418 research outputs found

    Developing a Computational Framework for a Construction Scheduling Decision Support Web Based Expert System

    Get PDF
    Decision-making is one of the basic cognitive processes of human behaviors by which a preferred option or a course of action is chosen from among a set of alternatives based on certain criteria. Decision-making is the thought process of selecting a logical choice from the available options. When trying to make a good decision, all the positives and negatives of each option should be evaluated. This decision-making process is particularly challenging during the preparation of a construction schedule, where it is difficult for a human to analyze all possible outcomes of each and every situation because, construction of a project is performed in a real time environment with real time events which are subject to change at any time. The development of a construction schedule requires knowledge of the construction process that takes place to complete a project. Most of this knowledge is acquired through years of work/practical experiences. Currently, working professionals and/or students develop construction schedules without the assistance of a decision support system (that provides work/practical experiences captured in previous jobs or by other people). Therefore, a scheduling decision support expert system will help in decision-making by expediting and automating the situation analysis to discover the best possible solution. However, the algorithm/framework needed to develop such a decision support expert system does not exist so far. Thus, the focus of my research is to develop a computational framework for a web-based expert system that helps the decision-making process during the preparation of a construction schedule. My research to develop a new computational framework for construction scheduling follows an action research methodology. The main foundation components for my research are scheduling techniques (such as: Job Shop Problem), path-finding techniques (such as: travelling salesman problem), and rule-based languages (such as JESS). My computational framework is developed by combining these theories. The main contribution of my dissertation to computational science is the new scheduling framework, which consists of a combination of scheduling algorithms that is tested with construction scenarios. This framework could be useful in more areas where automatic job and/or task scheduling is necessary

    Automatic Dynamic Web Service Composition: A Survey and Problem Formalization

    Get PDF
    The aim of Web service composition is to arrange multiple services into workflows supplying complex user needs. Due to the huge amount of Web services and the need to supply dynamically varying user goals, it is necessary to perform the composition automatically. The objective of this article is to overview the issues of automatic dynamic Web service composition. We discuss the issues related to the semantics of services, which is important for automatic Web service composition. We propose a problem formalization contributing to the formal definition of the pre-/post-conditions, with possible value restrictions, and their relation to the semantics of services. We also provide an overview of several existing approaches dealing with the problem of Web service composition and discuss the current achievements in the field and depict some open research areas

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    The 2011 International Planning Competition

    Get PDF
    After a 3 years gap, the 2011 edition of the IPC involved a total of 55 planners, some of them versions of the same planner, distributed among four tracks: the sequential satisficing track (27 planners submitted out of 38 registered), the sequential multicore track (8 planners submitted out of 12 registered), the sequential optimal track (12 planners submitted out of 24 registered) and the temporal satisficing track (8 planners submitted out of 14 registered). Three more tracks were open to participation: temporal optimal, preferences satisficing and preferences optimal. Unfortunately the number of submitted planners did not allow these tracks to be finally included in the competition. A total of 55 people were participating, grouped in 31 teams. Participants came from Australia, Canada, China, France, Germany, India, Israel, Italy, Spain, UK and USA. For the sequential tracks 14 domains, with 20 problems each, were selected, while the temporal one had 12 domains, also with 20 problems each. Both new and past domains were included. As in previous competitions, domains and problems were unknown for participants and all the experimentation was carried out by the organizers. To run the competition a cluster of eleven 64-bits computers (Intel XEON 2.93 Ghz Quad core processor) using Linux was set up. Up to 1800 seconds, 6 GB of RAM memory and 750 GB of hard disk were available for each planner to solve a problem. This resulted in 7540 computing hours (about 315 days), plus a high number of hours devoted to preliminary experimentation with new domains, reruns and bugs fixing. The detailed results of the competition, the software used for automating most tasks, the source code of all the participating planners and the description of domains and problems can be found at the competition’s web page: http://www.plg.inf.uc3m.es/ipc2011-deterministicThis booklet summarizes the participants on the Deterministic Track of the International Planning Competition (IPC) 2011. Papers describing all the participating planners are included

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Scheduling in assembly type job-shops

    Get PDF
    Assembly type job-shop scheduling is a generalization of the job-shop scheduling problem to include assembly operations. In the assembly type job-shops scheduling problem, there are n jobs which are to be processed on in workstations and each job has a due date. Each job visits one or more workstations in a predetermined route. The primary difference between this new problem and the classical job-shop problem is that two or more jobs can merge to foul\u27 a new job at a specified workstation, that is job convergence is permitted. This feature cannot be modeled by existing job-shop techniques. In this dissertation, we develop scheduling procedures for the assembly type job-shop with the objective of minimizing total weighted tardiness. Three types of workstations are modeled: single machine, parallel machine, and batch machine. We label this new scheduling procedure as SB. The SB procedure is heuristic in nature and is derived from the shifting bottleneck concept. SB decomposes the assembly type job-shop scheduling problem into several workstation scheduling sub-problems. Various types of techniques are used in developing the scheduling heuristics for these sub-problems including the greedy method, beam search, critical path analysis, local search, and dynamic programming. The performance of SB is validated on a set of test problems and compared with priority rules that are normally used in practice. The results show that SB outperforms the priority rules by an average of 19% - 36% for the test problems. SB is extended to solve scheduling problems with other objectives including minimizing the maximum completion time, minimizing weighted flow time and minimizing maximum weighted lateness. Comparisons with the test problems, indicate that SB outperforms the priority rules for these objectives as well. The SB procedure and its accompanying logic is programmed into an object oriented scheduling system labeled as LEKIN. The LEKIN program includes a standard library of scheduling rules and hence can be used as a platform for the development of new scheduling heuristics. In industrial applications LEKIN allows schedulers to obtain effective machine schedules rapidly. The results from this research allow us to increase shop utilization, improve customer satisfaction, and lower work-in-process inventory without a major capital investment

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    Ordered Landmarks in Planning

    Get PDF
    Many known planning tasks have inherent constraints concerning the best order in which to achieve the goals. A number of research efforts have been made to detect such constraints and to use them for guiding search, in the hope of speeding up the planning process. We go beyond the previous approaches by considering ordering constraints not only over the (top-level) goals, but also over the sub-goals that will necessarily arise during planning. Landmarks are facts that must be true at some point in every valid solution plan. We extend Koehler and Hoffmann's definition of reasonable orders between top level goals to the more general case of landmarks. We show how landmarks can be found, how their reasonable orders can be approximated, and how this information can be used to decompose a given planning task into several smaller sub-tasks. Our methodology is completely domain- and planner-independent. The implementation demonstrates that the approach can yield significant runtime performance improvements when used as a control loop around state-of-the-art sub-optimal planning systems, as exemplified by FF and LPG
    corecore