling languages
cannot be falsified. He also notes that in simplistic evaluations the biggest
and most complex meta-models can claim the most features – although
they might be very hard to use. Usage of models and modelling languages
depends not only on its features but also heavily on the markets in which
they are applicable. Many standard evaluation procedures overlook the
user of a model and the usage context of it. Frank (2000) concludes that an
objective evaluation of modelling – and even more so for modelling languages
– is not possible. It is suggested to evaluate models by rational discourse.

Evaluating PKM systems An indirect method for evaluating the useful-
ness of a model for PKM is to study it embedded in a PKM tool. Leth-
bridge (1998) argues that software systems can be evaluated by measuring
how they perform on the tasks they have been designed for. The tasks in
which a knowledge base or ontology is going to be used are often not known
beforehand. E. g., people often record ideas for “later use” without know-
ing if and when that knowledge might be of interest again. Ontologies and

1Knowledge cues are introduced in Sec. 1.2.3

202 EVALUATION AND RELATED WORK

knowledge bases are also used to uncover latent knowledge via inference
rules. In these cases the task is to “derive new, unexpected knowledge”.
As the new knowledge is unexpected, it is hard to evaluate its value in a
systematic manner. In a way, a knowledge base is designed to be used for
future, unknown tasks. On the other hand, the author of a knowledge base
must have at least a vague idea for the situations she will encounter in order
to benefit from her knowledge cues.

There are some publications on evaluating organizational knowledge man-
agement systems (for instance Nevo, Furneaux, and Wand, 2008; Folkens
and Spiliopoulou, 2004), but they do not apply to personal knowledge man-
agement systems.

Jones and Bruce (2005) report on difficulties of evaluating PIM systems,
as almost no person is willing to try out an experimental, potentially un-
stable PIM system for a long period of time (months or years) for critical
personal tasks such as remembering appointments, managing email or keep-
ing personal notes. The same applies to PKM systems.

Worst of all, flaws in the user interface are hard to distinguish from flaws
in the underlying model. Nevertheless, there is no other way to study some
of the model properties besides actually using the model in practice.

Five evaluation approaches Despite all difficulties in evaluating CDS, it
has been evaluated in five different ways.

Rational Discourse First, the results of this work, CDS and the tools
built on top, are evaluated theoretically in a rational discourse with
respect to the requirements motivated and discussed in Chapter 3.
This comparison can be found in Sec. 6.1.

Expert Evaluation (December 2007) An early HKW prototype from
December 2007 has been analysed in an expert evaluation by KTH2, a
partner in the NEPOMUK project. The expert evaluation method and
its results are described in (NEPOMUK Consortium et al., 2008)[p.
31–36] and not repeated here. It resulted in a heavy reworking of the
HKW user interface.

Formative User Study (October 2008) Some required features can-
not be evaluated by rational discourse. Especially the feature “Easy to
learn” (14 easy to learn) requires a user study. Two empirical user stud-
ies have been performed. The first user study involved 16 participants
from 4 different software companies. Each participant spent about 1
hour with the evaluation of HKW. This user study is described in Sec.
6.2.

Comparative User Study (July – October 2009) The second user study,
based on a more mature prototype of HKW as well as on other CDS
tools, involved 5 participants. Each participant spent about 27 hours
with the evaluation. This study focused on evaluating the require-
ments “Simultaneous use of Different Levels of Formality” (8 formality levels)

2Kungliga Tekniska Högskolan (Royal Technical University

6.1 Fulfilment of requirements 203

and “Stepwise Formalisation” (9 stepwise) This user study is described
in Sec. 6.3.

Data Model Comparison The resulting CDS data model D is compared
with the RDF model.

6.1. Fulfilment of requirements
The evaluation of requirements as fulfilled or not is presented in Table 6.1
on page 204. Some requirements relate either to the knowledge model for-
malisms (model), other only to tools (tool), many to both. E. g., requiring
the data-model to be a super-set of existing PKM data models cannot be
fulfilled by a tool. Similarly, the requirement “fast entry” cannot be fulfilled
by a data-model. In these cases, “n/a” is used for “not applicable”. As the
model is split into three parts, it is for most features enough to be covered
by at least one part of the model. E. g., requirement 5 (formal articulation)
cannot be covered by the data-model part of CDS (D), as it has been de-
signed to be generic with respect to formal semantics. Formal semantics can
only be achieved with the Relation ontology (R). It is a feature of the
CDS model, to split responsibility for fulfilling requirements among parts.
Table 6.1 gives also an indication of the usefulness of using a part of the
CDS model separately. Detailed explanations for all ratings can be found
in the appendix A.5.1.

Requirement 1 auto-query and 13 maintenance are considered important but
have not been implemented due to lack of implementation resources.

Requirement 1 auto-query requires a kind of user notification system which
does not exist in the CDS API as described in the last chapter, however, it
should be straightforward to implement. For each query the current result
needs to be stored, queries need to run periodically and the new results
need to be compared with the stored results. If a difference is detected, the
user should be informed. A more elaborate implementation could observe
the content of newly created or changed Items and try to find Items based
on text similarity.

Requirement 13 maintenance can be implemented by asking the user period-
ically about the value of old Items that have not been used recently. This
requires to track the last access time of Items via browsing or query results.
However, to not overload the user, a smart trade-off between maintenance
benefits and cost of answering automatic maintenance requests is required.

Overall, almost all requirements have been fulfilled to a high degree.

6.2. Formative user study
This section describes a formative user study with 16 participants from 4
companies, based on an early prototype of HKW. The goal of the study was
to assess the learnability of the CDS concepts and to get early feedback on
HKW’s design.

204 EVALUATION AND RELATED WORK

Model Tool

R
eq

.
N

o.
Description C

D
S
D

C
D

S
R

ST
IF

H
K

W

iM
ap

pi
ng

Q
ui

K
ey

1 System should run queries automati-
cally

n/a – – –

2 Super-set of PKM data models + + + n/a
3 Fast entry n/a + + +
4 Informal articulation + + + + + +
5 Formal articulation n/a + + + ∼ +
6 User decides on modelling granularity + n/a + + + +
7 Entities need to be addressable + + n/a + + ∼
8 Simultaneous use of different levels of

formality
+ + + + + ∼

9 Stepwise formalisation ∼ + + + + –
10 Knowledge model refactoring n/a ∼ + ∼
11 Versioning – n/a n/a – – –
12 Capture the context for cue creation

and import
+ n/a n/a + – –

13 Active assistance in maintenance tasks n/a – – –
14 Easy to learn1 + ∼ + ∼
15 Grouping of items + + n/a + + +
16 Containment relationship n/a + + – ∼ –
17 Optional naming of knowledge cues + n/a n/a + + –
18 Alternative names n/a + n/a ∼ ∼ ∼
19 Order knowledge cues n/a + + ∼ – –
20 Linking + + + + + +
21 Hierarchy n/a + + + + +
22 Sim. use of multiple levels of detail n/a + –
23 Annotating content n/a + ∼ + + +
24 Tagging n/a + ∼ + + +
25 Classifying items into categories n/a ∼ – + + +
26 Queries + + n/a – – +
27 Browsing + + + + + +
28 Inverse Relations + n/a – + ? ?
29 Flexible schema + + n/a + + +
30 Transclusion + n/a – – + -
31 Meta-modelling + + n/a + – –
Legend: feature present (’+’), not present (’–’), partially present (’∼’), not applicable

(’n/a’)
1 See Sec. 6.3, hypothesis 3

Table 6.1.: Fulfilment of requirements

6.2 Formative user study 205

6.2.1. Method
An early prototype of the Hypertext Knowledge Workbench (HKW, see
Sec. 5.2) has been evaluated in a formative user study (Scriven, 1991) con-
ducted at four different software companies. At this point in time, iMapping
and QuiKey have not been ready for evaluation yet.

Participants The participants of the study have been recruited from four
different software companies in the context of the WAVES3 project. From
each company, 4 people were selected for a one-hour structured interview. In
total, 16 participants with an age of 30 to 50 years (average age: 38 years)
have been studied. The study was conducted in September and October
2008. People had different backgrounds ranging from secretary over server
administrator and programmer to team lead and financial administration.
All were working within software development projects.

Tools The study has been conducted with a HKW prototype version built
on 10th May, 2008, version 3388.

Data and Tasks Following the suggestions of Bernstein, Kleek, monica mc
schraefel, and Karger (2008), the tool was seeded with existing notes. The
tool was filled with imaginary personal notes of the fictional biology re-
searcher Linda, introduced in Sec. 5.2.1. The imaginary notes are based on
Wikipedia content4.

Two simple tasks, a retrieval and an authoring task, have been designed
to force participants to become familiar with the tool. The first task was to
find out in which year a movie about the white shark appeared and who was
the director. Several solutions were possible. E. g., navigating to “movie”
and browsing the instances of it. In the second task participants were asked
to record the fact that the phone number of a person called “Claudia Stern”
is “9654-854”.

Procedure First the topic of PKM, the CDS ideas and the HKW tool were
presented to the whole group. Then each participant was introduced to the
HKW prototype and given two tasks to get acquainted with the tool. The
order of tasks (retrieval, creation) was held constant for all participants,
because it is more logically to first learn how to read an existing knowledge
model before adding something to the structure.

People played with the tool freely until they considered themselves confi-
dent to have understood the idea. Then a structured interview was carried
out.

3WAVES: Wissensaustausch bei der verteilten Entwicklung von Software, sponsored by
BMBF, Germany. Website: http://waves.fzi.de (accessed 05.01.2010)

4The data was taken from http://en.wikipedia.org/wiki/Great_
white_shark (accessed 06.01.2010) and http://en.wikipedia.org/
wiki/Basking_shark (accessed 06.01.2010)

206 EVALUATION AND RELATED WORK

Measurements Participants were interviewed with a structured interview
with the following questions:

1. Are the main building blocks (NameItem, ContentItem, Rela-
tion and Statement) clear and understandable? 5

2. Is the Relation ontology easy to understand and easy to learn?

3. For what kind of knowledge or tasks can you imagine to use HKW?

6.2.2. Results
On average, participants spent 04:36 minutes (SD6=02:12 min) on the re-
trieval task in this first study. On the creation task, participants spent on
average 02:18 minutes (SD=01:33 min). That this number is lower than
the one for retrieval might mean that articulation in HKW is easier than
retrieval, but it is more likely that people simply got adapted to the tool –
which was the whole purpose of the two tasks. On average, people played
then around freely with the tool for 06:54 minutes (SD=02:50 minutes).

Question 1: Are the main building blocks (NameItem, ContentItem,
Relation and Statement) clear and understandable? 69% of the par-
ticipants found them comprehensible and easy. Three participants voiced
concerns about the representation of the building blocks in HKW, about the
required effort to use these building blocks, and one participant complained
that post-its are a bad metaphor to explain these building blocks. 19%
found the difference between ContentItem and NameItem difficult to
understand and suggested to merge these two concepts. 12% of the partici-
pants found the building blocks unusual, especially the distinction between
Relation and Statement was not clear to them. One participant noted
being more used to wiki-concepts.

Question 2: Is the Relation ontology easy to understand and easy to
learn? Here responses were much more mixed and more negative. 19 %
found the relation ontology easy to understand and of the right size. 69 %
found the Relation ontology too complex. Several participants suggested
an introduction mode which hides some of the less-often used relations.
Many participants suggested to remove some relations, however, they all
suggested different relations to remove ([is same as] (2 times), [comes before]
and [comes after] (3 times), [is alias for]). Some relation names seemed to
denote the same. Again, each participant found different relation name
pairs problematic ([has context] and [has annotation], [links to] and [has
annotation], [has type] and [has annotation]). 12% of participants found
the Relation ontology too small and suggested to add, e. g., [depends on]
and more relation types under [is similar to].

Question 3: For what kind of knowledge or tasks can you imagine to use
HKW? Participants listed a number of use cases, both in their private and
work life. Two participants said they could not imagine to use the tool
privately, because it is too slow. Mentioned private tasks were:

5Triples were not part of the datamodel yet, at the time of the survey.
6standard deviation

6.2 Formative user study 207

• cooking recipes;

• DVD collection,

• places I visited;

• family management: e. g., birthday wishes of my kids.

Mentioned task for work life were:

• Project overview, e. g., who does what, would use it together with several
companies;

• requirements engineering;

• preparation of seminars;

• instead of post-its;

• new legal procedures I get via an email newsletter;

• problem solving methods, collect ideas and sort them, workshops with
clients;

• notes taken while on the phone;

• who works on what topic, holiday regulations;

• contact information, appointments;

• project knowledge, terminology;

• code snippets, software serial numbers, tutorials;

• how-tos, shopping lists, passwords, ideas;

• project planning, meeting minutes;

• scientific work, enterprise infrastructure modelling.

6.2.3. Discussion
The CDS data model (D) is generally understandable (question 1). The
relation ontology (R) is overwhelming for novice users (question 2). One
way to tackle this would be to design CDS user interfaces, so that novice
users are not confronted with the full set of relations at once. This strategy
has been followed in the later CDS tools.

The fact that all participants suggested different Relations to remove,
add or merge, suggests high individual differences in using and understand-
ing Relation names. There is a large variety of knowledge types which
people imagine to use in HKW (question 3).

Overall, this brief, initial evaluation confirms the design of the CDS data
model.

208 EVALUATION AND RELATED WORK

6.3. Comparative user study
This section reports on a user study comparing the three CDS-based tools,
namely HKW, iMapping and QuiKey with a state-of-the-art semantic wiki.
This study is designed to assess the CDS model.

A number of note-taking studies have been presented in Sec. 2.7. As a
conclusion from these studies, the CDS study (1) was designed to not rely
only on a small number of notes; and (2) have at least 7 days between
modelling and recall tests.

6.3.1. Method
Jones and Teevan (2007, Ch. 11) proposes four main methods for evaluating
PIM tools: naturalistic (as opposed to laboratory studies), longitudinal
(i. e., running over a long time span), case study, and laboratory. The study
presented in this section is a laboratory study. The goal of the study is to
assess the CDS model (D and R, presented in Chapter 4) by observing the
behaviour of participants using tools based on this model. Usability and
completeness of the tool influence the evaluation data heavily, but a more
direct assessment of the CDS model is not possible. This study compares
tools based on the CDS model with a state-of-the art semantic wiki.

The overall procedure of the study consisted of these steps:

Authoring 5 participants create knowledge models using 4 different tools,
based on 3 different scenarios.

Break All participants have a 4 week long break so that they forget the
facts from the scenarios.

Retrieval Each participant is using his knowledge models to answer a set
of questions about the scenarios.

A much more detailed description of the study procedure is given below,
after participants, tools and the scenarios have been described. Following
the measurements, derived metrics and results are presented.

Participants Five lab students have been recruited for the evaluation (all
male, one graduate and four undergraduate computer science and math
students, 21–27 years old). All were paid their usual salary to perform
the evaluation tasks. Two of the participants were students working on
developing QuiKey and iMapping. The other three had never used the
CDS API nor any CDS tool before. None had used Semantic MediaWiki
(SMW, introduced in Sec. 2.9) before.

Previously used tools for taking personal notes were: sticky notes (4×),
simple text editor (3×), paper notebook, Google documents, KDE4 Plasma
Notes Widget, Word, Excel, Powerpoint, cell phone, index cards, wiki (Me-
diaWiki), and mind-maps (freemind).

6.3 Comparative user study 209

The participants are divided into two groups. Group I consists of partici- Two groups of
participants to
avoid sequence
effects

pant p1, p2, and p4. Group II consists of participants p3 and p5. Each group
contained one student working on developing QuiKey (p4) or iMapping (p5).
Participant p2 received each task one week before the others. His feedback
was used to improve the exact wording of the task and remove usability
issues from CDS Tools.

Tools To compensate for the tool influence, three tools based on CDS
(HKW, QuiKey, iMapping) have been packaged into one installable unit,
called CDS Tools and deployed at a small number of users. A CDS Tools
release was created on 13th July 2009 and made available via Java Webstart
7. Two updated versions mostly with changes to stability and the evaluation
user tracking system have been published on 22nd July and 4th of August.

It was decided to compare CDS Tools with another powerful modelling
tool, Semantic MediaWiki (SMW), which is described in Sec. 2.9. SMW8 to-
gether with the HALO extension9 were chosen because they allow modelling
similar structures, the tool is stable and freely available. Some members of
the AIFB institute10 at KIT Karlsruhe use SMW for their personal knowl-
edge management. SMW and HALO together are branded as Semantic
MediaWiki+, abbreviated simply as SMW in this thesis.

During the study, each participant used his own computer for creation
of the knowledge bases and for the interview. Each participant got its own
SMW installed on a central web server at the institute.

For SMW, rich help pages and email discussion lists are available, for
CDS Tools, this was not yet the case.

Data and tasks Elsweiler and Ruthven (2007) describes tasks defined for
evaluating PIM systems, especially for re-finding email messages and web
sites. These tasks do not fit the PKM scenario of self-created content for
one’s own consumption (knowledge cues). As explained in Sec. 3.1, note
taking is a core use case of PKM. To obtain comparable results with a
reasonable amount of resources, only this use-case has been evaluated.

Three different topics have been selected and used in the evaluation to Source data
avoid a topic-based bias. The original German task descriptions can be
found entirely in the Appendix A.5.2.

Scenario A: Shark Participants were instructed to take the role of Linda
(cf. Sec. 5.2.1) and create her personal fact collection on the Great
White Shark. Add facts on the Basking Shark and also information
about books and movies about the Great White Shark.

7http://java.sun.com/javase/technologies/desktop/
javawebstart/overview.html (accessed 06.01.2010)

8Installed versions: MediaWiki 1.15.0, SMW 1.4.2, available at http://
sourceforge.net/projects/semediawiki/files/semediawiki/
semediawiki-1.4.2/ (accessed 06.01.2010)

9Installed version: 1.4.3-for-SMW-1.4.x available at http://sourceforge.net/
project/showfiles.php?group_id=207513&package_id=248472
(accessed 06.01.2010)

10http://www.aifb.kit.edu (accessed 05.01.2010)

210 EVALUATION AND RELATED WORK

Each participant had to submit five questions which they could answer
given their knowledge base. They had to list another set of five ques-
tions they could not answer with the help of their knowledge base.
These difficult questions in scenario A turned out to be so difficult
that they were discarded for the rest of the study.
Source data: Two Wikipedia pages11 are used as input data. Par-
ticipants were advised to use mostly data from these pages. The same
two pages have been used in the previous formative evaluation study
(cf. Sec. 6.2). Although the sources were explicitly given as two Ger-
man Wikipedia pages, many participants used the English pages as
their source data instead.

Scenario B: Spices This scenario puts participants into the role of a
four-star restaurant chef. The chef was described as having routine in
his job and working always under high pressure to create new dishes.
The chef uses many spices, but has few knowledge about the spices
themselves. Therefore he invests 5 hours for online research on spices.
His goal is the creation of a personal knowledge base on spices that
is able to answer questions such as: Which spices come from similar
plants? Which spices are comparable? Which spices go well together?
Which are produced in a similar way? Which are used for similar
dishes? And which spices are used in similar cultures? In four weeks
there will be a cooking examination. Participants were advised to in-
vestigate popular spices first (to obtain a certain level of comparability
between the different knowledge models). This time, the participants
had to create a set of five well-answerable questions plus five difficult-
but-possible questions.
Source data: No particular source given, participants could use any
source on the internet. Most participants used Wikipedia, but not
exclusively so.

Scenario C: Social Network In this scenario participants took the role
of a manager of a company based in Berlin with 15 employees:
For the tenth anniversary of the company a party needs to be or-
ganised. This party is critical for the future of the company, as new
projects will be discussed there. Some weeks before the party, the
manager meets an employee that tells him a large number of facts
about current and former employees as well as customers. To man-
age who will sit next to whom the manager has to answer as set of
questions: Who knows whom and why? Which people are relatives of
each other? Who lives together with whom? What kind of relation
do the persons have? What professional background do they have?
Who worked for whom? Participants were advised to use their own
language and read the input text carefully. They should concentrate

11http://de.wikipedia.org/wiki/Wei%C3%9Fer_Hai (accessed
06.01.2010) and
http://de.wikipedia.org/wiki/Riesenhai (accessed 06.01.2010)

6.3 Comparative user study 211

on decision-relevant facts. Before modelling, they had to create five
questions that would be relevant to them as a manager of that com-
pany. This should prime them on encoding more useful knowledge
into their personal knowledge bases. Furthermore, participants were
instructed to re-use the existing CDS Relations as much as possible.
Again, they had to create additionally five easy-to-answer and five
difficult-to-answer questions.
Source data: To avoid any kind of copy and paste, this time the
content was given to the participants as eight bitmap image files. They
contained the concatenated German text from the first 31 episodes
of a popular German TV series (“Gute Zeiten, Schlechte Zeiten”).
These episodes have been aired in 1992 and again in 1995. Only one
participant (p1) found out the relation to the TV series.
The text was taken from a fan wiki. The full text can be found in
Appendix A.5.2. The text was rated by the participants as “confusing”
and “contradicting”.

Retrieval Questions All the questions the participants submitted (see
Data and Tasks) have been collected, together with the participant who
proposed the question, the rating (easy or difficult), the scenario for which
the questions was designed (A, B, or C) and the tool used for creating the
underlying knowledge model (CDS tools or SMW).

In a next step, obvious duplicate questions from these 12512 questions
have been merged manually, while keeping all meta-data. Some questions
had now more than one rating, more than one proposing participant, or
more than one underlying tool. After merging, there were some conflicting
ratings, e. g., some participants rated a questions as easy in one knowledge
base and as difficult in their other knowledge base for the same scenario.

To limit the time required for the retrieval interview, a sub-set of 50
questions has been chosen. The resulting set is printed in Appendix A.5.3.
The selected sub-set has the following properties:

• It contains 10 questions for scenario A, and 20 questions for scenario B
and C, each.

• All eleven questions that have been proposed more than once are in-
cluded. This enhanced the chance that the question can be answered by
all participants.

• Questions have been grouped into 25 pairs of structurally similar ques-
tions. To allow this, two questions needed to be created by the evaluator.

• Questions rated easy and difficult questions have been balanced, with a
bias on easy rated questions. The set includes 40 easy ratings and 23
difficult ratings.13

125scenarios × 5easy questions in scenario A + 5easy questions in scenario B +
5difficult questions in scenario B + 5easy questions in scenario C +
5difficult questions in scenario C

13As explained above: The participants did not agree on difficulty of questions

212 EVALUATION AND RELATED WORK

A
ss

ig
nm

en
t

Sc
en

ar
io

Task Tool Time
Group I Group II

– – Answer PKM question-
naire (cf. Appendix A.2)

– – ca. 0.5h

– – Install and get familiar
with CDS Tools

CDS Tools CDS Tools ca. 2h

1 A Create knowledge base CDS Tools CDS Tools 4-6h
– – Tutorial on SMW SMW SMW ca. 2h
2 B Create knowledge base CDS Tools SMW max. 5h
3 C Create knowledge base SMW CDS Tools max. 5h
4 C Create knowledge base CDS Tools SMW max. 5h
5 B Create knowledge base SMW CDS Tools max. 5h
– – Break – – 4 weeks
– all Retrieval interview:

Structured interview and
retrieval tasks for all five
knowledge bases

both both ca. 2h

Table 6.2.: In the comparative user study each participant had to use each
tool – but in different order

• It contains roughly the same amount of questions proposed from users
working on a CDS knowledge base (28) as well as questions proposed
from users working in SMW (23). Additionally, for scenario A the set
contains 10 questions proposed by users working on CDS. Note that no
user worked on SMW for scenario A.

• Questions have been balanced between participants who proposed them.
The set includes questions proposed by participant p1 (11), p2 (11), p3
(12), p4 (19), and p5 (10).

Procedure

The modelling tasks ran from 13th July until 4th of September, 2009. The
overall procedure for each participant is depicted in Table 6.2. Scenario A
had to be performed exclusively with CDS Tools. Scenario B and C were
carried out both in CDS Tools and in SMW. As a result, each participant
had to model scenarios B and C two times. To motivate them to create
useful models, a prize was announced for the participant with the best
retrieval results at the retrieval interview.

To avoid effects of sequence, the order of the tools (CDS Tools vs. SMW)
was balanced out. To avoid a bias on the order in which the tools were used,
the group of participants was split in two parts. The two participants which
helped to develop CDS Tools and thus had previous exposure to the tools

6.3 Comparative user study 213

were put in different groups. For scenarios B and C, half of the participants
first used CDS Tools and then SMW.

Retrieval interview After a four week long break, each participant was
interviewed and had to perform a set of retrieval tasks on the models he
created before.

The structured interview asked the following questions (in German) and
had to be filled out as an online survey. It contained two parts:

Learnability How easy is it to understand and learn the building blocks
of the CDS model? Answer in German school grades from 1 (best) to 5
(worst). How easy is it to understand/learn the Relation ontology?
Answer in German school grades.

Evaluating Tools For each tool of HKW, iMapping, QuiKey and SMW,
how do you rate the usability? How do you rate the learnability?
Answer in German school grades. Complete as free text “I would use
this tool for my personal knowledge management if . . . ”.

For the retrieval tasks, the participants used the same computers as for
creation of the knowledge bases.

Retrieval Task Design To avoid learning and sequence effects on the re-
trieval tasks, each question pair (a/b) has been asked equally (as far as
possible with 5 participants) in the possible four ways (a-CDS, b-SMW),
(a-SMW, b-CDS), (b-SMW, a-CDS), and (b-CDS, a-SMW). For each ques-
tion pair, those participants answering the same question (a or b), form
a subset. No question pair was answered with the same partitioning into
subsets. This minimizes the effect of questions in one pair not being equally
difficult. The resulting schedule assigning questions to participants can be
found in Appendix A.5.4 in Table A.3.

The next decision was the order in which the two tools should be used for
the questions. It seemed unnaturally often to switch tools after every ques-
tion. On the other hand, if one participant would go through all questions,
then switch tools and got through all opposite questions of each pair, then
the order of tools could introduce a bias. Therefore it was decided to switch
tools within each scenario (A, B or C) at least once. As a result, each par-
ticipant had to switch tools four to five times during the complete retrieval
interview. The exact schedule for using tools per scenario is depicted in
A.5.4 in Table A.2. As scenario A was modelled exclusively in CDS Tools,
two participants were instructed to use the original source data to answer
the questions. This allows comparing CDS models against encyclopedia
articles.

The final interview was recorded with screen capturing software. Tool Retrieval task
measurementschanges are clearly observable in the recordings. This allowed to measure

precisely the time spent per scenario by each participant for each set of
questions per tool.

214 EVALUATION AND RELATED WORK

Dimension Values Description Symbol
Participant p1 to p5 The person who created the model

and answered the questions.
P

Scenario A, B or
C

Denoting scenario shark, spices or
social network.

S

Order 1 or 2 Indicates if the session was the first
or second part of the retrieval task.

O

Tool CDS,
SMW,
or
source
data

The tool used to create the model
which the participant re-used to an-
swer the questions. CDS is short for
CDS Tools.

T

Questions 5 or 10 The number of questions in a re-
trieval session.

Q

Modelling
time

Minutes The time the participant spent to
create the knowledge model. The
creation dates for each Item in a
CDS model can be measured. By
sorting all these time points chrono-
logically, an algorithm can extract
consecutive sequences of time points,
separated by breaks. Breaks are de-
fined as two time points with a dis-
tance of 10 minutes or more.
A similar procedure was used for the
SMW installations: In Semantic Me-
diaWiki, the Recent Changes14 page
of each wiki has been used to gather
usage logs. The log contains one
time-stamped entry for each page
edit. The time between two consec-
utive time points was summarised, if
not greater than 10 minutes.

tm

Retrieval
time

Minutes The time it took the participant to
answer all questions in this retrieval
session.

tr

Points 0 to 30 The points earned per retrieval ses-
sion.

p

Table 6.3.: Main data-set of comparative user study has 5 independent
and 3 dependent variables

6.3 Comparative user study 215

Retrieval session measurements Each participant has modelled 5 knowl- 125 hour data
collectionedge models within 5 hours, each. Together, the participants have spent

125 hours modelling and approximately 10 hours in the retrieval interview.
Approximately 75 hours have been spent using CDS Tools and 50 hours
using SMW.

A retrieval session is a set of consecutive answered questions by the same Retrieval
sessionsparticipant, using one tool, within one scenario. At retrieval time, there

were 5 to 6 sessions per participant:

Scenario A: Three participants did one retrieval session, used only CDS
Tools and got 10 questions. Two participants used CDS Tools for 5
questions and the Wikipedia pages (the source data, from which the
knowledge models have been created) for another 5 questions.

Scenario B: Two retrieval sessions with 10 questions answers using CDS
Tools and 10 questions answered using SMW.

Scenario C: Same as for scenario B.

Table 6.3 shows the structure of the resulting data-set. The actual data for
all 27 retrieval sessions (3 participants × 5 sessions + 2 participants × 6
sessions) can be found in Table A.5 in Appendix A.5.5. For each question, a
participant could earn points. A correct answer was rated maximally three
points. One point was achieved for an answer pointing in the right direction.
Zero points for completely wrong or missing answers.

Effectiveness and efficiency The retrieval sessions are not directly compa-
rable. Or in other words: It does not tell much, e. g., if people tend to model
longer in one tool or earn more points in total simply because there were
more points to get in that retrieval session. Therefore, a combined analysis
of spent time vs. earned points has been performed. This analysis is based
on the concepts presented in Sec. 3.3. Of course, not the complete economic
model could be applied, e. g., the value of a point earned for a question is
hard to compare with the minutes invested in its creation. Furthermore,
the knowledge creation costs (CC), could be assumed as the time allowed
for a modelling session minus the actual modelling time. Some participants
modelled even longer than allowed, which would lead to negative knowledge
creation costs. The maximal modelling time tm was 8.17 hours, the mean
was 4.44 (SD=2.2815). These numbers are based on all 15 CDS models and
all 10 SMW models.

Costs are measured as the time required to build a model (Cost of ex-
ternalisation CE = tm) and the time required to query the model later
(Cost of retrieval CR = tr). Benefit is measured as the number of points
(B ∼ p) a participant received for his answers. Costs and benefit can easily
be compared between tools, scenarios and participants.

Depending on the use-case, knowledge cues are likely to be retrieved more
than once. The number of times k this retrieval happens, adds both to costs

15Notation: SD stands for standard deviation.

216 EVALUATION AND RELATED WORK

and to benefit. Note that the user study did not measure the retrieval of
all knowledge cues. A certain amount of luck for each participant in each
retrieval session is thus unavoidable. However, this matches well the real-
world task of recording knowledge cues for unknown future use.

The total costs can be calculated depending on k as C(k) = tm + ktr.
The total benefit is then the number of points earned per question, B(k) =
k p

Q , with Q being the total number of questions in a session. This allows
comparing the 5-question-sessions with the 10-question-sessions.

The efficiency can than be defined as ek = B(k)
C(k) = kp

Q×(tm+ktr) . To get
nicer numbers, time is measured in hours, not minutes, for this metric. The
resulting unit is then points per hour. Reasonable values for n are 1, 10,
and 100, leading to the metrics

• e1 Average number of points earned per question as the result of a given
modelling effort and one retrieval effort. Times measured in hours.

• e10 Average number of points earned per question as the result of a given
modelling effort and ten retrieval efforts. Times measured in hours.

• e100 Average number of points earned per question as the result of a given
modelling effort and hundred retrieval efforts. Times measured in hours.

For comparison the resulting ek values have been normalised, i. e.divided by
the mean value of the respective ek metric.

Efficiency For a single session, the mean of e1, e10 and e100 is a measure
of efficiency.

Effectiveness The mean value of points earned for a session (Benefit B =
p) is a measure of effectiveness.

These metrics are used in the results section to compare CDS and SMW.

Measuring knowledge models Lethbridge (1998) proposes a number of
metrics for semantic-net based knowledge-bases which can be used to mea-
sure features of CDS models. These metrics have been adapted to the CDS
terminology, references to Lethbridge (1998) are given in parenthesis. The
star symbol signifies that the metric is also defined for SMW.

• MI The total number of Items in a model (Lethbridge: MALLC).

• MN * The total number of NameItems (Lethbridge: MMSUBJ). This is
a measure of size unrelated to complexity.

• MC The total number of ContentItems.

• MR* The total number of Relations.

• MS* The total number of Statements.

• MS0 The number of Statements in a model that use a Relation
which has only the trivial super-Relation [has detail].

6.3 Comparative user study 217

• MSk The number of Statements in a model that use a Relation
which has exactly k non-trivial super-Relations. The number k can
also be interpreted as the formality of the Statement, i. e., it is a lower
bound for the number of implied triples16.

• MSF ORM The number of Statements with a formality greater than
one (Lethbridge MSF ORM). More formally: MSF ORM =

∑N
k=1 MSk

• MT * The total number of Triples that can be inferred (cf. Sec. 4.2.2)
from the given Statements.

Measurements in SMW The pages Special:Statistics provides access to
the total number of pages, the number of page edits, and the number of
page views. The total number of pages can be used as the value of MN ,
since each wiki page represents one concept.

Via Special:Semantic statistics the number of distinct properties as well
as the number of property values (i. e., number of semantic statements)
could be gathered. The number of properties corresponds to MR, but one
must keep in mind that CDS automatically creates an inverse Relation,
which is not the case for SMW. For each used property, the number of times
the property has been used was extracted from the Special:Properties page.
This corresponds to MS .

6.3.2. Results
First a brief summary of the resulting data-set is given. Then the validity of
the data-set is checked with respect to assertions of the evaluation method.
Finally a number of hypotheses are stated and assessed.

Data set summary The final data set used for the evaluation consists of
15 CDS models created by 5 different participants in 3 scenarios.

There are 27 sessions with a different number of questions, of which 15
have been carried out with CDS Tools, 10 with SMW, and 2 with the
source data. Table A.5 in Appendix A.5.5 shows the data gathered in the
comparative user study (Sec. 6.3). It shows for each tuple of participant
(P), scenario (S), order of tools (O), tool (T), and number of questions
used in the session (Q), the modelling time in minutes used to construct
the knowledge model (tm), the time it took the participant to answer the
questions (tr), and the number of points he received for the answers (p).

As the possible maximal number of points is proportional to the number No correlations
of questions asked, the average points per question (ppQ) are used for cor-
relation tests. None of the pairwise correlations (ppQ, tm), (ppQ, tr), and
(tm, tr) is significant.

16More triples can be implied by more complex constructions such as [has type] and
[has subtype].

218 EVALUATION AND RELATED WORK

Scenarios B and C only The next analyses are restricted to scenario B
and C to be able to compare CDS Tools with SMW. Participants earned
significantly more points in scenario C than in scenario B, measured as the
number of points earned per question (p = 0.000056). Each participant
used both tools, but in different order. Paired t-tests reveal that the order
of tools does not significantly influence the outcome of ppQ (p=0.6067).

Furthermore, paired two-tailed t-tests between the group CDS Tools and
the group SMW show that

• Participants’ modelling time in SMW is significantly shorter than time
spent in CDS (p = 0.0025). Note that only the time spent interacting
with the tool is measured. Students were advised to spend 5 hours per
task. The rest of the time should have been spent on research and think-
ing. In fact, participants modelled on average 50 minutes longer with
CDS Tools than in SMW for the same scenario (p=0.0436).

• Retrieval time does not differ significantly.

• The resulting points per question (ppQ) do not differ significantly be-
tween tools.

Validity of data collection As a first step, the data set is checked for
validity.

Hypothesis: Participants that helped to develop iMapping and QuiKeyDevelopers
perform much
better?

perform much better. If this hypothesis is true, both these participants (p4
and p5) must have more points than the other participants. This hypothesis
is false, as p4 has the most points (93), but p5 has the lowest number of
points (67).

Furthermore, both should be able to model more Items per minute than
the other ones, measured as the sum over all models created by each par-
ticipant. This hypothesis is false, as the predicted order of participants
(p4, p5) > (p1, p2, p3) does not match the observed order p3 > p4 > p2 >
p1 > p5

17. Therefore participants p4 and p5 are not handled specially in
further analyses.

In the next steps, the data set is used to evaluate the research questions
presented in Sec. 1.3.

Research question 1:
Which factors influence costs and benefits in PKM?

These factors have been analysed already theoretically in Sec. 3.3. These
results are used to assess the next research questions.

Research question 2:
What is a suitable model to represent and use artefacts in a uniform fashion
that are in different degrees of formalisation?

17p1: 1255 Items, p2: 1341 Items, p3: 1742 Items, p4: 1711 Items, and p5: 1168
Items.

6.3 Comparative user study 219

First the representation abilities of CDS are evaluated, then the efficiency
of using them.

Hypothesis 1: The implemented CDS Tools can successfully be used to
represent artefacts in a uniform fashion that are in different degrees of
formalisation. Informal,

semi-formal
and formal
knowledge

The content of ContentItems and the Statements with an informal
Relation (MS0) are considered to represent informal knowledge in a CDS
model. Formally, kinformal = MC + MR + MQ + (MS − MSF ORM).

A NameItem has the implication that its name denotes uniquely some
kind of mental concept. That is a stronger formalisation than a mere
ContentItem, yet it is not as formal as a formal Statement, because
no other knowledge can be derived from it. NameItems can thus be said
to represent semi-formal knowledge. Formally, ksemi−formal = MN .

Formal knowledge is represented in Statements with a Relation that
implies further formal assertions (MSF ORM). Formally, kformal = MSF ORM .

Each kind of knowledge should be present in user-created knowledge mod-
els to a substantial fraction.

Test: Averaging over all knowledge models, informal, semi-formal, and
formal knowledge should contribute a substantial part.

Data: In total, 15 models have been created. Together, they contain
7217 Items, of which 641 are built-in Items. Built-in Items are present in Built-ins
every model, i. e., the built-in Relations. Each model contains 41 built-in
Items, some additional built-in Items are added if needed, e. g., an Item
that contains the HKW online help. The remaining 6576 user-created Items User-created

itemsare distributed as follows:
315 (5 %) ContentItems,

1416 (21 %) NameItems,
704 (11 %) Relations18, and

4141 (63 %) Statements.
The average values across all 15 models measuring 6556 Items (excluding
built-in Items) are

informal 37.36 % (SD=22.41),
semi-formal 23.63 % (SD=14.22), and

formal 40.01 % (SD=18.78).
Eight out of the 15 individual models are well-balanced and have at least
15 % of their Items in each category. The remaining seven models have
sometimes more informal (3 ×), sometimes more semi-formal and formal
knowledge (6 ×). Even if some people model more informal and other
model more formal, the overall hypothesis is accepted: CDS can successfully
be used to represent artefacts in a uniform fashion, which are in different
degrees of formalisation.

18inverse Relations count as a second Relation

220 EVALUATION AND RELATED WORK

Hypothesis 2: The implemented CDS Tools can successfully be used to
benefit from artefacts in a uniform fashion that are in different degrees
of formalisation.Efficient and

effective usage
of knowledge
models?

Test: The prototypical CDS Tools should perform as well as comparable,
mature tools. Performance is measured in terms of efficiency and effectivity.
A comparable, mature tool is Semantic MediaWiki (SMW), which has been
introduced in Sec. 2.9. CDS Tools should have no significant difference in
efficiency and effectivity compared to SMW.

Data: To avoid a scenario-dependent bias and have an equal number of
sessions for CDS Tools and SMW, scenario A (which has not been performed
with SMW) has been excluded.

The resulting values for e1, e10, e100, efficiency, and effectivity are shown
in Table A.4 in Appendix A.5.5. CDS Tools reach an average effectivity
of 89 % of SMW and an efficiency of 85 % compared to SMW. The already
small differences between the means are also not significant (Pairwise t-tests
yield effectiveness: p = 0.1997 and efficiency: p = 0.3325).

CDS Tools has an efficiency and effectiveness comparable to SMW. CDS
Tools has been built by two persons from scratch. SMW, on the other hand,
builds on the stable MediaWiki code base and has itself been build by a
large number of persons, e. g., the annotation extensions from Ontoprise.
Therefore it can be expected, that the usability of CDS Tools ultimately
trumps that of SMW. Note also that CDS has, e. g., a higher expressivity
compared to the SMW data model.

The hypothesis is accepted.

Hypothesis 3: The CDS model is as easy to learn as comparable models.
Easy to learn?

Test: Each participant has been asked to rate how easy it is to learn each
tool (HKW, iMapping, QuiKey, and SMW). It is expected that CDS Tools
score on average as well as SMW.

Data: On average, learnability of CDS was rated 2.4 and SMW only 3.0
(in German school grades, with 1=best and 5=worst). For every individual
participant, the average rating of the three CDS-based tools is better than
the rating of SMW. However, again due to the small sample size: The
difference is not significant (p = 0.1369). One participant (p5) found QuiKey
harder to learn than SMW, another one (p2) found HKW harder to learn19.
This hypothesis is regarded as confirmed.

Research question 3:
What is a suitable top-level ontology for personal knowledge models?

Hypothesis 4: Participants rate the proposed CDS relation ontology as
easy to understand and learn.

19Participant p2 had to perform all tasks one week ahead of the other participants, so
he encountered the most bugs in HKW.

6.3 Comparative user study 221

Test: The average rating given in the retrieval interview should be 2
(“good”) or better.

Data: The average rating given by the five participants is 3 (“satisfac-
tory”). The hypothesis cannot be accepted.

Hypothesis 5: The relations of the CDS relation ontology are used in
user-created statements. The CDS Relation ontology (R) provides a
set of 13 Relations. If this ontology is useful, one should expect users
to create a number of Statements using Relations from this ontology.
However, R is designed to be extended, so a fair amount of Statements
should contain user-created Relations as well.

Test: At least one third of user-created Statements should use the Re-
lations from R. At least one third of user-created Statements should
contain user-created Relations.

Data: The total number of statements in the 15 models is 4141, with 2188
(53 %) using a user-created Relation and with 1953 (47 %) Statements
using a CDS-built-in Relation.

Which built-in Relations have been used most in user-created Sta-
tements? For this analysis, a Relation and its inverse Relation are
summed up. Table A.6 in Appendix A.5.5 shows the usage of the built-in
Relations in all Statements created by participants in the 15 models.
About half of the built-in Relations are used. Two built-in Relations
have not been used at all: [annotates] and [replaces]. The Relation [an-
notates] is a common super-Relation for [is tag of] and [has instance]. For
the Relation [replaces], which should at edit-time replace one string with
another one, there was simply no tool support in all three CDS tools. Par-
ticipants were apparently clever enough not to invest their time in creating
Statements using this not-yet-supported Relation.

The hypothesis is confirmed.

Hypothesis 6: Users create their own relations.
Test: Every individual participant should have created their own Rela-

tions.
Data: 704 Relations have been created by users. The distribution per

participant is:
p1 96
p2 182
p3 188
p4 140
p5 98

The hypothesis is accepted.

Hypothesis 7: User-created relations extend the built-in relation ontol-
ogy. Test: User-created Relations should be linked via [has subtype] to
Relations of the built-in Relation ontology.

Data: The built-in Relation ontology has been extended by all partici-
pants in many ways. There are 457 user-created [has subtype]-Statements

222 EVALUATION AND RELATED WORK

between Relations. Appendix A.5.6 shows the Relation (and concept)
hierarchies from each participant in each scenario.

A look at the actual relation hierarchies (cf. Appendix A.5.6) – instead of
defining sophisticated tree-metrics – should be enough to see that the CDS
Relation ontology was indeed re-used and extended. The hypothesis is
regarded as confirmed.

Research question 4:
How can a tool for using personal knowledge models be built?

Hypothesis 8: CDS Tools are as interaction efficient as a comparable,
mature semantic modelling tool. A wiki page is roughly a title and a
snippet of content. Therefore, creating an SMW wiki page corresponds to
creating a NameItem and a ContentItem in CDS.

Test: The sum of ContentItems and NameItems created by CDS
Tools should both be in the same range as twice the number of wiki pages
created in SMW. Formally: MC + MN ∼ 2 × |SMW wiki pages|.

Data: For scenarios B and C, there were 198 CDS ContentItems
and 1045 NameItems created. In SMW 647 wiki pages were created.
MC + MN = 1243 and 2 × |SMW wiki pages| = 1294 are very similar.
The hypothesis is accepted.

Hypothesis 9: CDS Tools produce more user-created triples than a com-
parable, mature semantic modelling tool. Looking at the number of cre-
ated Items or Statements does not tell anything about the created “in-
formation content”20 in the knowledge model. The number of non-trivial,
non-technical semantic facts needs to be estimated.

First a quick comparison of Statements made in CDS vs. property
values expressed in SMW. An n-ary property leads to n property values.
Here is the sum for scenario B and C:

participant CDS SMW
p1 527 437
p2 548 697
p3 1104 844
p4 503 758
p5 352 2111

A non-trivial triple in CDS is a Statement, its inverse Statement21, as
well as Triples implied by Relation and concept hierarchies. A query
for all Triples in a model yields MT . The following patterns have been
considered trivial and have been removed:

20From the perspective of the user. From information theory, e. g., for a user it makes
no difference whether a string is represented in RDF as a string-data-typed literal or
a plain literal. For information theory, it does.

21An inverse Statement should be considered non-trivial, because a user really profits
from it in queries. As an example, a user notes two persons that [work for] the KIT
and later adds third one as a person that the KIT [employs]. Now she can query her
CDS model for all Items that ([KIT], [employs], ∗) and get all three persons back.

6.3 Comparative user study 223

• (x, [is subtype of], [is related to]) – every Relation is a subtype of [is
related to] automatically. A total of MR needs therefore to be deducted
from MT .

• (x, [is related to], y) – every Statement implies that source and target
are related by [is related to]. The number of Triples with this pattern
is the number of Statements MS .

• All 411 additional triples following from built-in Statements and Re-
lations.

The final formula to compute the number of non-trivial triples in CDS is
Mnon−trivial−triples = MT − (MR + MS).

SMW offers only a transitive category hierarchy, hence the transitive clo-
sure can be calculated and taken into account. The number of non-trivial
triples in SMW is computed by

1. Downloading the RDF from each page.

2. Merging all obtained RDF files in a triple store.

3. Removing trivial triples that do not reflect user-created semantics. A
user not being aware of RDF would never ask to see all defined labels.
Instead, she is expected to deal with, e. g., persons, spices, sharks and
other concepts from her real or imaginary world.
In detail, the following technical22, non-user-created triple patterns
have been removed:
• (x, owl:imports, y) – imports SMWs swivt ontology23.
• (x, rdfs:isDefinedBy, y) – links every concept to the RDF document.
• (x, rdfs:label, y) – in CDS, an Item and its label are only counted

as one entity.
• (x, swivt:page, y) – links every concept to the Wiki page.
• (x, swivt:creationDate, y) – like the others, this is not a user-created

triple.
• (x, y, swivt:Container) – an artificial container to group several val-

ues of an n-ary property assignment. The n assignments of such a
construct are not trivial, but the artificial container is. At least in
the cases of the user study, where the order of property assignments
played no role.

• (x, y, swivt:Subject) – every concept is also a swivt:Subject.
• (x, y, owl:AnnotationProperty) – classifies properties that link to a

data value.
• (x, y, owl:Class) – trivial, as every node z in a triple (x, rdf:type, z)

is an owl:Class, at least under OWL semantics.
22The list of all properties being an owl:ObjectProperty is of no practical value – unless

you are doing ontology statistics.
23http://semantic-mediawiki.org/swivt/ (accessed 05.01.2010)

224 EVALUATION AND RELATED WORK

• (x, y, owl:ObjectProperty) – classifies properties that link to an-
other concept.

• (x, y, owl:Ontology) – a container for all properties used on a page.

4. Materialise all triples that can be inferred under RDFS semantics;

5. Remove all axiomatic RDFS triples24

(such as rdf:type rdf:type rdf:Property,
rdfs:subClassOf rdfs:domain rdfs:Class, or
rdfs:comment rdfs:range rdfs:Literal and the triples that
can be inferred from these axiomatic triples);

6. Remove trivially inferred triples. In detail these patterns have been
removed:
• (x, rdf:type, rdfs:Resource) – every node in RDF is a resource.
• (x, rdf:type, rdf:Property) – every node used as the relation of a

triple is an rdf:Property.
• (x, ∗, x) – triples linking a node to itself such as (x, rdfs:subPropertyOf, x)

and (x, rdfs:subClassOf, x) are trivial.

7. And finally counting the remaining number of non-trivial triples.

Test: The number of non-trivial triples in CDS Tools must be higher
than the number of non-trivial triples in SMW.

Data: Here is the sum per participant for scenario B and C:
participant CDS SMW
p1 4265 1288
p2 4697 734
p3 6725 349
p4 3446 2072
p5 4092 1798

There are significantly (p = 0, 0252, two-side paired t-test) more non-trivial
triples in CDS Tools than in SMW. The hypothesis is accepted.

24Listed in http://www.w3.org/TR/rdf-mt/ (accessed 06.01.2010)

6.3 Comparative user study 225

Hypothesis 10: CDS Tools receive usability ratings comparable to a
mature semantic modelling tool. Usability

Test: The mean usability rating for CDS Tools should be comparable to
SMWs usability rating.

Data: The mean usability rating for CDS Tools overall was 2.13 com-
pared to 2 for SMW (in German school grades, 1=best and 5=worst). This
difference is not significant. However, looking at the individual ratings re-
veals means of 2.8 for HKW, 1.6 for iMapping, and 2.0 for QuiKey. This
indicates that HKW has the worst usability.25 The hypothesis is accepted.

6.3.3. Discussion
Overall, the CDS data model (D) performed well and lived up to its expec-
tations.

The CDS data model has successfully been used to represent and use
(retrieve) artefacts in a uniform fashion that are in different degrees of
formalisation (hypotheses 1 and 2).

Furthermore, it has been perceived as easy to learn (hypothesis 3).
The Relation ontology (R) was not perceived as easy to learn (hypoth-

esis 4). However, users still used the built-in Relations to a high degree
(hypothesis 5). The dual role of the CDS Relation ontology (R) might
not have been taken into account well enough in the design of tools: On the
one hand, R has been designed to be able to represent knowledge imported
from a number of sources. This import from existing sources – such as file
systems, documents, mind- and concept maps, and wikis – has been vali-
dated by theoretical analysis. R has been designed as a generalisation of the
aforementioned models. On the other hand, R is meant to be used by users
in Statements and as super-Relations for their own Relations. Using
R Relations as super-Relations of user-defined Relations allows con-
verters to understand them and export them in a suitable form, retaining
the intended semantics. The Relation [has tag] is most likely used for
tagging artefacts such as files or web pages. As none of them needed to be
organised for solving the scenarios, it is not surprising that users did not
use this relation.

Users extended the CDS Relation ontology with their own Relations
(hypothesis 6 and 7). Although also possible in SMW, no single user cre-
ated any sub-relation or sub-class in SMW. This might have been under-
emphasized in the introduction session or the tool support in SMW+Halo
might not be appropriate.

Although still research prototypes, the CDS Tools had acceptable interac-
tion efficiency and usability ratings compared to SMW (hypothesis 8 and 9).
Interestingly, the number of ContentItems in CDS Tools is significantly

25On the other hand, HKW supported most features of the CDS model. HKW might
have been rated less good because of the more complex user interface required to
support all features.

226 EVALUATION AND RELATED WORK

less (p = 0.0489) than the number of wiki pages in SMW.26The knowledge
modelled in CDS Tools seems to be more conceptual than merely textual.

Using CDS Tools, users produced significantly more non-trivial triples
than with SMW (hypothesis 9).

As a summary, CDS Tools have already in their prototype state a usability
comparable to SMW. Participants extended the Relation hierarchy in
CDS, but not in SMW. They created less (unformalised) ContentItems
and significantly more non-trivial triples in CDS, compared to SMW. The
CDS data model has been rated as easier to learn than the SMW model.

6.4. Comparing CDS and RDF
Compared to existing Semantic Web standards, D resembles most the RDF
data model. The RDF specification defines both the basic data model, as
well as a core vocabulary and its semantics to describe entities like lists, con-
tainers or reified statements. D is an extended subset of RDF. ComparingRemoved from

RDF are blank
nodes and
literals

the entities of RDF with D:

URIs: Each Item in D has a unique URI.

Blank nodes: No blank node concept exists in D. Blank nodes are a
rather complicated technical concept which is not needed in D, but
can be emulated on higher layers if needed. A detailed discussion is
given by Heitmann et al. (2006).

Data-typed Literals: All literals in D are plain literals. Typed literals
are introduced in the same way as typed instances: On the R layer. As
an example, modelling a floating point number in CDS is achieved by
storing the literal value, say “3.14” in a ContentItem c and adding
a Statement (c, [has type], [float]). Float is not a built-in concept of
CDS. Again, moving this feature from built-in in RDF to an optional
feature on a higher layer in CDS makes D easier to understand and
use without limiting its expressivity.

Language-tagged literals: CDS is meant to be used by one person.
There are no multiple values in different languages.

Literals : CDS D has no “plain literals”. Instead, each Item (identified
by a URI) has exactly one literal attached.

Many semantic web applications hide the complexity of RDF completely
for the user – for a good reason. Most users do not want to deal with URIs,
blank nodes, literals, data-types for literals, language tags for literals and
other RDF subtleties such as the recursively defined rdf:List construct.
Some early semantic web applications do show URIs to the end user – such
user interfaces are now considered immature and prototypical.

26None of the SMW wiki page contents was short enough to be a legal NameItem; the
average wiki page was 470 characters long. 1.6 % of wiki pages were redirects – this
is SMWs equivalent of CDS’ [has alias].

6.4 Comparing CDS and RDF 227

D also extends RDF. The following features have been added, compared Added to RDF
are addressable
literals, add.
statements,
mandatory
inverse
relations, and
name items

to RDF:

Addressable Literals: The fundamental concept of CDS D is the Item.
Each Item is first addressable via a URI and second it may contain
zero or one content. No content can appear outside of Items. Each
piece of content is thus addressable, which is used, e. g., to record
creation date and authorship of each Item. RDF does not allow ad-
dressing literals.

Addressable Statements: As Statements in D are special Items, all
Statements also have a URI. Hence all CDS Statements are ad-
dressable. In RDF, statements are not directly addressable and reifi-
cation and named graphs do not solve this either, out of the box.

Inverse relations: RDF and RDFS do not define inverse relations, i. e.,
they have no means to define them. OWL does define inverse relations,
but they are not mandatory. In D inverse relations are mandatory.

Name items: CDS has the notion of NameItems, which allow the user to
address Items via a memorable string. This was inspired by the usage
of WikiWords in wikis. NameItems are Items where the content has
naming characteristics. RDF does not have a naming concept for
humans.

The CDS data-model has the same expressivity as RDF. Each RDF state- CDS data
model
has same
expressivity
as RDF

ment (s, p, o) can be represented as two Items (s and o) and a relation (p)
with an inverse (−p).

The similarity between CDS and RDF allows converting RDF to CDS

Lossless
conversion
is possible

(creating new URIs for literals and lifting them to Items). As an example,
the RDF statement (s, p, “value”) is represented in CDS as (s, p, o) with o
being a ContentItem with the content “value”.

Comparing CDS to RDF Schema and OWL CDS is intended to be used
by end-users, not for data exchange between machines. But as RDFS has
been a strong inspiration for the semantics of CDS, a brief comparison is
presented.

Class and Instance: CDS does not clearly distinguish between the two.
Rather, every Item can be used as a type for another Item. This is
the same in RDFS, but different from OWL.

Domain and Ranges: CDS has no notion of domains and ranges. Every
relation can be used with every kind of Item.

Class hierarchies: CDS has a [has subtype] relation, similar to RDFS’
subClassOf.

Property hierarchies: The same Relation ([has subtype]) is also used
for property hierarchies. Hence it is also similar to RDFS’ subPro-
pertyOf.

228 EVALUATION AND RELATED WORK

Same As: Different from RDFS, but more similar to OWL, CDS has sev-
eral ways to state similarity ([is similar to]) or equality ([is same as]).

A mapping from CDS to RDFS has been described in Sec. 4.4.2. Customi-
sation of the RDF export function have been described in Sec. 5.1.

6.5. Related work
This section briefly presents related work. As the contribution of CDS is on
different levels (data model D, Relation ontology R, STIF, and HKW),
the related work is clustered accordingly.

6.5.1. CDS data model
First, works related to the CDS data model D are presented.

A comparison of CDS with RDF (cf. 3.6.1) has been presented in Sec. 6.4.
Simpler than RDF is XML, which has been introduced in 2.5. Once

an XML Schema has been defined, XML tools can support the user with
rich authoring support, e. g., auto-completion for element names and auto-
creating required children elements. However, XML tools expect the schema
to be stable. This assumption does not work for personal knowledge man-
agement.

Although not formally specified, the data-model of mind-maps (cf. Sec.
3.5.5) is comparable to the CDS data-model, as both models have been
created to let humans easily create knowledge cues. Mind maps do not
support formal knowledge at all.

The UML (see Sec. 2.5) is obviously not adequate for personal notes. As
a trivial example, even free-form text is only possible as an annotation to
another structural element.

Hyper-object substrate (HOS) is a groupware system built on the
idea of incremental formalisation (Shipman and McCall, 1999). HOS uses
prototype inheritance. The basic model of HOS is a mix of a hypertext and a
frame-based system. Compared to CDS Tools it resembles much less mind-
map or wiki but more tools like Microsoft Access or Protégé. HOS provides
active support in formalisation using a set of built-in rules. The purpose
of HOS is different from CDS, as HOS is meant to create domain-oriented
systems, whereas CDS is designed for an open-end personal use.

The iMemex (Dittrich, Salles, Kossmann, and Blunschi, 2005) project
takes another approach: iDM (Dittrich and Salles, 2006) is a unified data
model which aims to dissolve the boundaries of files. Their approach is to
compute a unified, structured, read-only, query-able resource view graph.
The implementation optimizes on storage space and query answer times.

The unified web model (Immaneni and Thirunarayan, 2007) is a uni-
fied view on hypertext (WWW) and semantic web supplemented with a
query language. Although the semantic web is typically characterised as
an extension of the existing web (Decker et al., 2000), there are few formal
models describing the resulting mix of content and meta-data. I. e., almost

6.5 Related work 229

all semantic web models deal only with fine-granular instance data and on-
tologies, whereas classical content management paradigms have usually very
limited metadata and formalisation abilities.

The unified web model is rather technical and unified authoring is not
in the scope of the work. However, the unified web model has a string
resemblance to the CDS data model. Another related model is Xanadu
which has been presented in Sec. 3.5.2.

6.5.2. CDS relation ontology
This section presents works related to the CDS Relation ontology R.

The Simple Knowledge Organisation System (SKOS) model (Miles
and Bechhofer, 2008, cf. Sec. 3.6) has been designed to represent thesauri
and taxonomies. Regarding the evaluation of the CDS Relation ontol-
ogy R, SKOS seems to contain all essential relations for authoring personal
knowledge cues. Note that SKOS has not been designed for personal knowl-
edge management and this congruence is rather accidental. Second, SKOS
has been designed for usage with RDF, a data model that is inadequate to
be directly used for personal knowledge models.

The Personal Information Model (PIMO, Sauermann, 2009) has been
developed in the European Integrated Project NEPOMUK, like CDS. The
basic concept of “a PIMO” resembles the notion of a “personal knowledge
model” as used in this thesis. PIMO has been designed for usage in a se-
mantic desktop (cf. 2.6). The core concepts of PIMO are classes like Thing,
Collection, Group, Location, LogicalMediaType, Organization, Person, Pro-
cessConcept, and Topic. Core relations are “related”, “has part” (which is
used in a generic way, almost as generic as CDS’ [has detail]), and “has
topic”. Different from CDS, PIMO makes an explicit distinction between
class and instances as well as between Things and Topics. This follows
closer the OMG layered modelling approach and has the benefit that user
interfaces can exploit these constraints. The drawback is that new users (1)
need to learn more concepts and (2) are required to take decisions, e. g., to
define class and instance levels properly. In CDS, these decisions are still
beneficial to the user, but not strictly required. Overall, goals and design
of PIMO and CDS are rather close, which is no surprise as both have been
developed in the same research project and many meetings between both
developers have been conducted to ensure a certain degree of compatibility.
E. g., the class hierarchy of PIMO can be re-used almost unchanged in CDS.

6.5.3. Structured text interchange format (STIF)
This section presents works related to the STIF model.

BBCode27 is an unofficial best practice for formatting text in forum sys-
tems. BBCode uses syntax like “[b]hello[/b] world” to denote the
XHTML equivalent “hello world” which is rendered in a brow-
ser as “hello world”. The rationale behind BBCode is an easy format to

27http://en.wikipedia.org/wiki/BBCode (accessed 06.01.2010)

230 EVALUATION AND RELATED WORK

allow certain text formatting without opening the can of worms associated
with malicious JavaScript code. It is used on collaborative websites to let
community users contribute formatted text without being able to introduce
malicious content. The supported subset of XHTML is roughly the same as
the one provided by STIF.

DocBook (Walsh and Muellner, 1999) is a powerful XML-based format
for modelling a document. It is used to create type-set books as well as
online manuals – from the same source file. As DocBook is a rather complex
format, Simplified DocBook28 has been created. Simplified DocBook
contains just 119 elements, 555 entities, and 29 notations. Like other XML-
based formats, DocBook is not designed for ad-hoc extensibility.

More work related to STIF is given by Völkel and Oren (2006).

6.5.4. Hypertext Knowledge Workbench
This section lists works related to the Hypertext-based Knowledge Work-
bench (HKW). Besides Semantic MediaWiki, which is presented in Sec. 2.9
and used in the comparative user study (Sec. 6.3), there are a number of
tools related to HKW.

Tabulator29 by Tim Berners-Lee is a resource-oriented RDF browser.
There are no authoring facilities.

TiddlyWiki30 is a wiki implementation in a single JavaScript file, which
makes deployment and personal use particularly easy. TiddlyWiki supports
wiki links and tags but no formal knowledge.

Ludwig (2005) sees redundancy within and among documents as a hurdle
to efficient information usage. He questions if documents are the best con-
tainer for knowledge representations and proposes to work more direct with
redundancy-free semantic knowledge management systems. In such a sys-
tem, the traditional notion of a document is replaced by virtual documents,
which render parts of the knowledge base as an interactive tree. The system
Artificial Memory31 supports – different from most semantic systems –
ordered lists of content snippets.

Bernstein (2006) describes TinderBox, a “personal content manage-
ment assistant”, which offers sophisticated HTML generation via templates.
Based on an internal structure, it allows editing data and structures both
in a map as well as in an outline view. TinderBox provides prototype in-
heritance. The basic knowledge model is frame-like, links are only visible
in the map view.

SEMEX (Cai, Dong, Halevy, Liu, and Madhavan, 2005) is a system that
creates a unified view over data scattered in different desktop applications.
It allows unified search and associative browsing. Authoring of associations
is not provided.

28http://www.docbook.org/schemas/simplified (accessed 06.01.2010)
29http://www.w3.org/2005/ajar/tab (accessed 06.01.2010)
30http://www.tiddlywiki.com/ (accessed 06.01.2010)
31http://www.artificialmemory.net/ (accessed 06.01.2010)

6.6 Conclusions 231

Started as a PhD thesis under the name Popcorn (Davies, 2005; Davies
et al., 2006), the tool became the commercial tool Notewise32. Popcorn
emphasises knowledge refactoring and strives for scalability to large knowl-
edge bases.

CODE4 (Skuce and Lethbridge, 1995) is an environment for managing
conceptual knowledge. It supports the concept of incremental formalisa-
tion. Interestingly, CODE4 treats statements also as concepts about which
further statements can be made. CODE4 supports property inheritance
to supply default values for properties. It mandates a strict separation of
meta-concepts and user concepts, like in OWL. CODE4 has been success-
fully used to create new knowledge as an act of creativity – made possible
by an existing knowledge base (Lethbridge, 1991a). CODE4 has many more
concepts for a user to learn, but offers also more modelling primitives, e. g.,
n-ary relations. HKW has a stronger bias on informal and semi-formal
knowledge.

Jourknow is touted an “information scrap manager” (Bernstein, Kleek,
monica mc schraefel, and Karger, 2008) with an emphasis on taking notes
and re-finding them by keyword, tags, context or automatically taken pho-
tos. Jourknow has no ability to formalise data.

Haystack (Adar, Karger, and Stein, 1999; Quan, Huynh, and Karger,
2003) allow the user to manage a large set of information items in a ho-
mogenous way. A central idea is the notion of a collection, which may con-
tain items of different kinds. The tool is built using a range of innovative
ideas such as a RDF-based user interface description language as well as a
programming language represented in RDF as well. The visual appearance
is aesthetic and thought out. Nevertheless, the complexity and flexibility
of Haystack is intimidating. Because of the flexibility, it is unclear how to
represent new facts for which no pre-defined semantic types have been cre-
ated. Overall, Haystack is slightly too schema-bound for the flexible PKM
use-cases that motivated the development of HKW.

6.6. Conclusions
This chapter presented different kinds of evaluation for the contribution in
this thesis.

The data-model (D), relation ontology (R) and structured text model
(STIF) have been compared to the evaluation criteria established in Chapter
3 (cf. Sec. 6.1). The CDS data model, the Relation ontology, and the
STIF fulfill most criteria.

HKW has been evaluated in a formative user study with 16 people from 4
companies (cf. Sec. 6.2). As a result, the user interface has been reworked.

Furthermore, HKW has been evaluated in an exhaustive 125-hour com-
parative user study (cf. Sec. 6.3) in which all three CDS Tools (HKW,
QuiKey, and iMapping) have been compared against Semantic MediaWiki
(SMW). The STIF features have not been used much in the user studies.

32http://www.notewise.com (accessed 06.01.2010)

232 EVALUATION AND RELATED WORK

Future CDS tools might present STIF features with a rich text editor in-
stead of wiki syntax. The CDS data model was rated as easy to learn. CDS
Tools – although still prototypes – performed in the evaluation scenarios
comparable to the mature SMW tool.

The Relation ontology was not perceived as easy to learn. It seems, even
13 Relations and their inverses need a lot of teaching and documentation,
in order to be understood in detail. However, users can learn the built-in
CDS Relations one at a time. There is no need to understand them in
the beginning, in fact, a user is not even required to know the existence
of the built-in Relations in the beginning. They are required, however,
to formalise the connection between knowledge cues step by step. In this
respect, iMapping has a promising user interface approach, which hides most
Relations and exposes one (namely [has detail]) prominently.

The CDS data-model model has been compared to the RDF model (cf.
Sec. 6.4). It has the same expressivity but a smaller number of concepts.

7. Discussion, Future Work, and
Conclusions

This chapter discusses the main results of this thesis, shows potential future
work, and concludes the thesis.

7.1. Discussion
This section reviews the main contributions of this thesis and discusses them
critically. Fig. 7.1 shows the relations and types of contributions.

New perspective on PKM

Structured Text Interchange Format (STIF)

Semantic web programming framework

Comparative user study

Analysis of conceptual models in PKM tools

CDS data model

Economic analysis of PKM

CDS editor (HKW)

Re-usable CDS API and reference implementation

CDS relation ontology

Novel PKM process model

Survey on PKM

Conceptual

Implementation

Experimental

Figure 7.1.: Overview of contributions. Arrows indicate re-use of contri-
bution within this thesis. Entries in bold are considered main
contributions.

234 DISCUSSION, FUTURE WORK, AND CONCLUSIONS

Contribution: A new perspective on PKM
Type: conceptual.

The notion of a knowledge cue, which has been introduced in ChapterKnowledge cue
1, allows a pragmatic analysis of tools without debating the differences be-
tween information and knowledge. Although a lengthy comparison betweenPKM and

OKM PKM and organisational knowledge management (OKM) has been given,
much more could be said about this topic. Especially the interplay of indi-
viduals doing their PKM and an alignment with organisational knowledge
management goals. With more individuals using PKM tools the desire for
controlled sharing and questions of intellectual ownership will become more
important. CDS has already some features that allow for collaborative us-
age of knowledge models such as globally unique identifiers for all kinds of
Items, and metadata for the creation data, modification date and author
of each Item.

In Chapter 2 existing work was presented. A small yet original contribu-
tion is the formal definition of a formal model given in Sec. 2.1.

The notion of knowledge models has been published by Völkel (2007a).

Contribution: A novel PKM process model
Type: conceptual.

Existing process models for knowledge management and PIM have beenPerspective of
the individual reviewed, but none describes PKM satisfactory. A new process model from

the perspective of the individual using knowledge cues has been presented
in Sec. 3.2.2. This model explains what processes an individual knowledge
worker needs to perform.

An earlier version of the process model has been presented in an invited
talk at the AKWM Symposium 2008.1

Contribution: An economic analysis of PKM
Type: conceptual.

Building upon the knowledge cue life-cycle, Sec. 3.3 has presented a novel
economic analysis of these processes. This model describes how rational
people should behave, it is not a description of peoples behaviour in practice.

The overall benefit of using a PKM system could be characterised by sum-
marizing over the value of successfully retrieved knowledge items (content
or formal statements) for each task. Costs could be characterised as the
sum of the costs of all authoring and structuring efforts. A quantification of
the effect more structuring has on lower retrieval costs (or improved benefit)
cannot be stated unless the semantics of the formal statements and details of
the search process (browse, search, follow links) are specified. Especially the
analysis of value turned out to be difficult. Without precise task definitions
the value of retrieving a knowledge cue at a certain moment is impossible.

1The homepage of the event can be found at the website of the AKWM http://
www.arbeitskreis-wissensmanagement.org/wm-symposium-2008-
2664.htm (accessed 03.01.2010). The presented slides are linked from http:
//pubs.xam.de (accessed 03.01.2010).

7.1 Discussion 235

Unfortunately, it is a characteristic of many knowledge workers that their
tasks are not highly repeatable.

On the other hand, some knowledge workers do perform the same tasks
again and again, e. g., processing insurance claims or examining X-ray pic-
tures to classify bone fractures. In theses cases, the economic analysis could
help to choose among several systems and user interfaces.

However, within this thesis, the economic model has “only‘” been used
to gather an important high-level requirement: A good model to represent
knowledge cues should be a super-set of conceptual models in existing tools
which are used to perform PKM-tasks.

The analysis has been published by Völkel and Abecker (2008).

Contribution: An analysis of conceptual model in PKM tools
Type: conceptual.

This analysis of conceptual models and their relations has been presented
in Sec. 3.5 and Sec. 3.6.3. It can serve as a guideline for future user inter-
faces that aim to be “mentally backwards-compatible” with existing tools –
resulting in a lower learning curve.

The analysis of requirements for knowledge models from literature (Sec. 3.4,
summary on page 3.7) can be used to evaluate existing and planned PKM
tools.

The analysis method has initially be published in (Völkel, Haller, and
Abecker, 2007).

Contribution: The CDS data model
Type: conceptual.

Chapter 4 presented CDS as a formalism to represent and use knowledge
cues in different degrees of formalisation. This solution has a central data
model (D, cf. Sec. 4.1) that can represent knowledge cues. This data model
alone fulfills some important requirements from the requirements list, but
it is not enough for PKM. D is similar to existing approaches like, e. g.,
RDF and SKOS, but simpler and better suited to be used as a conceptual
model. Unlike RDF, the conceptual model of CDS is designed to be used
directly by users. Indeed, users rated the building blocks of CDS as easy
to learn (cf. hypothesis 3 on page 220). However, as only computer science
students performed the rating, it remains unclear if people with different
educational background will find the CDS data model easy to learn. Given
the low number of core concepts in the model – NameItems, Content-
Items, Relations, and Statements– this seems to be likely.

Due to the high expressivity and flexibility, the CDS data-model can also
serve as an exchange format between different PKM tools.

The first publications of the CDS data model can be found in Völkel and
Haller (2006). Subsequent versions have been described in (Völkel, Oren,
and Schaffert, 2008; Völkel and Haller, 2009).

236 DISCUSSION, FUTURE WORK, AND CONCLUSIONS

Contribution: The CDS relation ontology
Type: conceptual.

The CDS relation ontology (R) contains the most-commonly used rela-
tions from popular tools used for doing PKM tasks. This ontology is used
in the CDS tools but also has a value outside of them. In the design or
evaluation phase of PKM tools, these relations can be taken as a guideline.
If one of them is missing, a certain kind of functionality or import/export
ability is missing.

This has been co-developed with the CDS data-model and appeared in
the same publications.

Contribution: The Structured Text Interchange Format
Type: conceptual.

The data-model by itself is of limited usefulness. The STIF concepts
presented in Sec. 4.3.1 allow (a) using structured text inside knowledge
cues as a middle ground between collections of keywords and fully formal
models; and (b) creating semantic Statements at low interaction costs
using semantic wiki syntax . The STIF format can serve as an exchange
format for structured text between word processors, Mind- and Concept-
Map tools, and wikis. The open-source project WikiPipes is using STIF to
import and export wiki pages from different wiki engines in a neutral way.

The first publication on a Wiki Interchange Format appeared in (Völkel
and Oren, 2006). The generalised STIF format has been described in
(NEPOMUK Consortium et al., 2008, p. 73).

Contribution: A semantic web programming framework
Type: implementation.

Although not described in this thesis2, the underlying frameworks RDF2Go
and RDFReactor that have been created by the author of this thesis consti-
tute a relevant contribution to the semantic web community. RDF2Go has
been used in numerous open-source projects and the liberal license allows
commercial projects to be based on it, too. RDFReactor is used in this
thesis by the iMapping prototype to store the graphical layout of items.

RDFReactor has been published in (Völkel and Sure, 2005) and (Völkel,
2006). The semweb4j framework that includes RDFReactor is described in
Völkel (2005b).

Contribution: A re-usable CDS API and reference implementation
Type: implementation.

Chapter 5 the CDS API and its reference implementation (Sec. 5.1 and
Sec. 5.1) have been presented. They have been used successfully for three
different tools. They offer adequate performance and memory consumption
characteristics to be used for commercial PKM tools. The Java implemen-
tation contains re-usable data structures for other implementations such as

2Because they are very technical and not linked well to the personal knowledge man-
agement topics. And they would have required even more space!

7.1 Discussion 237

a type-safe generic triple-index or a thread-safe CDS model implementation
that supports optional content compression.

The first implementation has been published as swecr3 by Völkel (2007b).

Shortcomings of CDS There are several points not yet tackled in the CDS
model:

• The notion of data-types is possible, but not defined for CDS models. In
the future, a set of data-types should be defined together with definitions
on comparing for equality and a defined sort-order. Most work from XML
Schema Types (XSD, Thompson et al., 2008) can be re-used, as it has
been done in RDF and OWL. However, given the nature of CDS as an
end-user format, the data-formats should be inspired more by existing
tools like spreadsheet applications, so that the end-result is not overly
technical.
Only such a definition of data-types would allow using aggregation func-
tion in queries.

• The presented CDS query language is most likely not rich enough to
cover all relevant PKM tasks. This query language should be extended
at least to the power of SPARQL. Given the triple-like nature of CDS,
almost all SPARQL features can be re-used on CDS models. The hardest
part will be the definition of an adequate textual or CDS representation.
SPARQL misses full-text queries which also need to be added. Minack,
Sauermann, Grimnes, Fluit, and Broekstra (2008) describe a promising
mix of both approaches for Sesame, a similar approach exists also for the
Jena4 RDF framework.5

• CDS lacks a way to address parts of content within ContentItems. A
possible extension could be the introduction of soft references pointing to
structural parts of the STIF document within a ContentItem. Works
from XPath can be re-used here. In general, no satisfactory solution has
been proposed for the problem of maintaining references to parts of a
text when the text is changed afterwards.

• In R the distinction between [has alias] and [same as] might be hard to
understand. The idea of directed aliases, although prominent in everyday
life, is rarely used in computer systems.

3Semantic Web Content Repository
4http://seaborne.blogspot.com/2006/11/larq-lucene-arq.html

(accessed 06.01.2010)
5The general idea is to split the query in two parts and execute them individually:

One query part is delegated to an RDF store, the other part is delegated to a full-
text index. Then a join is performed by the item URIs. Depending on the result
set size, other join strategies should be favoured, i. e., first performing the full-text
query and then binding the item URI in the RDF query to the resulting URIs.

238 DISCUSSION, FUTURE WORK, AND CONCLUSIONS

Contribution: A CDS editor (HKW)
Type: implementation.

The Hypertext Knowledge Workbench (HKW) is an editor for CDS mod-
els that allows creating, deleting and modifying all elements of the CDS
model. The editor makes heavy use of browser-based scripting to provide a
reactive ubiquitous user interface.

The idea to run a CDS model including an CDS inference engine inside
the browser turned out to be problematic, since the memory consumption
in JavaScript is a factor of 10 to 100 times more.

HKW has been published in (Völkel, 2008).

Shortcomings of HKW The Hypertext Knowledge Workbench has several
shortcomings:

• There is no way yet to embed queries (26 queries) into the content of
ContentItems, as it is possible with ASK-queries in SMW.

• Transcluding one item into another one is not possible (30 transclusion).
Embedded queries could also solve this.

• HKW should show more than one level of detail (22 levels of detail), e. g.,
the details of an item’s details should also be visible to mimic more a
document-like view. This is conceptually easy but has just not been
implemented due to lack of time.

• Drag and drop support for easy refactoring (10 refactor) is also not present
but is conceptually easy to add.

Contribution: An empirical survey on PKM
Type: experimental.

Chapter 3 presented use-cases in PKM which have been gathered from aOnline survey
with 50
participants

novel online survey with 50 participants. This survey has been published
partially by Völkel et al. (2008).

Contribution: A comparative user study
Type: experimental.

Five participants worked together for a total of 125 hours with CDS Tools
and a comparable semantic modelling tool. Their resulting knowledge mod-
els have been assessed and compared in various ways.

The user study has not been published prior to this thesis.

7.2. Future work
The CDS model is the basis of the iMapping (cf. Sec. 5.3.1) and QuiKey
(cf. Sec. 5.3.2) tools, which are the central part of the ongoing PhD thesis
of Heiko Haller.

Research creates more questions the more answers it gives. This remain-
der of this section lists interesting future work.

7.2 Future work 239

Requirements No requirements list is ever complete. E. g., the require-
ment of life-long data portability could be added to the requirements list
for an ideal PKM model and tool. Long-term archiving of digital informa-
tion has its own challenges, described by Lorie (2001).

Economic Analysis

Measuring knowledge models In this thesis, certain metrics for mea-
suring knowledge models in CDS and SMW have been developed.
However, a more generic and more precise metric of information con-
tent would allow assessing and comparing the interaction efficiency
of PKM tools much better. This includes counting individual words
and calculating their information content with metrics such as TF-
IDF (term frequency-inverse document frequency, see Baeza-Yates and
Ribeiro-Neto (1999)).
Of course, evaluating the information content of semantic statements
is difficult to assess precisely, as some formal statements have a much
higher influence than others, and hence more information content.
E. g., a has subtype-statement has usually more influence on a knowl-
edge model than a has phone number-statement.

Evaluating PKM tools The economic analysis can be performed on tools
used for personal knowledge management. Here is a sketch how such
an analysis could be performed on SMW:
In Semantic MediaWiki the page history allows in principle to cal-
culate the change in information content for each edit. If additional
access logs for the embedded ASK-queries would be available, too, a
complete measurement of costs could be done. Given an additional
hypothetical SMW extension asking the user to rate the usefulness of a
query result, a complete measurement of the benefit of using Semantic
MediaWiki would be possible.

Evaluate structure and semantics By measuring the information con-
tent and putting this into relation with the value of retrieved knowl-
edge, the value of structuring and adding formality to knowledge mod-
els can be assessed, too. This allows fine-tuning the capabilities of
future personal or collaborative knowledge models.

Evaluating PKM strategies Are many notes taken and never used?
Are notes only found after longer and costly searches? Should more
or less notes be taken?
The same idea – measuring all interaction costs and asking the user to
give feedback on the value of retrieval results – can be applied within
a PKM tool to assess the PKM strategies of an individual

240 DISCUSSION, FUTURE WORK, AND CONCLUSIONS

CDS data-model model and API First, there are a number of obvious
technical extensions that should be added to both the conceptual CDS data-
model and to the API and reference implementation as well:

• Versioning – Every ContentItem should have a history of changes to its
content, just like wiki pages. A knowledge model as a whole should con-
tain a versioning history of structural changes, that is about all semantic
Statements and added or deleted Items. Technically, the implemen-
tation is already quite close to the second par: Every change in the CDS
model is done via change events. Those could be stored. A system for
versioning RDF data is described in Völkel and Groza (2006).
Less obvious is how to use versioning in CDS productively. What kinds
of roll-backs are needed? What kinds of diffs does a user wants to see?
How to visualize a diff between semi-formal knowledge models? What
kind of queries about past states of a knowledge model are desirable?
Answers to these questions are clearly future work.

• Graça Pimentel et al. (2000) describe how to derive new Statements
between Items by mining a user’s interaction traces with a knowledge
model. The approach is not related to CDS, but could be adapted.

• Queries – Beyond SPARQL and full-text queries more graph-like queries
are also desirable for knowledge models, e. g., which paths connect two
given Items? A promising candidate for efficient graph pattern search,
based on a kind of regular expressions over graphs, can be found in (Geiß,
2008, Chapter 5).

• Inference – Users might want to customize and extend their inference
system. A rule-based approach might be helpful here. A good candi-
date for expressive yet computable rules might be ELP from Krötzsch,
Rudolph, and Hitzler (2008).

Aside from these more technical extensions, the connection from PKM to
OKM with CDS could be explored. A tool approaching this topic is de-
scribed by Krohn, Kindsmüller, and Herczeg (2008). There are three inter-
esting challenges:

• Sharing models with other people. The challenge is how to integrate
somebody elses knowledge model into you own model without “mess-
ing” your own model. Certainly a way to control the display or usage
of knowledge coming from other people is relevant. Should knowledge
from somebody else be used for inferences? How to delete it after a
while without deleting your own knowledge? If all these questions are
answered, the next one is:

• What if you imported a model from somebody else and now the other
model changed. How can you profit from these changes automatically
by synchronising the shared part of the model without loosing your own
changes? This question is related to versioning and ontology evolution.

7.3 Conclusions 241

• Finally, if automatic synchronising would work, whom do you allow re-
trieving which parts of your model? An answer requires to deal – among
other problems – with access rights on a highly structured artefact.

Another possible future work could be the re-use of existing knowledge such
as Wordnet (Fellbaum, 1998) for lexical knowledge or DBpedia6 for factual
knowledge. This can aside from technical issues also be seen as a case of
importing other peoples (large) knowledge models.

Hypertext Knowledge Workbench and STIF It should be possible to
embed queries in STIF content, so that the STIF render engine always
shows live results.

Furthermore, the notion of templates as a means to specify a structure
once and fill with data a number of times could be added to CDS-based
tools, especially HKW. A similar idea implemented in SMW is the Semantic
Forms7 extension.

Further evaluation of CDS What factors influence acceptance and suc-
cessful usage of CDS? In the evaluation only computer scientists have been
exposed to mid-term usage. The iMapping tool could become stable and
usable enough for casual users. This would allow disseminating CDS further
and study acceptance among different user groups.

Applications of CDS

• A web-based, social argumentation system (cf. Kunz and Rittel (1970))
could be built on top of CDS. A good book on the state of the art is
(Kirschner, Shum, and Carr, 2003). A bachelor thesis on discussion sys-
tems (Clemente Laboreo, 2007) concludes that CDS is a good candidate
for building such a collaborative discussion system.

• Furthermore, given ability to import RDF to CDS and to export CDS
to RDF, CDS-based tools could be used as generic RDF editors.

7.3. Conclusions
This thesis introduced the concept of a knowledge cue (Sec. 1.2.3) as an
artefact that can remind a person about previous personal knowledge. An
effective and efficient management of such knowledge cues in the form of
personal knowledge models (Sec. 1.2.3) allows shifting individual cognitive
limits.

This thesis has analysed factors that influence costs and benefit in PKM.
The results are document in the novel knowledge cue life-cycle (Sec. 1.2.3)
on which the economic analysis (Sec. 3.3) is based. Together with known

6http://dbpedia.org (accessed 06.01.2010)
7http://www.mediawiki.org/wiki/Extension:Semantic_Forms (ac-

cessed 06.01.2010)

242 DISCUSSION, FUTURE WORK, AND CONCLUSIONS

literature a comprehensive requirements catalog for PKM tools and the
conceptual model behind them has been created (Sec. 3.7).

As a solution, the Conceptual Data Structures model has been presented.
It consists of a flexible yet simple data-model (D), a relation ontology (R),
and an interchange format for structured text (STIF). The data-model al-
lows representing and using (via queries, browsing, and transformations)
knowledge cues in a uniform fashion that are in different degrees of formal-
isation.

The relation ontology (R) has been presented as a top-level ontology for
personal knowledge models.

Authoring in structured text has been shown as a means to cut down the
costs of externalising structured artefacts, which in turn lowers the cost of
retrieval.

The conceptual model of CDS with all three parts (D, R, and STIF)
has been implemented in a Java API and reference implementation. Based
on this API, the Hypertext Knowledge Workbench has been created as a
generic CDS editor. The CDS API has been changed and adapted four
times, shaped by its usage in NEPOMUK, HKW, QuiKey, and iMapping.
An additional implementation in JavaScript has been created for HKW– but
the reasoning engine in JavaScript turned out to be too slow. The presented
Java implementation is stable, reliable and has good performance. The
CDS model and the corresponding implementations provide a robust basis
for further personal semantic knowledge management tools – exemplified
by QuiKey and iMapping. Both the CDS model as well as the API and its
reference implementation separate the data-model D from the Relation
ontology R. This allows re-using both parts independently and adapting
the Relation ontology to other needs, mostly by extending it.

The developed CDS data model and the relation ontology fulfill almost
all of the 31 requirements from the requirement catalogue. Only versioning
has not been tackled yet.

An evaluation has shown that CDS has been perceived to be as easy to
learn as comparable models.

The CDS tools (HKW plus two more developed by third parties) have
been evaluated in three different scenarios and have been compared to a
mature, state-of-the art semantic wiki. This 125-hour-evaluation revealed
that (a) the Relations from R have been used in user-created State-
ments, (b) users have created their own Relations, and (c) many of the
user-created Relations are sub-Relations of Relations from R. The
still prototypical CDS Tools have an interaction efficiency comparable to
the mature semantic modelling tool Semantic Media Wiki (SMW), which
has been confirmed by direct user ratings and by an analysis of interaction
traces with both tools.

Study participants created significantly more non-trivial triples in CDS
Tools, compared to SMW. Furthermore, CDS tools have successfully been
used to represent and use knowledge in different degrees of formality.

Given the good experiences in the user studies and the fact that CDS has
been derived as a unified model of the conceptual models of tools used for

7.3 Conclusions 243

PKM tasks, CDS is a good candidate for a future exchange format among
PKM tools. Together with some required extensions – outlined in Future
Work – CDS is a suitable formalism for exchange of PKM models among
people.

The process of stepwise formalisation has been motivated in Sec. 3.2.2,
described in Sec. 4.4.1, and demonstrated in a user interface in Sec. 5.2.1.

The key feature of CDS models is their ability to represent informal knowl-
edge, formal knowledge and knowledge in varying degrees of formalisation,
in one single model. This allows gradually adding more structure and for-
mality, as desired, always under the assumption that more structure and
more formality allow better knowledge cue retrieval and usage.Furthermore,
CDS-based tools can be used across the whole life-cycle of PKM.

244 DISCUSSION, FUTURE WORK, AND CONCLUSIONS

Vision As outlined in the motivation section and described in (Völkel,
2007a), there is a vision behind the work on CDS. This vision is inspired by
MEMEX from Bush (1945) and Augment from Engelbart (1963).

PKM and knowledge work in general will move away from the tight cou-
pling of “one formalism to one tool” and instead move to generic formalisms
that can be edited in a number of tools. Such generic formalisms allow new
scientific or personal insights as well as providing cheaper ways for storing,
retrieving and transforming knowledge.

In an ideal future world, a broad number of PKM tools (or simply tools
used for PKM tasks) can export their data as CDS models and import from
CDS models. A tool that does not understand the semantics of some Re-
lations simply falls back to process it as the next super-Relation that it
can handle. As an example, the CDS model exported by a tagging-aware
application might use the Relation [has tag] to export the assignment from
a file to a tag. The importing application might not understand [has tag]
but its super-Relation [has annotation]. So it renders the tag assignments
as annotations (e. g., as call-outs in a mind-map). The user can edit the
tag names here. Later, the knowledge model can be re-opened in the first
application with correctly renamed tags, which still used the [has tag] Re-
lation. Of course, newly added tags would become merely annotations
as the creating should not create Statements with Relations which’s
consequences it cannot understand.

Documents, presentations and outlines can be generated from personal
knowledge models8.

In a (huge) cultural step, documents are no longer exchanged. Instead,
knowledge models are published and interlinked in a fine-granular manner
to other people’s work. Academia moves away from documents and focuses
more on distributed, formal argumentation. Schools start to teach modelling
with the same rigour as reading, writing and math. The global population
shifts their cognitive limits, and old problems are tackled with new solutions.

8The mapping from CDS models to (STIF-) documents has been presented in
Sec. 4.3.3.

A. Appendix

A.1. Foundations: Embedding RDF in HTML
RDF is a meta-data standard described in Section 2.6. There are two ap-
proaches allowing to embed RDF data in HTML pages: RDFa1 and eRDF2.
Table A.1 contains the main points of difference between the two approaches.

Feature or Requirement eRDF RDFa
DRY (Don’t Repeat Yourself) yes mostly
HTML4 / XHTML 1.0 validity yes no
Explicit syntactic means for arbitrary resource descrip-
tions

no yes

Supported by the W3C partly yes
Follow DCMI guidelines yes no
Support for not just plain literals (e. g., typed dates,
floats, or markup).

no yes

Triple bloat prevention (only actively marked-up infor-
mation leads to triples)

yes no

Possible integration in namespaced (non-HTML) XML
languages.

no yes

Tidy-safety (Cleaning up the page will never alter the
embedded semantics)

yes no

Explicit support for blank nodes. no yes
Compact syntax, based on existing HTML semantics
like the address tag or rel/rev/class attributes.

mostly partly

Inclusion of newly evolving publishing patterns (e. g.,
rel="nofollow").

no partly

Table A.1.: Comparing eRDF and RDFa
The data is an excerpt of an analysis by Benjamin Nowack.
Published on February 12 2007 at http://bnode.org/blog/2007/02/12/
comparison-of-microformats-erdf-and-rdfa (accessed 06.01.2010).

A.2. Analysis: PKM survey
These questions have been asked in the PKM online survey:

1http://www.w3.org/TR/xhtml-rdfa-primer/ (accessed 06.01.2010)
2http://research.talis.com/2005/erdf/wiki (accessed 06.01.2010)

248 APPENDIX

1. What should a Personal Knowledge Management (PKM) tool do for
you? Please give examples of tasks where a PKM tool could help you
to be more productive.

2. Which tools do you use to take personal notes? i.e. notes that are
intended to be read only by you. Try to enumerate them all.

3. In one week, how many personal items do you write down?
Of these personal notes, how many are still relevant (in percent) after
. . .

a) . . . one day?
b) . . . one week?
c) . . . one month?
d) . . . one year?

4. How much time do you spend . . .
a) writing down personal notes in one week?
b) searching for personal notes in one week?
c) organising, structuring personal notes in one week?

5. When do you know you have to adapt your personal KM strategy/-
tool? E. g., what must happen so you know things go wrong? In other
words: Which factors do you monitor yourself to know that your PKM
works well enough?

6. For what kind of projects/tasks do you wish you had better PKM
support?

7. Which tools do you use today for such tasks?

8. What are the features of PKM tools? Please help us to create a list
to compare PKM tools in a matrix style. Which features would you
look for? E. g., “full-text search”.

A.3. Structured text interchange format
A.3.1. A STIF Wiki Syntax
A part of the CDS reference implementation is a STIF wiki syntax parser
which parses the syntax depicted on the left side of the comparison tables
and emits the STIF depicted on the right side.

A.3 Structured text interchange format 249

Inline formatting

STIF wiki syntax Resulting STIF
bold bold
__italic__ italic
<tt>code</tt> <code>code</code>
forced linebreak\\ forced linebreak

Headings

STIF wiki syntax Resulting STIF
= Heading 1 <h1>Heading 1</h1>
== Heading 2 <h2>Heading 2</h2>
=== Heading 3 <h3>Heading 3</h3>
==== Heading 4 <h4>Heading 4</h4>
===== Heading 5 <h5>Heading 5</h5>
====== Heading 6 <h6>Heading 6</h6>

Links

STIF wiki syntax Resulting STIF

[AAA]
<a href="#urn-of-AAA"

class="stif-internal">AAA

[aaa|AAA]
<a href="#urn-of-AAA"

class="stif-internal" >aaa

[http://sap.com]

<a href="http://sap.com"
class="stif-external"
>http://sap.com

[SAP|http://sap.com]
<a href="http://sap.com"

class="stif-external">SAP

Block-level

STIF wiki syntax Resulting STIF
first paragraph

second paragraph

{{{pre-

formatted block}}}

<p>first paragraph</p>
<p>second paragraph</p>
<hr>
<pre>pre-

formatted block</pre>

250 APPENDIX

Ordered list

STIF wiki syntax Resulting STIF

+ first item
+ second item

first item
second item

Unordered list

STIF wiki syntax Resulting STIF

* item one

* item two

item one
item two

Definition list

STIF wiki syntax Resulting STIF

; Term A
: Def A
; Term B
: Def B

<dl>
<dt>Term A</dt>
<dd>Def A</dd>
<dt>Term B</dt>
<dd>Def B</dd>

</dl>

Images

STIF wiki syntax Resulting STIF
[http://w3.org/x.gif]

Tables

STIF wiki syntax Resulting STIF

!! Header 1.1 !! Header 1.2
:: Cell 2.1 :: Cell 2.2

<table>
<tr>

<th>Header 1.1</th>
<th>Header 1.2</th>

</tr>
<tr>

<td>Cell 2.1</td>
<td>Cell 2.2</td>

</tr>
</table>

A.3 Structured text interchange format 251

Mixed lists

STIF wiki syntax Resulting STIF
With indention:

+ item one
+ item two

* subitem A

* subitem B
+ item three

; Term X
: Definition X
; Term Y
: Definition Y

+ item four

Without indention:

+ item one
+ item two
+* subitem A
+* subitem B
+ item three
+; Term X
+: Def X
+; Term Y
+: Def Y
+ item four

Result for both syntaxes:

item one
item two
item three

subitem A
subitem B

item four

<dl>
<dt>Term X</dt>
<dd>Def X</dd>
<dt>Term Y</dt>
<dd>Def Y</dd>

</dl>

A.3.2. STIF Document Type Definition (DTD)
The full Document Type Definition (DTD) for STIF is printed here.

<?xml version="1.0" encoding="UTF-8"?>
<!-- This is STIF 1.0 DTD.

Draft: 2009-02-20
Revised: 2009-02-22
Authors: Max Voelkel (dev@xam.de), Andreas Kurz
Further information about STIF is available at:

http://semanticweb.org/wiki/STIF -->

<!-- Imported names -->
<!ENTITY % URI "CDATA">
<!ENTITY % Text "CDATA">

<!-- Parameter entities -->
<!ENTITY % heading "H1|H2|H3|H4|H5|H6">
<!ENTITY % list "UL | OL">
<!ENTITY % preformatted "PRE">

<!-- Text markup -->
<!ENTITY % special "A|IMG|BR">
<!ENTITY % phrase "EM|STRONG|CODE">

252 APPENDIX

<!ENTITY % inline "#PCDATA | %phrase; | %special;">

<!ELEMENT EM (%inline;)*>
<!ELEMENT STRONG (%inline;)*>
<!ELEMENT CODE (%inline;)*>

<!ELEMENT BR EMPTY>

HTML has two basic content models: %inline; for character level ele-
ments and text strings and %block; for block-like elements, e. g., para-
graphs and lists.

<!ENTITY % block "P | %heading; | %list; |
%preformatted; | DL | HR | TABLE">

<!ENTITY % flow "%inline;| %block;">

<!-- Document body -->
<!ELEMENT STIF (%flow;)*>

<!-- Paragraphs -->
<!ELEMENT P (%inline;)*>

<!-- Anchor element -->
<!ELEMENT A (%inline;)*>
<!ATTLIST A
href %URI; #IMPLIED
class CDATA #IMPLIED

>

<!-- Images -->
<!ELEMENT IMG EMPTY>
<!ATTLIST IMG
src %URI; #REQUIRED
alt %Text; #REQUIRED

>

<!-- Horizontal rule -->
<!ELEMENT HR EMPTY>

There are six levels of headings from H1 (the most important) to H6 (the
least important).

<!-- Headings -->
<!ELEMENT H1 (%inline;)*>
<!ELEMENT H2 (%inline;)*>
<!ELEMENT H3 (%inline;)*>
<!ELEMENT H4 (%inline;)*>
<!ELEMENT H5 (%inline;)*>
<!ELEMENT H6 (%inline;)*>

A.4 XML-based persistence format for CDS 253

<!-- Preformatted text -->
<!ELEMENT PRE (%inline;)*>

DL are definition lists with DT for term and DD for its definition.

<!-- Lists -->
<!ELEMENT DL (DT|DD)+>
<!ELEMENT DT (%inline;)*>
<!ELEMENT DD (%flow;)*>
<!ELEMENT OL (LI)+>
<!ELEMENT UL (LI)+>
<!ELEMENT LI (%flow;)*>

<!-- Tables -->
<!ELEMENT TABLE (TR)+>
<!ELEMENT TR (TH|TD)+>
<!ELEMENT TH (%flow;)*>
<!ELEMENT TD (%flow;)*>

A.4. XML-based persistence format for CDS
The persistence component of the CDS reference implementation uses the
open source library XStream to serialise Java domains models to XML and
back again. This is a shortened sample file of a CDS file. Note that the file
shows some additional experimental features (deletable, changeable) that
are not describe in this thesis.

<org.semanticdesktop.swecr.model.memory.xml.XModel>
<contentItems class="linked-list">

<contentitem>
<uri>urn:cds:fff7157d-5e08-41e3-adc6-9872e1d5ca81</uri>
<readonly>false</readonly>
<deletable>true</deletable>
<changeDate>1252413250387</changeDate>
<creationDate>0</creationDate>
<authorURI>http://imapping.info#author</authorURI>
<binary>false</binary>
<content>

<p>select it and press backspace</p>
</content>
<mimetype class="org.semanticdesktop.binstore.MimeType">

<mimeType>application/stif+xml</mimeType>
</mimetype>

</contentitem>
... Further <contentitem>...

</contentItems>
<nameItems class="linked-list">

<nameitem>
<uri>urn:cds:005053c4-e0de-4d94-9854-8415e9569c58</uri>
<readonly>false</readonly>
<deletable>true</deletable>
<changeDate>1252400908183</changeDate>
<creationDate>0</creationDate>
<authorURI>http://imapping.info#author</authorURI>
<name>Lernförderlichkeit</name>

254 APPENDIX

</nameitem>
... Further <nameitem>...

</nameItems>
<relations class="linked-list">

<relation>
<uri>urn:xam.de:20090903-13.45.34.707-1</uri>
<readonly>false</readonly>
<deletable>true</deletable>
<changeDate>1251985534707</changeDate>
<creationDate>0</creationDate>
<authorURI>http://imapping.info#author</authorURI>
<name>knows-inverse</name>
<inverseUri>urn:xam.de:20090903-13.45.34.707-0</inverseUri>
<inverseName>knows</inverseName>
<inverseCreationDate>1251985534707</inverseCreationDate>
<inverseChangeDate>1251985534707</inverseChangeDate>

</relation>
... Further <relation>...

</relations>
<statements class="linked-list">

<statement>
<uri>urn:xam.de:20090906-10.36.33.093-0</uri>
<readonly>false</readonly>
<deletable>true</deletable>
<changeDate>1252233393093</changeDate>
<creationDate>0</creationDate>
<authorURI>http://imapping.info#author</authorURI>
<binary>false</binary>
<s>urn:cds:c09e6f98-5d0e-4ff6-93ed-494535e54cbc</s>
<p>http://www.semanticdesktop.org/ontologies/2007/09/

01/cds#hasDetail</p>
<o>urn:cds:df7dcdf5-dd86-4783-abb1-b7eee9368490</o>

</statement>
... Further <statement>...

</statements>
<triples class="linked-list"/>

</org.semanticdesktop.swecr.model.memory.xml.XModel>

A.5 Evaluation 255

A.5. Evaluation
This appendix contains a detailed analysis of fulfilled requirements, the
detailed task descriptions handed out to participants, as well as data tables
about the study results.

A.5.1. Fulfilment of requirements
This appendix details the evaluation of the requirements, which is presented
in the compact Table 6.1.

1 This has simply not yet been implemented in the tools. QuiKey demon-
strates already how queries can be executed on-demand. Adding an
automatic function to run all queries periodically and notify the user
can obviously be implemented. This functionality is planned for fur-
ther iMapping versions.

2 The CDS model has been constructed by generalising other data-models.

3 Each of the tools has individual ways for fast entry.

4 In D, the user can create ContentItems which do not imply other
facts in the model. In R, the user can use [is related to], which is
the top-relation. It does not imply any other Triple. STIF can be
used in a plain-text fashion, if the user simply uses no special wiki
formatting syntax such as “===”.

5 In D and R, a Statement can be used with a Relation for which
inference has been defined. STIF contains syntax elements which re-
sults in semantic statements. Each tool has a way to enter formal
statements.

6 A relation ontology (R) can never have “different granularity”. D sup-
ports very small up to very large ContentItems, together with no,
few or many STIF formatting instructions. HKW, QuiKey and iMap-
ping support this.

7 All Item in D are addressable. Different from data models such as XML,
RDF and OWL even statements between entities can be addressed.

8 The tools could use the formal knowledge even better, e. g., by displaying
icons to represent the different inferred types of items. The queries
could use the informal text and structures better, eg letting a user
search for a term in all text parts that have an italic formatting.

9 In D, a user can shift from using a ContentItem to using a NameItem
with the same content. A user can explicate her knowledge as the
content of items in unstructured form, or structured via wiki-syntax
(see 4.3.2). The migration from unstructured text to wiki syntax is
smooth. Knowledge can also be represented as formal statements.
Sec. 4.3.2 describes also how such statements can be derived from wiki

256 APPENDIX

syntax to smooth the transition. In R, stepwise formalisation is a
core concept, as explained in Sec. 3.2.2. HKW and iMapping allow
refining Statements with more specific Relations. QuiKey allows
only deleting Statements and re-creating them in refined ways.

10 Refactoring of models can only be supported by tools operating on
models.
Refactoring of content is probably a key strength of mind maps and
a key problem of wikis. iMapping allows refactoring of the context-
detail-hierarchy via drag-and-drop. None of the tools has support for
batch operations. Renaming of concepts (NameItems) is possible in
all tools.

11 The CDS model has no special support for versioning. The CDS API,
however, uses an event listening pattern, so that all events ever oc-
curring in a model (creating, changing and deleting items) can be
monitored and re-played.

12 D tracks for each Item the creation date, change date and author. This
date is exposed in HKW if the user hovers over an item. Additionally,
the user can use formal Statements to express even richer context
models.

13 This requirement for tools is poorly addressed in the prototype imple-
mentations.

14 This requirements has been evaluated in Sec. 6.2 and 6.3.

15 In D, any items linked to the same source or target are grouped together
in a way. As an example, linking a, b, and c to the same target t via
any kind of relation, e. g., p: (a, p, t), (b, p, t), and (c, p, t). Then the
query (∗, p, t) returns the group of items.
The Relations [has context] and [has detail] have been designed for
grouping items, optionally in a nested way. iMapping uses these Re-
lations to group Items visually.

16 The relation ontology provides [has part] to represent containment re-
lationship. Section 4.3.3 describes how STIF documents are encoded
in D with [has part].

17 The concept of NameItems in D maps strings to Items. A user can
link a NameItem via Statements to other Items. By doing so, she
can make each Item addressable with a name. Different from wikis,
neither D nor the CDS-based tools require a user to use names or
NameItems at all. Users can convert existing ContentItems to
NameItems and vice versa.

18 The Relation [is alias for] in R is provided, but the semantics have
not been implemented yet in the prototypes. Therefore, the alias-
semantics can only be stated in all tools, but there is no special support
for retrieval.

A.5 Evaluation 257

19 The Relation [comes after] and [comes before] let the user express
partial or complete ordering among Items in a mathematical sense.
HKW uses these Statements to determine the order in which detail-
Items are rendered. iMapping and QuiKey let the user state order
via their generic Statement manipulation abilities, but provide no
special support for rendering order. STIF uses the [comes after] and
[comes before] to represent the order of document parts when parsing
wiki syntax.

20 In D, links are modelled as Statements. Any kind of resource can be
linked with any other resource (e. g., ideas, persons, files, issues, tags,
types, . . .). The direction and type of the link can be specified.
R has a special Relation to represent generic hyperlinks ([links to]).
STIF supports normal links to NameItems as well as semantic links
to NameItems. Links to external web resources are supported as
well. HKW supports all these link types.

21 R provides the Relation [has detail] and [has context] for nested
grouping. iMapping has been designed around the idea of hierarchical
browsing. HKW and QuiKey provide no additional support for this
Relation beyond their generic abilities.
All kinds of hierarchies, including type-hierarchies are modelled in
CDS as [has type] (inverse: [has instance]) or sub-relations of these
relations. This allows generic tools to browse all kinds of hierarchies.

22 This feature is well implemented in iMapping. HKW supports only
three levels of detail at once, but could be extended to support more.
QuiKey is a concept that focuses on individual Items, especially Sta-
tements.

23 R provides the Relation [annotates] to represent all kinds of annota-
tions. HKW dedicates a part of the user interface to show and author
annotations. iMapping and QuiKey have only generic annotation sup-
port.

24 R provides [has tag] for tagging. All tools support tagging in a generic
way.

25 Categories can be seen as hierarchical tags or names. R has [has de-
tail], this is enough to model nested categories and their members.
If reasoning is desired, [is subtype of] can be used to nest category
names. All tools can use this.
In CDS, each item can be used as another’s items type via [has type].
This allows adding to each item a type and is required to enable full
meta-modelling, i. e., assigning types to types (→ Req. 31 meta-modelling)

26 Queries operate on the data model (D) as defined in Sec. 4.1.3. Queries
take semantics of Statements into account. Only the QuiKey pro-
totype allows defining and executing queries.

258 APPENDIX

27 All Statements in D are browsable in all three CDS-based tools.
STIF is rendered as hyper-linked HTML. The relation ontology (R)
is modelled in D and can therefore be browsed as well.

28 Inverse Relations are mandatory for each Relation in D. HKW and
QuiKey allow editing and using inverse Relations. iMapping can
display inverse Relations but has no support for renaming inverse
Relations. Due to the visual concept of iMapping, inverse Rela-
tions are not required.

29 D is a domain-free model, allowing to represent any data with or with-
out a schema. R is rather generic and extensible for cases where it
turns out to be to restricted. All three tools operator on the domain-
free model. Hence a user is not constrained by a schema. Users can
create any number and kind of Items and relation types as they need.

30 Any Item can be referenced, but the current implementation of STIF
has support for rendering linked Items inline as part of the main text.

31 As all Items are addressable and Statements can link any Items, full
meta-modelling is provided. Annotating and linking Statements is
only implemented in HKW.

A.5.2. Study task descriptions
Scenario A

Vorab
* Gehe zur CDS Tools Homepage http://cdstools.xam.de
* Installiere von dort die CDS-Tools
* Lies die CDS Tools Homepage genau durch. Besonders wichtig ist
http://semanticweb.org/wiki/CDS_Tools#Relation_Types_-_all_CDS_

tools

Lies auch folgende Seiten:
** http://semanticweb.org/wiki/CDS_Tools/Wiki_Syntax
** http://semanticweb.org/wiki/HKW
** http://semanticweb.org/wiki/QuiKey/Documentation
iMapping
* Erforsche und Lese die “Welcome-Map” in iMapping
* Erforsche alle Menü-Optionen.
HKW
* Starte HKW aus iMapping
* Spiele damit herum und teste auch die Wiki-Syntax
QuiKey
* Starte QuiKey aus iMapping
* Spiele damit herum und teste auch Abfragen

Aufgabe 1a (Dauer: ca. 1h)
Verwende iMapping um den Inhalt von http://de.wikipedia.org/wiki/Wei%
C3%9Fer_Hai in eine Faktensammlung umzusetzen. Stelle Dir dabei vor, Du seist “Lin-
da”, eine Biologin, welche den Weißen Hai erforscht. Erstelle ihre persönlichen Notizen.

A.5 Evaluation 259

Sie hat bisher kaum Vorwissen zum Weißen Hai.
Speichere deine Wissensbasis in iMapping unter <Datum>-<DeinName>-1a.iMap

ab. Also z.b. “20090713-voelkel-1a.iMap”. Sende die fertige Datei per Email an cdstools@xam.de.
Aufgabe 1b (Dauer: ca. 3-5h)

* Wechsele nun zu HKW (Ctrl-B) und löse die nächsten Schritte in diesem Werkzeug.
* Füge Fakten über den Riesenhai http://de.wikipedia.org/wiki/Riesenhai hinzu
* Füge Informationen über Bücher und Kinofilme zum Weißen Hai hinzu
* Schreibe 5 Fragen auf, die du mit Hilfe deiner Faktensammlung beantworten kannst.
** Dabei ist es egal, ob du die Fakten als Text, formatierten Text mit Wikisyntax oder
als Statements (=Links) anlegst.
* Schreibe 5 Fragen über den weißen Hai auf, die du mit deinem Wissensmodell nicht
beantworten kannst.
Speichere deine Wissensbasis in iMapping unter <Datum>-<DeinName>-1b.iMap ab.
Also z.b. “20090713-voelkel-1b.iMap”. Sende die fertige Datei an cdstools@xam.de.

Scenario B

* Dauer: 5h
* Thema: “Gewürze”
* Sprache: Entscheide selbst, ob du die Aufgabe auf Deutsch oder Englisch lösen möchtest.

SMW:
* Werkzeug: Semantic
MediaWiki (login erhälst
du in separater mail)

Vorab
* Mache dich mit den
Möglichkeiten der ASK-
Abfragen vertraut (ca. 20
Minuten)

Beachte
* Achte darauf, Teile der
Wissensbasis so weit
zu strukturieren, dass
du ASK-Fragen stellen
kannst.

CDS Tools:
* Werkzeug: CDS Tools

Vorab
* Mache dich nochmals mit den Abfragemöglichkeiten in
QuiKey vertraut. (ca 20 Minuten)
** http://semanticweb.org/wiki/QuiKey/
Documentation

Beachte
* Achte darauf, Teile der Wissensbasis so weit zu struktu-
rieren, dass du z.B. in QuiKey Abfragen stellen kannst.
* Speichere deine Wissensbasis in iMapping unter
<Datum>-<DeinName>-3.iMap ab.
** Also z.b. “20090713-voelkel-3.iMap”. Sende die fertige
Datei per Email an cdstools@xam.de.

Preis:
* Es wird später einen Preis (2 Kinokarten + 1 Popcorn) geben für denjenigen, der kon-
krete Fragen mit Hilfe seiner Wissensbasen am Besten beantworten kann.
* Bei der Abfrage entscheidet Max wer wann welche Wissensbasis benutzen darf (es wird
fair gewechselt). SMW und CDS Wissensbasen werden dabei voneinander getrennt - also
musst Du in beiden Tools geschickt modellieren (gut, aber nicht zuu lange brauchen), um
den begehrten Preis zu gewinnen.

Szenario:
Du bist ein Koch in einem 4-Sterne Restaurant. Deine Gäste erwarten von Dir ständig
neue Kreationen. Du kennst die Praxis und verwendest viele Gewürze. Nur über die Ge-
würze selbst weißt Du bisher wenig. Um das zu ändern, startest du eine fünfstündige
Recherche im Internet. Dein Ziel ist der Aufbau eines Wissensbasis über Gewürze, insbe-

260 APPENDIX

sondere jegliche Art von Zusammenhang zwischen Gewürzen.
* Welche stammen von ähnlichen Pflanzen ab?
* Welche schmecken ähnlich?
* Welche passen gut zusammen?
* Welche werden ähnlich erzeugt?
* Welche werden für ähnliche Gerichte verwendet?
* Welche werden in ähnlichen Kulturen verwendet?
Versuche dabei insgesamt, möglichst bekannte Gewürze bevorzugt zu betrachten. Füge
zur Wissensbasis alles hinzu, was dir spannend oder relevant vorkommt.

In ca. 4 Wochen wirst du unter Zeitdruck das neue Überraschungsmenü entwerfen. Dann
bgracusht du eine gute Datenbasis um zu entscheiden, welches Gewürz du durch welches
probehalber ersetzen könntest. Auch deine Kochprüfung über Gewürze wird die einiges
abverlangen. Achte darauf, dass Du vor allem Zusammenhänge zwischen Gewürzen fin-
dest.

Und denk daran: Ein reines copy & paste hilft dir später wenig, weil die die Fragen
unter Zeitdruck beantworten musst, da ist zuviel Text hinderlich.

Aufgabe 3b:
* Stelle 5 Fragen, die Du mit deiner Wissensbasis gut beantworten kannst
* Stelle 5 Fragen, die Du mit deiner Wissensbasis nur umständlich beantworten kannst
(aber überhaupt)

Sende die Fragen an cdstools@xam.de

Second round assignment After assignment 2 the names of the most often
used spices have been collected and were proposed to use for assignment 3.
The emails in assignment 3 had this additional text:

Zusatzhinweis:
Betrachte als Gewürze z.B. Pfeffer, Ingwer, Öl, Muskat, Chili, Vanille, Nelke, Minze,
Szechuan-Pfeffer, Estragon, Rosmarin, Thymian, Oregano, Majoran, Petersilie, Zucker,
Salz, Essig, und Zitrone.

A.5 Evaluation 261

Scenario C
SMW:
* Dauer: 5 Stunden
* Werkzeug: SMW
** Bitte die Inhalte in
SMW modellieren. Dabei
darauf achten, das man-
ches u.U. auch abfragbar
ist, aber ohne zu viel Zeit
für die Modellierung zu
verwenden, da du den ge-
samten Text modellieren
musst.
** Dein Wiki-Zugang
bekommst Du mit einer
weiteren Email.

CDS Tools:
* Dauer: 5 Stunden
* Werkzeug: Hauptsächlich HKW, ergänzend QuiKey und
iMapping
** Bitte die Inhalte in HKW modellieren. Dabei darauf
achten, das
*** Bestehende Relationen wiederverwendet werden, z.B.
“has type”, “is subtype of”.

Vorab: Achte drauf, dass deine CDS Tools auf dem aktuel-
len Stand sind, vor allem HKW.
Siehe hierzu
* http://semanticweb.org/wiki/CDS_Tools#
Running_and_Updates
* http://semanticweb.org/wiki/HKW#If_HKW_
hangs

Thema: “Soziale Netzwerke”
* Entscheide selbst, ob du die Aufgabe auf Deutsch oder Englisch lösen möchtest.

Preis:
* Es wird später einen Preis (2 Kinokarten + 1 Popcorn) geben für denjenigen, der kon-
krete Fragen mit Hilfe seiner Wissensbasis am Besten beantworten kann. Die Befragung
wird einzeln im September stattfinden. Du hast dabei wieder Zugriff auf deine modellier-
ten Wissensbasen (CDS und SMW, allerdings nicht gleichzeitig). Es ist daher klug, sich
im Voraus schonmal mit den Abfrage-Möglichkeiten (in HKW, iMapping und QuiKey)
vertraut zu machen.

SMW:
Aus Zeitgründen solltest du erwägen jetzt be-
reits ASK-Fragen anzulegen (siehe http:
//semantic-mediawiki.org/wiki/
Help:Inline_queries).

CDS Tools:
Aus Zeitgründen solltest du erwä-
gen jetzt bereits Queries in QuiKey
anzulegen (das geht nicht in HKW).

Dann sparst Du in der Abfrage-Runde Zeit, allerdings geht dies zu Lasten von mehr
Wissen in der Wissensbasis.
Dein Modell wird nur von Dir verwendet werden.

Die Aufgabe:
Du bist Chef einer Berliner Firma mit fünfzehn Angestellten. Zum zehnten Jubiläum or-
ganisierst du eine Feier, auf der auf zukünftige Projekte besprochen werden sollen, die für
deine Firma essentiell sind.

Einige Wochen vorher plaudert einer deiner Mitarbeiter aus dem Nähkästchen.
* Seine Informationen sind in 8 Bilddateien enthalten.
* Verwende eigene Formulierungen.
* Der Text ist teilweise recht wirr. Man muss ziemlich genau lesen muss, um nichts wich-
tiges zu verpassen. Das ist beabsichtigt.

Einige der genannten Personen arbeiten heute in deiner Firma, andere bei Kunden und

262 APPENDIX

in den Firmen möglicher Kunden. Ohne näher darauf einzugehen, wer in deiner Firma
arbeitet: Du musst Dir gut überlegen, wen Du auf der Feier nebeneinander setzt, damit
es keinen Eklat gibt und über wen du welchen potentiellen Kunden ansprechen kannst.
Dazu musst Du die folgenden Fakten analysieren:
* Wer kennt sich und woher?
** Wer ist mit wem verwandt?
** Wer wohnte mit wem zusammen?
* Wie stehen die Menschen zueinander? Positiv, verfeindet, anders ... ?
** Haben sich X und Y schon einmal gestritten?
* Wer hat welchen Hintergrund (Ausbildung, Beruf)?
* Wer hat wo gearbeitet? – wer, wenn auch nicht unbedingt gleichzeitig – in der gleichen
Firma gearbeitet hat, erfährt möglicherweise indirekt etwas über die anderen Personen.

Aus dem Text kann man sehr viele “X kennt Y”-Beziehungen rausziehen, aber die Art
von Beziehung (also “Wie steht X zu Y”) ist schwieriger.
Es geht also nicht Darum, sich alle Details zu merken, sondern grob das soziale Netzwerk,
um damit Entscheidungen zu treffen. Es geht dabei nicht nur um die Jubiläumsfeier.

Bevor du anfängst zu modellieren:
* Stelle fünf Fragen, die für Dich als Firmenchef relevant wären
* Denke daran, bestehende Relationen wiederzuverwenden. Das ist wichtig für die Eva-
luation.

Teilaufgabe:
* Stelle fünf Fragen, die für Dich als Firmenchef relevant wären (die du dir oben schon
gestellt hast)
* Stelle fünf weitere Fragen, die Du mit deiner Wissensbasis schnell beantworten kannst
* Stelle fünf weitere Fragen, die Du mit deiner Wissensbasis nicht schnell, aber überhaupt
beantworten kannst

Sende diese 15 Fragen per EMail an cdstools@xam.de.

Speichere deine Wissensbasis in iMapping, also z.b. “20090713-voelkel-4.iMap‘”. Sende
die fertige Datei per Email an cdstools@xam.de.

The input text for the social network modelling tasks has been taken from
the story plot of a popular German TV series that was aired since 1992. A
German fan wiki3 collects episode descriptions. The wiki source text from
episode 1 to 31 has been copied together into one text document. This
document has been converted into eight bitmap image files. The image files
haven been provided by email to the study participants. Below is the full
text of these image files. Spelling errors have been left in, as they have been
presented to participants.

3Maintained by Roman Allenstein at http://gzsz-wiki.de. Text used with
permission.

A.5 Evaluation 263

Input text Clemens kommt mit Vera aus dem Urlaub. Vera ruft ihren Sohn
Heiko an, um Bescheid zu sagen, dass sie überraschend wieder da sind. Die-
ser hatte sich schon auf ein Woche sturmfrei gefreut und liegt gerade mit
seinder Freundin Tina im Bett, als er den Anruf erhält. Heiko macht sich
auf den Weg zur Schule wo er auf Elke und Peter Becker, seine Mitschü-
ler, trifft. Außerdem besucht auch Patrick Graf diese Schule, dieser plant
allerdings die Schule kurz vor dem Abitur zu verlassen. Er möchte nämlich
in 3 Monaten mit seinem Vater nach Amerika gehen. Derweil taucht Tina
in der Praxis ihres Bruders, Dr. Frank Ullrich, auf. Im Wartezimmer sitzt
Elisabeth Meinhart, die auf ihre ehemalige Schülerin Marina trifft, welche
jetzt in einem Café jobbt. Dr. Ullrich teilt Elisabeth mit, dass sie sehr krank
ist und, dass es besser wäre, wenn sie aufhören würde zu unterrichten. Sie
sagt, dass die Schule ihr einziger Lebensinnhalt ist, aber Dr. Ullrich besteht
darauf, dass sie sich schonen muss. Er fragt sie nach ihrem Kind, weil er
bei einer Untersuchung die Narbe des Kaiserschnitts gesehen hatte. Darauf-
hin behauptet Elisabeth, dass das Kind bei der Geburt gestorben sei. Sie
verspricht Frank, dass sie nicht in die Schule zurückkehren wird. Sie will
ein neues Leben beginnen. Clemens sagt seinem Sohn Heiko, dass er und
Vera sich scheiden lassen wollen. Währenddessen schreibt Elisabeth ihren
Abschiedsbrief und versucht sich das Leben zu nehmen.

Bei den Richters ist Familienkrach angesagt. Vater Clemens packt noch
am gleichen Abend seine Koffer und verlässt das Haus. Derweil macht sich
Peter Becker Sorgen um seine Lehrerin Elisabeth Meinhart, die nicht ans
Telefon geht. Als er sie zu Hause besuchen will, trifft vor der Tür Elke
Opitz. Sie sehen Licht und nehmen Gasgeruch wahr. Sie finden Elisabeth
bewusstlos auf dem Boden und können noch rechtzeitig Hilfe holen. Patrick
Graf stellt sich bei Clemens Richter in der Agentur Löpelmann vor. Er will,
bevor er mit seinem Vater nach Amerika geht, Berufserfahrung sammeln.
Clemens sagt, dass er in der Poststelle der Werbeagentur anfangen kann.
Claudia, Clemens Sekretärin, betritt sein Büro. Die beiden haben eine Affä-
re. Claudia drängt Clemens den Anwalt, wegen seiner Scheidung mit Vera,
endlich anzurufen. Währenddessen liest Vera ihrem Sohn Heiko todtraurig
einen 15 Jahre alten Liebesbrief von Clemens vor. Peter Becker wird von
seinem Vater (Erwin Becker) verdächtigt 50 Mark aus der Spardose gestoh-
len zu haben. Peter streitet dies allerdings ab. Darauf hin schlägt ihn sein
Vater, während seine Mutter (Gerda Becker) in der Tür steht und nichts
unternimmt um ihrem Sohn zu helfen.

Patrick verspricht Tina, sie durch die Connections seines Vaters zu ei-
nem Top-Model zu machen. Heiko Richter kümmert sich um seine Mutter,
die Depressionen hat. Tina taucht auf und wenig später steht Peter mit
blutüberströmtem Gesicht vor der Tür. Völlig außer sich erzählt er, dass er
sich mit seinem Vater geschlagen und ihn wahrscheinlich umgebracht ha-
be. Nachdem Peter bei Dr. Frank Ullrich verarztet wurde und Heiko den
Beckers einen Besuch abgestattet hat, zieht Peter für ein paar Tage ins Haus
der Richters ein.

Elke Opitz trifft ihre ehemalige Mitschülerin Julia Backhoff, die bei einem
Hostessen-Service arbeitet. Als Lilo Gottschick, Julias Chefin, dazukommt,

264 APPENDIX

prophezeit sie Elke, dass sie in weniger als zwei Wochen ebenfalls bei ihr
anfangen wird. Vera Richter hat sich beim Joggen den Knöchel verstaucht.
Peter, der sich im Garten nützlich gemacht hat, massiert die lädierte Stelle.
Zwischen den beiden knistert es gewaltig. Vera allerdings will, dass Peter
wieder auszieht.

Am Frühstückstisch der Richters sagt Peter Becker, dass er ausziehen
will. Heiko ist dagegen und streitet sich mit seiner Mutter Vera darüber. Da
taucht Elisabeth Meinhart auf und will Peter sprechen. Sie beschuldigt ihn,
ihren Abschiedsbrief an sich genommen zu haben, als er in ihrer Wohnung
war. Er wird sarkastisch und meint, dann könne er sie ja damit erpressen.
Tief verletzt geht Frau Meinhart. Wenig später erfährt sie von Frank, dass
er den Brief gefunden hat und ihn in ihrer Wohnung versteckt hat. Elke
verabredet sich mit Julia. Sie will Näheres über deren Job wissen.

Elisabeth Meinhart will Kontakt zu Peter Becker aufnehmen, der mittler-
weile bei den Richters keine Bleibe mehr hat. Sie bittet ihre Bekannte Frau
Gerlach, mit dem Jungen Kontakt aufzunehmen. Als sie bei den Beckers
auftaucht, wird sie sofort erkannt, denn Frau Gerlach war es, die damals die
illegale Adoption von Peter eingefädelt hatte. Weil Vater Becker eine Erb-
schaft wittert, will er sich wieder mit seinem Adoptiv-Sohn vertragen. Peter
wird ein Job als Animateur in einem Ferienklub in Aussicht gestellt. Ein
willkommener Lichtblick in seiner derzeitigen Lebenslage . . . Unterdessen
trifft sich Heiko mit Claudia, um ihr die Affäre mit Clemens auszureden.

Peter arbeite mit Benni im Yachthafen. Weder die Beckers noch Frau
Meinhart und Frau Gerlach wissen, wo sich der Junge aufhält. Erst durch
Frank Ulrich erfährt Frau Meinhart, wo Peter steckt. Doch auch er kann
nicht wissen, dass die Jugendlichen Probleme mit der Polizei haben. Unter-
dessen übt Clemens’ Sekretärin und Geliebte Claudia zunehmend Druck auf
ihren Boss aus. Sie will den gleichen luxuriösen Lebensstandard wie Vera
haben.

Clemens Richter erfährt von der Polizei, dass sein Sohn Heiko samt Freun-
den vorläufig festgenommen ist. Auf der Wache trifft er auf Erwin Becker,
der seinen Sohn Peter wegen der vermeintlichen Erbschaft umwirbt. Peter
nimmt das Angebot an, nach Hause zurückzukehren. Vera Richter hat der-
weil im Alkohol einen treuen Freund gefunden. Sie trägt ihre Probleme auf
dem Rücken ihres Sohnes Heiko aus. Bei den Köhlers hängt der Hausse-
gen aber ebenfalls schief. A. R. Daniel steigt in dieser Folge bei GZSZ ein.
Patrick bekommt bei ihm eine Chance, als sein Assistent zu arbeiten.

Denise Köhler ist verbittert über Bertrams Forderung, sie solle ihr Kind
abtreiben lassen. Sie sieht sich vor die Wahl gestellt, entweder ihr Baby oder
ihren Mann zu verlieren. Sie beschließt, bei Dr. Frank Ulrich Rat zu suchen.
Er will eine Abtreibung verhindern. In der Praxis befindet sich auch der
Werbemacher A. R. Daniel, der wegen Rückenschmerzen behandelt werden
will. Doch Frank Ulrich muss ein Nierenleiden diagnostizieren und empfiehlt
dem Erfolgsmenschen, seinen Lebenswandel radikal umzustellen. Unterdes-
sen muss Peter Becker feststellen, dass beim Einwohnermeldeamt keine Ge-
burtsurkunde von ihm existiert. Er weiß nicht, wer er ist.

Der aufgebrachte Peter Becker stellt seine Eltern zur Rede. Nach hartem

A.5 Evaluation 265

Ringen gestehen sie ein, dass Peter nicht ihr leiblicher Sohn ist. Nachdem
Gerda eine Fehlgeburt erlitten hatte, wurde ihnen angeboten, gegen viel
Geld einen Jungen bei sich aufzunehmen. Peter ist fest entschlossen, seine
wahren Eltern zu finden. Unterdessen gedeiht die Beziehung zwischen Frank
Ulrich und Patricia Koller. Franks Schwester Tina ist eifersüchtig.

Peter zieht wieder zu den Richters. Vera ist zwar nicht begeistert, aber
sie will sich nicht mit ihrem Sohn Heiko anlegen. Die Freunde machen sich
auf die Suche nach Peters wahren Eltern. Der einzige Anhaltspunkt ist die
Anschrift einer Frau Wirt, die das Baby-Tauschgeschäft damals angeblich
eingefädelt hat. Frank ist mit Patricia zum Golfspielen verabredet. Tina ist
sauer, weil er sie deswegen versetzt.

Frank hat Patricia Koller zum Abendessen eingeladen. Tina fühlt sich
verpflichtet, das Dinner vorzubereiten. Sie ist beleidigt, als Frank mit ferti-
gem Essen vom Party-Service nach Hause kommt. Auch der Abend verläuft
nicht nach Tinas Wünschen. Ihr Freund Heiko unterhält sich mit Patricia
und Tina fühlt sich überflüssig. Elke trifft Michael Döring. Sie erklärt ihm,
dass sie wegen seiner Nachstellungen die Schule verlassen hat.

Clemens kommt nach Hause und sieht die halb nackte Claudia im Clinch
mit Patrick Graf. Er missversteht die Situation und beschimpft seine Freun-
din als Schlampe. Vera bricht betrunken zusammen. Peter bringt sie ins
Bett. Claudia besucht Vera, um von ihr die Zustimmung zu einer schnellen
Scheidung zu bekommen. Sie will Clemens endlich ganz für sich haben.

Frank, Heiko und Patricia machen einen Sonntagsausflug. Tina bleibt zu
Hause, sie hat ihre Eifersucht gegenüber Franks neuer Freundin noch immer
nicht im Griff. Elke trifft sich wieder mit Michael Döring, lässt ihn aber
nicht zu weit gehen. Sie hofft, ihn in wenigen Monaten heiraten zu können.
Peter besucht Elisabeth. Sie söhnen sich miteinander aus, und die Lehrerin
verspricht ihrem ehemaligen Schüler, ihm bei der Jobsuche behilflich zu
sein. Bei Ullrichs ist der Haussegen wieder hergestellt. Tina und Patricia
verstehen sich gut. In die gemütliche Atmosphäre platzt Denise herein. Sie
bittet Frank, ihr Kind abzutreiben.

Clemens will sich von Claudia nicht zu einer Scheidung von seiner Frau
zwingen lassen. Vera will sich nur dann von Clemens scheiden lassen, wenn
sie das Haus behalten darf. Tina bekommt einen Job als Empfangsdame bei
Sports Unlimited - Sport total. Die Firma entpuppt sich als Pornoladen,
dessen Chef Herr Smythe ist.

Elisabeth lässt sich widerwillig überreden, mit Jessica und deren Freund
Charlie in den Club der einsamen Herzen zu gehen. Heiko, Tina und Peter
sind immer noch auf der Suche nach Frau Wirt. Sie müssen erfahren, dass
sie vor zwei Jahren gestorben ist.

Elisabeth hat im Tanzclub den Zahnarzt Joseph Mader kennengelernt,
der ihr sehr sympathisch ist. Clemens will mit seinem Sohn Heiko ein ka-
meradschaftlich-väterliches Gespräch führen. Der Versuch geht in die Hose.
Heiko will sich nichts mehr sagen lassen.

Denise hat ihr Kind von einem Kurpfuscher abtreiben lassen. Es geht ihr
gesundheitlich nicht gut. Daraufhin verspricht Bertram, seine Abreise nach
Kenia zu verschieben. Elke besucht Michael Döring, weist ihn aber zurück,

266 APPENDIX

als er mehr von ihr will als nur reden. Nachdem Elke weinend das Weite
gesucht hat, ruft Döring eine Frau an, die wenig später auf der Matte steht:
Es ist Lilo Gottschick.

Lilo Gottschick ist Michael Döring hörig. Sie droht, ihn umzubringen,
wenn er jemals eine andere Frau anfassen sollte. Daniel entdeckt Tina auf
einem Foto in Clemens’ Büro. Er vermittelt ihr einen Vorstellungstermin für
einen Werbespot. Vor der Agentur Löpelmann wird Tina von einem Wagen
von oben bis unten mit Schmutz bespritzt. Sie giftet den Fahrer an, ohne
zu ahnen, dass es der große Löpelmann höchstpersönlich ist.

Oswald Löpelmann verunsichert Tina so, dass sie das Vorsprechen ver-
masselt. Die ganze Werbekampagne, die von Clemens und Daniel entwickelt
wurde, passt dem großen Löpelmann nicht. Als er sich bei Vera und Cle-
mens zum Essen einlädt, müssen die beiden einen ganzen Abend lang trautes
Heim spielen. Peter bekommt von Gerd Spengler die Chance, die Cafeteria
auf Vordermann zu bringen. Seine erste Tat: Er feuert Marina.

Elisabeth eröffnet Joseph Madigan, den sie im Klub kennengelernt hat,
dass sie sich nie mehr fest binden möchte. Sie gibt ihrer Beziehung keine
Chance. Joseph muss das akzeptieren. Heiko ist wütend, dass Tina in der
Agentur seines Vaters für einen Werbespot vorgesprochen hat, denn er ist
der Meinung, Clemens wollte sich bloß bei Tina einschmeicheln. Tina är-
gert sich über ihren Freund. Trotzdem besuchen sie zusammen Denise und
Bertram Köhler, bei denen die Stimmung auf dem Nullpunkt ist.

Clemens und Vera streiten sich mit ihrem Sohn. Heiko hat keine Lust, für
Herrn Löpelmann gute Miene zum bösen Spiel zu machen und ihm eine heile
Familienwelt vorzugaukeln. Er droht, Löpelmann beim gemeinsamen Essen
alles zu erzählen. Elke ist in Lilo Gottschicks Büro gelandet. Die raffinierte
Geschäftsfrau redet mit Engelszungen auf das naive Mädchen ein.

Elke darf sich auf Lilos Kosten neue Klamotten kaufen. Aber wie soll
sie Elisabeth und den anderen erklären, woher sie das Geld für die Kleider
hat? Lilo beruhigt sie, Elke solle sich tagsüber einen Alibijob suchen. Den
findet diese auch, und zwar in Peters Cafeteria. Der will seinen Laden zu
einem Renner machen und stellt die Speisekarte auch in der nahe gelegenen
Agentur Löpelmann vor.

. . .
Clemens muss jetzt mit Tina arbeiten, die völlig unerfahren ist. Er ist

sauer und behandelt das Mädchen schlecht. Das macht Claudia wütend. Sie
ist sowieso gekränkt, weil Clemens die letzte Nacht bei seiner Frau Vera
verbracht hat. Patrick lädt Tina und Heiko großzügig zum Abendessen ein,
um ihren Einstand ins Berufsleben zu feiern. Im Restaurant kommt es zum
Streit.

Patrick bemerkt, dass Daniel entgegen Löpelmanns Anweisungen für einen
gewissen Drew McPherson arbeitet. Er versucht, damit eine Beförderung
von Daniel zu erpressen. Elke Opitz zieht bei Elisabeth ein. Von Lilo erhält
sie einen neuen Auftrag: Elke soll zusammen mit dem Callgirl Julia zwei
Kunden zum Abendessen begleiten. Lilo versichert, dass alles ganz seriös
zugeht.

A.5 Evaluation 267

Elisabeth liegt nach ihrem Zusammenbruch im Krankenhaus. Dr. Frank
Ullrich betreut sie. Elke verbringt den Abend mit Julia Backhoff und den
beiden Kunden im Carltons. Als ihre Kollegin mit ihrem Begleiter abzieht,
bleibt Elke zurück. Ihr Kunde gibt seinem Unmut über ihr Verhalten laut-
stark Ausdruck. Am nächsten Tag spricht Elke mit Julia und kündigt ihren
Entschluss an, bei Lilo zu kündigen.

Tina ist so wütend über Heikos Einmischung, dass sie noch im Büro mit
ihm Schluss macht. Es kommt zu einem lautstarken Streit im Beisein von
Patrick Graf. Heiko besucht Elisabeth im Krankenhaus und erzählt ihr von
seinen Sorgen. Sie gibt ihm den Rat, Tina am Abend zu Hause zu besuchen.

Frank überrascht seine Schwester Tina mit ihrem Freund Heiko im Bett.
Seine Moralpredigt prallt an dem Mädchen ab. Heiko versteht die Welt
nicht mehr, als Tina wiederholt, dass zwischen ihnen Schluss sei. Elke Opitz
will bei Lilo Gottschick kündigen. Die Agenturchefin geht scheinheilig auf
Elkes Wünsche ein, besteht aber darauf, dass die 14-tägige Kündigungsfrist
eingehalten wird.

Julia Backhoff hat im Parkcafé Peter kennen gelernt. Ihr wird klar, dass
sie mit ihrem Job Schwierigkeiten haben wird, eine normale Beziehung zu
führen. Claudia drängt Clemens, seine Frau und Heiko aus dem Haus zu
werfen, damit es verkauft werden kann.

Elke erzählt Elisabeth, dass sie Michael Döring liebt und ihn heiraten will,
sobald er frei ist. Ihre ehemalige Lehrerin warnt sie davor, sich überstürzt in
eine Ehe mit dem älteren Mann zu stürzen. Heiko leidet unter der Trennung
von Tina und lässt seine Mutter und Peter Becker seine schlechte Laune
spüren. Schließlich bittet er Frank Ullrich um Vermittlung.

268 APPENDIX

A.5.3. Retrieval questions
(1a) Wer waren die Hauptdarsteller im Film “Der weiße Hai”?
(1b) In welchen zwei Filmen spielt der Weisse Hai mit?
(2a) Zu welcher Familie gehört der Weiße Hai?
(2b) Zu welcher Gattung gehört der Weisse Hai?
(3a) Wie groß ist ein durchschnittlicher erwachsener weißer Hai?
(3b) Wie groß ist ein durchschnittlicher erwachsener Riesenhai?
(4a) Welches Gewicht hat der durchschnittliche Weiße Hai?
(4b) Wie schwer kann der Riesenhai werden?
(5a) Wo lebt der weiße Hai?
(5b) Kommt der Weiße Hai im Mittelmeer vor?

(6a) Von welcher Pflanzenfamilie kommt Minze?
(6b) Welche Gewürze sind Nachtschattengewächse?
(7a) Was kann kombiniert werden mit Gewürzen, die zu Rindfleisch passen?
(7b) What spices does Szechuan pepper blend well with?
(8a) Mit welchen Gewürzen werden Fleischgerichte gewürzt?
(8b) What spices are commonly used to season Fish?
(9a) Von welchen Pflanzenfamilien kommen viele Gewürze?
(9b) Welche Gewürze werden aus Pflanzenwurzeln gewonnen?
(10a) Welche Gewürze werden in europäischer Küche verwendet?
(10b) Welche Gewürze sind typisch für die asiatische Küche?
(11a) Für was benutzt man Muskat?
(11b) Für was benutzt man thymian?
(12a) Zu welchen Gerichten passt Oregano?
(12b) Für was benutzt man Estragon
(13a) Welche Gewürze passen zu Ingwer?
(13b) Was kann mit Knoblauch kombiniert werden ?
(14a) Welche Gewürze schmecken scharf?
(14b) Welche Gewürze schmecken süß?
(15a) Welche Gewürze werden sowohl für süße als auch für salzige Speisen
verwendet?
(15b) Welche Gewürze werden sowohl für süße als auch für saure Speisen
verwendet?

(16a) Wer zählt zu den Patienten von Tinas Bruder?
(16b) Wessen Vater arbeitet bei der Agentur Löpelmann?
(17a) Welche Firmen gibt es?
(17b) Welche Personen gibt es ?
(18a) Wer hat geschwister
(18b) Wer ist wessen Chef ?
(19a) Gibt es Personen A und B so, dass A B kennt aber nicht umgekehrt?
(19b) Gibt es Schüler/innen, die noch nicht gearbeitet haben?
(20a) Gibt es eine Gruppe von mindestens vier Personen die alle schon ein-
mal Steit miteinander hatten?
(20b) Gibt es zwei Gruppen von Personen so, dass keine Person der einen
Gruppe eine Person der anderen Gruppe kennt?

A.5 Evaluation 269

(21a) Als was arbeitet Clemens?
(21b) Wer arbeitet am Yachthafen ?
(22a) Wen kennt Heiko?
(22b) Wen kennt Vera Richter?
(23a) Mit wem ist Erwin verheiratet?
(23b) Mit wem ist Vera verheiratet und wie heißt ihr Sohn?
(24a) wer steht schlecht zu heiko
(24b) Wer steht schlecht zu Vera?
(25a) Welche Personen heißen Richter mit Nachnamen?
(25b) Welche Personen heißen Becker mit Nachnamen?

A.5.4. Retrieval schedule

Scenario Participant
1 2 3 4 5

A, first half CDS CDS CDS source CDS
A, second half CDS source CDS CDS CDS

B, first half SMW CDS SMW SMW CDS
B, second half CDS SMW CDS CDS SMW

C, first half SMW SMW CDS CDS SMW
C, second half CDS CDS SMW SMW CDS

Table A.2.: Assignment of tools per retrieval task per participant

270 APPENDIX

Q
uestion

Participant
pair

1
2

3
4

5
Scenario

A
1

a
a

a
b

b
2

a
a

b
b

a
3

a
b

b
a

a
4

b
b

b
a

a
5

b
a

a
b

b
Toolchange

1
b

b
b

a
a

2
b

b
a

a
b

3
b

a
a

b
b

4
a

a
a

b
b

5
a

b
b

a
a

Q
uestion

Participant
pair

1
2

3
4

5
Scenario

B
6

b
b

a
a

a
7

b
a

b
a

a
8

a
b

b
a

b
9

a
b

b
b

a
10

b
a

a
b

b
11

b
a

b
a

b
12

a
b

a
a

b
13

a
a

b
b

a
14

b
b

a
b

a
15

a
a

a
b

b
Toolchange

6
a

a
b

b
b

7
a

b
a

b
b

8
b

a
a

b
a

9
b

a
a

a
b

10
a

b
b

a
a

11
a

b
a

b
a

12
b

a
b

b
a

13
b

b
a

a
b

14
a

a
b

a
b

15
b

b
b

a
a

Q
uestion

Participant
pair

1
2

3
4

5
Scenario

C
16

b
b

a
a

a
17

b
a

b
a

a
18

a
b

b
a

b
19

a
b

b
b

a
20

b
a

a
b

b
21

b
a

b
a

b
22

a
b

a
a

b
23

a
a

b
b

a
24

b
b

a
b

a
25

a
a

a
b

b
Toolchange

16
a

a
b

b
b

17
a

b
a

b
b

18
b

a
a

b
a

19
b

a
a

a
b

20
a

b
b

a
a

21
a

b
a

b
a

22
b

a
b

b
a

23
b

b
a

a
b

24
a

a
b

a
b

25
b

b
b

a
a

Table
A

.3.:D
istribution

ofquestions
pairs

for
scenarios

A
,B

and
C

(left
to

right)

A.5 Evaluation 271

A.5.5. User study results

Pa
rt

ic
ip

an
t

Sc
en

ar
io

Tool e1 e10 e100 Effectiveness1 Efficiency2

p1 B CDS 0.20 1.59 5.11 0.80 0.66
p1 B SMW 0.50 3.40 8.12 1.00 1.24
p1 C CDS 0.14 0.99 2.68 1.20 1.31
p1 C SMW 0.15 0.88 1.66 1.33 1.49
p2 B CDS 0.27 2.06 6.02 0.66 0.33
p2 B SMW 0.53 3.05 5.87 0.86 0.78
p2 C CDS 0.09 0.63 1.59 1.53 0.83
p2 C SMW 0.26 1.70 3.87 1.59 1.16
p3 B CDS 1.18 7.63 16.89 0.33 0.25
p3 B SMW 0.58 3.83 8.75 0.73 0.58
p3 C CDS 1.30 6.14 9.81 1.26 0.65
p3 C SMW 0.15 1.46 9.54 1.40 0.89
p4 B CDS 0.19 1.87 14.15 0.73 0.61
p4 B SMW 0.75 3.05 4.39 1.13 0.96
p4 C CDS 0.93 3.63 5.12 1.13 0.72
p4 C SMW 0.30 2.03 4.82 1.40 1.31
p5 B CDS 0.35 2.48 6.22 0.73 1.46
p5 B SMW 0.51 3.43 8.06 0.33 0.87
p5 C CDS 0.42 2.31 4.22 1.06 2.38
p5 C SMW 0.67 4.01 8.04 0.80 1.51
SD 0.35 1.73 3.87 0.37 0.50
SD CDS Tools 0.45 2.27 4.95 0.35 0.64
SD SMW 0.21 1.08 2.57 0.39 0.31
Mean 0.47 2.81 6.75 1.00 1.00
Mean CDS Tools 0.51 2.93 7.18 0.94 0.92
Mean SMW 0.44 2.68 6.31 1.06 1.08

1Normalised points p.
2Mean value of normalised e1, e10 and e100. Efficiency = e1+e10+e100

3 .

Table A.4.: Comparing efficiency of CDS Tools and SMW

272 APPENDIX

Independent Variables Dependent Variables
P S O T Q tm tr p

p1 A CDS 10 463.70 17.60 18.00
p1 B 2 CDS 10 347.00 10.60 12.00
p1 B 1 SMW 10 100.00 19.50 15.00
p1 C 2 CDS 10 205.40 11.30 18.00
p1 C 1 SMW 10 107.00 22.40 20.00
p2 A1 1 CDS 5 338.30 14.50 4.00
p2 A2 2 source1 5 927.30 5.80 12.00
p2 B 1 CDS 10 356.20 32.70 10.00
p2 B 2 SMW 10 246.00 13.70 13.00
p2 C 2 CDS 10 488.80 18.10 23.00
p2 C 1 SMW 10 332.00 15.30 24.00
p3 A CDS 10 230.80 20.20 22.00
p3 B 2 CDS 10 317.10 15.70 5.00
p3 B 1 SMW 10 212.00 22.20 11.00
p3 C 1 CDS 10 419.30 25.30 19.00
p3 C 2 SMW 10 392.00 16.80 21.00
p4 A1 1 source1 5 927.30 3.50 15.00
p4 A2 2 CDS 5 230.30 4.50 12.00
p4 B 2 CDS 10 490.10 6.10 11.00
p4 B 1 SMW 10 274.00 13.70 17.00
p4 C 1 CDS 10 423.10 15.20 17.00
p4 C 2 SMW 10 234.00 13.30 21.00
p5 A CDS 10 110.20 7.10 23.00
p5 B 1 CDS 10 107.50 6.50 11.00
p5 B 2 SMW 10 65.00 6.50 5.00
p5 C 2 CDS 10 64.90 9.10 16.00
p5 C 1 SMW 10 100.00 8.00 12.00
SD 220.18 7.06 5.66
Mean 315.16 13.90 15.07

Scenario B and C only
SD 141.41 6.91 5.48
Mean 264.07 15.10 15.05
SD CDS Tools 150.29 8.49 5.31
Mean CDS Tools 321.94 15.06 14.20
SD SMW 110.39 5.35 5.80
Mean SMW 206.20 15.14 15.90

1For the Wikipedia pages the modelling effort was estimated as twice as long as the
maximal time for a hand-created model in the user study. This is probably still much
underestimated, given the large amount of time that went into the creation of the
Wikipedia pages.

Table A.5.: Session data of comparative user study

A.5 Evaluation 273

Relation Formality degree Usage count Usage in percent
[is related to] 0 106 5.43 %
[links to] 1 224 11.47 %
[is similar to] 1 8 0.41 %
[has detail] 2 6881 35.23 %
[is alias for] 2 126 6.45 %
[is same as] 2 12 0.61 %
[comes before] 2 2 0.10 %
[annotates] 2 0 0.00 %
[replaces] 2 0 0.00 %
[has subtype] 3 5362 27.44 %
[has part] 3 77 3.94 %
[is tag of] 3 19 0.97 %
[has instance] 4 155 7.94 %
Sum 1953 100.00 %

1Of which 134 have been created in HKW, 550 in iMapping, and 4 in QuiKey. This is
no surprise, as iMapping creates one such Statement for every Item in a map to link

it to its parent Item.
2Of which 266 have been created in HKW, 113 in iMapping, and 148 in QuiKey. 79

Statements are from NameItem to NameItem and 457 are from Relation to
Relation.

Table A.6.: Usage of built-in relations in user-created statements

274 APPENDIX

A.5.6. Relation and concept hierarchies
This section shows all 15 [has subtype] hierarchies created by the 5 partici-
pants of the comparative user study. The different scenarios have noticeable
effects: For scenario C no participant created any concept hierarchies. So-
cial networks seem to demand more sophisticated Relation hierarchies
instead.

The distribution of [has subtype]-Statements per participant is p1: 69,
p2: 125, p3: 131, p4: 177, and p5: 34. This shows that every individual
participant used the [has subtype] Relation.

Out of the 536 Statements, there are 79 [has subtype]-Statements
between NameItems, which represent concept hierarchies.

Out of the 5 participants, 3 created [has subtype]-Statements between
NameItems4

Legend:

• For hierarchies with no concept hierarchies, the root node is the top-
Relation [is related to]. For the other graphs, the concept hierarchy
has the root concept “cds:item”, even though there is no top-concept in
CDS. All lines decending “cds:Item” or [is related to] have [has subtype]-
semantics.

• Circled graph items represent NameItems and regular graph items rep-
resent Relations.

• Relations rendered in bold are built-in Relations.

4One of them had worked on QuiKey before and created all [has subtype]-State-
ments in QuiKey. The other two participants used only iMapping and HKW.
QuiKey might have a too steep learning curve.

A.5 Evaluation 275

Scenario A

has subtypecds:Item

Kiefer
Unterkiefer

Oberkiefer

Flosse

Schwanzflosse

Rückenflosse
2.Rückenflosse

1. Rückenflosse

Brustflosse

Bauchflosse

Afterflosse

Farbe

Weiß

Schwarz

Hellgrau

Dunkelgrau

Braun

is related to

links to

is written about

is species of

is largest species of

is dangerous for

has shape of

has maximum weight

has maximum length

has detail

was published in year

is published in year

is published by

has subtype

has part

has maximum width

has maximum height

has author

eats

costs

has de

has count

has color range to

has color range from

has color

has c

has average length

has

deals with

comes before

belongs to family of

belongs to

annotates

is similar to
is same as

has alias

is linked from

is alias for replaces

has annotation is tagged with has type

Figure A.1.: The [has subtype] hierarchy of participant 1 in scenario A

276 APPENDIX

is related tolinks to

test relation

sometimes found in

relation is

part of

only member of

often mistaken for

of

means

lives in

is successor of

is only surviving species of genus

is from

is form

is a

is

hat lateinischen Namen

has detail
has subtype

has part

has Plot

has Behaviour

has

from

einzige Art der Gattung

einzi

ein

comes from

comes before

classified as

auch bekannt als

auch

annotates

also known as

about

Weight

Maximum Size

is similar to
is same as

has alias

is linked from

is alias for replaces

has annotation is tagged with has type

Figure A.2.: The [has subtype] hierarchy of participant 2 in scenario A

A.5 Evaluation 277

is related tolinks to

werden deutlich größer als

weist auf

verstärkt durch

schwimmt täglich

kommt vor in

kommt nicht vor in

kommt am häufigsten vor in

is s

in unregelmäßiger Linie scharf abgegrenzt

hat überordnung

hat unterklasse

hat ordnung

hat maximales Gewicht

hat geschätzte Höchstlänge

hat gattung

hat form

hat familie

hat durchschnittsgeschwindigkeit

hat durchschnittliche Länge

hat durchschnittliche

hat Länge

hat Farbe

has detail

hat geschätzte Höchstlänge

hat durchschnittlichen Länge

hat Verhaltenernährt sich von

hat Verbreitung

hat Merkmale

hat Länge

hat Gewicht

hat Farbe

hat Maximum

hat Länge

hat Gewicht

hat Farbe

has subtype

has part

ernährt sich von

dient als hauptantrieb

comes before

annotates

is subtype of

hat überordnung

hat unterklasse

hat ordnung

hat gattung

hat familie

is similar to
is same as

has alias

is linked from

is alias for replaces

has annotation is tagged with has type

Figure A.3.: The [has subtype] hierarchy of participant 3 in scenario A

278 APPENDIX

is related tolinks to

lives in

is subtype of

is subject in filmis subject in

is produced in

is directed by

is a

has length

has leading actor

has genre

has detail

has subtype

has part

has detail

has attribute

is subject in filmis subject in

is produced in

has weight

has size

has length

has leading actor

has genre

has color

has bodypart

has IMDB user rating

has alias

has IMDB user rating

comes before

causes

annotates

is threatened with extinction because

is subject in

is similar to
is same as

has alias

is nurishment of

is linked from

is hauntend with

is hauntend because

is alias for replaces

has annotation is tagged with has type

Figure A.4.: The [has subtype] hierarchy of participant 4 in scenario A

is related to

links to

spielen über

has detail

hat

has subtype

has part

comes before

annotates

ist geschlechtsreif mit

ist

is similar to
is same as

has alias

is linked from

is alias for replaces

hat alternativ namen

hat

has annotation is tagged with has type

gehört zu

frisst nicht

Figure A.5.: The [has subtype] hierarchy of participant 5 in scenario A

A.5 Evaluation 279

Scenario B

has subtypecds:Item

RindfleischFleisch
Wild

Braten

Geschmack

süß

sauer

salzig

bitter

is related to

links to

tastes

is sub

is made of

is apropriate for

has detail
has subtype

has part

comes before

can be combined with

belongs to family of

belo

annotates

is similar to
is same as

has alias

is linked from

is alias of replaces

has annotation is tagged with has type

Figure A.6.: The [has subtype] hierarchy of participant 1 in scenario B

has subtypecds:Item

ZwiebelGemüse

WurstFleischgericht

Weihnachtsgebäck
Süßspeisen

Backwaren

ToastBackwaren

SpinatGemüse

SchweinefleischFleischgericht

SchwarzwurzelGemüse

SalatGemüse

RotkohlGemüse

ObstsalatObstgerichten

MuschelsuppeSuppen

Kuchen

Süßspeisen

Nachtisch

Backwaren

HammelFleischgericht

HaggisFleischgericht

GulaschFleischgericht

GrünkohlGemüse

GewürzZutat

GeflügelFleischgericht

FischFleischgericht

EisSüßspeisen

BratenFleischgericht

BratapfelSüßspeisen

BlumenkohlGemüse

is related to

wirkt

wird hergestellt aus

schmeckt

passt zu

links to

würzen

t

has detail
has subtype

has part

haben Geschmack

comes before

annotates

kommt aus

ist ein

is similar to
is same as

has alias

is linked from

is alias for replaces

hilft gegen

has annotation is tagged with has type

fördert

eignet sich zur

Most parts of the hierarchy seem to have been created in the opposite di-
rection, e. g., in reality “Grünkohl” is a subtype of “Gemüse” rather than
the other way round.

Figure A.7.: The [has subtype] hierarchy of participant 2 in scenario B

280 APPENDIX

Figure A.8.: The [has subtype] hierarchy of participant 4 in scenario B

is related to

used in region

used in cuisine

links to

has detail

used to flavour

processed into

processed

has subtype

has part

has main active compund

has flavour

comes before

annotates

is similar to
is same as

has alias

is linked from

is alias for replaces

has annotation is tagged with has type

comes from region

comes from plant

blends well with

Figure A.9.: The [has subtype] hierarchy of participant 3 in scenario B

Scenario C

No single concept hierarchy Statement ([has subtype]-Statements be-
tween NameItems) was created in scenario C by any participant.

A.5 Evaluation 281

is related to

links to

has detail
has subtype

has part

comes before

annotates

is similar to
is same as

has alias

is linked from

is alias for replaces

has annotation is tagged with has type

Figure A.10.: The [has subtype] hierarchy of participant 5 in scenario B

is related tolinks to

works with

works at

is schoolmate of

is relative of

is pupil of

is patient of

is parent of

is owned by

is married to

is boyfriend of

has detail

works as

has subtype

has part

has affair with

dislikes

comes before

annotates

is similar to

is same as

has alias

has alias

is linked from

is alias for replaces

is a friend of

has annotation is tagged with has type

Figure A.11.: The [has subtype] hierarchy of participant 1 in scenario C

282 APPENDIX

is related to

wurde gefeuert von

wohnt bei

will sich scheiden lassen von

will heiraten

war eifersüchtig auf

versteht sich schlecht mit

versteht sich mit

versteht sich gut mit

verseht sich mit

verheiratet mit

test relation

links to

hat Beruf

has detail
has subtype

has part

comes before

annotates

ist verliebt in

ist verheiratete mit

ist verheiratet mit

ist ehemalige/r Mitschüler/in von

ist ehemalige/r Lehrer/in von

ist ehemalige Mitschülerin von

ist Patient/in

ist Lehrer/in von

ist Chef/in von

is similar to
is same as

has alias

is linked from

is alias for replaces

hatte Vorgesetzte/n

hatte Beziehung mit

hatte Beruf

hat sich getrennt von

hat illegale Adoption von eingeleitet

hat gewohnt bei

hat gearbeitet mit

hat gearbeitet für

hat gearbeitet als

hat Vorgesetzte/n

hat Sohn

hat Schwester

hat Schule verlassen wegen

hat Mutter

hat Mitschüler

hat Kind mit

hat Elternteil

hat Bruder

hat Beziehung mit

hat Babytauschgeschäft von eingefädelt

hat Adoptivelternteil

has annotation is tagged with has type

fordert zur Abtreibung auf

findet sympathisch

besitzt

arbeitet für

Figure A.12.: The [has subtype] hierarchy of participant 2 in scenario C

A.5 Evaluation 283

is related to

{!

works with

works for

works at

worked for
works for

quit working for

worked atworks at

went to school withgoes to school with

was in house of

was angry at

wants to exploit

visited

trusts

studied under

settled differences with

saved

quit working for

plans to work at

plans to divorce

mistrusts

lives together with

lived together withlives together with

links to

has detail
has subtype

has part

comes before

annotates

likesis close to

knows

works with

works for

went to school with goes to school with

visited

trusts

studied under

saved

lives together with

has family
has wife

has child adopted

has customer has patient

has boyfriend

has also affair with

dislikes

plans to divorce

is angry at

has fought with

had boyfriend

envies

doesn't like

is similar to
is same as

has alias

is possibly afraid of

is near

is linked from

is known by
is liked by

goes to school with-inverse

is jealous of

is insensivtive towards

is close to

is angry at

is alias for replaces

helps

has wife

has sibling

has patient

has girlfriend

has friend

has fought with

has child adopted

has chef

has annotation

works as

is tagged with
has type

has education

has affair with

had boyfriend

goes to school with

fired by

envies

doesn't like

distant to

cares about

adopted

Figure A.13.: The [has subtype] hierarchy of participant 3 in scenario C

284 APPENDIX

is related tokennt

wird ein Job angeboten von

wird behandelt von

versteht sich nicht mit

versteht sich mit

macht Schluss mit-inverse

macht Schluss mit

liebt-inverse

liebt

lebt zusammen mit-inv

lebt zusammen mit

kommt nicht gut aus mit

kommt gut aus mit

ist verwandt mit-inv

ist verwandt mit

ist verheiratet mit-inv

ist verheiratet mit

ist Vater von

ist Tocher von

ist Sohn von

ist Schwester von

ist Mutter von

ist Bruder von

hat Vater

hat Tochter

hat Sohn

hat Schwester

hat Mutter

hat Bruder

ist verheiratet mit-inv

ist verheiratet mit

ist eifersüchtig auf-inverse

ist eifersüchtig auf

ist ehemaliger Mitschüler von-inverse

ist ehemaliger Mitschüler von

ist Schüler von

ist Mitschüler von

ist Lehrer von

ist Freundin von

ist Freund von

hat zusammengelebt mit-inv

hat zusammengelebt mit

hat eine Affäre mit-inv

hat eine Affäre mit

hat Streit mit-inv

hat Streit mit

hat Mitschüler

erpresst-inverse

bietet einen Job an

behandelt

arbeitet mit-inv

arbeitet mit

ist Chef von

ist Assistent von

hat Sekretärin

feuert

will

versteht sich nicht mit

versteht sich mit

stellt sich vor bei

links to

has detail

wird geleitet von

wird ein Job angeboten von

will

stellt sich vor bei

ist Leiter von

has subtype

has part

arbeitet bei

arbeitet als

erpresst

comes before

annotates

lebt zusammen mit

ist verwandt mit

ist verheiratet mit-inv

ist verheiratet mit

ist Vater von

ist Tocher von

ist Sohn von

ist Schwester von

ist Mutter von

ist Bruder von

hat Vater

hat Tochter

hat Sohn

hat Schwester

hat Mutter

hat Bruder

ist verheiratet mit

ist Vater von

ist Tocher von

ist Sohn von

ist Sekretärin von

ist Schwester von

ist Mutter von

ist Mitschüler von

ist Lehrer von

ist Kollege von

ist Freund von

ist Chef von

ist Bruder von

is similar to
is same as

has alias

is linked from

is alias for replaces

hat zusammengelebt mit

hat einmal gearbeitet mit

hat eine Affäre mit

has annotation is tagged with has type

arbeitet bei

arbeitet als

Figure A.14.: The [has subtype] hierarchy of participant 4 in scenario C

A.5 Evaluation 285

is related to

wohnte kurzs bei

will sich scheiden lassen von

will kündigen bei

will gut dastehen vor

war in der Klasse mit

war Lehrerin von

war Freund von

verträgt sich nicht mit

verheiratet mit

schlägt

links to

war in Urlaub mit

has detail
has subtype

has part

comes before

annotates

liebt

kennt

ist zusammengebrochen

ist Vater von

ist Mutter von

ist Geschwister von

is similar to

is same as

has alias

besucht die Praxis von

is linked from

is alias for replaces

hat jemanden gerettet mit

hat gutes verhältnis zu

hat angeworben

hat affaire mit

has annotation is tagged with has type

geht zur schule mit

geht in eine Klasse mit

chefin von

bewirbt sich bei

Figure A.15.: The [has subtype] hierarchy of participant 5 in scenario C

Bibliography

Abecker, A. (2004). Business-Process Oriented Knowledge Management:
Concepts, Methods and Tools. Ph. D. thesis, Universität Karlsruhe (TH),
Institut AIFB, D-76131 Karlsruhe.

Abecker, A., A. Bernardi, S. Ntioudis, G. Mentzas, R. Herterich, C. Houy,
S. Müller, and M. Legal (2001). The decor toolbox for workflow-embedded
organizational memory access. In ICEIS (1), pp. 225–232.

Abecker, A. and L. van Elst (2004, January). Ontologies for knowledge
management. In S. Staab and R. Studer (Eds.), Handbook on Ontologies,
International Handbooks on Information Systems, pp. 435–454. Springer.

Adar, E., D. R. Karger, and L. A. Stein (1999). Haystack: Per-user infor-
mation environments. In CIKM, pp. 413–422. ACM.

Allan, N., P. Heisig, P. Iske, D. Kelleher, M. Mekhilef, R. Oertel, A. J.
Olesen, and M. V. L. (ES) (2004). European guide to good practice
in knowledge management. workshop agreement CWA 14924-1:2004 E,
European Committee for Standardization, rue de Stassart, 36 B-1050
Brussels.

Alley, L. R. (1999). Diverting a crisis in global human and economic de-
velopment: A new transitional model for lifelong continuous learning and
personal knowledge management. Higher Education In Europe 24(2),
187–195.

Altheim, M. and S. McCarron (2001, May). XHTMLTM 1.1: Module-based
xhtml. Recommendation, W3C. W3C Recommendation 31 May 2001.

Alvarado, C., J. Teevan, M. S. Ackerman, and D. Karger (2003, April).
Surviving the information explosion: How people find their electronic
information. Technical Report AIM-2003-006, MIT AI Lab.

Anderson, J. R. (1980). Cognitive psychology and its implications. New
York: Freeman, San Francisco, USA.

Angele, J., D. Fensel, D. Landes, and S. Neubert (1995). Modellbasiertes
und inkrementelles Knowledge Engineering: der MIKE-Ansatz. KI 9(1),
16–21.

Avery, S., R. Brooks, J. Brown, P. Dorsey, and M. O’Conner (2001). Per-
sonal knowledge management: Framework for integration and partner-
ships. In Proc. of ASCUE Conf.

288 Bibliography

Baeza-Yates, R. and B. Ribeiro-Neto (1999, May). Modern Information
Retrieval (1st ed.). Addison Wesley.

Barreau, D. and B. Nardi (1995). Finding and reminding: File organization
from the desktop. SIGCHI Bulletin 27(3), 39–43.

Barth, S. (2004). Knowledge Management Tools and Techniques: Prac-
titioners and Experts Evaluate KM Solutions, Chapter 28: Self-
Organization: Taking a Personal Approach to KM. Butterworth-
Heinemann.

Bates, M. (2002). Speculations on browsing, directed searching, and link-
ing in relation to the bradford distribution. In Emerging frameworks and
methods: Proceedings of the Fourth International Conference on Concep-
tions of Library and Information Science (CoLIS 4), Greenwood Village,
CO, pp. 137–150. Libraries Unlimited.

Beckett, D. and T. Berners-Lee (2008, January). Turtle - terse RDF triple
language. Team submission, W3C.

Bederson, B. B. (2004, September). Interfaces for staying in the flow. Ubiq-
uity 5(27), 1–1.

Berners-Lee, T., R. Fielding, and L. Masinter (2005, January). Uniform
resource identifier (URI): Generic syntax. Request for Comments 3986,
Network Working Group, IETF.

Bernstein, M. (2006, October). Shadows in the cave: hypertext transfor-
mations. In Proc. of 2006 Symposium on Interactive Visual Information
Collections and Activity (IVICA).

Bernstein, M., M. V. Kleek, D. R. Karger, and monica mc schraefel (2008,
September). Information scraps: How and why information eludes our
personal information management tools. ACM Trans. Inf. Syst. 26(4),
1–46.

Bernstein, M., M. V. Kleek, monica mc schraefel, and D. R. Karger (2007).
Management of personal information scraps. In M. B. Rosson and D. J.
Gilmore (Eds.), CHI Extended Abstracts, pp. 2285–2290. ACM.

Bernstein, M., M. V. Kleek, monica mc schraefel, and D. R. Karger (2008,
April). Evolution and evaluation of an information scrap manager. Work-
shop on Personal Information Management at CHI 2008, April 5-6, 2008,
Florence, Italy.

Bettoni, M. C., R. Ottiger, R. Todesco, and K. Zwimpfer (1998). Know-
port: A personal knowledge portfolio tool. In U. Reimer (Ed.), PAKM,
Volume 13 of CEUR Workshop Proceedings. CEUR-WS.org. http:

//ceur-ws.org/Vol-13/paper6.ps (accessed 06.01.2010).

Bibliography 289

Bilotti, M. W., P. Ogilvie, J. Callan, and E. Nyberg (2007). Structured
retrieval for question answering. In SIGIR ’07: Proceedings of the 30th
Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, New York, NY, USA, pp. 351–358. ACM
Press.

Blackler, F. (1995). Knowledge, knowledge work and organizations: An
overview and interpretation. Organization Studies 16(6), 1021–1046.

Blandford, A. E. and T. R. G. Green (2001). Group and individual time
management tools: What you get is not what you need. Personal Ubiq-
uitous Comput. 5(4), 213–230.

Bloehdorn, S., O. Görlitz, S. Schenk, and M. Völkel (2006, September).
Tagfs - tag semantics for hierarchical file systems. In Proceedings of the
6th International Conference on Knowledge Management (I-KNOW 06),
Graz, Austria, September 6-8, 2006.

Boardman, R. (2004). Improving Tool Support for Personal Information
Management. Ph. D. thesis, Imperial College, London.

Boehm, B. W., J. R. Brown, H. Kaspar, M. Lipow, G. J. MacLeod, and
M. J. Merritt (1978). Characteristics of Software Quality. New York,
NY: North-Holland Publishing Company.

Boettger, M. (2005). PKM and “cues to knowledge”.
http://www.25uhr.de/weblog/index.php?itemid=70 (accessed
05.01.2010).

Bontas, E. P., C. Tempich, and Y. Sure (2006). Ontocom: A cost estimation
model for ontology engineering. In I. Cruz et al. (Eds.), Proceedings of the
5th International Semantic Web Conference (ISWC 2006), Volume 4273
of Lecture Notes in Computer Science (LNCS), pp. 625–639. Springer-
Verlag Berlin Heidelberg.

Boose, J. H. (1990). Knowledge acquisition tools, methods, and mediating
representations. In Proceedings of the First Japanese Knowledge Acquisi-
tion for Knowledge-Based Systems Workshop: JKAW-90, Ohmsha, Ltd:
Japan.

Bradshaw, S., M. Light, and D. Eichmann (2006). (bee)dancing on the
boundary between pim and gim.

Braganza, A. and G. J. Mollenkramer (2002). Anatomy of a failed knowledge
management initiative: Lessons from pharmacorp’s experiences. Knowl-
edge and Process Management 9(1), 23–33.

Braun, S., A. Schmidt, and V. Zacharias (2009). Mit Social Semantic Book-
marking zur nützlichen Ontologie. i-com - Zeitschrift für interaktive und
kooperative Medien 8.

290 Bibliography

Bruce, H. (2005). Personal, anticipated information need. Information
Research 3(10). paper 232, available at http://InformationR.net/

ir/10-3/paper232.html (accessed 19.01.2010).

Buckland, M. K. (1997). What is a “document”? J. Am. Soc. Inf. Sci. 48(9),
804–809.

Bush, V. (1945). As we may think. Atlantic Monthly 176, 101–108.

Buzan, T. (1991, January). Use Both Sides of Your Brain: New Mind-
Mapping Techniques, Third Edition (Plume). Plume, New York.

Cai, Y., X. L. Dong, A. Halevy, J. M. Liu, and J. Madhavan (2005). Personal
information management with SEMEX. In SIGMOD ’05: Proceedings of
the 2005 ACM SIGMOD International Conference on Management of
Data, New York, NY, USA, pp. 921–923. ACM Press.

Caldwell, F. (2002, November). Personal knowledge networks emerge with
grassroots KM. Research Note SPA-18-8059, Gartner Research.

Carroll, J. J., C. Bizer, P. Hayes, and P. Stickler (2004, 05). Named graphs,
provenance and trust. Technical report, HP.

Chaffee, J. and S. Gauch (2000). Personal ontologies for web navigation. In
CIKM ’00: Proceedings of the ninth International Conference on Infor-
mation and Knowledge Management, New York, NY, USA, pp. 227–234.
ACM.

Chen, P. P.-S. S. (1976). The entity-relationship model: Toward a unified
view of data. ACM Transactions on Database Systems 1(1), 9–36.

Clemente Laboreo, D. (2007, 9). Diskussionssysteme. Studienarbeit, Univer-
sität Karlsruhe. http://www.danielclemente.com/disk/ (accessed
05.01.2010).

Cleverdon, C. W., L. Mills, and M. Keen (1966). Factors determining the
performance of indexing systems. Technical report, ASLIB Cranfield Re-
search Project, Cranfield.

Conklin, J. and M. L. Begeman (1988). gIBIS: a hypertext tool for ex-
ploratory policy discussion. In CSCW ’88: Proceedings of the 1988 ACM
Conference on Computer-Supported Cooperative Work, New York, NY,
USA, pp. 140–152. ACM Press.

Cutrell, E., S. T. Dumais, and J. Teevan (2006). Searching to eliminate
personal information management. Communications of the ACM 49(1),
58–64.

Dan Brickley, R. G. (2004, February). RDF vocabulary description lan-
guage 1.0: RDF Schema. http://www.w3.org/TR/rdf-schema/ (ac-
cessed 05.01.2010).

Bibliography 291

Dau, F. and J. H. Correia (2006). Formal Concept Analysis, Chapter Two
Instances of Peirce’s Reduction Thesis, pp. 105–118. Springer Berlin /
Heidelberg.

Davenport, T. H. (2005, September). Thinking for a Living: How to Get
Better Performances And Results from Knowledge Workers. Harvard
Business School Press, Boston, MA, USA.

Davies, S., S. Allen, J. Raphaelson, E. Meng, J. Engleman, R. King, and
C. Lewis (2006). Popcorn: the personal knowledge base. In J. M. Carroll,
S. Bødker, and J. Coughlin (Eds.), Conference on Designing Interactive
Systems, pp. 150–159. ACM.

Davies, S. C. (2005). The efficacy of personal knowledge bases for materi-
alizing mental impressions. Ph. D. thesis, Boulder, CO, USA.

Decker, S. et al. (2000). The semantic web: The roles of XML and RDF.
IEEE Internet Computing 4(5), 63–74.

Decker, S. and M. R. Frank (2004). The networked semantic desktop.
In C. Bussler, S. Decker, D. Schwabe, and O. Pastor (Eds.), WWW
Workshop on Application Design, Development and Implementation Is-
sues in the Semantic Web, Volume 105 of CEUR Workshop Proceed-
ings ISSN 1613-0073. CEUR-WS.org. http://ceur-ws.org/Vol-105/

DeckerFrank.pdf (accessed 06.01.2010).

Decker, S., J. Park, D. Quan, and L. Sauermann (Eds.) (2005). The Seman-
tic Desktop – Next Generation Information Management & Collaboration
Infrastructure, Galway, Ireland.

DeRose, S. J., D. G. Durand, E. Mylonas, and A. H. Renear (1997). What
is text, really? SIGDOC Asterisk J. Comput. Doc. 21(3), 1–24. Reprint
from 1990.

Despres, C. and D. Chauvel (2000, October). Knowledge Horizons:
the present and promise of Knowledge Management. Butterworth-
Heinemann.

Dienel, H.-L. (2006). Technografie. Zur Mikrosoziologie der Technik, Chap-
ter Schreiben, Zeichnen, Erinnern. Persönliches Wissensmanagement im
Ingenieurberuf seit 1850, pp. 397–425. Frankfurt/New York: Campus
Verlag.

Dittrich, J.-P. and M. A. V. Salles (2006). iDM: a unified and versatile data
model for personal dataspace management. In VLDB ’06: Proceedings of
the 32nd International Conference on Very Large Data Bases, pp. 367–
378. VLDB Endowment.

Dittrich, J.-P., M. A. V. Salles, D. Kossmann, and L. Blunschi (2005).
iMeMex: escapes from the personal information jungle. In VLDB ’05:
Proceedings of the 31st International Conference on Very Large Data
Bases, pp. 1306–1309. VLDB Endowment.

292 Bibliography

Dix, A., A. Katifori, A. Poggi, T. Catarci, Y. Ioannidis, G. Lepouras, and
M. Mora (2007, December). From information to interaction: in pursuit
of task-centred information management. In F. Borri, A. Launaro, and
C. Thanos (Eds.), Proc. of the Second DELOS Conference on Digital
Libraries, 5-7 December 2007, Tirrenia, Pisa, ITALY, Volume 4877 of
Lecture Notes in Computer Science. DELOS Network of Excellence.

Dörner, D. (2003). Die Logik des Mißlingens. Strategisches Denken in kom-
plexen Situationen. Rowohlt Tb.

Doyle, J. (1987). A truth maintenance system, Chapter 20, pp. 259–279.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Drucker, P. (1977). Managing oneself. Harvard Business Review 2, 65–74.

Drucker, P. F. (1985, February). Management: Tasks, responsibilities, prac-
tices (Harper & Row management library). Harper & Row.

Drucker, P. F. (1999). Knowledge-worker productivity: The biggest chal-
lenge. California Management Review 41(2), 79–94.

Durusau, P. and S. Newcomb (2005, 02). Topic maps reference model. ISO
committee draft, ISO 13250: Topic Maps.

Elkins, J. (1999). The Domain of Images. Cornell University Press.

Elsweiler, D. and I. Ruthven (2007). Towards task-based personal infor-
mation management evaluations. In SIGIR ’07: Proceedings of the 30th
Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, New York, NY, USA, pp. 23–30. ACM
Press.

Engelbart, D. (1963). A Conceptual Framework for the Augmentation of
Man’s Intellect, pp. 1–29. Spartan Books: Washington, DC: London.
Technical Report version: http://sloan.stanford.edu/mousesite/

EngelbartPapers/B5_F18_ConceptFrameworkInd.html (accessed
05.01.2010).

Esselborn-Krumbiegel, H. (2002, November). Von der Idee zum Text. Eine
Anleitung zum wissenschaftlichen Schreiben. Utb. 2. Auflage.

Esser, K. B. (1998). Ein Modell zur Verknüpfung des persönlichen Gedächt-
nisses mit externen Informationsspeichern. Ph. D. thesis, Freie Universität
Berlin.

Ewenstein, B. and J. K. Whyte (2007). Picture this: visual representations
as “artifacts of knowing”. Building Research and Information 35(1), 81–
89.

Feldman, S., J. Duhl, J. R. Marobella, and A. Crawford (2005). The hidden
costs of information work. Technical report, IDC.

Bibliography 293

Fellbaum (1998, May). WordNet: An Electronic Lexical Database (Lan-
guage, Speech, and Communication). The MIT Press.

Fielding, R. T. (2000). Architectural styles and the design of network-based
software architectures. Ph. D. thesis, University of California, Irvine.

Folkens, F. and M. Spiliopoulou (2004). Towards an evaluation framework
for knowledge management systems. In D. Karagiannis and U. Reimer
(Eds.), PAKM, Volume 3336 of Lecture Notes in Computer Science, pp.
23–34. Springer.

Franconi, E., M. Kifer, and W. May (Eds.) (2007). The Semantic Web: Re-
search and Applications, 4th European Semantic Web Conference, ESWC
2007, Innsbruck, Austria, June 3-7, 2007, Proceedings, Volume 4519 of
Lecture Notes in Computer Science. Springer.

Frand, J. and C. Hixon (1999, December). Personal knowledge manage-
ment: Who, what, why, when, where, how? http://www.anderson.

ucla.edu/faculty/jason.frand/researcher/speeches/PKM.htm

(accessed 05.01.2010). working paper.

Frank, G. H. (1988). Reflections on notecards: seven issues for the next
generation of hypermedia systems. Communications of the ACM 31(7),
836–852.

Frank, U. (2000). Modelle als Evaluationsobjekt: Einführung und Grundle-
gung. In I. Häntschel and L. Heinrich (Eds.), Evaluation und Evalua-
tionsforschung in der Wirtschaftsinformatik, pp. 339–352. Oldenbourg.

Freed, N. and N. Borenstein (1996, November). Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types. Technical Report 2046,
Internet Engineering Task Force, Network Working Group. Updated by
RFCs 2646, 3798, 5147.

Friedewald, M. (2000, March). Der Computer als Werkzeug und Medium.
Die geistigen und technischen Wurzeln des Personalcomputers (Taschen-
buch ed.). GNT-Verlag.

Geiß, R. (2008, November). Graphersetzung mit Anwendungen im Über-
setzerbau . Ph. D. thesis, Universität Karlsruhe (TH), Germany.

Gerke, S. (2005). Interaktives Erkennen von Textstrukturen durch
Maschinelles Lernen. Studienarbeit, Institute AIFB, University of Karl-
sruhe.

Glushko, R. (2006, September). 3. information organization {and,or,vs}
search. Lecture Note.

Graça Pimentel, M. d., G. D. Abowd, and Y. Ishiguro (2000). Linking by
interacting: a paradigm for authoring hypertext. In HYPERTEXT ’00:
Proceedings of the eleventh ACM Conference on Hypertext and Hyper-
media, New York, NY, USA, pp. 39–48. ACM Press.

294 Bibliography

Grebner, O. (2009). Using Unified Personal Information in Workspaces. Ph.
D. thesis, Fakultät für Wirtschaftswissenschaften, Institut AIFB.

Groth, K. . K. S. E. (2006). Combining personal and organisational infor-
mation.

Groza, T., S. Handschuh, K. Möller, and S. Decker (2007). Salt - semanti-
cally annotated latex for scientific publications. See Franconi, Kifer, and
May (2007), pp. 518–532.

Gruber, T. (1993). A translation approach to portable ontology specifica-
tions. Knowledge Acquisition 5, 199–220.

Gruber, T. R. (1989). The acquisition of strategic knowledge. San Diego,
CA, USA: Academic Press Professional, Inc.

Halasz, F. and M. Schwartz (1990, January). The dexter hypertext reference
model. In NIST Hypertext Standardization Workshop.

Halasz, F. G., T. P. Moran, and R. H. Trigg (1987). Notecards in a nutshell.
In CHI ’87: Proceedings of the SIGCHI/GI Conference on Human Factors
in Computing Systems and Graphics Interface, New York, NY, USA, pp.
45–52. ACM.

Haller, H. (2003). Mappingverfahren zur Wissensorganisation. http://

heikohaller.de/literatur/diplomarbeit/ (accessed 05.01.2010).

Haller, H. (2006, November). iMapping – a graphical approach to semi-
structured knowledge modelling. In L. Rutledge (Ed.), Proceedings of
the The 3rd International Semantic Web User Interaction Workshop
(SWUI2006). Poster presented at the The 3rd International Semantic
Web User Interaction Workshop.

Haller, H. (2008). Quikey. In Proceedings of the Workshop on Semantic
Search at the 5th European Semantic Web Conference, Volume 334, pp.
74–78.

Haller, H., A. Abecker, and M. Völkel (2010, June). A graphical workbench
for knowledge workers. In ICEIS 2010 – 12th International Conference on
Enterprise Information Systems, Funchal, Madeira - Portugal, June 8-12,
2010. To appear.

Haller, H., M. Völkel, and F. Kugel (2006, June). iMapping wikis - to-
wards a graphical environment for semantic knowledge management. In
S. Schaffert, M. Völkel, and S. Decker (Eds.), Proceedings of the First
Workshop on Semantic Wikis – From Wiki To Semantics, Budva, Mon-
tenegro, Volume 360 of CEUR Workshop Proceedings. CEUR-WS.org.

Harth, A. and S. Decker (2005). Optimized index structures for querying
RDF from the web. In Proceedings of the Third Latin American Web
Congress (LA-Web 2005), 1 October - 2 November 2005, Buenos Aires,
Argentina, pp. 71–80. IEEE Computer Society.

Bibliography 295

Hayes, P. (2004, Februar). RDF semantics. Recommendation, W3C.

Heitmann, B., E. Oren, and M. Völkel (2006). Revisiting and simplifying
RDF. Technical Report 2006-15, DERI Galway.

Hennum, E. (2006, August). Representing discourse models in RDF. In
Extreme Markup Languages 2006 (R), Montréal, Québec.

Higgison, S. (2004, April). Your say: Personal knowledge management.
Inside Knowledge 7(7).

Hitzler, P., M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph
(2009, October). OWL 2 web ontology language:primer. W3C recom-
mendation, W3C. http://www.w3.org/TR/owl2-primer/.

Holsapple, C. W. (2004). Handbook on knowledge management, Chapter
Knowledge and Its Attributes, pp. 165–188. Springer, Berlin; Heidelberg.

Huhns, M. and L. Stephens (1999, Sep/Oct). Personal ontologies. Internet
Computing, IEEE 3(5), 85–87.

Hussmann, H. (1997). Formal foundations for software engineering methods.
Springer.

Immaneni, T. and K. Thirunarayan (2007). A unified approach to retrieving
web documents and semantic web data. See Franconi et al. (2007), pp.
579–593.

Iske, P. and T. Boekhoff (2002). The value of knowledge doesn’t exist. In
D. Karagiannis and U. Reimer (Eds.), PAKM, Volume 2569 of Lecture
Notes in Computer Science, pp. 632–638. Springer.

ISO (1991a). Ergonomic principles related to mental work-load. Technical
Report ISO 10075:1991, ISO, Geneva.

ISO (1991b). Information processing – text and office systems – standard
generalized markup language (SGML). Technical Report ISO 8879:1986,
ISO, Geneva.

Jäschke, R., A. Hotho, C. Schmitz, B. Ganter, and G. Stumme (2008, Febru-
ary). Discovering shared conceptualizations in folksonomies. Journal of
Web Semantics 6(1), 38–53.

Johnson, N. E. (1989). Mediating representations in knowledge elicitation.
pp. 177–194.

Johnson-Laird, P. N. (1983). Mental models: towards a cognitive science of
language, inference, and consciousness. Cambridge, MA, USA: Harvard
University Press.

Jonassen, D. H. (2000). Toward a design theory of problem solving. Edu-
cational Technology Research and Development 48(4), 63–85.

296 Bibliography

Jones, W. and H. Bruce (Eds.) (2005, January). A Report on the NSF-
Sponsored Workshop on Personal Information Management, Seattle, WA,
2005.

Jones, W., H. Bruce, and S. Dumais (2001). Keeping found things found on
the web. In CIKM ’01: Proceedings of the tenth International Conference
on Information and Knowledge Management, New York, NY, USA, pp.
119–126. ACM Press.

Jones, W., A. J. Phuwanartnurak, R. Gill, and H. Bruce (2005). Don’t take
my folders away!: organizing personal information to get things done. In
G. C. van der Veer and C. Gale (Eds.), CHI Extended Abstracts, pp.
1505–1508. ACM.

Jones, W., P. Pirolli, S. K. Card, R. Fidel, N. D. Gershon, P. Morville, B. A.
Nardi, and D. M. Russell (2006). "it’s about the information stupid!": why
we need a separate field of human-information interaction. In G. M. Olson
and R. Jeffries (Eds.), CHI Extended Abstracts, pp. 65–68. ACM.

Jones, W. P. and J. Teevan (2007, October). Personal Information Man-
agement. University of Washington Press.

Jüngst, K. L. (1992). Lehren und Lernen mit Begriffsnetzdarstellungen. Zur
Nutzung von concept-maps bei der Vermittlung fachspezifischer Begriffe
in Schule, Hochschule, Aus- und Weiterbildung. AFRA.

Kalnikaitė, V. and S. Whittaker (2008). Cueing digital memory: how and
why do digital notes help us remember? In BCS-HCI ’08: Proceedings of
the 22nd British HCI Group Annual Conference on HCI 2008, Swinton,
UK, UK, pp. 153–161. British Computer Society.

Khan, F. (1994, February). A survey of note-taking practices. Technical
Report HPL-93-107, Hewlett-Packard.

Kidd, A. (1994). The marks are on the knowledge worker. In CHI ’94:
Proc. of the SIGCHI conf. on Human factors in computing systems, pp.
186–191. ACM Press.

Kirschner, P. A., S. J. B. Shum, and C. S. Carr (Eds.) (2003). Visualizing
argumentation: software tools for collaborative and educational sense-
making. London, UK: Springer.

Klyne, G. and J. J. Carroll (2004, February). Resource description frame-
work (RDF): Concepts and abstract syntax. http://www.w3.org/TR/

2004/REC-rdf-concepts-20040210/ (accessed 05.01.2010).

Krohn, T., M. C. Kindsmüller, and M. Herczeg (2008). myPIM: a graphical
information management system for web resources. In ICPW ’08: Pro-
ceedings of the 3rd International Conference on the Pragmatic Web, New
York, NY, USA, pp. 3–12. ACM.

Bibliography 297

Krötzsch, M., S. Rudolph, and P. Hitzler (2008, October). ELP: Tractable
rules for OWL 2. In A. Sheth, S. Staab, M. Dean, M. Paolucci, D. May-
nard, T. Finin, and K. Thirunarayan (Eds.), Proceedings of the 7th Inter-
national Semantic Web Conference (ISWC 2008), Volume 5318 of LNCS,
pp. 649–664. Springer.

Krötzsch, M., D. Vrandečić, M. Völkel, H. Haller, and R. Studer (2007).
Semantic wikipedia. Journal of Web Semantics 5(4), 251–261.

Kunz, W. and H. W. J. Rittel (1970). Issues as elements of information
systems. Technical report wp-131, University of California, Berkeley.

Lamming, M., P. Brown, K. Carter, M. Eldridge, M. Flynn, G. Louie,
P. Robinson, and A. Sellen (1994). The Design of a Human Memory
Prosthesis. The Computer Journal 37(3), 153–163.

Lethbridge, T. (1998). Metrics for concept-oriented knowledge bases. In-
ternational Journal of Software Engineering and Knowledge Engineer-
ing 8(2), 161–188.

Lethbridge, T. C. (1991a, October). Creative knowledge acquisition: An
analysis. In Proc. 6th Knowledge Acquisition for Knowledge-Based Sys-
tems Workshop, Banff, Alberta, pp. 12.1–12.20.

Lethbridge, T. C. (1991b). A model for informality in knowledge represen-
tation and acquisition (an extended abstract). In Workshop on Informal
Computing, Santa Cruz, Incremental Systems, pp. 175–177.

Lethbridge, T. C. (1994). Practical Techniques for Organizing and Measur-
ing Knowledge. Ph. D. thesis, University of Ottawa.

Leuf, B. and W. Cunningham (2001). The wiki way: Quick collaboration
on the web. Addison-Wesley.

Lie, H. W. and B. Bos (1999). Cascading style sheets, level 1. Technical
Report REC-CSS1-19990111, W3C. W3C Recommendation 17 Dec 1996,
revised 11 Jan 1999.

Likert, R. (1932). A technique for the measurement of attitudes. Archives
of Psychology 22(140), 1–55.

Löffler, K. and N. Fischer (1956). Einführung in die Katalogkunde. Anton
Hiersemann, Stuttgart, Germany.

Lorie, R. A. (2001). Long term preservation of digital information. In JCDL
’01: Proceedings of the 1st ACM/IEEE-CS Joint Conference on Digital
Libraries, New York, NY, USA, pp. 346–352. ACM.

Ludwig, L. (2005, June). Semantic personal knowledge management. Tech-
nical Report D11.01_v0.01, DERI Galway, University Road, Galway, Ire-
land. Cached version available at http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.123.7872&rep=rep1&type=pdf (ac-
cessed 05.01.2010).

298 Bibliography

Luhmann, N. (1992). Kommunikation mit Zettelkästen. Ein Erfahrungs-
bericht. In A. Kieserling (Ed.), Universität als Milieu, Kleine Schriften,
pp. 53–61. Haux Verlag, Bielefeld. ISBN 3-925471-13-8.

Maier, D., D. Archer, L. Delcambre, S. M. Hy, T. J. Annareddy, L. N. Cassel,
D. Gangula, G. B. Teng, E. A. Fox, and U. Murthy (2006). Personal
information enhancement for education.

Maier, R. and A. Schmidt (2007). Characterizing knowledge maturing: A
conceptual process model for integrating e-learning and knowledge man-
agement. In N. Gronau (Ed.), 4th Conference Professional Knowledge
Management - Experiences and Visions (WM ’07), Potsdam, Volume 1,
Berlin, pp. 325–334. GITO.

Malone, T. W. (1983). How do people organize their desks?: Implications
for the design of office information systems. ACM Trans. Inf. Syst. 1(1),
99–112.

Marshall, B., Y. Zhang, H. Chen, A. M. Lally, R. Shen, E. A. Fox, and L. N.
Cassel (2003). Convergence of knowledge management and e-learning:
The getsmartexperience. In JCDL, pp. 135–146. IEEE Computer Society.

Marshall, C. C. and A. J. B. Brush (2004). Exploring the relationship
between personal and public annotations. In JCDL ’04: Proceedings of
the 4th ACM/IEEE-CS Joint Conference on Digital Libraries, New York,
NY, USA, pp. 349–357. ACM.

Maturana, H. R. and F. J. Varela (1987). Der Baum der Erkenntnis (2.
Aufl. ed.). Scherz.

Maurer, H. (1999). The heart of the problem: Knowledge management
and knowledge transfer. In Proc. ENABLE’99, pp. 8–17. Espoo-Vantaa
Institute of Technology.

Miles, A. and S. Bechhofer (2008, January). Skos simple knowledge orga-
nization system reference. Working draft, World Wide Web Consortium.
http://www.w3.org/TR/2009/REC-skos-reference-20090818/ (ac-
cessed 06.01.2010).

Miller, G. (1956). The magical number seven, plus or minus two: Some lim-
its on our capacity for processing information. Psychological Review 63,
81–97.

Miller, R. C. (2002). Lightweight Structure in Text. Ph. D. thesis, School
of Computer Science, Carnegie Mellon University.

Minack, E., L. Sauermann, G. Grimnes, C. Fluit, and J. Broek-
stra (2008). The Sesame LuceneSail: RDF queries with full-
text search. Technical report, NEPOMUK. Available at
http://nepomuk.semanticdesktop.org/xwiki/bin/download/

Main1/Publications/Minack%202008.pdf (accessed 05.01.2010).

Bibliography 299

Mitchell, A. (2005, September). The rise of personal KM. Inside Knowl-
edge 9(1).

Musen, M. A. (1989, March). Conceptual models of interactive knowledge
acquisition tools. Knowledge Acquisition 1(1), 73–88.

National Library of Medicine (U.S.), Board of Regents (1987). Long Range
Plan. U.S. Dept. of Health and Human Services, Public Health Service,
National Institutes of Health.

Nelson, T. H. (1995). The heart of connection: hypermedia unified by
transclusion. Communications of the ACM 38(8), 31–33.

NEPOMUK Consortium, M. Völkel, H. Haller, W. Bolinder, B. Davis,
H. Edlund, K. Groth, R. Gudjonsdottir, M. Kotelnikov, P. Lannerö,
S. Lundquist, M. Sogrin, Y. Sundblad, and B. Westerlund (2008, Jan-
uary). Conceptual data structure tools. Deliverable 1.2, NEPOMUK
consortium. Copy available at http://xam.de/2008/D1.2_v10_CDS-

Tools.pdf (accessed 05.01.2010).

Nevo, D., B. Furneaux, and Y. Wand (2008, December). Towards an evalu-
ation framework for knowledge management systems. Information Tech-
nology and Management 9(4), 233–249.

Nissen, M. E. (2005, October). Harnessing Knowledge Dynamics: Principled
Organizational Knowing & Learning. IRM Press.

Noga, M. L. and M. Völkel (2003, November). From web pages to web
services with WAL. In NCWS 2003, Växjö, Sweden. Mathematical Mod-
elling in Physics Engineering and Cognitive Science.

Noirhomme-Fraiture, M. and V. Serpe (1998). Visual representation of
hypermedia links according to their types. In AVI ’98: Proceedings of the
working conference on Advanced Visual Interfaces, New York, NY, USA,
pp. 146–155. ACM.

Nonaka, I. (1994, Februar). A dynamic theory of organizational knowledge
creation. Organization Science 5(1), 14–37.

Nonaka, I. and N. Konno (1998). The concept of "ba": Building a foundation
for knowledge creation. California Management Review 40(3), 40–54.

Nonaka, I. and H. Takeuchi (1995, May). The Knowledge-Creating Com-
pany : How Japanese Companies Create the Dynamics of Innovation.
Oxford University Press.

North, K. (2002). Wissensorientierte Unternehmensführung (3rd ed.). Dr.
Th. Gabler Verlag.

North, K. (2007, October). Produktive Wissensarbeit. In 5. Karlsruher
Symposium für Wissensmanagement in Theorie und Praxis. CD-ROM.

300 Bibliography

Novak, J. D. and A. J. Canas (2006, January). The theory underlying
concept maps and how to construct them. Technical report, Institute for
Human and Machine Cognition.

Noy, N. F., M. Sintek, S. Decker, M. Crubézy, R. W. Fergerson, and M. A.
Musen (2001). Creating semantic web contents with Protégé-2000. IEEE
Intelligent Systems 16(2), 60–71.

O’Hara, K. and A. Sellen (1997). A comparison of reading paper and on-line
documents. In CHI, pp. 335–342.

OMG (2007). Unified modeling language: Superstructure, version 2.1.1.
Technical Report formal/2007-02-03, Object Management Group.

Orchard, D., E. Maler, and S. DeRose (2001, June). XML link-
ing language (XLink) version 1.0. W3C recommendation, W3C.
http://www.w3.org/TR/2001/REC-xlink-20010627/.

Oren, E. (2005). SemperWiki: a semantic personal wiki. See Decker et al.
(2005).

Oren, E. (2006). An overview of information management and knowledge
work studies: Lessons for the semantic desktop. In S. Decker, J. Park,
L. Sauermann, S. Auer, and S. Handschuh (Eds.), Proc. of the Semantic
Desktop and Social Semantic Collaboration Workshop, Volume 202 of
CEUR Workshop Proceedings ISSN 1613-0073. CEUR-ws.org. http://

CEUR-WS.org/Vol-202/SEMDESK2006_0010.pdf (accessed 06.01.2010).

Oren, E., M. Völkel, J. G. Breslin, and S. Decker (2006, September). Seman-
tic wikis for personal knowledge management. In Database and Expert
Systems Applications, Volume 4080/2006, pp. 509–518. Springer Berlin /
Heidelberg.

Paoli, J., J. Cowan, T. Bray, F. Yergeau, E. Maler, and C. M.
Sperberg-McQueen (2006, August). Extensible markup lan-
guage (XML) 1.1 (second edition). W3C recommendation, W3C.
http://www.w3.org/TR/2006/REC-xml11-20060816.

Park, J. and A. Cheyer (2006). Charting the Topic Maps Research and Ap-
plications Landscape, Chapter Just for Me: Topic Maps and Ontologies,
pp. 145 – 159. Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Pédauque, R. T. (2003, July). Document: Form, sign and medium, as
reformulated for electronic documents.

Peirce, C. S. (1931-1958). Collected Papers of Charles Sanders Peirce, 8
vols. Harvard University Press, Cambridge, Massachusetts.

Pemberton, S. (2000, January). XHTMLTM 1.0: The extensible hypertext
markup language - a reformulation of HTML 4 in XML 1.0. first edition
of a recommendation, W3C. W3C Recommendation 26 January 2000,
revised 1 August 2002.

Bibliography 301

Peter, H., H. Sack, and C. Beckstein (2006). Tags and dependencies: an
integrated view of document annotation. In in Proc. of the 1st Semantic
Authoring and Annotation Workshop (SAAW2006), Athens (GA), USA.

Phelps, T. A. and R. Wilensky (2000). Multivalent documents. Communi-
cations of the ACM 43(6), 82–90.

Pirolli, P. and S. K. Card (1995). Information foraging in information access
environments. In CHI, pp. 51–58.

Polanyi, M. (1958). Personal Knowledge: Towards a Post-Critical Philoso-
phy. London: Routledge & Kegan Paul Ltd.

Polanyi, M. (1966). Tacit Dimension. London: Routledge & Kegan Paul
Ltd.

Polanyi, M. (1998, March). Personal Knowledge. Routledge.

Pollard, D. (2005, November). Personal knowledge management (PKM) – an
update. Dave Pollard’s environmental philosophy, creative works, busi-
ness papers and essays (Blog). http://blogs.salon.com/0002007/

2005/11/23.html (accessed 05.01.2010).

Pras, A. and J. Schoenwalder (2003, January). On the difference between
information models and data models. Informational 3444, Network Work-
ing Group.

Probst, G., S. Raub, and K. Romhardt (2006). Wissen Managen: Wie
Unternehmen ihre wertvollste Ressource optimal nutzen (5 ed.). Gabler
Verlag.

Prud’Hommeaux, E., A. Seaborne, A. Seaborne, and E. Prud’hommeaux
(2007, June). SPARQL query language for RDF. W3C recommen-
dation, W3C. http://www.w3.org/TR/rdf-sparql-query/ (accessed
05.01.2010).

Quan, D., D. Huynh, and D. R. Karger (2003). Haystack: A platform for
authoring end user semantic web applications. In Proc. of ISWC 2003,
pp. 738–753.

Raggett, D., A. L. Hors, and I. Jacobs (1999, December).
HTML 4.01 specification. W3C recommendation, W3C.
http://www.w3.org/TR/1999/REC-html401-19991224.

Reinmann, G. and M. J. Eppler (2007). Wissenswege. Huber, Bern.

Renear, A., E. Mylonas, and D. Durand (1993, January). Refining our
notion of what text really is: The problem of overlapping hierarchies.
online. A slightly edited version of this paper was published in 1996 in
Research in Humanities Computing, Oxford University Press, Nancy Ide
and Susan Hockey, eds.

302 Bibliography

Reynolds, D., S. Cayzer, I. Dickinson, and P. Shabajee (2001). Semantic web
applications – analysis and selection. 12.1 Application Survey, SWAD-
Europe project consortium (http://www.w3.org/2001/sw/Europe/,
accessed 05.01.2010).

Rittel, H. and M. Webber (1973). Dilemmas in a general theory of planning.
Policy Sciences 4, 155–169.

Rockley, A. (2002, October). Managing Enterprise Content: A Unified
Content Strategy. New Riders Press.

Rubin, D. L., N. F. Noy, and M. A. Musen (2007, November). Protégé:
A tool for managing and using terminology in radiology applications.
Journal of Digital Imaging 20, 34–46.

Rutledge, P.-A. and G. Bajaj (2006, December). Special Edition Using
Microsoft Office PowerPoint 2007. Que.

Sauer, C., C. Smith, and T. Benz (2007). Wikicreole:: a common wiki
markup. In WikiSym ’07: Proceedings of the 2007 international sympo-
sium on Wikis, New York, NY, USA, pp. 131–142. ACM Press.

Sauermann, L. (2009, June). The Gnowsis Semantic Desktop approach to
Personal Information Management. Ph. D. thesis, Fachbereich Informatik
der Universität Kaiserslautern.

Sauermann, L., R. Cyganiak, and M. Völkel (2007, February). Cool URIs for
the semantic web. Technical Memo TM-07-01, Deutsches Forschungszen-
trum für Künstliche Intelligenz GmbH, Germany.

Schmidt, A. (2009). Situationsbewusste Informationsdienste für das ar-
beitsbegleitende Lernen. Karlsruhe, Germany: Karlsruhe Institute
of Technology / Universität Karlsruhe (TH). http://digbib.ubka.uni-
karlsruhe.de/volltexte/1000012939.

Schnase, J. L., J. J. Leggett, D. L. Hicks, P. J. Nürnberg, and J. A. Sánchez
(1993, June). Design and implementation of the HB1 hyperbase man-
agement system. Electronic Publishing - Origination, Dissemination and
Design (EPodd) 6(1), 35–63.

Schnetzler, N. (2004). Die Ideenmaschine : Methode statt Geistesblitz - wie
Ideen industriell produziert werden (2. Aufl. ed.). Wiley-VCH.

Schreiber (1993, May). KADS: A Principled Approach to Knowledge-
Based System Development (Knowledge-Based Systems) (1 ed.). Aca-
demic Press.

Schreiber, G., H. Akkermans, A. Anjewierden, R. Dehoog, N. Shadbolt,
W. Vandevelde, and B. Wielinga (1999, December). Knowledge Engi-
neering and Management: The CommonKADS Methodology. The MIT
Press.

Bibliography 303

Schreiber, G. and M. Dean (2004, February). OWL web ontology lan-
guage reference. Recommendation, W3C. http://www.w3.org/TR/

2004/REC-owl-ref-20040210/ (accessed 05.01.2010).

Schreiber, T. and K. Harbo (2004). Information literacy and personal knowl-
edge management. In 12th Nordic Conference on Information and Docu-
mentation, pp. 106–114.

Schütt, P. (2003). The post-nonaka knowledge management. Journal of
Universal Computer Science 9(6), 451–462.

Scriven, M. (1991, August). Evaluation Thesaurus (4 ed.). Sage Publica-
tions, Inc.

Shipman, F. M. and R. J. McCall (1999). Incremental formalization with
the hyper-object substrate. ACM Trans. Inf. Syst. 17(2), 199–227.

Shneiderman, B. (1989). The Society of Text, Chapter Reflections on au-
thoring, editing, and managing hypertext, pp. 115–131. Cambridge, MA,
USA: MIT Press.

Shneiderman, B. (1996, September). The eyes have it: A task by data
type taxonomy for information visualizations. In VL ’96: Proceedings of
the 1996 IEEE Symposium on Visual Languages, Washington, DC, USA.
IEEE Computer Society.

Shneiderman, B. (1998, May). Designing the User Interface. Addison Wes-
ley.

Simon, H. A. (1981, May). Studying human intelligence by creating artificial
intelligence. American Scientist 69, 300–309.

Sintek, M., L. van Elst, S. Scerri, and S. Handschuh (2007). Knowledge
representation on the social semantic desktop: Named graphs, views, and
roles in nrl. In W. M. Enrico Franconi, Michael Kifer (Ed.), The Semantic
Web: Research and Applications - Proceedings of 4th European Semantic
Web Conference ESWC 2007, LNAI, Springer, pp. 594–608. 4519.

Skuce, D. and T. C. Lethbridge (1995, April). Code4: a unified system for
managing conceptual knowledge. International Journal of HumanCom-
puter Studies 42(4), 413–451.

Sowa, J. F. (1976). Conceptual graphs for a data base interface. IBM
Journal of Research and Development 20(4), 336–357.

Srinivasan, B. and J. Zeleznikow (Eds.) (1990). Databases in the 1990s:
Proceedings of the Australian Database Research Conference. World Sci-
entific.

Staab, S. and R. Studer (Eds.) (2009). Handbook on Ontologies (2nd ed.
ed.). International Handbooks on Information Systems. Springer.

304 Bibliography

Staab, S., R. Studer, H.-P. Schnurr, and Y. Sure (2001, Jan-Feb). Knowledge
processes and ontologies. Intelligent Systems, IEEE 16(1), 26–34.

Stachowiak, H. (1973). Allgemeine Modelltheorie. Springer, Wien.

Stankosky, M. (2005, February). Creating the Discipline of Knowledge Man-
agement: The Latest in University Research. Butterworth-Heinemann.

Studer, R., V. R. Benjamins, and D. Fensel (1998). Knowledge engineering:
Principles and methods. Data & Knowledge Engineering 25(1-2), 161 –
197.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learn-
ing. Cognitive Science 12(2), 257 – 285.

Taboada, M. and W. C. Mann (2006). Rhetorical structure theory: Looking
back and moving ahead. Discourse Studies, 423–459.

Taylor, F. W. (1911). The Principles of Scientific Management. New York
and London: Harper & Brothers.

Tazzoli, R., P. Castagna, and S. E. Campanini (2004). Towards a Se-
mantic WikiWikiWeb. In 3rd International Semantic Web Conference
(ISWC2004), Hiroshima, Japan.

Teevan, J., C. Alvarado, M. S. Ackerman, and D. R. Karger (2004). The
perfect search engine is not enough: a study of orienteering behavior in
directed search. In CHI ’04: Proc. of the SIGCHI conf. on Human factors
in computing systems, pp. 415–422. ACM Press.

Tergan, S.-O. (2005). Digital concept maps for managing knowledge and
information. In S.-O. Tergan and T. Keller (Eds.), Knowledge and Infor-
mation Visualization, Volume 3426 of Lecture Notes in Computer Science,
pp. 185–204. Springer.

Thompson, H. S., C. M. Sperberg-McQueen, and S. Gao (2008, June).
W3C XML schema definition language (XSD) 1.1 part 1: Structures. a
WD in last call, W3C. http://www.w3.org/TR/2008/WD-xmlschema11-
1-20080620/.

Toffoli, T. (2002, January). A knowledge home - personal knowledge struc-
turing in a computer world. online. Draft 5.00.

Toms, E. G. (2000). Serendipitous information retrieval. In DELOS Work-
shop: Information Seeking, Searching and Querying in Digital Libraries.

Unicode (2007). The Unicode Standard, Version 5.0.0. Addison-Wesley,
Boston, MA.

Uschold, M. (1996). Building ontologies: Towards a unified methodology. In
In 16th Annual Conf. of the British Computer Society Specialist Group
on Expert Systems, pp. 16–18.

Bibliography 305

van Harmelen, M. (2006). Personal learning environments. In ICALT ’06:
Proceedings of the Sixth IEEE International Conference on Advanced
Learning Technologies, Washington, DC, USA, pp. 815–816. IEEE Com-
puter Society.

Van Rijsbergen, C. J. (1979). Information Retrieval, 2nd edition. Dept. of
Computer Science, University of Glasgow.

Varian, H. R. (1999). The economics of search. In SIGIR ’99: Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, New York, NY, USA, pp. 1.
ACM.

Vester, F. (2000). Die Kunst vernetzt zu denken (5. Aufl. ed.). DVA.

Völkel, M. (2005a, October). Semwiki - a restful distributed wiki architec-
ture. In Proceedings of the First International Symposium on Wikis, San
Diego, USA.

Völkel, M. (2005b, December). Writing the semantic web with java.
Technical report, DERI Galway, Ireland. Copy available at http://

www.xam.de/2005/12_voelkel_semweb4j_DERISem05.pdf (accessed
05.01.2010).

Völkel, M. (2006, May). RDFReactor – from ontologies to programmatic
data access. In Proc. of the Jena User Conference 2006. HP Bristol.

Völkel, M. (2007a, March). From documents to knowledge models. In
N. Gronau (Ed.), Proc. of the Workshop on Productive Knowledge Work:
Management and Technological Challenges (ProKW2007) at the 4th Con-
ference Professional Knowledge Management, Potsdam, Volume 2, Berlin.
GITO.

Völkel, M. (2007b, September). A semantic web content model and repos-
itory. In Proceedings of the 3rd International Conference on Semantic
Technologies (I-SEMANTICS), Graz, Austria, pp. 254–261.

Völkel, M. (2008, June). Hypertext knowledge workbench. In C. Lange
(Ed.), Proc. of the Third Workshop on Semantic Wikis – The Wiki Way
of Semantics – Workshop at ESWC, Budva, Montenegro.

Völkel, M. and A. Abecker (2008, June). Cost-benefit analysis for the design
of personal knowledge management systems. In J. Cordeiro and J. Filipe
(Eds.), ICEIS 2008 - Proceedings of the Tenth International Conference
on Enterprise Information Systems, Volume AIDSS, Barcelona, Spain,
June 12-16, 2008, pp. 95–105.

Völkel, M. and T. Groza (2006, October). SemVersion: An RDF-based on-
tology versioning system. In Proceedings of IADIS International Confer-
ence on WWW/Internet, Volume 1, Murcia, Spain, pp. 195–202. IADIS:
IADIS.

306 Bibliography

Völkel, M. and H. Haller (2006, July). Conceptual data structures (CDS) –
towards an ontology for semi-formal articulation of personal knowledge.
In Proc. of the 14th International Conference on Conceptual Structures
2006, Aalborg University - Denmark.

Völkel, M. and H. Haller (2009). Conceptual data structures for personal
knowledge management. Online Information Review 33(2), 298–315.

Völkel, M., H. Haller, and A. Abecker (2007, October). Modelling higher-
level thought structures - method and tool. In Proceedings of Work-
shop on Foundations and Applications of the Social Semantic Desktop at
eChallenges.

Völkel, M., M. Krötzsch, D. Vrandecic, H. Haller, and R. Studer (2006,
May). Semantic Wikipedia. In Proceedings of the 15th International
Conference on World Wide Web, WWW 2006, Edinburgh, Scotland, May
23-26, 2006.

Völkel, M. and E. Oren (2006, May). Towards a wiki interchange for-
mat (WIF). In M. Völkel and S. Schaffert (Eds.), Proceedings of the
First Workshop on Semantic Wikis – From Wiki To Semantics, ESWC,
Budva,Montenegro.

Völkel, M., E. Oren, and S. Schaffert (2008, June). Personal Knowledge
Management with Semantic Technologies. Idea Group Inc.

Völkel, M. and S. Schaffert (Eds.) (2006, May). Proceedings of the First
Workshop on Semantic Wikis at ESWC, Budva, Montenegro, Volume 206
of CEUR Workshop Proceedings ISSN 1613-0073. FZI Forschungszentrum
Informatik Karlsruhe: CEUR-ws.org. http://CEUR-WS.org/Vol-206

(accessed 06.01.2010).

Völkel, M. and Y. Sure (2005, November). RDFReactor - from ontologies to
programmatic data access. Poster and Demo at International Semantic
Web Conference (ISWC) 2005, Galway, Ireland.

Walsh, N. and L. Muellner (1999, October). DocBook: The Definitive Guide
(O’Reilly XML). O’Reilly Media, Inc.

Wiil, U. K. (2005). Hypermedia technology for knowledge workers: a vision
of the future. In HYPERTEXT ’05: Proceedings of the sixteenth ACM
Conference on Hypertext and Hypermedia, New York, NY, USA, pp. 4–6.
ACM Press.

Yergeau, F. (1998, January). UTF-8, a transformation format of ISO 10646.
Technical Report 2279, Internet Engineering Task Force, Network Work-
ing Group. Obsoleted by RFC 3629.

Zhang, J. and D. A. Norman (1994). Representations in distributed cogni-
tive tasks. Cognitive Science 18(1), 87 – 122.

Zipf, G. K. (1949). Human Behaviour and the Principle of Least-Effort.
Cambridge MA: Addison-Wesley.

List of Figures

1.1 Three examples of commonly used knowledge cues 20
1.2 From Personal to Organisational Knowledge Management . . 24
1.3 Simplified model for cost and benefit analysis in PKM 28
1.4 Mapping from chapters to research goals 31
1.5 Knowledge models unify different levels of formality 32

2.1 Overview of Foundations chapter 35
2.2 Modelling layers . 37
2.3 The web model: REST . 43
2.4 The four UML meta-modelling layers (simplified) 46
2.5 The semantic web model: RDF 47
2.6 Example for a Concept-Map 57

3.1 Knowledge Flow Model by Marc E. Nissen 67
3.2 Knowledge cue life-cycle in isolation 70
3.3 Range of formalisms in domain-oriented systems by Shipman

and McCall (1999) . 71
3.4 Knowledge cue augmentation processes 71
3.5 Knowledge cue life-cycle with collaboration 73
3.6 Comparing the knowledge cue life-cycle with models from

Jones and Avery/Barth . 75
3.7 Comparing the knowledge cue life-cycle with models from

North and Nissen . 75
3.8 Knowledge work today . 79
3.9 Interaction bottleneck . 80
3.10 Sweet spot of lowest total costs 91
3.11 Microsoft Windows XP Explorer 111
3.12 Requirements dependency graph 120

4.1 Overview of Chapter 4 . 123
4.2 The five building blocks of the CDS data-model 125
4.3 Conceptual overview of the CDS data model as a UML class

diagram . 126
4.4 Detailed UML class diagram of the CDS data model 127
4.5 The complete CDS relation subsumption hierarchy 144
4.6 Document template for validating STIF strings 156
4.7 Transformations between structures in text and structures in

relations . 157
4.8 From STIF to a Logical Document Tree 158

308 List of Figures

4.9 Algorithm for representing a Logical Document Tree in CDS 159
4.10 Splitting a Logical Document Tree 160
4.11 CDS items and statements resulting from a split operation . . 160
4.12 Semantic Wiki Turtle Syntax 162
4.13 A simple CDS model . 166
4.14 A CDS model represented in RDF (N3 Syntax) 173
4.15 Example for mapping CDS-QL to SPARQL 174

5.1 High-level view on the CDS software eco-system 175
5.2 Some CDS inference rules . 178
5.3 The initial screen in HKW (step 1) 181
5.4 Creating a new Nameitem (step 2) 181
5.5 Creating a linked Nameitem (step 3) 182
5.6 Statement change widget (step 3b) 182
5.7 Navigation to “Great white shark” (step 4) 183
5.8 Auto-completion after entering “shar” (step 4b) 183
5.9 Extending the relation ontology with custom relations (step 5)184
5.10 The new item, relation and statement (step 5b) 184
5.11 Adding a content-item (step 6) 185
5.12 Navigating to the new content-item (step 6b) 185
5.13 Editing a content-item (step 7) 186
5.14 A formatted content-item (step 7) 186
5.15 Meta-modelling in HKW (step 8) 187
5.16 Meta-modelling in HKW (step 9) 187
5.17 Auto-completion for relations restricted by relation ontology

supports consistent usage of terms (step 10) 188
5.18 Auto-linking of existing name-items and relations (step 11) . 188
5.19 Adding a related item (step 12) 189
5.20 Final screen about the Great white shark (step 12b) 190
5.21 HKW’s built-in help system 191
5.22 HKW prototype screen shot, focusing on Dirk Hageman . . . 192
5.23 Procedural CDS inference in HKW (JavaScript) 195
5.24 An sample iMap from the user evaluation on the shark scenario197
5.25 QuiKey screen shot . 198

7.1 Overview of contributions . 233

A.1 The [has subtype] hierarchy of participant 1 in scenario A . . 275
A.2 The [has subtype] hierarchy of participant 2 in scenario A . . 276
A.3 The [has subtype] hierarchy of participant 3 in scenario A . . 277
A.4 The [has subtype] hierarchy of participant 4 in scenario A . . 278
A.5 The [has subtype] hierarchy of participant 5 in scenario A . . 278
A.6 The [has subtype] hierarchy of participant 1 in scenario B . . 279
A.7 The [has subtype] hierarchy of participant 2 in scenario B . . 279
A.8 The [has subtype] hierarchy of participant 4 in scenario B . . 280
A.9 The [has subtype] hierarchy of participant 3 in scenario B . . 280
A.10 The [has subtype] hierarchy of participant 5 in scenario B . . 281
A.11 The [has subtype] hierarchy of participant 1 in scenario C . . 281

A.12 The [has subtype] hierarchy of participant 2 in scenario C . . 282
A.13 The [has subtype] hierarchy of participant 3 in scenario C . . 283
A.14 The [has subtype] hierarchy of participant 4 in scenario C . . 284
A.15 The [has subtype] hierarchy of participant 5 in scenario C . . 285

List of Tables

1.1 Comparing Organisational and Personal Knowledge Manage-
ment . 17

2.1 Comparing Personal Information Management (PIM) and PKM 53

3.1 Comparison of PKM process models 69
3.2 Typographic conventions used in this thesis for summarising

concepts and relations . 108
3.3 Core concepts and relations of documents 109
3.4 Core concepts and relations of hypertext 110
3.5 Core concepts and relations of file explorers 111
3.6 Core concepts and relations of data structures in program-

ming languages . 112
3.7 Core concepts and relations of Mind Maps 113
3.8 Core concepts and relations of Concept Maps 113
3.9 Core concepts and relations of tagging systems 114
3.10 Summary of common relations in different conceptual models 114
3.11 Core concepts and relations of XML 116
3.12 Core concepts and relations of RDF 117
3.13 Core concepts and relations of SKOS (part 1) 118
3.14 Core concepts and relations of SKOS (part 2) 119
3.15 Requirements summary . 121

4.1 Comparing objects in the CDS data model by properties . . . 137
4.2 All triple query patterns . 139
4.3 Axiomatic CDS Statements 151
4.4 Comparing Wiki Creole and STIF 154
4.5 Summary of STIF elements 155
4.6 Mapping from STIF elements to CDS types 159

5.1 Mapping query patterns to indexes 180
5.2 Mapping query patterns to index lookup patterns 194
5.3 All CDS change operations are possible in HKW 196
5.4 Comparing CDS operations of HKW, iMapping, and QuiKey 200

6.1 Fulfilment of requirements . 204

310 List of Tables

6.2 Tool usage schedule for comparative user study 212
6.3 Main data-set of comparative user study 214

A.1 Comparing eRDF and RDFa 247
A.2 Assignment of tools per retrieval task per participant 269
A.3 Distribution of questions pairs for the scenarios A, B and C . 270
A.4 Comparing efficiency of CDS Tools and SMW 271
A.5 Session data of comparative user study 272
A.6 Usage of built-in relations in user-created statements 273

Glossary
CDS ContentItem (page 129) represents a piece of textual content. The

text can be structured using STIF.

CDS data model (D, page 124) is a flexible yet simple data-model.

CDS Item (page 126) is an addressable entity in a knowledge model.

CDS NameItem (page 129) is both a symbol for the computer (via its
URI) and a term of the user’s vocabulary (via its content).

CDS Relation (page 131) is the name for the type of Items that may
be used as the relation of a Triple.

CDS relation ontology (R, page 143) is a top-level relation ontology
for personal knowledge models. It contains the most commonly used
relations found in tools used for PKM tasks.

CDS Statement (page 132) is an Entity which connects Items. Each
Statement plays a dual role as addressable Item and as a Triple,
connecting other Items.

CDS Triple (page 130) is a labelled link. Depending on the used Rela-
tion, it can as well represent a formal statement.

Conceptual Data Structures (CDS) (Ch. 4) is a meta-model for rep-
resenting digital knowledge cues in a uniform fashion that are in differ-
ent degrees of formalisation. It consists of three parts: A data-model
(D), a relation ontology (R), and an interchange format for structured
text (STIF).

Degree of formality (page 26); similar: formality continuum, hybrid
formal-pragmatic specifications, degrees of formal and informal knowl-
edge, formality spectrum

Knowledge cue (page 20); any kind of symbol, pattern or artefact, cre-
ated with the intent to be used by its creator, to re-evoke a previously
experienced mental state (activated knowledge), when viewed or used
otherwise.

Personal (digital) knowledge model (page 23) is a digital artefact which
represents a set of knowledge cues. The knowledge cues can vary in
size, structuredness and degree of formality. A knowledge cue is either
(a) a piece of content, containing plain text, semi-structured text, or
arbitrary binary content such as images or desktop objects, or (b) a
connection between other knowledge cues. Such connections can be
unspecified relations, directed hyperlinks and formal statements.

312 GLOSSARY

Personal Knowledge Management (page 14) investigates the use of
methods and tools to amplify the abilities of the individual to work
better with knowledge.

Structured Text Interchange Format (STIF, page 153) allows repre-
senting and using structured text across different applications.

��� ����

