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ABSTRACT

SCHEUDLING IN ASSEMBLY TYPE JOB-SHOPS

by
Nutthapol Asadathorn

Assembly type job-shop scheduling is a generalization of the job-shop scheduling

problem to include assembly operations. In the assembly type job-shops scheduling

problem, there are n jobs which are to be processed on in workstations and each job has a

due date. Each job visits one or more workstations in a predetermined route. The primary

difference between this new problem and the classical job-shop problem is that two or

more jobs can merge to foul' a new job at a specified workstation, that is job convergence

is permitted. This feature cannot be modeled by existing job-shop techniques. In this

dissertation, we develop scheduling procedures for the assembly type job-shop with the

objective of minimizing total weighted tardiness. Three types of workstations are

modeled: single machine, parallel machine, and batch machine. We label this new

scheduling procedure as SB. The SB procedure is heuristic in nature and is derived from

the shifting bottleneck concept. SB decomposes the assembly type job-shop scheduling

problem into several workstation scheduling sub-problems. Various types of techniques

are used in developing the scheduling heuristics for these sub-problems including the

greedy method, beam search, critical path analysis, local search, and dynamic

programming.

The performance of SB is validated on a set of test problems and compared with

priority rules that are normally used in practice. The results show that SB outperforms the

priority rules by an average of 19% - 36% for the test problems. SB is extended to solve



scheduling problems with other objectives including minimizing the maximum

completion time, minimizing weighted flow time and minimizing maximum weighted

lateness. Comparisons with the test problems, indicate that SB outperforms the priority

rules for these objectives as well.

The SB procedure and its accompanying logic is programmed into an object

oriented scheduling system labeled as LEKIN. The LEKIN program includes a standard

library of scheduling rules and hence can be used as a platform for the development of

new scheduling heuristics. In industrial applications LEKIN allows schedulers to obtain

effective machine schedules rapidly. The results from this research allow us to increase

shop utilization, improve customer satisfaction, and lower work-in-process inventory

without a major capital investment.
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CHAPTER 1

INTRODUCTION

Assembly shop may be considered as a variation of the classical job shop. Each assembly

job begins as several sub-jobs. These sub-jobs then progress on several paths. At each

convergence point (assembly station), two or more sub-jobs (components) merge to form

a semi-finished part (see Figure 1-1). At an assembly station, processing operations can

start only when all the required components are available. Figure 1-2 shows that

operation 3 can start only after operations 1 and 2 have completed. In a mixed model

assembly shop, several workstations will process a variety of jobs and/or assembly

operations. In such scenario, the sequencing and scheduling policy has a significant

impact on shop performance. Sequencing decision at an upstream station will effect all

downstream stations. Clearly, developing an effective assembly shop scheduling system

requires combining traditional job shop method with flow shop method.

waiting time

14- - -

Figure 1-1: Assembly operation	 Figure 1-2: Tasks synchronizing

The machines in assembly shop are grouped into workstations. The workstation is

a processing stage in the shop. It may consist of single machine or a group of similar
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machines working in parallel. In this research, we are interested in three types of

workstations — single machine, parallel machine and batch machine workstations. A batch

machine processes a fixed lot of jobs simultaneously and does not begin processing a new

lot unless the previous lot has been completed. For all workstation types, we do not allow

preemption of jobs, but do permit job reentrance to the previously visited machines.

When an assembly shop is controlled as a traditional job shop, this may lead to

one of the most common problems in production planning and control, the work-in-

process inventory. When jobs are considered as multiple independent sub-jobs to prevent

assembly structure, work-in-process inventory is unavoidable. This inventory assures the

smooth production. Therefore, the work-in-process inventory control problem may be

solved by improving the assembly shop control. The storage space and inventory cost can

be reduced significantly. The flow will be smooth as long as machines are working as

expected.

1.1 Problem Description

A typical assembly shop consists of/ . = I,	 n jobs, and there are k = 1, ..., v machines

in the shop. In such a situation, the scheduler needs to find the processing sequences for

all the machines in the shop in order to maximize the customer satisfaction. Here, we

determine the customer satisfaction level by measuring the ability to complete the job on

time. If a job cannot be completed on time, it is considered as a delayed job. Among all

customers, some of them may have higher priorities than others. Their orders are

important and should not be delayed or, if not avoidable, be delayed at the minimal. Job

weights are assigned according to these priorities. In this dissertation, we measure
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customer satisfaction by weighted tardiness, WT. Where WT = Σw(j)T(j) and
j= 1

T (j) max(0,d(j) — c ( j ) ), and w9) , T(j), di) and c9) are the weight, tardiness, due date and

completion time of job j, respectively. It is easy to see that different sequences provide

different weighted tardiness. We seek for a scheduling scheme that minimizes the value.

The structure of an assembly shop can be defined by its job structure and machine

structure as follows.

Job Structure

(In the problem, the arrival time, 7- i) , due date, d(j), and priority, w(j), of jobs are known in

advance. The processing routing is predetermined and some assembly operations may

present. Due to the assembly structure, jobs may revisit the same machine more than once

(reentrance).

The processing of the job on the machine is called operation. Each operation, say

operation i, has the processing time of pi and a set of preceding operations, Preceed=

{ i' : is the operation immediately preceding i in the routing} and succeeding

operations, Succeedi. They are determined from the job route. Operation i need to be

processed by workstation, wki, and the required machine status is statusi.

Machine Structure

The machines on the shop are grouped into workstations according to their capabilities. In

general, machines doing the same type of tasks will be assigned to the same workstation.

Workstation may consist of a single machine or multiple machines working in parallel.
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in parallel. There are three types of parallel machine workstation. The first type is

identical parallel machine workstation where all machines in the workstation are exactly

the same. The second type is parallel machine workstation with different speeds. The

actual processing time of operation i is determined from fk  
, where fk is the speed of

machine k referencing to the average machine. The last type is the unrelated machines in

parallel where the actual processing time of operation i may be different on each machine.

Machine Setup 

Some machines require special setup before processing a particular task. The machine

setup time depends on the current machine setting, statusi and the new setting, status,,.

The setup time can be looked up from the setup matrix. For example, a machine is in

status "B" after cutting a 4" steel tube. It needs 10 minutes to adjust the machine to status

"C" that is required to cut 1' steel tube.

Batch Machine

There is another type of machines that is able to process multiple tasks in a single run.

This type of machines is called batch machine. We consider two types of batch machine

workstations. The first type is the workstation that processes single type of tasks (single

family). The processing time of this batch machine is fixed, pi = p. Setup time is not

required. The other type of batch workstations is the single batch machine workstation

that processes various types of tasks. The tasks are separated into families. Tasks from

different families cannot be mixed in the same batch. After the machine complete a batch,



it may require setup to prepare the machine to process a new batch if the tasks in those

two batches are in different family.

In this dissertation, we restrict the processing station types to single machine,

parallel machine with different speeds and single batch machine. Therefore, the detailed

list of workstations is as follows.

Single machine workstation:

■ Single machine workstation without sequence dependent setup

■ Single machine workstation with sequence dependent setup time

Parallel machine workstation:

■ Parallel identical machine workstation without dependent setup time

■ Parallel identical machine workstation with dependent setup time

■ Parallel related machine workstation without dependent setup time

L Parallel related machine workstation without dependent setup time

Batch machine workstation:

■ Batch machine workstation with single family

■ Batch machine workstation with multiple families

1.2 Problem Statement

It is well known that traditional MRP systems lack the ability to dispatch and schedule

jobs in an assembly shop. Ad hoc priority rules are normally used to overcome this

incapability. Though there are a number of priority rules, most of them provide solutions

that are far from optimal. We intend to develop a series of heuristics that are more



6

effective than priority rules in dispatching and scheduling jobs in an assembly shop

environment. Currently, the majority of the research on advanced job-shop scheduling is

limited to theoretical problems. They cannot be easily applied to the problems where

assembly operation, jobs release time, multiple type of workstations are considered.

Furthermore, there is a lack of good user interfaces in the scheduling system.

Most of the past research has developed computer codes that are lacking in usability. We

intend to develop a system that can link the current research in scheduling to industry

users and simplify the heuristic development process. This system can be shared among

the researchers and industrial schedulers. Thus, this research contains both theoretical and

practical aspects.

1.3 Research Objectives

1. Propose new heuristics for solving the assembly type job-shop problems. Traditional

dispatching rules are the widely used in practice. They are simple to implement and

provide satisfactory results. However, there is a need for better scheduling techniques

with higher computation complexity as the computation speed has increased while the

computing cost is decreasing. New types of solution techniques such as shifting

bottleneck and local search can provide better schedules in a moderate amount of

time. The shifting bottleneck heuristic will be explored in this research. This

decomposition concept is applied to other objectives and manufacturing

environments. The purpose is to develop an efficient heuristic for assembly job shop

scheduling that minimizes the weighted tardiness.
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2. Develop sequencing and scheduling algorithms for the sub-problem required in 1.

Specifically, it is developed for single machine scheduling with tails.

3. Extend the above development to two new sub-problems. These problems are parallel

machine scheduling problem with tails, and batch machine scheduling problem with

tails.

4. Extend the above heuristics for other objectives including minimize weighted flow

time, maximum weighted lateness, makespan, etc.

5. Develop a computerized scheduling system with proficient user interface. This

research is trying to fill in the gap between the scheduling theories and industry

implementations.

1.4 Significance of the Research

The significance of the research is two folds. First, there is a lack in efficient dispatching

and scheduling techniques for assembly shop. The development of the heuristic along

with sub-problems optimization will be the theoretical contributions. Second, the

development of scheduling system with good user interface will be the contributions to

industries who need forefront dispatching and scheduling scheme and researchers who

need a tool to demonstrate the performance of their newly developed heuristic and to

compare the results with others.

1.5 Dissertation Organization

The next two chapters are on literature reviews with chapter 3 focusing on model

development and shifting bottleneck decomposition. We discuss various methods on
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solving scheduling problem in job-shop environment, and select shifting bottleneck as the

rudimentary concept due to its computational complexity and flexibility. All sub-

problems and aggregation method are discussed in details. Chapter 4 is devoted to the

first sub-problem, single machine scheduling with tails where tails are post processing

tasks. We develop a priority rule and a sequence improvement procedure based on critical

path analysis. The random search is added to the heuristic when dependent setup time is

included.

In order to develop a more generalized problem for assembly shop, we need to

solve two other sub-problems. This is done in chapter 5 and 6. The first sub-problem is

scheduling parallel machines with tails. We propose two methods. One is based on an

extension of the results from chapter 4. The other is based on beam search. Beam search

is enhanced by adding random search steps on evaluating step when dependent setup time

is considered. The second sub-problem is scheduling batch machine with tails. We

propose two heuristics. One is based on priority rule and dynamic programming. First, we

generate a full-batch sequence using a priority rule. This sequence is improved by

checking whether smaller batch size can improve the objective value using dynamic

programming technique. The next heuristic is developed for batch machine scheduling

where multiple family of tasks are concerned. The tasks from different families cannot be

processed on the same batch, and there exists a setup time when switching from

processing tasks in one family to another. A new version of shifting bottleneck is

developed from the results in chapter 3, 4, 5, and 6. It is further discussed in chapter 7.

Due to the flexibility of shifting bottleneck concept, the extension of the heuristic

to other objectives can be achieved by modifying the sub-problems accordingly. Since the
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single machine sub-problem is studied based on critical path analysis, it can be applied to

other objectives such as minimizing weighted completion time (min ΣwiCj), minimizing

the maximum weighted lateness (min wL max), and minimizing the makespan (min C max),

etc. Changing the evaluation function in the beam search will enable the parallel machine

scheduling heuristic to provide sequences for other objectives. The modification of the

heuristic for batch machine scheduling problem is based on generating the feasible

sequence in the first step. These modifications are discussed in chapter 8.

Chapter 9 presents the design and development of the scheduling system. We

apply object oriented programming methodology for the maintainability and reusability

of codes. The system developed allows researchers to add and connect their newly

developed heuristics easily. They can, then, visualize their results in graphical format and

compare them with others. The system also provides scheduling heuristic development

tools. Customized heuristic can be developed faster by using the library of codes.

The conclusion of the dissertation is in chapter 10. We also discuss the future

extension of the research in the chapter.



CHAPTER 2

LITERATURE REVIEWS

This chapter provides an extensive review on the assembly scheduling problem. As the

problem is an extension of classical job-shop problem, we provide a review on job-shop

and flow shop scheduling problems. We discuss various methods on solving the problem

and make comparisons. A short review on scheduling system is also given.

In the following sections, we discuss the assembly operation, disjunctive graph

method which is a well known tool in scheduling, the modification of the graph, and the

shifting bottleneck heuristic.

2.1 Job Shop and Flow Shop Scheduling

In classical job-shop scheduling problem, there are n jobs that need to be processed on in

machines. Each job consists of a series of operations, which are excluded under the

following constraints.

a) The processing sequence of each job is predefined.

b) The jobs must visit every machine in the shop. They cannot re-visit the

same machine more than once.

c) A machine can process only one job at a time.

The objective that is usually of interest is to minimize the completion time of the

last job, known as makespan, C max . This objective is comparable to the maximization of

the shop utilization. The problem is a well known problem that can be found in most

scheduling text books (Pinedo, 1995).

10
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Problem Formulation

Before formulating the problem mathematically, two dummy operations are added to set

of operations, N. Operation "0" is the "start" operation while operation "n" is the "finish"

operation. The processing times of these two dummy operations are zero. The "start"

operation is the first operation to process. After the "first" operation is finished (at time

0), other operations can start. The "finish" operation is done after all other operations are

finished. The problem can be described mathematically as follows.

subject to

where,

ti	 = starting time of operation i,

Pi	 = processing time of operation i,

A	 = set of pairs of operations constrained by precedence relations,

N	 = set of operations,

Ek	 = set of pairs of operations to be performed on machine k,

M 	 = set of machines.

The first equation, (1), states the objective of the problem. Because two operations

annot be processed at the same time, constraint (2) says that the difference in finishing

ime of two consecutive operations in the same job must be greater or equal to the
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processing time of the leading operation. Constraint (4) affirms that the difference of

finishing time of any two operations must be at least the processing time of the leading

operation when considering the operations that need to be processed on the same

machine.

Flow shop is another type of production system that is widely studied. It can be

considered as a special type of job shop where all the jobs have the same routing. Jobs are

processed through a number of stages in series. The extension of flow shop to flexible

flow shop, includes parallel machines at each stage. Flow shops can be easily found in the

manufacturing facilities with high production rate of comparable products. The

mathematical formulation of this problem is similar to the one presented previously. The

difference is on the set of operations pairs constrained by precedence relations. Therefore,

the scheduling heuristic developed for job shop will be able to use for the flow shop and

vice versa.

2.2 Scheduling Techniques

Scheduling problems are one of the topics in combinatorial optimization. This problem

appears in many areas. Operations researchers normally perceive the problem as a

network flow and/or integer programming problem. Computer science people, on the

other hand, often think of heuristics such as simulated annealing or genetic algorithms.

The artificial intelligence community looks at it as constraint satisfaction issue. From the

mplementation perspective, most combinatorial optimization problems are NP-hard

which no polynomial time algorithms have been found (Garey and Johnson 1979;

Papadimtriou 1994). The complexity of the problem grows exponentially to the problem
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size. For example, there are (3!) 3 = 216 alternatives to schedule 3 jobs on 3 machines flow

shop. When the problem of 10 jobs on 10 machines is considered, the alternatives

increase to (10!)' ° = 3.959 * 10 65 (note: 1 year = 3.156 * 10 seconds). It is almost

impossible to solve the problem optimally within a life time.

Blazewicz et al. (1991) provide an extensive coverage on mathematical

programming formulations for machine scheduling problems. Currently, there are five

major classes of techniques in solving them as follows.

2.2.1 Complete Enumeration

Scheduling problem can be formulated as mixed integer programming. Branch & bound

method can be used to find the solution. However, the calculations are intractable if the

problem size is large since job shop scheduling problem is NP-hard. The majority of

researches in this class is on finding a good lower bound by relaxing some constraints.

The tight lower bound can eliminate the number of branching drastically. It results in

lower the computational time. The works in this area include ones by Ashour and

Hiremath (1973), McMahon and Florian in 1975, Lageweg et al. (1977), Fisher et al. in

1983, Lageweg in 1984, and Carlier and Pinson in 1989.

Beside reducing the computational time, the lower bound can be used to check

whether a schedule is at optimal (Carlier and Pinson 1989). The methods in this class are

sensitive to particular problem instances.
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2.2.2 Heuristics

Due to the complexity of the problem, optimal solution may not be the main interest.

Heuristics are developed to find an acceptable solution. Some well-known heuristics for

solving the problem are discussed below.

2.2.2.1 Beam Search: This method is close to branch & bound method. Instead of

branching on every node, it skips some nodes that are not promising. Lowerre (1976) was

the very first researcher in this area who applied this technique on speech recognition.

Fox (1983) and Ow & Morton (1988) applied this technique on solving the scheduling

problem. They reported that it outperforms priority rules.

2.2.2.2 Priority Rules: There are various types of priority rules such as Earliest Due Date

(EDD), Shortest Processing Time (SPT), First Come First Serve (FCFS), Minimum Slack

Time (MST), Earliest Operation Due Date (EDD-O), etc. The priority rule technique

schedules the jobs according to some indices. These indices are determined from the jobs'

or machines' characteristics. It might be as simple as SPT rule where the indices are

assigned according to the processing times. It might be as complex as ATC (Apparent

Tardiness Cost) rule where parameters are needed to be predetermined. If the information

on due date is used, there are three main types of approaches -- allowance-based, slack-

based, and ratio-based priorities. The algorithm by Giffler and Thompson (1960) can be

considered as a basis for other priority rule based heuristics on job shop scheduling.

Baker (1984) and Vepsalainen & Morton (1987) conducted surveys on sequencing

rules with tardiness oriented in job shop. Baker, also, discussed the factors that affected
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the performance. The interested readers can find a good survey on priority rules

organized by Blackstone, Phillips, and Hogg in 1982. Some major priority rules and their

operating environments are exhibited in Table 2-1. Priority rule method is simple and

fast; therefore, it is widely used in practice. However, quality of the solutions might not

be so honorable. The solution might be far from optimal.

Table 2 - 1: Some elementary priority rules (Pinedo 1995)

2.2.2.3 Shifting Bottleneck (SB): This method decomposes the problem into a number

of one machine scheduling sub-problems. It sequences the machine one after another
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until all machines are sequenced. First, it finds the bottleneck machine which is

determined from the decomposed sub-problems. The sequence is determined for that

machine. Among the unsequenced machines, it determines the next bottleneck machine.

That machine is scheduled next. The sequence of scheduled machines are re-optimized.

Then, a new set of decomposed problems is constructed for the unsequenced machines.

The bottleneck machine is determined and sequenced. The method iterates until all the

machines are sequenced. In 1988, Adams, Balas, and Zawack purposed the heuristic to

solve the classical job-shop scheduling. There are some variations of Shifting Bottleneck

heuristic done on other objectives (Uzsoy, Lee, and Martin-Vega, 1992; Pinedo and

Singer, 1995).

2.2.3 Local Search (Neighborhood Search)

Local search technique is considered the most recent method in solving combinatorial

optimization problem. It is based on random search technique. Though there are a number

of local search techniques, they are all based on four aspects of design.

(i) Mapping of the solution instance to the algorithm

(ii) Neighborhood design

(iii) Search technique

(iv) Acceptance-rejection criterion

A good review on Local search methods can be found in Anderson et al. (1995).

Three major types of neighborhood search -- tabu search, simulated annealing, and

genetic algorithm are reviewed.
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2.2.3.1 Tabu Search: This technique was first proposed by Glover (1977) in solving

nonlinear covering problems. It has achieved impressive practical successes in

applications such as scheduling, computer channel balancing, cluster analysis, space

planning, etc. (Glover 1986, 1987; Glover et al. 1985; Glover and McMillan 1986). Tabu

search constrains the search by forbidding some moves (tabu). These forbidden moves are

freed after a period of time. Tabu search, unlike hill climbing heuristic, guides the search

to continue when no improving move is found. It prevents the move from falling back to

the local optimum that has just visited. The detailed discussion of the fundamental Tabu

search can be found in Glover (1989, 1990).

The performance of the Tabu search is rather impressive. Widmer and Hertz

(1987) compared tabu search with six other approaches in flow shop sequencing problem

with 20 jobs and 20 machines. The computing cutoff time was twelve minutes on IBM-

PC. They found that tabu search provides better solutions for 80% of the cases. Taillard

(1989) applied this technique to job shop scheduling. He also reported that the technique

performed better than shifting bottleneck heuristic (Adams et al. 1988) and simulated

annealing (Van Laarhoven et al. 1992) in term of solution quality and computational

effort on a set of ten jobs on ten machines problems. Barnes and Chambers (1992)

included seven dispatching rules in finding the starting point. They encountered a

premature termination where all the moves were tabu. It was solved, simply, by clearing

the tabu list. Dell'Amico and Trubian (1993) focused on neighborhood structures of job

shop scheduling problems. They developed a more complex search and compared five

types of the neighborhood structures. Widmer (1991) tested this technique to job shop

scheduling problem with tooling constraints. Tabu search was extended to tackle multiple
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machines job shop scheduling problems by Dauzere and PauIli (1994). Some of single

machine scheduling problems (Laguna et al. 1991, 1992; Woodruff and Spearman 1992)

and multiple machines scheduling problems (Barnes and Laguna 1992; Laguna and

Gonzalez-Velarde 1991) were solved efficiently with this technique.

2.2.3.2 Simulated Annealing (SA): This technique simulates (physical) metal annealing

process. A feasible starting point is first selected. Then, ε's (a small variation) is added to

it to find a neighbor point. If the neighbor point has the objective values lower than its

parent, accept it as a new parent. Otherwise, accept it with probability p where p is

determined by a function of control parameter (temperature). When the temperature is

high, p is also high. The temperature is reduced as the search continues. This allows the

search to jump out before sticking to a local minimum (maximum). The heuristic was,

independently, introduced by Kirkpatrick et al. (1983) and Cerny (1985). It is easy to

implement but requires high computation. When modeled as a Markov chain (Aarts and

Van Laarhoven 1985; Lundy and Mees 1986; Romeo and Sangiovanni-Vincentelli 1985),

it can show that the global optimum will be reached as the control parameter converges to

zero (Van Laarhoven et al. 1992; Lundy and Mees 1986).

The application of SA in job shop scheduling (Van Laarhoven et al. 1992; Matsuo

et al. 1988) shows that the algorithm can provide quality solutions comparable to or

better than other tailored heuristic such as shifting bottleneck (Adams et al. 1988). It

requires relatively little insight into the problem structure. However, the computation

time is higher.
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2.2.3.3 Genetic Algorithm (GA): GA tries to simulate natural evolution. First, the

feasible solution needs to be represented in chromosome form (string of values). Each

chromosome will have a fitness index according to the objective function. The

chromosomes can be cross-over with others with some probability hoping that good

genes from parents might come to their children. The chromosome can be mutated with

probability q. Thus, the search will not get stuck at a local minimum. The chance that the

child can live will be according to its fitness index. To make the computation possible,

the size of population will be limited. The parents will die out with probability d. This

method starts from a given number of populations. Three major operators including

reproduction, crossover and mutation guide randomly generated solutions towards high-

quality solutions (Goldberg 1989; Davis 1991). GA is based on the theory of evolution

(Rechenberg 1973, Holland 1975, Schwefel 1977).

The examples of applying GA to job shop scheduling can be found in Yamada

and Nakano (1992) and Croce et al. (1995). However, GA algorithm alone may not

provide a good performance on job shop scheduling problem (Dorndorf and Pesch 1995).

The incorporation of GA with other heuristics such as local searches (Davis 1985;

Whitley e! al. 1989, Husbands et al. 1991; Starkweather et al. 1992; and Hilliard and

Lipeins 1988), priority rules (Dorndorf and Pesch 1995), Tabu search (Glover et al. 1995)

or shifting bottleneck (Dorndorf and Pesch 1995) can provide the performance

improvement.



20

2.2.4 Simulated Neural Networks (SNN)

Hopfield & Tank (1985) neural structure & methodology is adopted as an optimization

tool. When the Hopfield network is perturbed (increase the energy), it tries to find a new

minimum energy point. The energy level of the network represents to objective value.

The optimization can be done by formulating the structure of network according to the

problem. There are various structures of the networks applied to solve scheduling

problem (Satake et al., 1994; Arizona et at, 1992; Lo and Bavarian, 1991; Foo, and

Takefugi, 1988a; 1988b; 1988c; Zhou et al., 1990; 1991; Van Hulle et al., 1991a; 1991b;

Johnson and Adorf, 1992 ). However, Hopfield based networks cannot guarantee to find

the optimal solutions. It might not even find a feasible solution. To avoid being trapped in

a local minimum, a stochastic network may be used (Arizona et al., 1992). This method is

not considered as an artificial intelligence in computer science point of view.

Another application of SNN is to be used as a learning mechanism. The back

propagation structure provide the learning ability. After the network is trained with

several examples, it starts to know how to make the appropriate decision (Sabuncuoglu

and Homrnertzheim, 1992; Hayes and Sayegh, 1992; Chryssolouris et al., 1991). This

type of network is broadly used as a dispatching rule selection for the scheduling system

(Cho and Wysk, 1994; Pierreval, 1993). It might be combined with expert systems

(Rabello and Alptekin, 1989; Rabello el al., 1993; Sim et al., 1994), ATC rule (determine

the parameters) (Kim and Lee, 1993) or markov model (Yih et al., 1993).
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2.2.5 Artificial Intelligent

Expert systems (ES) are widely used as a scheduling tool in practice. Its goal is to

consistently duplicate the results of a human expert (Reinschrnidt et al., 1990). The

knowledge (rules, frames) is extracted from human experiences. Expert systems are able

to provide the solution promptly. However, the results might be far from optimal (Fox,

and Smith, 1984). ES is suitable for a complex system that is hard to model

mathematically. The implementing system at Westinghouse plant shows a tremendous

saving (Miller, Lufg, and Walker, 1988). Another promising method in AI area on job

shop scheduling is constraint satisfaction. It is suitable for scheduling generally entail

large search spaces with hundreds or even thousands of variables, each with hundreds or

thousands of possible values. The technique aims at reducing the effective size of the

search space to be explored in order to find a satisfactory solution (Sadeh and Fox, 1996;

Sadeh et al., 1995).

2.3 Comparison of the Techniques

[he expert system and priority rules provide the lowest quality of solution but they are

simple and fast. Branch and bound method requires very high computation time but it

guarantees to find the optimal solution. Between these methods lies SB and neighborhood

earch techniques. We drop the neural network technique from out consideration due to

he costly computation time. Until analog computer is fully developed, this technique will

of be able to compete with SB or neighborhood searches.

Neighborhood search techniques can provide very high quality of solution. In

theory, the global optimal should be found at one point. However, it might take a life



22

time. Among three types of neighborhood searches, TB requires the least comp tation

time to achieve the similar quality of solution. It follows by SA and, then, GA. SA seems

to be the simplest method which can be applied to various types of problems without without

major modifications. SA and TB are claimed to be a part of GA.

SB is the only technique particularly developed for scheduling problems. It is

based on decomposition technique. The problem is decomposed to sub-problems. The

sub-problems can be solved with different techniques depending on their structures. Thi s

gives a flexibility to apply the heuristic on complex problems. Unlike neighborh ood

search, there is no theoretical proof that SB will find the optimal solution.

For assembly shop problem, there are multiple types of workstations. It is very

difficult to design a tabu list structure that can efficiently direct the search toward the

optimal solution. As GA and SA tend to require high computation time, our research

be based on extending Shifting Bottleneck concept to the assembly shop scheduling

problem.

Computational Time 

The data used to plot Figure 2-1 and Figure 2-2 came from Laarhoven et al. (1992),

Croce et al. (1995) and Dell'Amico and Trubian (1993). Different types of computers are

used. Therefore, the trend of the curve in Figure 2-1 should be focused, not the value.

Figure 2-1 shows that the computation time for SA is exponentially growth to the

problem size. When the problem is double in size (from 100 operations to 200

operations), the computation time grows more than 40 times (Figure 2-2). In the mean
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time, the computation time of SB grows at about the same speed as the problem size

(about 2 times).

Figure 2-1: Computation time vs. problem size

Problembiz°prOToperations)

Figure 2-2: Computational growth vs. problem size
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2.4 Scheduling Systems

The fundamental of scheduling system consists of three major modules — database and

knowledge-base, schedule generation and re-generation, and user interface modules

(Pinedo 1995). These three modules play a crucial role in the functionality of the system.

A nice review and discussion can be found in the book by Pinedo (1995). In the

following, we provide some flavors on this topic.

Decision Support Systems (DSS) in Scheduling

Decision Support Systems (DSS) are defined as interactive computer based systems that

help decision makers utilize data and models to solve unstructured problems. The systems

provide simple interfaces for non-computer people to use interactively. They emphasize

the flexibility and adaptability to accommodate changes in the environment and decision-

making approach. DSS tends to aim at the less structured, under-specified problem that

upper - level managers typically face. Models and analytic techniques with traditional data

access and retrieval functions are frequently being applied (Sprague & Carlson, 1982),

The word DSS is used vaguely to the system that provide "intuitive validity",

Most of the scheduling systems could claim that they are DSS, The following is an

example of the PC-based DSS yft.m developed by Castillo (1992).

The system was developed based on network. schedule representation and specific

scheduling optimization algorithms. The system contains graphical user interface ((Hit).

User draws the network describing the scheduling problem similarly to project planning

software. The system was implemented at a major pharmaceutical firm in Mexico City,

Mexico. The company used a well-known MRP package for planning purposes. The
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production scheduling department was using "Microsoft Project" on a PC to tackle the

problems on day-to-day operations. This software provided database and critical-path

analysis capabilities, but did not include specific production scheduling algorithms. The

new system adopted Balas' algorithm (1969) that finds a critical path in the disjunctive

graph in minimizing makespan. The algorithm stops when it reaches the time upper

bound and reports the best solution found. It employs dispatching rules such as SPT

(Shortest Processing Time), WSPT (Weighted SPT) and DDATE (Due Date Dispatching)

for minimizing other performance measures.

Jones et al. (1995) indicated that the failure of existing scheduling systems was

due to the ignorance of important constraints such as material handling system,

incapability to schedule with multiple objectives, difficulty to install & integrate into the

pre-existing shop floor control and slowness. A successful scheduling software, OPT

(Optimized Production Timetables), developed by Goldratt in the late 1970s was using

computerized Kanban method focusing attention on bottleneck operation (Spencer and

Cox 1995b). Fry et al. (1992) conducted a survey on 60 OPT implementations in the U.S.

He found that three firms were no longer using the software, four were implementing and

15 were using OPT. The weaknesses were the unfriendly user interface, the requirement

of extremely accurate and timely feedback from the shop floor, sophisticated system, high

maintenance costs and the awkward results that were not intuitive to users.

The new area of research is on applying learning mechanism to the scheduling

system (Aytug et al. 1994; Shaw et al. 1992; Yih 1990; Shaw and Whinston 1989; and

Shaw 1988).
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2.5 Assembly Operation

The assembly operation merges multiple components of the same job into a single part.

For example, the back rest and the frame must be assembled to form a complete chair.

The assembly process can only begin when both the frame and the back rest have been

completed. The synchronization may delay the job completion time and create inventory.

When all resources are used on producing the frames leaving the production of the back

rests far behind, the complete chairs cannot be delivered.

This same structure can be applied to represent the out-sourcing constraints where

the production need to wait for parts from suppliers. If the production starts too early, it

may have to stand on the factory floor waiting for some components on delivery. Not

only the resources are not smartly utilized, but the object also take the valuable space on

the shop floor.

Some schedulers may avoid assembly structure by breaking the jobs into a

number of sub-jobs. Each sub-job is considered as a job in the previous sense. The

synchronization among the sub-jobs is solved by introducing the work-in-process (WIP)

buffers through MRP, assigning pseudo deadlines for the sub-jobs (Roman and del Valle,

1996) or apply Just-In-Time (JIT) production system. These three approaches can

facilitate the scheduling problem. When enough WIP inventories of the sub-jobs are

introduced, the need to complete the sub-jobs within the time limit is subsided. The

production is done to replenish the WIP used. The scheduling problem is transformed to

an inventory problem. This technique may increase the production cost due to the WIP

inventory. For the second technique, determining the deadline for each sub-task will be a

new problem. When the deadline of the sub-jobs are set too loose, it might not provide
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enough time to complete the assembly procedure and its succeeding operations. If the

deadlines are too tight, some sub-jobs may be expedited without the real necessity. This

may increase the production cost.

By changing the production system to JIT, it can eliminate the scheduling task

and WIP inventory. When the demand arrives, the Kan-ban's are passed to trigger the

production at various stations. WIP is minimized because the production will occur only

when there is a demand. However, there is no clue for the operators on how to select the

next job to be processed when there exists a number of Kan-ban cards in the station.

Typically, it is done in first-comes-first-serves manner. Therefore, the high priority jobs

may be delayed without notices. The system lacks the ability to control the priority of

jobs.

The majority of research on assembly operations in job-shop environment is on

dispatching and scheduling rule in FMS (Roman and del Valle. 1996; Doctor et al., 1993;

Tang et al., 1993; Townsend and Thomas, 1991).

2.6 Disjunctive Graph Method

The job-shop scheduling problem can be transformed to a graph problem (Balas 1969).

The disjunctive graph, G = (N,A,E), consists of node set N, conjunctive arc set A, and

disjunctive arc set E. The node set N corresponds to the set of operations. The precedent

relationships between operations on any machine are represented by conjunctive arcs

;one direction arcs). Machine assignment is represented by the disjunctive arcs (double

arcs with opposite direction) set. If operations are performed on the same machine, they

.will have pairs of disjunctive arc:: connecting them. The arc weight denotes the
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processing time. The disjunctive arcs E can be decomposed to v cliques. Each clique, Ek,

represents disjunctive arcs pairs on machine k.

In the following example, there are four jobs to be processed on three machines.

The first job consists of two operations which need to be done on machine 1 and machine

2 respectively. We named the first and second operations on job 1 as operations 1 and 2.

The second job consists of three operations -- operations 3, 4 and 5. Similar to job 2, jobs

3 and 4 comprise of three operations each. All of them have the same processing route.

They will be processed on machines 1, 3 and then on machine 2. The details are shown in

Figure 2-3 and Figure 2-4.

Figure 2-3: Operations in jobs

Machine 2

Figure 2-4: Job routing
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Figure 2-5 shows the disjunctive graph representation of a problem. The

disjunctive arc pairs are displayed as dash-lines with arrows on both ends. Node 0 and 14

are added dummy nodes representing the "source" and "sink" nodes. The conjunctive arcs

(solid line with one-sided arrow) connect the operations that have the precedent

relationship.

Figure 2 -5: Disjunctive graph

A direct graph, D(N,A) is obtained from G(N,A,E) by removing the disjunctive

arcs (Figure 2-6). A selection Sk in Ek is the sub-graph of Ek that replaces each

disjunctive arcs pair with a conjunctive arc. Sequencing machine k is similar to finding

the acyclic selection Sk. Figure 2-7A shows a clique of machine 1, E. After selecting

conjunctive arcs from the disjunctive arcs pairs in E1 , we obtain SIB (Figure 2-7B), The

sequence of machine 1 is processing operation 1, 9, 6 and, then, operation 3. Figure 2-7C

shows a cycle in the selection. A feasible sequence cannot be determined from this
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selection. The classical job-shop scheduling problem is similar to finding acyclic

selections for all the cliques in the graph that minimize the critical path length.

Figure 2-6: Directed graph

(A) Clique E 1 	(B) Selection S 1 	(C) Cycle

Figure 2-7: Clique and selection
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2.6.1 Makespan Determination

The starting time of operations can be determined directly from the graph when complete

selections are fixed. Due to the fact that the operation cannot start until all its preceding

operations have been completed, the earliest starting time of that operation is the

maximum completion time of all the preceding operations. Without cyclic selections, the

earliest starting time of the sink can be determined. It is the completion time of the last

job or the makespan of the sequence. The Critical Path Methods (CPM) in project

management can be applied to the problem (Monks, 1982). The earliest starting time

(EST) is the earliest point of time that the operation can start. The latest completion time

(LST) is the latest point of time that the operation can start without delaying the project

completion time. Both of them can be determined by the following procedure.

i) Calculate the EST of each node.

Set EST of the source node to 0.

iii) Determine the EST of the succeeding nodes.

(iii-a) Select a node that all the EST of its prior nodes have already determined. Say

node i is selected.

(iii-b) EST of node i is the maximum of EST of its prior nodes plus the arc length

from that node to node i.

(iii-c) Continue until the EST of the sink is determined.

v) Determine the LST from right to left starting from the sink.

(iv-a) Let LST = EST for all sinks.
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(iv-b) Select a node that all the LST of its succeeding nodes have already

determined. Say node/ is selected.

(iv-c) LST of node j is the minimum of LST of its succeeding nodes minus the arc

length from node j to that node.

(iv-d) Continue until the LST of the source is determine. At source, EST = LST = 0.

The operations that contribute directly to the interval of the makespan are called

critical operations. Delaying any of these operations will cause a delay on the makespan.

For the critical operation, EST is equal to LST. There is no room to delay this operation

without effecting the makespan. The critical path is defined as a chain formed by the

critical operations.

The directed graph, D(N,A) is the graph G(N,A,E) without the disjunctive arcs.

The completion time cf this graph can be considered as a lower bound of the makespan as

the disjunctive constraint is relaxed. One can regard the D(N,A) as the disjunctive graph

for the same problem but with infinite number of machine available.

2.6.2 Modified Disjunctive Graph

Disjunctive graph is an efficient tool to determine the makespan of the shop. It is

developed for classical job shop scheduling problem. However, the method can be

extended to cover various variations and properties of the shop. Some issues are

discussed below.
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2.6.2.1 Modified Disjunctive Graph (Due Date): The disjunctive graph discussed

before was developed by Balas (1969). It was used as the foundation on developing

heuristic in solving classical job shop scheduling problem. As one can see, this graph

does not contain the information to determine the completion time of each job. It can only

use to determine the completion time of the last job that complete the service (makespan).

Uzoy (1992) extended this graph to contain the necessary information for his heuristic

where the maximum lateness was minimized. Single sink node is not sufficient to

determine the completion time of all the jobs. Graph with m jobs requires m sinks. Each

sink will be assigned to follow the last operation in each job routing. The arcs connecting

them have the weight that equal to the operations processing time. Figure 2-8 shows the

modified disjunctive graph. The completion time of the jobs can be determined using the

similar technique, CPM, as explained earlier. After EST of all the nodes are determined,

assign EST to LST for all the sinks. Then, calculate the LST of all the nodes. The EST

and LST of the source should be zero. The job completion time is the EST (or LST) of its

associated sink node. It is obvious to see that there are at least m critical paths in the

graph. The length of each path represents the completion time of its associated job.
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Figure 2-8: Modified disjunctive graph

2,6,2,2 Modified Disjunctive Graph (Dependent Setup Time): The dependent setup

time can be incorporated in the disjunctive graph representation by modifying the weights

of the disjunctive arc pairs. Each pair can be divided into two types of arcs — outbound

and inbound arcs. These arcs represent the time that the machine requires for processing

the task and preparing to process  a new one. Therefore, the arc length should be the

combination of processing time and setup time. Let au, represents the arc length from

node to node We obtain p„ sii,wheniandi'are operations inthe same

aqua and a. = p, otherwise. Figure 2 - 9 shows the modification.
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(a) Arc lengths from node 1	 (b) Arc lengths to node 1

Figure 2-9: Dependent setup time in disjunctive graph

2.6.2.3 Modified Disjunctive Graph (Parallel Machines): For the m parallel machine

workstation, sequencing the workstation is similar to determine up to m selections from

the clique associate to the workstation. Each of them should not create a cycle. After the

selections are entered in the graph, the job completion time can be determined.

Parallel Machines with Different Speeds : When the speeds of the machines are not equal,

further modification is necessary. The outbound arc length from nodes i to j in the same

clique will be changed to pi— + sij , where fk is the speed of machine k assigned to process
fk

P, if ioperation i, and — f t and 	 are not in the same clique.
fk
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Parallel Unrelated Machines : For the most general case where the processing time of the

tasks depends on the processing machine and — is not constant, the outbound arc
Pik

lengths from node i to node/ in the same clique are modified to Pik + sij where Pik is the

processing time of operation i on machine k. If i and j are not in the same clique, the setup

time will not be included and the length is pik•

2.6.2.4 Modified Disjunctive Graph (Assembly Operations): Disjunctive graph

formulation can also be modified to represent the assembly structure. Consider Figure 2-

10, there are two jobs to be processed. The fthrst job, job 1, consists of five operations. It

can be divided into two sub-jobs. Each sub-job can start independently. After they

complete the processing, the assembly operation (operation 5) can start. In order to start

the assembly process, both sub-jobs must be available at the assembly station. Similarly,

there are three sub-jobs for the second job. All three sub-jobs must be completed before

the assembly operation, operation 11, can start.

The assembly operation can be modeled by adding conjunctive arcs from the last

operations in the sub-jobs to the assembly operation. These conjunctive arcs restrict the

assembly operation to start when all the preceding sub-jobs have been completed.
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Figure 2 -10 : Assembly operations in disjunctive graph

2.6.2.5 Modified Disjunctive Graph (Batch Processing): A special type of machine

that can process many jobs in a single operation is called a batch machine. It is frequently

found in different industrial processes such as heat treatment, electronic product burn-in

process, metal coating, foundry, etc. The batch machine may start after the first job

comes. It, also, can accumulate the jobs to its maximum capacity before starting the

process. Normally, the processing time of the batch machine is long. It has a high

potential to be the bottleneck machine in the factory.

Modeling batch processing is fairly similar to adding assembly-disassembly

operation in the graph. All the operations assigned to the same batch must be completed

before the batch can start which is comparable with assembly process. After the

processing terminates, the processes that follow the job can begin. This is comparable to
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disassembly operation. To model these properties on the disjunctive graph, dummy nodes

are created to represent batches. The operations on the same batch are linked to the

dummy node with zero weight. The links from the dummy nodes to the succeeding

operations will have the weight equal to the batch processing time. There are links

connecting one batch to another according to the sequence. The weight of the link is the

batch processing time and the setup time.

Figure 2-11 shows an example of a batch machine in a shop (Figure 2-10). In this

example, machine 1 is a batch machine that can process up to 2 parts simultaneously.

Operations 1 and 3 are assigned to the first batch while operations 7 and 9 are assigned to

the second one. The processing time of batch Bi is PBi, . There is a setup time, S 1111 , on

switching from processing batch i to processing batch i' .

Figure 2-11 : Disjunctive graph with a batch machine
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2.6.2.6 Modified Disjunctive Graph (Machine Availability): Machine breakdown or

unavailability can also be captured on the disjunctive graph representation. The link from

source to a dummy operation will be added. Its weight, rm , equals to the machine release

time or the time when machine will be ready again after the breakdown. The dummy

operation is connected to all the operations that are assigned to that particular machine.

Their weights are nulls. This method will restrict the processing not to start before time

rm . Figure 2-12 shows that the release time of machine 2, r, is added to the graph.

Figure 2-12: Modified disjunctive graph -- machine available time

This modification (Machine Available Time) is necessary when developing the

dynamic version from the static scheduling scheme. Suppose that we have fthxed the

machine sequences for the shop. After time t, some new jobs may arrive. Some



40

operations may have been completed. Some might not have started and others are on

processing. Since job preemption is not allowed, we cannot assume that all machines are

available at that instance. Machine release time constraint is necessary.

2.6.2.7 Modified Disjunctive Graph (Scheduled Maintenance): The preventive

maintenance can be perceived as an extra job. This job has only one operation. The

processing time of this operation is the time required for the maintenance. The release

time of the job is the expected time to start the maintenance on the machine. The

significance of the maintenance can be specified as the job weight. If a high weight is

assigned to the job, the time window for the maintenance becomes more rigid. With this

method, a number of preventive maintenance can be sequenced on various machines. The

disjunctive arc pairs can be added to maintenance operations that require to be processed

at the different instance due to the shared resources. Please be reminded that the

completion time of this added job should not be counted towards the shop objective

value.

2.7 Shifting Bottleneck Heuristic

The shifting bottleneck heuristic was developed by Adam et al. (1988). It aimed to find

the best sequence for job shops that minimize the shop makespan (referred to ABZ in

what follows). This heuristic was reported to find good schedules in a considerable

amount of time. Due to the advance in computing technology, computers are faster and

cheaper than ever. The need of robust scheduling heuristic emerges. Dispatching rules

(one pass heuristics) are fast however they might not provide good quality of solutions.
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Branch and bound method can provide the optimal solution, but it almost takes

everlastingly time to find the solution regardless of the computing speed when

considering a medium/large problem (see NP-Completeness). Shifting bottleneck

heuristic was positioned between these two methods. It takes less computation time than

branch and bound method but provides better solutions than dispatching rules in most

cases.

2.7.1 The Concept

The shifting bottleneck heuristic developed by Adams et al. (ABZ) is based on

disjunctive graph representation. The graph is used as a tool for developing the

decomposed problems. Each clique in the graph is split into a sub-problem. Each sub-

problem is formulated as a single machine scheduling problem with job release times and

due dates. Thethr release times and due dates are determined from the original graph.

The heuristic determines the sequence for the machines one after another. On each

iteration, the bottleneck machine is identified by solving the decomposed problems. The

best sequence among the decomposed problems are compared. The one that provides the

highest objective value will be selected. The machine on that sub-problem is said to be

the bottleneck machine. After the bottleneck machine is identified, its sequence is added

to the graph. At this point, some previously sequenced machines are re-scheduled. This

step is called local re-optimization. At the end of the iteration, the new set of sub-

problems are determined. These sub-problems will not include the ones that have already

sequenced. The procedure continues until all the machines are scheduled. Then, a final
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re-optimization may be employed to further improve the solution. The steps in ABZ

heuristic are as follows.

2.7.1.1 Problem Decomposition: On applying shifting bottleneck concept, we focus on

single machine, say mj, in each iteration. The machine constraints on the others that have

not been assigned the sequence will be relaxed. We may perceive it as, for unscheduled

machines, that there are infinite number of machines instead of single machine to process

the operations. On this sub-problem, the goal is to find a sequence for that machine to

minimize the makespan. In order to analyze the problem efficiently, we may separate the

operations in the network into four groups — operations assigned to mj, preceding

operations to the operations in the first group, succeeding operations, and indecisive

operations. Without losing generality, we may combthne some operations in the second

group and perceive them as the release time constraints for operations in the first group.

Operations in the third group can, also, be combined and perceived as post processing

operations. They sometimes refer as tails. The indecisive operations are the operations

those are not assigned to mj and cannot be said the be preceding or succeeding operations

in the first group. The operations in this group may be combined and interpreted as delay

precedent constraints. The decomposition method is discussed in the next sections.

At the very beginning of the heuristic, a directed graph is created from the job

information. Figure 2-13 is the directed graph from the example in section 2-3. The sub-

problems are derived from this graph. The number of sub-problems equals to the number

of unscheduled workstations. In this case, three sub-problems will be derived. The first

sub-problem on machine 1 considers nodes 1, 3, 6, and 9. The EST of these nodes will be
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derived along with the LST. Here, EST of nodes representing the combined operations of

the second group and tails, combined operations of the third group, are converted to LST.

For this sub-problem, there are four jobs. The release times and due dates of these jobs

are the EST and LST of the nodes.

Figure 2-i3: Directed graph

27 1.2 Bottleneck Determination: SB technique is based on the sequencing intuition

that the bottleneck machine should be sequenced first. Then, the less utilized machines

are sequenced one after another according to their bottleneck indices. Then, it comes the

following question, "how do we identify the machine that is the bottleneck machine and

how to sequence ii?", This problem was answered by solving the decomposed problems.

The subproblem that provides the highest objective value of the host sequence found is

considered the bottleneck machine. ABZ heuristic applied Calier (1982) algorithm on this

step. The optimal sequence for the sub-problem is obtained based on branch and bound

technique.
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2.7.1.3 Sequencing the Bottleneck: Scheduling the machine is equivalent to adding a

selection to the graph. The selection is determined by solving the single machine

problem. After the bottleneck machine is identified in the previous step, the sequence that

provides the minimum objective value on that machine is added to the graph.

2,7A.4 Local Re-Optimization: Experience shows that this step can improve the quality

of the solution. in of the scheduled machines are removed from the graph. Then, the

removed machines are scheduled back one after another using the same technique in

determining the sequence for the bottleneck machine. On doing this, the structure of the

decomposed problems are different from the ones that were previously solved. The

makespan (Cmax ) (after all the removed machines are sequenced back) may decrease.

After the re-optimization step, the new set of sub-problems is generated. It will

not include the machines that have already assigned sequences. The number of sub-

problems is reduced. The heuristic continues until all machines have assigned sequences.

Final Re-Optimization: After sequences are determined for all machines, the

final re-optimization step may he employed. Similar to local re-optimization, the

selections are removed from the graph one after another. A new decomposed problem is

constructed and solved. The new sequence is put back into the graph. The step continues

until there is no further improvement. it is similar to the search for a local minimum.
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2.7.2 Related Research

In essence, shifting bottleneck is a technique to decompose a complex problem into sub-

problems. Each sub-problem is solved optimally. The aggregation steps are done

iteratively. There are some variations of this step when applying to different problems.

Most of them are reported to find very good solutions within a reasonable computation

time.

Dauzere-Peres and Lasserre (1993) replicated the same model published by

Adams et al. They found the operation dependency effects from some partial sequences.

Therefore, they developed a heuristic to resolve this problem. This modification not only

improved the quality of the solution but also reduced the computation time. The problem

was further studied by Balas et al. (1995).

Uzsoy et al. (1992) applied SB to production planning and scheduling problem in

the semiconductor industry. Their objective is to minimize the maximum lateness of the

jobs. On the similar path, Pinedo and Singer (1995) studied a problem with the objective

of minimizing the weighted tardiness objective. The modified ATC (Apparent Tardiness

Cost) rule is used in Pinedo and Singer for solving the sub-problems.

In our model, we consider the priority of jobs and their tardiness. The heuristic

developed by Adams et al. (ABZ) cannot be applied to the new problem. The disjunctive

graph cannot handle due date related objectives. Therefore, we adopted the disjunctive

graph modification presented by Uszoy et al. as explained in the previous chapter.

However, their model does not consider the job priorities. A new decomposition method

is proposed in this research. The detail of the method is discussed in the next chapter.



CHAPTER 3

ASSEMBLY SHOP MODEL DEVELOPMENT AND DECO OSITION

In this chapter, we develop the assembly shop model. As our heuristic is based on the

shifting bottleneck decomposition method, the assembly shop problem will be

decomposed to appropriate sub-problems. Each of the three sub-problems is discussed in

detail.

3.1 The Model

There are n jobs to be completed on m workstations. Each workstation is a collection of

machines performing the same type of works. Each job has to visit a number of

workstations and has a predefined route. The processing on a machine is called operation.

The route may be comprised of assembly operations. In the model, we assign a unique

index to each operation. Therefore, we can trace the information on job and processing

workstation from the operation index. The workstations can be groups into three

categories:

(i) Single machine workstation

(ii) Parallel machine workstation

(iii) Batch machine workstation

In the parallel machines workstation, job can be processed by any machine in the

station. Machines in both single machine and parallel machine workstations can process

)nly one job at a time. In contrast, batch machines process jobs in lots. Once the

46
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processing on the machine starts, it cannot be stopped until the processing is completed.

The remaining unprocessed jobs wait in queues.

Figure 3-1 shows an example of bill of material (BOM) for a chair production. To

produce a chair, there are 13 operations as shown in Figure 3-2. These operations are to

be performed on six workstations. Of the 13 operations, there are two assembly

operations. Operation 12 requires parts from operations 9, 10, and 11, and operation 13

requires parts from operations 5 and 12. We may write the operation precedent

relationship as a set, A, as A = {(1,2), (2,3), (3,4), (4,5), (5,13), (6,7), (7,8), (8,9), (10,12),

(9,12), (11,12), (12,13)}.

The shop may have to produce various type of chairs. Each type has its own

production routing which can be determined from the BOM. Each job has a fixed due

date given by the customer. The precedent constraints set, A, includes all precedent

constraints derived from the job routing. The objective of the problem is to find the

sequence for all the workstations in the shop that minimizes the weighted tardiness of all

obs.



Figure 3-1:: Bill of material (BOM)
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Figure 3-2: Job derived from BOM
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Mathematical Model 

In this section, we give the mathematical formulation of the basic assembly shop model

with three types of workstations. The objective is to minimize the summation of the

weighted tardiness of jobs. There are four types of constraints. The first type concerns job

routing and release time. The next three types are on machines in workstations including

single machine, parallel machines and batch machine workstations. •We simplify the

model by excluding the dependent setup time. This issue will be addressed later,

Single machine workstation

Parallel machines workstation



if operation
is assigned to machine k,

otherwise,
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Batch machine workstation

if operation i is assigned to batch b, or

otherwise,

is the starting time of operation i,

is the set of precedent constraints determined from job routes,

is the actual processing time of operation i,

is the completion time of job j,

is the set of operations belonged to job j,

is the tardiness of job j,
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n 	 is the number of jobs,

1- (1) 	is the release time of job j,

E/	 is the set of disjunctive arcs (operations) assigned to worksta tion 1 ,

is the set of single machine workstations,

pi	 is the processing time of operation i ,

T2	 is the set of parallel machine workstations,

Ad/	 is the set of machines in workstation 1,

xik	 = 1 if operation i is assigned to machine k, otherwise 0,

tbb	 is the starting time of batch b,

yib	 = 1 if operation i is assigned to batch b, otherwise 0,

T3 	is the set of batch machine workstations,

pbb	 is the processing time of batch b,

z 	 is the maximum bawl size.

Constraint Interpretation

(1) Objective function

(2) Routing constraints

(3) Job completion time constraints

(4) Determine the job tardiness

(5) Release time constraints

(6) Machine capacity constraints: Only single job can be processed on the machine

at any point of time.
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(7) Processing time: It is determined from the operation {compare with (13)].

(8) Machine capacity constraints: Only single job can be processed on the machine

at any point of time.

(9) Similar to (7) (separated for clarity)

(10) Machine assignment constraints: The operation must be assigned to a machine.

(11) Integer 0/1 variables: They are used to identify the machine assignment.

(12) Batch starting time: Jobs in the same batch must start at the same time.

(13) Processing time: Machine processing time is determined from the batch

processing time.

(14) Batch processing time: Batch processing time is determined from the largest

processing time of operations in that batch.

(15) Machine capacity constraints: Only single batch can be processed on the batch

machine at any point of time.

(16) Batch size constraints

(17) Batch assignment: The operation must be assigned to a batch.

(18) Integer 0/1 variables: They are used to identify the batch assignment.

First, we concentrate on the case that there is only one type of workstation. So,

constraints (8) - (18) will be removed. Then, we extend the model to cover three types of

workstations. Finally, the dependent setup time constraints (which are not shown in the

mathematical model) will be introduced to the model.
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3.2 Workstation Decomposition

As our heuristic is based on shifting bottleneck decomposition method (refer to Section

2.7), the original problem will be decomposed to sub-problems. Well formulated sub-

problems provide a good solution to the original problem. For instance, incorporating the

operations dependency, which was originated from a partial sequence, into the single

machine scheduling sub-problem, can significantly improve the quality of the solutions as

shown by Dauzere-Peres and Lasserre (1993).

The workstation decomposition is strongly based on disjunctive graph

representation (see Section 2.6). In the graph, node represents the corresponding

operation; therefore, we may use the word "operation" and "node" interchangeably. In

Figure 3-3, there are two jobs that need to be processed on three machines. Operations 1,

3, 7, and 9 are assigned to machine 1. Machine 2 will process operations 2, 4, 6 and 10.

The rests, operations 5, 7, 8, and 11, will be processed on machine 3. This disjunctive

graph can be decomposed to three sub-problems. Let us focus on one of the sub-problem,

say machine 1. On this machine, operations 1, 3, 7 and 9 cannot be started before times 4,

1, 4, and 2 (EST) respectively. If these operations are completed not later than its latest

completion time (LCT), both job 1 and job 2 will have the completion time of 11 and 10

which are their lower bounds. If one of the operations is delayed for x units of time, the

completion time of the job that contains the operation will be extended for x units of time.

The EST and LCT of nodes can be determined by using CPM.



Figure 3-3: Disjunctive graph
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Table 3-1: Node information

In Figure 3-4, we show the effect of partial sequence to the completion time of the

jobs. On this graph, machine 2 has a fixed sequence, {4,10,6,4 This sequence creates
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the jobs dependency on determining the sequence of machine 1. Operation 7 cannot be

started before operation 3 is completed. This relationship derives from the arcs 3-4-10-6-

7. When operation 3 is delayed, it will not only affect the completion of job 1, but it will

also affect the completion of job 2. We propose a decomposition method that consider the

issue.

The following decomposition approach extracts the information of operations that

need to determine the sequence of a particular workstation. The operations assigned to

other workstations are removed and replaced by new arcs representing the combined

processing times. Ihe method not only determines the precedent relations among the

operations due to the fixed sequences on other workstations, but also determines the

earliest starting time of the operations as well as the remaining processing time. The new

decomposed problem objective is similar to the original problem but only a partial set of

operations are considered. We search for the sequence of machines in the particular

workstation that minimizes the weighted tardiness of jobs. The graph decomposition

algorithm has the complexity of 0(n2 ) where n is the number of operations in the shop.
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Figure 3-4: Complete shop scheduling graph with partial sequence

Graph Decomposition Algorithm

The following algorithm decomposes the scheduling graph to a sub-problem that

associates with workstation k. The objective of the new sub-problem is similar to the one

in the original problem.

for(n = 1 to (# of nodes in the graph))

if ( (node n is not assigned to the workstation k) and
(node n is not the source or the sink) )

Create arcs connecting the prior nodes with the post nodes with weight
equals the weight of prior arc + the weight of post arc.

Remove node n and arcs connecting to that node.



Figure 3 -5: Removing node 2

The following example shows the steps on decomposing the graph into the sub-

problem that contains machine 1. First, node 2 is selected. There are 3 arcs connecting to

this node — (1,2), (6,2) and (2,5) with weight 2, 1 and 3 respectively. Arc(1,5) and (6,5)

are added with weight 5 and 4. After node 2 is removed, the new graph is shown in

Figure 3-5.

Figure 3-6 shows the final result from the graph decomposition algorithm. This

graph shows that there are process dependency between operations 3 and 7, and

operations 9 and 7. The minimum completion time of jobs 1 and 2 is 14. Any sequence

applied to graph in Figure 3-6 will provide the same completion time as of the one

applied to the original graph (Figure 3-4).
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Figure 3 -6: Final decomposed graph

3.3 Sub-Problems

After a decomposed graph is derived, we can formulate the sub-problem. The problem

will be fairly similar to the original one; however, only a single workstation will be

concerned, say workstation i. The graph decomposition method removes the operations

that are not related to workstation i and replaces the arc by the combined processing time.

On the decomposed problem, the number of jobs, jobs' due dates and their priorities

remain the same as in the original problem. The number of tasks to be sequenced is equal

to the number of operations to be processed on workstation i. The release times of these

operations are modifthed. The new release times are determined from EST of the

decomposed graph. After these operations are completed, tail operations must be

performed. The job is considered completed when all its prior tails are fthnished. The

processing time of the tail determines from its length less the processing time of the prior

operation. The objective of the problem is to fthnd the sequence for the workstation to

minimize the weighted tardiness. The sub-problem can be a single machine, parallel
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machines or batch machine workstation depending on the structure of the shop. In the

following section, we describe each sub-problem. They are discussed further in Chapters

4, 6, and 7.

3.3.1 Single Machine Scheduling with Tails

There are n jobs to be processed. Job/ has due date, di) , penalty for being late, 14 ,(J) , and

the penalty for being early, -MP. They need to be processed on machines according to

their routing. Let us define an operation as a processing on a particular machine. The

jobs can be perceived as a network of operations. In this problem, the processing of each

job is divided into two stages. There are in operations that have to be processed on a

single machine in first stage. Some of these operations may have precedent relations with

others. Let Q= { (i,i'); i and i' are operations that have precedent relation} represent the

set of delayed precedent constraints. The releasing time of operation i is ri and the

processing time is pi. The starting time of operation i can be expressed as

max(r, , I,. + p„,) where p„, is the delayed time constraint between operation i and

Job preemption is not allowed.

After operation i on the fthrst stage is completed, its succeeding operations (tails),

i(¹) i(2), i(3), i(n),on the second stage can be started. There are no machine constraints

for these operations. The operations will start promptly upon the completion of operation

i. Let q'i(j) represent the processing time of operation i(j) and e) = p, +gri t' ) . The

completion time of job j,	 , is determined from the completion time of operation l (/) ,

2(j),	 m(j) or C (') = max(rc (j), max(t, +e ))) where rc (j) is the minimum
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completion time of job j and ti is the starting time of operation i. The processing diagram

is shown in Figure 3-7.

Figure 3-7: A shop with 3 jobs and in operations on stage 1

The penalty for job j is w(j)T(j) if it is late and -0.0) if it is early where T is the

job tardiness, and E is the job earliness. In the other words, there is reward for completing

the job early. We are interested in finding a sequence of the machine in the first stage

that minimizes the total penalty, min Σ {w(j)T(j) —17 ( ' ) E (' ) } . We are interested on the
j=I

case that h ( j ) = (j) and w(j)  >> h(j ) or 0 < k << 1. The reason behind this is discussed in
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section 7.2.2. It is important to restrict w(j) to be greater than zero. This objective can be

considered as a generalization of weighted tardiness objective.

A sequencing graph for job j is shown in Figure 3-8. The release time of

operation i is ri. There is an arc connecting operation 2 and operation m-1 representing

the delayed precedent constraint. Operation m-1 cannot start before time t 2+p2(m-1).

Figure 3-9 shows the complete graph where all jobs are shown.

Figure 3-8: Sequencing graph for job/
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Figure 3 -9: Complete sequencing graph

3.3.2 Parallel Machine Scheduling with Tails

The following is a scheduling problem for a c-identical parallel machines workstation.

There are m operations to be completed. The operation can be processed on any machine

in the workstation. The machine can process only one operation at a particular time and

no preemption is allowed. The processing time and release time of operation i is pi and ri.

Some of these operations may have precedent relations with others. Let Q = (i,i'); i and

i' are operations that has precedent relation} represent the set of delayed precedent

constraints. The starting time of operation i can be expressed as t, max(rj , + pii')

where ph, is the delayed time constraint between operation i and i'.

After operation i is completed, its tails, 0, i(2), 	 i(n) , will be started immediately.

There is no machine constraints for these tails. The processing time of tail 29 ) is qi(j )
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where i indicates the preceding operation and j indicates the, related job. Among n jobs,

job j is considered completed when all of its preceding operations and their tails that leads

to job j, 1(j), 2j), .., m9) , are completed. Job j has due date dg) , penalty for being late

for one unit time w(j) > 0, and penalty for being early -10. The completion time of job j,

OA is determined from the completion time of operation 19), 2 (/), 39.), ..., mg ) or

Cu ) = max(rc(j),max(ti) + qi(j))) where rc(j) is the minimum completion time of job j

and ti is the starting time of operation i. The penalty for job j is w(j)T(j) if it is late and -

MP& if it is early. The objective is to find the schedule for all the machines in the

PP

workstation to minimize the total penalty, min Σ {w ( i ) T ( j ) — h(j) E (' ) } . We are interested
j=I

on the case that h(j)) = w(j) and w (j) >> h (j) or 0 < k	 I (refer to section 7.2.2).

3.3.3 Batch Machine Scheduling with Tails

There are in tasks needed to be scheduled on a machine. This machine can process up to z

tasks in a single run. After the processing has started, it cannot be interrupted until it

completes. The release time of task i is ri. There are delayed precedent constraints among

some tasks. Let Q = (i,i'); i and i' are tasks that has precedent relation} represents the

set of delayed precedent constraints. The starting time of task i can be expressed as

t max(rj ,t, + p„,) where p„, is the delayed time constraint between task i and j. After

task i has been completed, its tail processing, iv ),	 i(n), will be started immediately.

There is no machine constraints for these tails. The processing time of tail 1.9) is q?)

where i indicates the preceding task and j indicates the related job. Job j is considered
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complete when all of its preceding tasks and their tails that pointed to, e ) for all i, are

completed. There is a due date, d(j), tardiness penalty, w (j ) , earliness penalty, = h (j ) and

minimum completion time, rc(j) , for job j.

The batch machine can start processing when there is at least one task waiting. It

has a capability to process z tasks in a single run; however, it does not need to wait until

all z tasks have arrived to begin the processing. The processing time of the batch is p. The

machine can process only one batch in a single run. We assume that there is no setup time

between batches.

The objective of the problem is to minimize the penalty (weighted tardiness and

earliness). We do not consider the cost of production. Therefore, the number of runs is

not in our consideration. The decision variables are the tasks assignment and the batch

starting time.

Example 3-1: A simple assembly shop problem is constructed as follows. There are three

jobs to be processed on three workstations. The information on workstations and jobs are

provided in the Table 3-2 to Table 3-4. The routing of the jobs are shown in Figure 3-10.

In the following, we show three decomposed sub-problems derived from the original

problem.

Table 3 -2: Workstations in Example 3-1

Workstation Type Description
1 parallel machines (2 m/c) Cutting
2 batch machine (size 2) Pressing
3 single machine Assembling



Table 3-3: Jobs in Example 3-1

Job Release time Due date Priority
1 0 19 1
2 1 14 2
3 2 25 1

Table 3-4: Jobs and operations in Example 3-1

Job Operation Workstation Preceding
operations

Processing
time

1 1 1 - 3
2 1 - 4
3 3 1,2 6
4 2 - 2
5 3 3, 4 6

2 6 1 - 5
7 2 - 5
8 1 - 3
9 3 6, 7, 8 4
10 2 9 2

3 11 1 - 6
12 2 11 2
13 1 - 4
14 3 12, 13 5
15 2 14 3

65
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Job I Job 2

Job 3

Figure 3-10: Jobs routing

Cutting

Pressing

Assembling

Figure 3-11: Directed graph
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The directed graph can be created by adding the source and sinks to the job routes

as shown in Figure 3-11. Figure 3-12 to Figure 3-14 show the decomposed graphs for

workstations 1 to 3 respectively.

Figure 3-12: Decomposed graph on workstation 1

The decomposed problem for cutting workstation (sub-problem 1) is as follows.

There are six tasks to be scheduled on two identical cutters. Jobs can be processed on any

of these two machines. Each task has the release time, processing time, and tails as shown

in the following table. Job j is considered completed when tail q; 0) for all i are finished.

The objective of the problem is to fthnd the sequence on the cutting workstation that

3

minimizes E w(j)T(j) . Table 3-5 and Table 3-6
j=1



Table 3-5: Operation information on sub-problem 1

68

Table 3-6: Job information on sub-problem 1

Figure 3 -13: Decomposed graph for workstation 2

The second sub-problem decomposed from pressing workstation is fairly similar

to the previous one. However, there are two delay precedent constraints, P7,10 = 9 and P12,15

= 7 and the tasks are processed in batches. The press machine can work on two tasks in
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the single run. It may start immediately when a task arrives or may wait until the second

task comes. The data is provided in Table 3-7 and Table 3-8.

Table 3 -7: Operation information on sub-problem 2

Table 3 -8: Job information on sub-problem 2

Figure 3 -14: Decomposed graph on workstation 3

The assembly workstation is a single machine workstation. There are four tasks to

be processed on this machine. There is a delay precedent constraint, p3 ,5 = 6, on the third
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sub-problem (assembling). The data on the problem is provided in Table 3-9 and Table 3-

10.

Table 3 -9: Operation information on sub-problem 3

Table 3 -10: Job information for sub-problem 3

3.4 Heuristic Development

The next three chapters are devoted to sub-problems for single machine, parallel machine

and batch machine workstations respectively. Each of the problem is different from

general scheduling problems as tail processing is included. We develop a number of

techniques to solve these sub-problems. The results are compared to some standard

priority rules as the optimal solutions are prohibitive because of the problem nature (NP-

completed). These sub-problems constitute the key components for the assembly shop

scheduling discussed in later chapters.

In chapter 7, we discuss the aggregated problem. This chapter requires the results

from the previous three chapters. We first study the assembly shop problem in single
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machine workstations environment, and we, then, extend the model to include all the

three types of workstations.

Chapter 8 explains an extension of the assembly job shop scheduling to other

objectives including minimizing the maximum completion time, minimizing the

weighted flow time, and minimizing the maximum weighted lateness, etc. The results

reported are promising. We attached all the developed heuristics to LEKIN, an assembly

shop scheduling system. The system provides a linkage between the theoretical research

and the practitioners.



CHAPTER 4

SINGLE MACHINE SCHEDULING PROBLEM WITH TAILS (SMSPT)

The single machine scheduling problem discussed in this chapter is formulated differently

from general single machine scheduling problems. This problem stems from the

decomposition technique in chapter 3. After the jobs have been completed, there is a

number of tail operations that follow. The completion times of tails determines the

objective value which is to minimize the weighted tardiness & earliness (see chapter 3 for

details). In this chapter, we propose a priority rule and a heuristic based on critical path

analysis. When dependent setup time is a concern, we extend the heuristic by including

the local searches. The results in this chapter are essential for constructing the assembly

shop scheduling.

4.1 Mathematical Formulation

The objective of the problem is to find the sequence on a single machine that minimizes

the weighted tardiness and earliness. The processing can be divided into two stages. After

the processing on the operation (on the first stage) is completed, the tail processing (the

second stage) can start. The job is considered completed when all its prior tails have

finished. Each job has its own due date and weight. Details on the problem description

can be found in chapter 3.

72



( j) "(l) - h(j)E(j))Min

73

where,

ti is the starting time of operation 1,

OP is the completion time of job j,

pi is the processing time of operation i,

S is the set of operations,

Q is the set of delayed precedent constraints,

q: ( -1) is the tail processing time toward job j and following operation i,

re is the lower limit of the completion time for job j,

pii, is the delayed time between operation i and i',

L( j ) is the lateness of job j,
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T(j)is the tardiness of jobj,

E ( j ) is the earliness of job j.

Constraint Interpretation

(1) Release time constraints

(2) Jobs completion time determination

(3) Lower limit of the completion time

(4) Machine capacity constraints: machine can process single operation at a time.

(5) Delayed precedent constraints

(6) Determine the job lateness

(7) Determine the job tardiness

(8) Determine the job earliness

The constraint (4) is the disjunctive constraint. It states that operation i may be

processed either before operation i' or after but they cannot be processed at the same time.

The problem can be solved using disjunctive programming. The original problem will be

divided into sub-problems. Only one inequality is selected for each instance. After the

sub-problems are solved, the frnal solution can be determined iteratively. When the

number of sub-problems is large, it may not be computationally economical to find the

optimal solution.

The disjunctive programming problem can be formulated as a 0-1 integer

programming by modifying constraint (4). The new 0-1 variable, xii', is 1 if i is
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scheduled before i' and 0 otherwise. The following is the formulation of the new

constraints that replaces (4).

where, BigM is a large number.

As the problem is one of NP-hard problem, there is no polynomial time algorithm

to solve it optimally. The following section discusses some properties that will be used to

develop the heuristic.

4.2 Scheduling Graph

The disjunctive graph technique developed by Balas (1969) is modifred and applied to the

problem. The graph has m nodes in the frrst layer and n nodes in the next layer. The

nodes in the first layer represent the operations while the nodes in the second layer

represent job completions. The conjunctive arcs are used to represent the operation

precedent constraints. Their weights are assigned according to the delayed time. The

source, node 0, is added. There are m arcs from source to each operation on the first layer

with weight ri. Similarly, there are n arcs from source to each operation in the second

layer with weight r c(.1) . The delayed precedent constraints are added to the graph by

inserting conjunctive arcs with weight p ii' linking operation i and i'. The disjunctive arc

pairs (two conjunctive arcs in opposite direction) representing disjunctive constraints are

added between operations in the frrst layer that do not have delayed precedent constraint.

The arc from node i has weight pi.
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This graphical representation contains the information on job releasing time,

precedent relationship and processing time. Figure 4-1 shows the disjunctive graph

representation. The precedent relations (conjunctive arcs) are represented by dashed

lines. The disjunctive arcs pairs are shown in solid lines. Sequencing the machine is

similar to selecting an arc from each disjunctive arc pair without creating a cycle. These

selected arcs are called a selection (Figure 4-2 and Figure 4-3). The selection can be

reduced to Figure 4-5 for a better interpretation.

Figure 4-1: Disjunctive graph representation



Figure 4-2: A feasible selection [2-4-3-5-1] 	 Figure 4-3: A cycle in the graph

Figure 4-4: Directed graph
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When the disjunctive arc pairs are removed from the graph, the rest of the graph is

called directed graph (Figure 4-4). It represents the relaxation of the problem as the

disjunctive constraints are removed. Therefore, it can be used to provide the lower bound

of the job completion time.

Figure 4-5: The reduced selection

4.3 TER (Tardiness - Earliness Rule)

The structure of this problem is unique. The completion time of each job depends on the

starting time and processing time of many operations. Job weights cannot be assigned

directly to the operation. The commonly used indexing rules that incorporate the job

weights in the indexing function such as WSPT (Weighted Shortest Processing Time),

ATC (Apparent Tardiness Cost), etc. cannot be applied directly to the problem.
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We propose a new indexing rule specially designed for this problem. The

extension of this rule will cover the general case where operation release times are

different and the operation dependencies are considered. This rule determines the

sequence dynamically. On any iteration, the operation indices are calculated. Starting

from time 0, it finds an operation with the highest index. Once an operation is sequenced,

time t is updated. The next operation to be sequenced is determined. The process

continues until all operations are sequenced.

Index Function

As our objective value depends on the job completion times and job weights, high

priority should be given to the operations that have already delayed some jobs. Delaying

these tasks will definitely increase the objective value. Among these operations, the one

that has strong effects on the completion time of multiple jobs should be provided with

high priority. We may judge them by using the weighted tardiness value.

When there is no operation that has already been delayed, the high priority should

be assigned to the operation that has less slacks. In other words, it is the operation that

pushes the completion time of jobs furthest. To merge these two properties, we use

exponential function to decrease the intensity of the earliness factor. Then, combine the

tardiness and earliness factors into a function. The function can be written as

Figure 4-6 shows the characteristic curve of the function.
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This index function is a combination of exponential and linear function. The task

that is linked to early jobs will be assigned with lower priority comparing to the one

linked to tardy jobs. We avoid the use of parameters that need to be determined by

statistical method in the function, e.g. ones in ATCS rule. Although these parameters

may provide a better schedule, we need to analyze historical data of the machine shop to

determine their values.

Figure 4-6: Characteristic curve to the index

The Procedure 

The simplest TER is developed for the case that all tasks are available at time zero (r =

0) and there is no delay precedent constraint. The heuristic is repeated iteratively. At

each step, the rule identifies the operation that has the longest impact on delaying the

jobs. It is the operation that provides the highest index value. The steps are as follows.

(i) Let U be the set of unscheduled operations, S = 0 be the set of scheduled

tasks, operation starting time, ti = 0 for i = 1,	 m and t = 0.
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4.4 Dynamic Job Arrivals

The priority rule, TER, that has been developed in the previous section does not consider

dynamic job arrivals and job precedent constraints. To solve this new problem, we apply

the concept based on the algorithm by Schrage. In his algorithm, a set of ready jobs is

identified. The job with the highest index (remaining processing time) in the set is

selected as the next job to be processed. Though his algorithm was not designed for job

dependency, it could be included without any diffthculty.

TER is a one pass heuristic. It selects the operation greedily based on an index

function. Though it cannot guarantee to provide the optimal sequence, it gives a

reasonably good and feasible one with a very short computer running time. Starting at
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time 0, the ready operations are identified and placed into a ready set. These operations

are released before time t. In order for an operation to become ready, it should not have

any prior precedent operations. If it has, those operations should have been sequenced.

Consequently, in order for operation j to be ready, the following equation must be

complied.

t max(r 	 + p ii')	 for V(i,i') E Q.

In the case that the set is empty, time t will be advanced to the next operation

marrival time, t = min ax(r,' ,ti) + p) . The ready set is kept with some members at any

moment. The next operation to be sequenced is determined from the operations in the

ready set. The operation that has the highest index is selected and removed from the set.

The steps are repeated until all operations are sequenced.

In TER, U is a set of unscheduled operations, A is a set of ready operations (no

precedent constraint), and t is the current sequencing time. The steps are as follows.
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Determine the Directed Graph

The directed graph D(NA) is obtained from the problem. Node set N corresponds to the

set of operations. One source node and 11 sink nodes are added. The sinks represent the

jobs completion. The precedent relationships are represented by conjunctive arc set A.

There are conjunctive arcs linking source to node i with weight ri, node i to sink j with

weight g' -' ) and source to sink j with weight ITV ). If delayed precedent constraint

between operation i and j exists, add the arc (i, 1') with arc length pii to A.

Determine the Index

Given graph G which is the directed graph D with partial selection (starting from no

selection), the index for operation i' is determined by adding the conjunctive arc (i,?)

where i is the previously sequenced operation to G. The critical path lengths can be

determined from CPM method. Each critical path determines the completion time of the

associated job when relaxing machine constraints for the operations that have not been

sequenced. The index value is determined from the index function

is the length of the critical path associated to node k or the EST of sink j.
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4.5 Critical Arcs and Cluster

Critical arcs are defthned as the arcs which pass through critical operations forming the

critical path. If any of the critical operations is delayed, it will directly effect the lengths

of some critical paths which are equivalent to the completion time of some jobs. Critical

tail is the tail of a critical operation that is on the critical path. That critical operation is

called critical tail operation. In Figure 4-7, there are three critical paths: 0-1-J 1 % 0-1-2-3-

/2 *, and 0-4-5- Jr '. Operations 1 to 5 are critical operations as they are on the critical

paths. There are three critical tails -- (1- I:), (3, J2 . ) and (5, Jn*), one corresponding to

each critical path. Operations 1, 3, and 5 are critical tail operations.

Critical arcs can be determined by applying CPM technique in project

management. First, let t o = 0. The earliest starting time (EST) of nodes can be

determined from the release time and the starting time of their prior nodes. After EST of

sinks are determined which are the job completion times, the latest starting time (LST)

can be determined. See Section 2.6.1 for further details. The critical operation is the

operation that has EST = LST. Delaying these operations will result in the extension of

completion time for some jobs. There will be at least m sets of critical arcs in the graph.

Cluster is a set of adjacent operations in the sequence that has no idle time in

between (Figure 4-8). According to TER/D, a new cluster is defined when A = 0 and

U # 0 on step (ii). The machine idle time occurs only when there is no job available to

sequence at that moment. Figure 4-7 shows an example of critical arcs and clusters in the

graph.



Figure 4 -7: Critical arcs and clusters

Figure 4-8: Gantt chart representing the two clusters

4.6 Critical Path Analysis

Proposition 1: The critical arc always passes through the first operation in the cluster.

Proof From the definition of cluster and the TER.

85



86

Proposition 2: Moving operation i from cluster c to cluster c+1 may provide benefit only
when

1) ri+ 1 > ti

2) The idle time between cluster c and c+1 is less than p,-1, +1 + max(ri+1, ti). .

Proof If the idle time between cluster c and c+1 is greater than p, =11+1 + max(ri+1,ti) ,

then switching the operation will not merge the two clusters. There always has a better

sequence that operation i is sequence last in cluster c.

4.7 Cluster Sequencing

Since the problem is NP-hard, we will not try to explore the optimal solution. A heuristic

to find a near optimal sequence is preferred. The method starts with TER. Operations are

separated into clusters. Then, we try to improve the sequence in each cluster by moving

operations in the cluster. With critical path analysis, we can trim a large number of

possibilities in moving down tremendously. The following properties provide some

conditions for the moves. Let us define move(i,j) as the sequence after removing

operation i from the sequence and insert it back right after operation j when i comes

before j and moveback(j,i) as removing operation j from the sequence and insert it back

right before i.

Lemma 1: Re-sequencing the cluster that its sequence does not contain critical arc will
not provide improvement.

Proof Current sequence has no direct effect to the completion time of any job.

Therefore, a better sequence for that cluster cannot be found.
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One Critical Arc in the Cluster

Lemma 2: If the critical arc is on the first operation in the cluster, the sequence of that
cluster is optimal.

Proof The completion time of the job cannot be reduced any further. Therefore, the

current sequence is optimal.

Lemma 3: The lower bound of the job completion time is r, Σp + min q' (k) , where i
j

j=1 	
=r

is the first operation in the cluster, / is the last operation in the cluster, and k is the job that

is on the critical arc. Hence, if the critical arc passes through min(q' (k) ) arc, the
j .-,

sequence is optimal.

Many Critical Arcs in the Cluster

Proposition 3: Moving operations that follow the last critical tail operation in a cluster

will not improve the objective value.

Proof The objective value is determined by the lengths of the critical paths. Moving the

operations that follow the last critical operation will not shorten the critical paths.

Therefore, it cannot reduce the completion time of any job.

Proposition 4: Move(i,j) when i and j are operations between two adjacent critical tail

operations or the first critical operation and the following critical tail

operation in the same cluster and i precedes j will not improve the

objective value.
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Proof Let S = {...,	 j, ..., n 2, ...} where operation n 1 is the first critical

operation or a critical tail operation in cluster 1 and n, is the following critical tail

operation linked to job k in the same cluster. Figure 4-9 shows the move according to

Proposition 4 which does not improve the objective value. The completion time of job k

,-1
before the move is L(i,j)=rn1+ pa + p,+ pβ + pj+pz+qn2(k)n2 where Pa = Σpg ,

g=n1

j -1 	n2-1

pβ = Σpg , and pz	Pg . After the move, the completion time of job k will be
j+1

max(rn1 + pc, ,r, +1 )+ pp + pj + pi) +P + q,() while the completion time of other

jobs does not decrease. As L(j,i) _> L(i,j), the property follows. In the same fashion,

move(j, i) will not decrease the objective value.

Figure 4-9: Move(i, j) between the first critical operation and the critical tail operation
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Lemma 4: Move(i, j) where/ is a critical tail operation following i in the same cluster,

say cluster k, will not improve the objective value if q,' ( ' ) > q 	 .

Proof Before the move, C (k) = + pj + q; (k) . After move(i,j), the new completion time,

C (k) max(ti, ri+1 )+ pi + Pa + p, + q; (k) where pa is the summation of the processing

time of operations between i and j.	 Because t =t +pi + pa • therefore,

C ' (k) > t j pj + . The move will not decrease the completion time of other jobs

(except job k) as the lengths of their critical path do not decrease. If q, (k) > q'j (k) , then

C (k) > C (k) . Therefore, the objective value will not decrease after the move.

Proposition 5: MoveBack(j, i) when i is an operation prior to j will not improve the
objective value if j is not the first operation in the cluster.

Proof If i is not the first operation in the cluster, the length of the critical path passing

through j cannot be reduced.

Before the move, C (k) = t, + pi) + pa + pj + pp + le' ) where ti is the starting time

of operation i, pa = Σpg 	=	 pg , and 1 is the critical tail operation. After thep
g=i+1	

move, C" (k) max(t, ) + pj + p i + pa + pp + q1(k) . It is obvious that the move will not

improve the objective value as no job can be fthnished earlier.

Lemma 5: Moveback(j,i) where i is the operation immediately follows machine idleness
and r J j t- will not improve the objective value.

Proof It follows from the proposition.
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CPI (Critical Path Improvement) Procedure

(i) After applying TER/D, let Seq = current sequence, and Best = current objective value.

(ii) For i = 1 to n, where n is the number of operations in the cluster. Seq[i] represents the

operation in the sequence. Determine the critical operations, Crj, and the number

of critical operations, Ncr. Detect the operations immediately follows machine

idleness, Idlek, and the number of machine idleness, Nidle.

(ii-a) For] = 1 to Ncr . /* moving forward */

- NewSeq = sequence after removing operation i from Seq.

-. Check precedent constraints:

If tNewSeq[j]+ pj > tk, where k is the precedent operation of i, break the loop

- Check moving benefit:

If q,(¹) > q(¹)crj , break the loop.

If Obj(Move(i,Crj)) < Best, insert i after j in NewSeq. Let Seq = NewSeq.

Break the loop -- skip checking moving backward and do not increase i.

(ii-b) For j = Nidle down to 0. /* moving backward */

- If tidle[j]-1+ p	 I i,

NewSeq = sequence after removing operation i from Seq.

Check precedent constraints:

If (tidle[j] < tk) or (tidle[j] <	 where k is the succeeding operation of i,

break the loop -- increase i.

Check moving benefit:



91

If Obj(Move(iddlej))< Best, insert i after j in NewSeq. Let Seq _ NewSeq.

Break the loop -- increase i.

(ii-c) If i = Cry, stop.

Figure 4- 10: Check-points for the Move

CPI analyzes the critical path of the clusters. It tries to reduce the path length by

moving the operations in the sequence. There are two types of moves -- forward and

backward moves. The forward move is the move of the operation from the current

position to follow a critical operation. Backward move is the move from the current

position to the first position in the cluster. Figure 4-10 shows the critical path on a

cluster. The dark gray lines represent the critical path. In order to reduce the critical path

length, we check for benefit moves. In operation 2, there are three check-points — two

forward moves and one backward move. The move to other positions cannot reduce the

critical path length.
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Example 4-1: To demonstrate the heuristic, we take a decomposed problem from

Example 3-1· First, we develop the sequence using TER. Then, we apply CPI to the

sequence·

Before beginning TER, the operation due dates are determined by backward

assignment· For example, d 1 = d' ) -p 5 - p3 = 19 - 6 - 6 = 7· These values are needed for

starting the heuristic and when tight indices occur· Step 1, we determine the EST of the

sink nodes, ci(j ). These values are used to calculate the index· For example, when

ci(¹),ci(²),ci(³) = 16, 12, & 18, the index will be

1·exp{16-19}+2.exp{12 —14} +1·exp{18— 25) =1·2716·

As the indices are all equal, we select the operation with min(di-pi) which is operation 2

(Table 4-1)·

Table 4-1: TER -- step 1

The sequence is {2}· The new graph is generated· On step 2, operation 6 has the highest

index· It is placed in the sequence which will become {2, 6}· The sequence is determined

one after another until all the operations are sequenced (see

Table 4-2 - Table 4-3) The final sequence is {2, 6, 8, 1, 11, 13}· The objective value is

24·



Table 4-2: TER — step 2
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Table 4-3: TER -- step 3 - end

After the sequence generated by TER is added to the graph, the results will be the

same as Figure 4-11. The critical paths are displayed in bold lines.



Figure 4-11: Scheduling graph after TER

CPI will check for potential improvements· First, we check the forward moves

starting from the last operation in the sequence back to the first operation· As

= 16 > q;33) = 12 , we know that move(11,13) will not improve the sequence.

Move(1,13) will increase the objective value to 31 similar to move(8,1), move(8,13), etc·

The only move that can improve the sequence is move(2,8) which reduces the objective

value to 20· After checking the forward moves, we check backward moves

moveback(8,6), moveback(2,6), etc· There was no further improvement founded· The

result {6, 8, 2, 1, 11, 13} is the result· It is also the optimal solution (Figure 4-12)·

94



Figure 4 -12: The graph after move(2,8).

4.8 Dependent Setup Time

When a machine is designed to be flexible, it may require some adjustments before

processing a new task. The setup time depends on the current machine setting and the

required setting for the new task. If the setup time is constant for any kind of task, we

may add this setup time to the processing time. Then, the problem can be perceived as if

there is no setup time.

TER with CPI technique is proved to be an efficient technique for scheduling

tasks on the machine that does not require setup. If the setup time is very small

comparing to the processing time, this technique is, still, proper to use. However, this

technique may not provide good solutions when dependent setup time exists. To improve

quality of the solution, we add local search steps to the sequence generated from TER

with CPI. The local search is a random search heuristic. After it is run for a fixed

number of iterations, the best solution found is reported. We strengthen the search by

limiting the search space. The details are discussed below.
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Local Search

The local search technique is based on interchanging two operations in the sequence. It

randomly selects two operations from the basis which is generated by TER and CPI. If

the newly generated sequence is feasible and provides a lower objective value, it will be

used as a new basis. We limit the search for a fix number of trials· After the limit is

reached, the best sequence found will be reported.

When we assume that the setup time is moderately smaller than the processing

time, we may limit the interchange to be done among operations in the same cluster not

including the first and the last one. This technique can improve the efficiency of the

search as the search space is reduced.

4.9 Numerical Examples

We test a number of heuristics on some decomposed problems stemmed from assembly

shop scheduling problems. In the following, we provide a brief description of the

heuristics used.

SPT (Shortest Processing Time First): This rule selects the operation with the least

processing time to be processed next. To prevent a dead-lock of the sequence,

only the operations that do not have precedent constraints or all precedent

constraints have been satisfied will be selected.

LPT (Longest Processing Time First): This rule will select the operation that has the

highest processing time to be processed next.

FCFS (First Comes, First Serves): This rule selects the operation according its arrival

time to the workstation.
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EDD-O (Earliest Operation Due Date): The operation due date is determined from

backward due date assignment. If the operation has two tails one to job a and the

other to job b, the due date of this operation is the minimum of these two job due

dates. The rule selects the operation with minimum due date to be processed next.

Modified EDD-O: It is similar to EDD-O; however, some operations are not allowed to

be selected for processing. These operations are very late arrival operations. There

exists at least a job that can be processed and completed before the late arrival

operation enter the workstation.

EDD-J (Earliest Job Due Date): This rule selects the operation belonged to the job that

has minimum due date to be processed next.

ATC (Apparent Tardiness Cost): The operation due date is determined from backward

due date assignment similar to EDD-O. The index function is

where t is the time at which the machine

became free k is the scaling parameter and :6 is the average processing times of

the remaining jobs.

WTail (Weighted Tails): The index function is determined from the summation of the

weighted tail lengths.

We have tested 50 problems generated by decomposing assembly shops with five

machines. The processing time of the fthrst 25 problems are between 3 - 10. The last 25

problems have higher processing time (5-15) and more tight due dates. It is obvious that
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TER+CPI dominates other priority rules· TER, FCFS and modified EDD-O provide good

sequences. Other heuristics seem to provide sequences far from optimal.

Table 4 -4: Test results (SMSPT) (low utilization)

i-T—o-1"---1

jobs

# of

opera-
tions

Objective value (weighted tardiness)

SPT LPT FCFS EDD-O mod.
EDD-O

EDD-J ATC WTail TER TER+
CPI

10 32 2911 2217 52 46 46 70 2682 1383 46 28
10 39 3129 4127 616 528 528 812 4812 2862 523 323
10 29 2518 2562 582 918 883 1209 2595 1180 735 576
10 33 5782 4353 1436 1225 791 1814 5822 1949 791 785
10 22 1574 2382 791 807 807 1534 1492 1081 807 791
10 32 2998 4593 0 0 0 0 3503 955 0 0
10 39 6238 7283 165 295 255 794 6899 5565 271 233
10 29 1245 3514 279 686 416 447 1346 445 357 300
10 33 5898 6947 437 531 531 923 7635 1095 434 357
10 22 4457 4233 600 434 654 968 5277 1299 434 434
10 32 2737 2260 57 50 50 142 2515 2525 50 23
10 39 5339 4891 319 408 306 788 5002 1334 329 203
10 29 2582 2804 385 475 506 954 2122 1164 529 384
10 33 5867 2948 729 957 957 1378 5950 737 682 533
10 22 3342 4118 707 792 792 950 3984 707 707 686
10 32 2039 4034 457 335 335 592 2154 764 258 85
10 39 6056 5277 1576 1679 1679 2104 4986 2349 1222 865
10 29 4158 5075 1351 3628 2200 4094 3446 3822 1734 1593
10 33 5540 6310 1939 2386 2386 3366 4929 2270 1965 1734
10 22 3277 4160 1965 2325 2325 2942 2660 1965 1965 1965
10 32 2293 2076 52 30 30 113 3205 714 0 0
10 39 6171 3698 320 789 582 1126 6268 2320 459 354
10 29 2533 2956 487 601 714 999 3544 791 749 700
10 33 6999 7286 749 871 845 1993 7868 808 749 749
10 22 1592 2608 749 853 749 988 2159 749 749 749



Table 4-5: Percent different from the minimum (SMSPT)
(low utilization)

of
jobs

6 of
opera-
tions

% Difference from the minimum
SPT	 E LPT FCFS  EDD-O mod.

EDD-O
EDD-.1 ATC WTail TER TER+

CPI
10 32 10296 7818 86 64 64 150 9479 4839 64 0
10 39 869 1178 91 63 63 151 1390 786 . 62 0
10 29 337 345 1 59 53 110 351 105 28 0
10 33 637 455 83 56 1 131 642 148 1 0
10 22 99 201 0 2 2 94 89 37 2 0
10 32 - - - - - - - - - -
10 39 3681 4314 0 79 55 381 4081 3273 64 41
10 29 346 1159 0 146 49 60 382 59 28 8
10 33 1552 1846 22 49 49 159 2039 207 22 0
10 22 927 875 38 0 51 123 1116 199 0 0
10 32 11800 9726 148 117 117 517 10835 10878 117 0
10 39 2530 2309 57 101 51 288 2364 557 62 0
10 29 572 630 0 24 32 148 453 203 38 0
10 33 1001 453 37 80 80 159 1016 38 28 0
10 22 387 500 3 15 15 38 481 3 3 0
10 32 2299 4646 438 294 294 596 2434 799 204 0
10 39 600 510 82 94 94 143 476 172 41 0
10 29 208 276 0 169 63 203 155 183 28 18
10 33 219 264 12 38 38 94 184 31 13 0
10 22 67 112 0 18 18 50 35 0 0 0
10 32 - - - - - - - - - -
10 39 1828 1056 0 147 82 252 1859 625 43 11
10 29 420 507 0 23 47 105 628 62 54 44
10 33 834 873 0 16 13 166 950 8 0 0
10 22 113 248 0 14 0 32 188 0 0 0

Average 1810 1752 48 73 58 181 1810 1009 39 5
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Table 4-6: Test results (SMSPT) (high utilization)

# jobs ops. SPT LPT FCFS EDD-O mod.
EDD-O

EDD-J ATC WTail TER TER+
CPI

10 32 4726 3091 284 295 295 316 4699 1103 285 158
10 39 9722 10009 1642 1599 1599 2884 8875 3457 1501 919
10 29 3493 6726 1557 2850 1810 2259 4629 2135 1768 1554
10 33 13276 11487 2156 2962 2041 5832 10954 1960 1982 1862
10 22 3131 3254 1991 2202 2202 2292 3530 2006 1991 1991

10 32 4232 5262 475 271 271 678 3869 2689 271 194
10 39 8555 9987 1446 1065 833 1298 9921 3540 831 637

10 29 5619 4155 943 1097 1103 2509 5559 1534 1013 971
10 33 10985 11488 1384 2293 1831 4449 14005 1648 1988 1482
10 22 5162 5988 1988 1988 1988 2271 5234 1988 1988 1988
10 32 3528 4852 618 582 582 738 3703 1644 465 416
10 39 5458 9384 1962 1764 1764 2106 4871 4237 1584 1279
10 29 5656 6480 1640 1839 1839 2423 5125 2031 2027 1779
10 33 6308 12165 2108 2617 2617 3560 9954 2364 2163 2084
10 22 5226 5077 2166 2166 2166 3123 6098 2339 2191 2166
10 32 3502 5637 499 556 556 846 3011 956 482 356
10 39 8011 8064 1509 2800 1656 2800 6471 2225 945 771
10 29 4422 4688 1117 2098 1696 2377 3955 1824 1260 1055
10 33 8599 6765 1270 1377 1317 3612 7896 1295 1315 1293
10 22 3266 4820 1371 1407 1407 1786 2956 1367 1407 1319
10 32 2918 4305 1103 1228 1228 1909 2082 1615 943 597
10 39 7370 8769 2112 2831 2562 4975 8224 3447 1500 1440
10 29 4983 4304 1572 3205 2250 3929 3975 4675 2627 1572
10 33 8437 6825 2810 4013 3989 5277 7448 3249 2763 2763
10 22 4665 4016 2763 2821 2763 4538 4228 2763 2763 2763
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Table 4 -7: Percent difference from the minimum (SMSPT)
(high utilization)

o f
jobs

# of
opera-
tions

% Difference from the minimum
SPT LPT FCFS EDD-O mod.

EDD-O

EDD-J ATC Tail TER TER+
CPI

10 32 2891 1856 80 87 87 100 2874 598 80 0
10 39 958 989 79 74 74 214 866 276 63 0
10 29 125 333 0 83 16 45 198 37 14 0
10 33 613 517 16 59 10 213 488 5 6 0
10 22 57 63 0 11 11 15 77 1 0 0
10 32 2081 2612 145 40 40 249 1894 1286 40 0
10 39 1243 1468 127 67 31 104 1457 456 30 0
10 29 496 341 0 16 17 166 490 63 7 3
10 33 694 730 0 66 32 221 912 19 44 7
10 22 160 201 0 0 0 14 163 0 0 0
10 32 748 1066 49 40 40 77 790 295 12 0
10 39 327 634 53 38 38 65 281 231 24 0
10 29 245 295 0 12 12 48 213 24 24 8
10 33 203 484 1 26 26 71 378 13 4 0
10 22 141 134 0 0 0 44 182 8 1 0
10 32 884 1483 40 56 56 138 746 169 35 0
10 39 939 946 96 263 115 263 739 189 23 0
10 29 319 344 6 99 61 125 275 73 19 0
10 33 577 433 0 8 4 184 522 2 4 2
10 22 148 265 4 7 7 35 124 4 7 0
10 32 389 621 85 106 106 220 249 171 58 0
10 39 412 509 47 97 78 245 471 139 4 0
10 29 217 174 0 104 43 150 153 197 67 0
10 33 205 147 2 45 44 91 170 18 0 0
10 22 69 45 0 2 0 64 53 0 0 0

Average 606 668 33 56 i 	38 127 591 171 23 1

The test results indicate that TER can provide a good feasible sequence. CPI can,

further, improve the quality of the sequence generated by TER. It can reduce the

objective value provided by the best of other priority rules on average of 14%.

Sequence Dependent Setup 

We test 25 problems which are decomposed problems from the assembly shop problems.

Some partial sequences on machines other than the focusing machines are added to

generate delayed precedent constraints. The setup time vary from 0 - 3 while the
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processing time vary from 3-10 for the first 25 problems (A) and 5-15 for the last 25

problems (B). Table 4-8 to Table 4-11 show the objective values and the percent different

from the minimum· For "TER+CPI+Local", 100 local searches were applied to the result

from "TER+CPI".

Table 4-8: Test results (SMSPT and dependent setup) (low utilization)

4 of

jobs

4 of	 '

opera-

tion

Objective value (weighted tardiness)

SPT LPT FCFS EDD-O

modified

EDD-O EDD-J TER TER+CPI

TER+CPI

+Local

10 32 3577 3911 273 484 72 712 312 53 35

10 39 8434 6965 2530 1891 1747 3452 1564 1191 1191

10 29 4883 6565 2043 2286 2238 2737 2254 2239 2159

10 34 7787 5901 2342 2624 2318 3967 2348 2290 2290

10 21 3448 4560	 I 2668 2624 2624 3428 2624 2624 2624

10 32 4293 3454 210 326 326 473 245 76 76

10 39 6159 8975 1217 1320 1072 875 852 681 661

10 29 5305 3457 1320 1425 1320 1439 1775 1338 1320

10 34 10018 8584 1455 2332 1525 2880 1849 1452 1452

10 21 5667 5490 2332 2450 2332 3385 2332 2332 2332

10 32 3390 3615 138 59 41 173 59 18 18

10 39 6457 7719 602 512 408 708 540 435 433

10 29 3530 3093 572 1435 698 740 1125 830 830

10 34 9248 5653 1545 1526 1435 2260 1435 1435 1435

10 21 2180 4114 1534 1574 1526 1676 1526 1526 1526

10 32 4952 5808 29 63 42 171 79 18 18

10 39 8724 10478 488 677 561 1254 486 343 337

10 29 3897 2383 879 1011 730 1047 882 730 730

10 34 8929 7041 1100 1233 1023 2659 1079 1023 1023

10 21 5125 3668 1434 1233 1233 1658 1233 1233 1233

10 32 1756.93 3734.97 188 232 212 363 230 195 185

10 39 6988 8521 1145 1114 931 1263 1140 596 596

10 29 4641 4677 1132 1647 1132 1438 1186 1132 1132

10 34 8182 8768 1814 2093 1692 2638 2260 1671 1671

10 21 4129 2321 2093 2093 2093 2225 2093 2093 2093



Table 4-9: Test results (SMSPT and dependent setup) (low utilrzation)

4 of

jobs

4 of

opera-

tion

% Difference from the minimum

SPT LPT FCFS EDD-O

modified

EDD-O EDD-J TER TER+CP1
TER+CPI

+Local

10 32 10120 11074 680 1283 106 1934 791 51 0
10 39 608 485 112 59 47 190 31 0 0
10 29 139 221 0 12 10 34 10 10 6

10 34 240 158 2 15 1 73 3 0 0

10 21 31 74 2 0 0 31 0 0 0
10 32 5549 4445 176 329 329 522 222 0 0

10 39 832 1258 84 100 62 32 29 3 0

10 29 302 162 0 8 0 9 34 1 0

10 34 590 491 0 61 5 98 27 0 0

10 21 143 135 0 5 0 45 0 0 0

10 32 18733 19983 667 228 128 861	 ' 228 0 0
10 39 1483 1792 48 25 0 74 32 7 6

10 29 517 441 0 151 22 29 97 45 45

10 34 544 294 8 6 0 57 0 0 0

10 21 43 170 1 3 0 10 0 0 0

10 32 27411 32167 61 250 133 850 339 0 0
10 39 2489 3009 45 101 66 272 44 2 0

10 29 434 226 20 38 0 43 21 0 0

10 34 773 588 8 21 0 160 5 0 0

10 21 316 197 16 0 0 34 0 0 0

10 32 850 1919 2 25 15 96 24 5 0

10 39 1072 1330 92 87 56 112 91 0 0

10 29 310 313 0 45 0 27 5 0 0
10 34 390 425 9 25 1 58 35 0 0

10 21 97 11 0 0 0 6 0 0 0

Average 2961 3255 81 115 39 226 83 5 2
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Table 4-10: Test results (SMSPT and dependent setup) (high utilization)

# of

jobs

# of

opera-
tions

Objective value (weighted tardiness)

SPT LPT FCFS EDD-O

modified

EDD-O EDD-J TER TER+CPI

TER+CPI

+ Local

10 32 5057.85 3244 416 471 471 388 413 286 286
10 39 10109 10592 2221 2232 2232 3006 2111 1639 1629
10 29 4727 6874 2302 2427 2427 2800 2434 2449 2449
10 33 13759 12185 3045 2857 2563 6071 2609 2452 2452
10 22 3088 4333 2916 2857 2857 3230 2877 2857 2857

10 32 4471 5668.88 807 366 366 969 486 511 511
10 39 9277 10895 1871 1688 1514 1877 1473 1693 1693
10 29 7285 5307 1778 1802 1802 2612 2081 2147 2119
10 33 11920 12366 2349 2857 2762 5868 2645 2406 2406

10 22 4771 3798 2857 2857 2857 3515 2857 2857 2857

10 32 3820.9 5291 790 733 733 870 634 555 552

10 39 6377 10209 2751 2366 2366 2552 2367 1860 1747

10 29 7401 6161 2459 3373 2618 2876 2947 2938 2938

10 33 9748 16057 3399 3594 3582 4213 3456 3375 3375

10 22 6416 7046 3600 3626 3613 4454 3613 3594 3594

10 32 3840 5934 683 692 692 1036 579 317 317

10 39 8259 8731 2021 3065 1605 3122 1387 1115 1089

10 29 6115 7494 3315 3414 3228 3925 3777 3158 3158

10 33 10481 7059 3414 3414 3414 5487 4605 3414 3414

10 22 5172 6907 3414 3414 3414 3974 3535 3414 3414

10 32 3136 4638 1403 1587 1587 2193 1198 807 807

10 39 9035 8932 2776 2728 2409 4447 2439 1888 1882

10 29 5962 5478 2812 3156 2850 3833 3170 2782 2782

10 33 10741 7833 3226 3517 3172 4799 3190 3178 3156

10 22 4372 4476 3517 3526 3517 4295 3595 3595 3595
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Table 4-11: Test results (SMSPT and dependent setup) (high utilization)

# of

jobs

# of

opera-
tions

% Difference from the minimum	

SPT LPT FCFS EDD-O

modified

EDD-O EDD-J TER TER+CPI
TER+CPI

+ Local

10 32 1668 1034 45 65 65 36 44 0 0
10 39 521 550 36 37 37 85 30 1 0
10 29 105 199 0 5 5 22 6 6 6
10 33 461 397 24 17 5 148 6 0 0
10 22 8 52 2 0 0 13 1 0 0

10 32 1122 1449 120 0 0 165 33 40 40
10 39 530 640 27 15 3 27 0 15 15
10 29 310 198 0 1 1 47 17 21 19

10 33 407 426 0 22 18 150 13 2 2

10 22 67 33 1 	0 0 0 23 0 0 0
10 32 592 859 43 33 33 58 15 1 0

10 39 265 484 57 35 35 46 35 6 0

10 29 201 151 0 37 6 17 20 19 19

10 33 189 376 1 6 6 25 2 0 0

10 22 79 96 0 1 1 24 1 0 0

10 32 1111 1772 115 118 118 227 83 0 0

10 39 658 702 86 181 47 187 27 2 0

10 29 94 137 5 8 2 24 20 0 0

10 33 207 107 0 0 0 61 35 0 0

10 22 51 102 0 0 0 16 4 0 0

10 32 289 475 74 97 97 172 48 0 0

10 39 380 375 48 45 28 136 30 0 0

10 29 114 97 1 13 2 38 14 0 0

10 33 240 148 2 11 1 52 1 1 0

10 22 24 27 0 0 0 22 2 2 2

Average 388 435 28 30 20 73 19 5 4
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CHAPTER 5

PARALLEL MACHINE SCHEDULING
PROBLEM WITH TAILS (PMSPT)

Parallel machine workstations are widely found in practices. A single machine may not

be able to complete the large amount of tasks within the time limit. Therefore, similar

machines are added to increase the throughput. In most cases, double the number of

machines does not double the production. The synchronizing of the machines effects the

output level. Tremendous amounts of research efforts have been spent on finding

scheduling techniques for this type of workstations. The majority of the research is done

on optimizing the machine sequences on makespan and flow time (see Pinedo, 1995).

The problem that we are looking at stems from the decomposed sub-problems of

the network problem. First, the model for the simple case where there is no setup time

and all machines are identical is presented. We propose two heuristics on solving this

problem. The branch and bound method is developed to find the optimal solution for the

comparison purpose. Then, we extend both heuristics to cover the dependent setup time

and the workstation with different speed machines.

5.1 Mathematical Formulation

To develop a mathematical formulation, two fictitious jobs 0 and n+1 with p o = pn+1 = 0

are added. Let x ik  =1 if operation i is scheduled immediately before operation j on

machine k, and 0 otherwise. Similarly, let yki,j =1 if operation i is scheduled before j on

machine k. The formulation is as follows.
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where,

Starting time of operation i,

release time of operation i,

processing time of operation i,

time precedent relation between operation i and i' (time that operation i'

need to wait after operation i has completed),

completion time of job j,

remaining processing time for job j after operation i has completed,

lateness of job j,

due date of job j,

tardiness of job j,

earliness of job j·

Constraint Interpretation

Operation release time constraint

Machine can process one job at a time.

Operation precedent constraint

Determine completion time

Except operation 0, every operation has, exactly, one prior operation in

108
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the processing sequence.

(6) For operation 0, there is, exactly, one link to each machine. (n>m)

(7) There is, exactly, one link from each machine to operation n+1.

(8) If j is process immediately after i, then operation] is scheduled after
operation i.

(9) If operation h is processed before i and i before], then h is processed
before j.

(10)	 If j is scheduled after i, it cannot be processed before i.

(11) - (13) Basic constraints.

(14) - (16) Determine the variables for objective function evaluation.

5.2 Problem Analysis

To schedule the parallel machines workstation, the task can be separated into two steps --

workload assignment and operation sequencing. The fthrst step is to allocate tasks

(operations) to machines. Poor workload assignment leads to unequal machine utilization.

Operation sequencing step is to determine the processing order of the operations assigned

to the machine. In order to satisfy the objective, both steps should be done in parallel.

5.3 Sequence Graph

The disjunctive graph that has been used for single machine scheduling problem can be

modified to include the parallel machines problem. Nodes, conjunctive arcs, and

disjunctive arcs are created in the same manner. However, the objective of the problem is

a little different. Instead of fthnding a non-cycle selection from the clique, it is to partition

the clique into n cliques and find a non-cycle selection for each clique, where n is to the

number of machines in the workstation. Figure 5-1 shows a non-cyclic selection on a
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clique. This selection represents a feasible sequence for a single machine workstation.

Figure 5-2 shows the same sub-graph partitioned into two cliques. Two non-cyclic

selections represent a feasible sequence for a 2-parallel machines workstation.

Figure 5- 1: A non-cyclic selection for a
single machine workstation

Figure 5 -2: Two non-cyclic selections
for a 2-parallel machines workstation

For the m parallel machines workstation, m selections should be determined from

the clique associated to the workstation. Each of them should not create a cycle. After the

selections are entered in the graph, the job completion time can be determined.

Parallel Machines with Different Speeds : When the speed of the machines are not equal

but in ratio, further modification is necessary. The outbound arc length from node i to

in the same clique will be changed to 	 + s„,, where fk is the speed of machine k
I k

assigned to process operation i, and — if i and are not in the same clique.
fk
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Parallel Unrelated Machines : For the most general case where the processing time of the

tasks depend on the processing machine and is not constant, the outbound arc lengths

from node i to node i' in the same clique are modified to pi(k) sii' where pi(k) is the

processing time of operation i on machine k. If i and i' are not in the same clique, the

setup time will not be included and the length is p i(k).

5.4 PEDD-O (Parallel Earliest Operation Due Date)

This priority rule is the extension of EDD rule. PEDD-0 does not only assign operations

to the machines but also sequence the operations on each machine. It assigns the

operations according to their indices. These indices are determined from the length of the

tails, the job due dates, and the delayed precedent lengths. After the next operation to be

sequenced has been determined, it is assigned to the first available machine.
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5.4.1 Determine Index and Machine Assignment

To determine the index for operation j, we, first, need to assign the operations to the

machines. Machines in the workstation may have different available time. Some of them

need to complete the operations assigned in the previous iterations before they become

available again. We select machine mc that min (max(ri, ak ) + p,) .
k	 , 'c

Given graph G which is the directed graph D with partial selection, the index for

operation i' is determined by adding the conjunctive arc (i, 1) where i is the previously

sequenced operation on machine mc. Then, the EST of sinks are recalculated. The index

value is determined from the index function I, = min(d(j  — qi(j) ,l„ — p,',„) for j = 1, n;

i" = 1, ..., m.

5.4.2 Improving PEDD-O

After applying PEDD-O, we obtain a list of sequences for all machines in the

workstation. These sequences can be adopted as the operation assignment. Subsequently,

the problem is reduced to m single machine scheduling problems. These problems can be

solved by the heuristic developed in the previous chapter. We can improve the sequences

generated by PEDD-O by applying CPI method on the sequence in each machine.



Machine assigning

Operations sequencing

Figure 5 -3: Steps in the heuristic

5.5 Beam Search

Beam search is based on the idea of branch and bound. The major distinction from branch

and bound is that not all nodes at any given level are evaluated. Only the most promising

k nodes will be selected as the nodes to branch from. The rests will be permanently

discarded. The number of promising nodes to branch at each level is fthxed to limit the

search space. It is defrned as beam width. The potential nodes are selected from an

evaluation process.

Definition: Parallel sequence is a set of machine sequences for all machines in the
workstation.

Definition: Linear sequence is a sequence representation where all elements in the
sequences are lined up into a string. If operation i precedes operation/ in the

linear sequence, i is processed before or at the same time as j.
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5.5.1 Linear Sequence 	 Parallel Sequence Transformation

Providing a machine assignment scheme, the linear sequence can be transformed to

parallel machine sequences and backwards. For example, a list of sequences for parallel

machines can be generated by assigning the operation in the linear sequence to the first

available machine. After assigning the operations to the machine, update the machine

available time. This assignment scheme will transform the linear sequence to a parallel

sequence. The reverse can be done by assigning the operations on parallel machines back

to a linear sequence according to their starting time. The one-to-one relationship can be

developed.

Linear sequence	 Parallel machine sequences

Figure 5-4: Linear seqeunce vs. parallel machine sequences

Proposition 1: For any parallel sequence, there exists at least a linear sequence that is
equivalent or dominates it.

	Proof Suppose there exists a parallel sequence S = {{o11, o 12 , 	 o }, {o21, o22,

• o23,..., 0 2 „, 	om2, om3,..., on„, }1 that cannot be represented by a linear

sequence. Let Sj = {of], 	 ojk, 	 } be the sequence for machine in S
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and e =	 be the section that cannot be converted to a linear sequence. By

removing e from S, a linear sequence can be generated. Let 'S' = L(S - e) + e, where L(s)

is the linear sequence transformation from parallel sequence s. The starting time of

operations in S - e remains the same as in S. The completion time of o in S' ,

where 'S' = L(S'), should be decreased or at least equivalent to S. Therefore, 'S' is

equivalent or dominates S. Figure 5-5 and Figure 5-6 show the conversion from S to S' .

Figure 5 -5: Parallel sequence S that	 Figure 5-6: Parallel sequence S' after the
cannot be represented by linear	 conversion

sequence

As we can acquire parallel machine sequences from a linear sequence, the search

will be done on the linear sequence. This technique reduces the search space drastically.

In the heuristic, we use the machine assignment scheme that allocates the operation in the

linear sequence to the machine that can complete the processing earliest.

5.5.2 Branching

The heuristic starts from an empty sequence node. An active operation set is determined

to avoid the infeasible branching. The set members are active operations which are the
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operations that do not have precedent constraints or the constraints are satisfied. The late

arrival operations are removed from the set. The late arrival operation is the operation that

its release time is greater than the completion time of some operations, r 1 >

min(max(t,ri,)+pi') for all i' E unscheduled operations where t is the earliest completion

time of last sequenced operations on machines ('t" can be perceived as the next machine

available time). First, the starting node will be branched according to the elements in the

set. The linear sequences are generated. These sequences will be transformed to parallel

machine sequences according to the machine assignment scheme.

5.5.3 Evaluating

After the branching, partial linear sequences are obtained. PEDD-O is applied to

complete these sequences. The objective values of these completed sequences provide a

measurement of the potential of these partial sequences. The best k nodes are kept. The

rests will be discarded. These k nodes will be branched on the next step. Each step, only k

nodes are kept to limit the searching space. The procedure continues until the completed

sequence is obtained.

Example 5-1: We use Example 3-1 to demonstrate the beam search with beam width

equals three. There are two identical machines in the cutting workstation,. The

information on the operations is provided below.

Starting from S=0, the first branching generates six nodes (Figure 5-7). The

potential values are determined by completing the partial sequence with PEDD-O. For

example, the second node with sequence {M1:2; M2:0} has potential value = 1.98 which
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is from the sequence {M1:2,1,11; M2:6,8,13}· The first three nodes are selected for the

branching in level 2. The branching continues until the set is empty (Figure 5-8 and

Figure 5-9)· The final sequence is {M1:1,6,13; M2:2,8,11} which provides objective

value of -0.05.

Figure 5-7: Beam search level 1



Figure 5-8: Beam search level 2-3
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Figure 5-9: Beam search level 4-6
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The computation complexity of this heuristic is O(kmn³) where k is the beam

width, m is the number of jobs and n is the number of operations.

5.6 Sequence Dependent Setup and Related Machines

The related machines are machines in the same workstation that have different processing

speeds. However, the ratios of the speeds are fthxed for any task. For example, machine A

can complete the processing of task j in 5 minutes while it requires 10 minutes on

machine B. If machine A and B are related machines and the processing time for task k

on machine A is 7 minutes, the processing time of the same task on machine B should be

14 minutes.

5.6.1 Extended PEDD-O

When parallel machines are concerned, PEDD-O need a slight modification on the

machine assignment step. The details are discussed below. After the operations are

assigned to the machines, we apply CPI and followed by local searches to improve the

sequence on each machine.

•

Determine Index and Machine Assignment

To determine the index for operation j, we, frrst, need to assign the operation to the

machine. Machines in the workstation may have different available time. Some of them

need to complete the operations assigned in the previous iterations before they become

available again. The problem is more complex when processing speed of each machine is
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not equal and the dependent setup time is concerned. We select machine mc that can

complete the task earliest among the machines in the workstation.

Given graph G which is the directed graph D with partial selection, the index for

operation i' is determined by adding the conjunctive arc (i,1') where i is the previously

sequenced operation on machine mc. If the processing speed on the machine differs from

the average, we need to update the weight of disjunctive arcs originated from i'. Then, the

EST of sinks are recalculated. The index value is determined from the index function

and C(j) is the EST of sink j.

5.6.2 Beam Search

The modification of the beam search is very small. We improve the evaluation process by

using PEDD-O/w Setup in place of PEDD-O. The branching scheme remains the same.

5.7 Numerical Example

We test the heuristics with 30 problems generated from decomposing an assembly shop

with five jobs on five machines each job has ten operations. Each problem has 16

operations. The results indicate that PEDD-O + CPI can provide sequences better than all

priority rules that we have tested (see Table 5-1). However, Beam search with beam

width 3 can outperform all other methods.
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Table 5 - 1: Test results (PMSPT)

Problem Beam(3)
PEDD-O

+ CPI FCFS

_

EDD-J SPT LPT ATC(2,2) ATC(1, I )

I -0.18 -0.08 64·67 167.91 440.92 608·94 497.00 554.00
2 21.97 28·00 118.00 379.97 958.00 906.00 949·00 1000·00
3 225·99 268.00 301.00 545.98 800.00 975.00 1106.00 1040.00
4 9.93 22.97 93·95 348.00 406·94 783.00 707.00 707.00
5 216.00 255.00 515.00 658.00 723.00 1464.00 1412.00 1412·00
6 492·00 495.00 687.00 869.00 895.00 1074·00 1412·00 1399.00
7 -0.30 -0.29 34.85 112.93 393.00 313·99 376·00 376.00
8 193.93 193.93 310.99 328·93 585.00 912·00 978·00 978.00
9 208.93 208.93 335.00 436·93 765.00 894.00 836.00 836.00
10 -0.34 -0.17 -0.31 260.00 681.00 1329.00 1085·00 1085.00
11 7·95 7·95 60.99 450.00 1227.00 1654.00 1626·00 1626.00

12 115·99 129.99 207.00 431.00 1183.00 1810.00 1525.00 1411.00
13 -0·49 -0.42 -0.25 169.97 345.93 226.00 268·00 268.00

14 72.93 72.93 166.00 406.00 966.00 666·00 1046.00 1046.00

15 284·99 287.00 422·00 834.00 1226.00 1246.00 1246.00 1246.00

16 -0.34 -0.32 -0.35 -0.07 495.97 425.00 623·99 558.97

17 -0.25 -0·25 -0.20 16.99 1109.00 863·00 1199.00 1109.00

18 101.93 101.95 110.95 245·00 1165.00 660.00 1093.00 1147.00

19 -0.27 -0.23 -0.25 5.89 667.99 187.98 504.00 504.00

20 -0.15 -0·15 -0.15 84·00 1022.00 784·00 1106·00 1106·00

21 43.99 43·99 43.99 230.00 1098.00 958.00 1378.00 1378.00

22 -0·44 -0.39 -0.38 61.87 370·00 207.96 324·00 357.00

23 -0·23 -0·23 37·83 189.87 712·00 834.00 1002.00 1002·00

24 -0.21 -0.21 50.84 90.87 666.00 873.00 999.00 1027·00

25 -0.18 -0.11 3.83 238·92 359.00 244.96 521.00 509.00

26 147.90 180.91 240.91 386.94 752.00 1173.00 1285.00 1253.00

27 289·00 407.00 401.00 436.00 789.00 1532.00 1358.00 1358.00
78 -0.43 -0.38 -0.33 88·95 572·99 610.00 656.00 666·00

29 4.84 14·90 36.93 242.98 1305.00 1161.00 1193.00 1193.00

30 173.98 174·00 173·98 349.98 1277.00 966.00 1062.00 999.00

average 86.95 96.31 147.15 302.23 798.56 878.06 979.10 971.70

Sequence Dependent Setup

The similar tests are performed on the problems with sequence dependent setup. Adding

Local search in the evaluation steps of the Beam search does not significantly improve

the performance of the heuristic. Only the results from problem 13 show a significant

improvement.



Table5 -2: Test results (parallel machines with dependent setup)

Problem
Beam(3)
Local(50) Beam(3)

PEDD-O
+ CPI EDD-O FCFS PTER EDD-J SPT LPT ATC(2,2) ATC(1,1)

1 -0.35 -0.34 -0.32 -0.32 -0·35 -0.30 3·97 507.98 461·00 606.00 653.00
2 -0.23 -0.23 -0.23 -0.23 -0·19 -0.19 48·99 1150.00 890.00 1402.00 1312·00
3 203·99 203·99 203.99 203·99 242·99 496.00 505.00 1445.00 924.00 1377.00 1411.00
4 -0.27 -0.27 -0.23 -0.23 -0.24 86.98 11.89 709.00 192.99 488.00 488.00
5 5.88 5.88 5·88 5·88 5.88 189.00 149.00 1087.00 821.00 1115.00 1115.00
6 50.98 50.98 50.98 50.98 99.00 183.00 267.00 1023.00 1065.00 1331.00 1331.00
7 -0.40 -0.43 -0.34 -0.34 -0.38 -0.32 76·87 429.00 271.97 486.00 402·00
8 4·80 4.80 4.80 4·80 45.84 23.83 238.87 772.00 912.00 1108.00 1094.00
9 84.00 84.00 84.00 84·00 95·00 84.00 233.00 543.00 882.00 1190.00 1218.00
10 -0.18 -0·17 7·90 7.90 19·85 23.89 259.92 398.00 329·97 527.00 503.00
11 213.91 213.91 239.91 239.91 374.91 374.91 589.94 811.00 1404.00 1308.00 1260.00
12 -0.38 -0.38 -0.32 -0.32 -0.31 89.73 121.96 572.99 623.00 668.00 704.00
13 24.86 29.88 34.93 34.93 72.96 464.00 286·98 1376.00 1232.00 1237.00 1237,00
14 222.97 222.98 232.00 232.00 211.97 473.00 376.97 1480·00 1087.00 1416.00 1416.00

average 57.83 58.18 61.64 61·64 83.35 177.68 226.45 878.85 792.57 1018.50 1010.29



CHAPTER 6

BATCH MACHINE SCHEDULING PROBLEM WITH TAILS (BMSPT)

Besides single machine and parallel machine workstations, there is a special type of

machine that can process more than one job in a single run. This type of machine is called

"Batch Machine". The batch machine can be founded in various production facilities such

as testing equipment for electronic circuits, paint booth, heat treatment equipment, etc· It

violates the basic assumption on the machine in the classical job shop scheduling problem

that two or more jobs cannot be processed in the same instance on a machine.

There are a few researches on batch machine scheduling in job-shop environment.

The majority of the batch machine researches were conducted in chemical engineering

where job is not discrete and the product transfer rate is signifthcant. The work by Lee et

al. (1992) has shown the signifrcance of this type of model. They developed heuristics to

tackle the batch machine scheduling problem on minimizing the maximum lateness in an

electronic circuit testing facility.

Our objective is to find the sequence that minimizes the weighted tardiness &

earliness. Two models are presented. The first one considers the case that pi = p and sij =

0. Next, we extend the heuristic for the more general case where the processing time of

each task is not equal and dependent setup time is considered.

124
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6.1 Mathematical Formulation

The following formulation is constructed for the batch machine scheduling problem with

tails when pi =p and the machine setup time is negligible. The details of this problem can

be found in Chapter 3.
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This mathematical formulation is somewhat similar to the single machine

workstation problem. The major different is the batching constraints, (9) - (11).

Constraint (9) states that the task must be assigned to a batch while constraint (10) limits

the batch size to z. We use integer 0/1 variable, x,b , to identify the task-batch assignment.

6.2 Scheduling Graph Representation

The above problem can be represented as a graph problem. In the graph, there are m

starting nodes representing m tasks. The source node, 0, is connected to all m nodes with

arc weights equal to the task release time. There are m completion nodes matching with

the m starting nodes. Each completion node, i, represents the completion time of the task.

It is connected to sink nodes, j, which representing the job completion with weight qi( j ) .

The number of sinks is equal to the number of jobs which is n. The start node and

completion node are connected with an arc weighted p. There are arcs with weight rd )

connecting the source with the sink]. Figure 6-1 shows the unscheduled graph with four

jobs and eight operations.
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Figure 6-1: Unscheduled graph

The objective of the problem is to insert dummy nodes in between the starting

nodes and completion nodes that will minimize the objective function. These dummy

nodes represent the batches. The inserted dummy node has at most z arcs connecting to

the completion nodes and the same number of arcs connecting from the starting nodes

(see Figure 6-2). The arcs going into the dummy node have zero weight. The arcs going

out off it have weight p, the batch processing time. All the starting and completion nodes

must be connected to dummy nodes in order to obtain a complete sequenced graph.

Figure 6-3 shows the complete sequenced graph. The processing is separated into three
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batches. The first two batches process three operations in a single run while the last batch

process the remaining two operations. The objective function of the graph is to minimize

w, 7; — h,E, which is similar to the original problem. The starting time of sink node j is
:=1

comparable to the completion time of job j. It can be easily determined using CPM in

project scheduling technique. After the job completion time is found, the objective

function can be determined.

Figure 6-2: Adding a dummy node
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Figure 6-3: Graphical representation

6.3 Problem Analysis

When m operations are processed on the same batch, the release time of the batch is

max{r1 , rm } and the processing time is max {p,,..., pm } = p. The starting time of the

batch is its release time or the completion time of the prior batch, whichever comes later.

In the sequencing graph, the batch is represented by the dummy node. The job completion

time is the earliest starting time of the associated sink. As the arc connecting the nodes to

the dummy node has weight zero, the starting time of the batch is the maximum of the

operation release time and the machine available time from the previous batch.

Proposition 1: For the batch machine scheduling problem with agreeable ri and qi and
single job (n=1), there is an optimal sequence that follows batch longest
tail order.
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Proof Agreeable ri and qi denote that the higher qi has the lower ri. Suppose that there

exists the optimal sequence that do not follow the batch-longest tail order. Operation i is

sequenced in batch b and operation i' is sequence in batch b'. Batch b' follows batch b,

and q,. q, and r,' r,. We will show that interchanging i and i' can decrease the job

completion time which will reduce the objective value.

First, let us consider the case where ri' = r.

where,

i') 	 is the job completion time when operation i precede i' ,

q	 is the tail of operation i in batch b,

t*	 is the starting time of operation i in the sequence that i —*1.

Because qi, _> qi and	 where r = 1,...,i —1,i + 1,...,n b and i =	 i'-1,i'+1

t * + (b' =b)p + max(q	 , qi, , , bnb). 	t * (b' —b)p + max(qb1 	 ) and
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+ (b' -b) p + max(q	 ,q	 ,t7 qbnb) 	 p + max(qb1 , q	 , q

Therefore, C(i--> i') C(i'—> i).

Now, consider the case that ri increases as qi decreases. The starting time of batch b will

not increase after the interchange as 	 ri. Therefore, C(i--> i') C(i'— i).

6.3.1 BEDD-O (Batch Earliest Operation Due Date Rule)

When ri = r and n>1, the problem becomes NP-hard as it can be reduced to a single

machine scheduling problem which is proved to be NP-hard. Therefore, we modify the

EDD-O rule for a new environment. The major difference is that, instead of one

operation, z operations with the lowest indices will be selected before updating the

machine release time on each step. BEDD-O always generates a full-batch sequence. The

machine will start the process when there are z tasks waiting.

Figure 6-4: Critical paths on a sequenced graph
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Proposition 2: The batch starting time can be reduced only by moving the critical
operation to the following batch.

Proof: The starting time of the batches depends on the starting time of the first batch in

the cluster. Therefore, only the critical operations on the first batch effect the batch

starting time. Figure 6-5 is a partial graph of the first batch in Figure 6-4. Operation 3 is

the critical operation of the batch. The completion time of job 1 can only be reduced if

operation 3 is moved from that batch.

Figure 6-5: Starting time of the batch depends on operation 3

Figure 6-6: Reducing the batch starting time by move operation 3 to the next batch
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Definition: Batch sequence is the sequence on the batch machine that includes a task
assignment. For example, S = {1,2,3},{4,5,6} } represents the sequence on
the machine that has two batches. Task 1, 2, and 3 are assigned to the frrst
batch while task 4, 5, and 6 are assigned to the second batch.

Definition: Linear sequence is a sequence representation where all elements in the
sequences are lined up into a string. If operation i precedes operation i' in
the linear sequence, i is processes before or at the same time as i'. For
example, operation 6 cannot start before operation 5 in the linear sequence:
{1, 2, 3, 4, 5, 6}. In other words, operation 6 can only be in the same batch
as operation 5 otherwise it has to be in a later batch.

Converting Batch Sequence to Linear Sequence

The batch sequence can be converted to a linear sequence by removing the batch

assignment. First, the tasks in each batch should be sorted by their release time. Then, the

batch assignment will be released. For example, S = {{1,2,3},{4,5,6} } and ri' ri for i <

i' will be transformed to {1,2,3,4,5,6}.

6.3.2 Batching Heuristic (Dynamic Programming)

This heuristic attempts to assign operations in the line sequence to the batch in a way

such that the objective value Σ wk (71 + exp{—E k }) is minimal. It is based on dynamic
k--

programming. On the single job case (n=1), this heuristic will fthnd the optimal solution.

When there are more than one job, it cannot guarantee the optimality.

Let c' (i) denotes the completion time of job j when operations 1 to i have been

sequenced. cb (i) denotes the completion time of job j when operations 1 to i have been

sequenced and operation i is assigned to the batch of size b. f(i) represents the minimum
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completion time for operations 1,	 i according to the line sequence S. fb(i) denotes f(i)

with the restriction that operation i must be assigned to the batch of size b.

Then,
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ei,„(i)	 if i — z(i) <	 i,

= e'. (i — z(i)) 	 otherwise,

e ,„' (0) = c' (0) .

Please note that if there is no precedence relationship between operation i and i', set p —

-BigM. In the same way, let e ) = -BigM if job j does not depend on operation 1.

	Example 6-1. Consider an instance of 11/7, p1' B| Σ(w(j)  T ( j ) —	 E ( ' ) ) with these data:
.1= 1

Table 6-1: Job information for Example 6-1

Table 6-2: Operation information for Example 6-1

Table 6-3: Dependent table (p) for Example 6-1
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1 3 9

In summary, the sequence from batching heuristic is { {1},{2,3},{4,5} which provides

the objective value of -0.13.

6.4 Single Family

We have discussed a couple of techniques for batch machine scheduling. In this section,

we combine these techniques with the single machine scheduling heuristic discussed in

Chapter 4. The problem concerns only single family tasks with pj=p and sii' = 0.

BEDD-O + Batching + Single Machine Scheduling (EBS)

To improve the sequence generated by BEDD-O, we transform the sequence to a linear

sequence. Then, apply batching heuristic to the sequence. The batching heuristic will

generate the best possible batching strategy. The idea behind it is that the sequence

generated by BEDD-O is a full-batch. Imagine if a batch need to wait for a very long time

for the next operation to start the processing. It might be better off to start the processing

without that delayed operation.

After batches are assigned, we can look at them as new operations. The release

time and the process time of these operations are the maximum release time and

maximum processing time of operations in that batch. The sequencing technique

developed for single machine scheduling can be applied.

According to the Proposition 2, the current sequence can be improved further by

re-batching. The sequence will be transformed to a linear sequence and apply batching

heuristic.
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6.5 Multiple Families with Dependent Setup and Different Processing Time

Similar to the single family case, there are m tasks to be processed on the batch machine.

However, these tasks are separated into f families. The tasks of different families cannot

be processed on the same batch. Furthermore, setup is required when the machine

switches from processing task of one family to another, and the processing time of the

tasks may vary. The batch processing time, pb, is equal to max(p ) when operation i is in

batch b.

Multiple Families Batching (MFB)

We extend the EBS heuristic for single family batch machine scheduling problem to the

multiple family batch machine scheduling problem· The priority rule needs a

modification to prevent operation from different families to be processed together. The

priority rule determined the operation that has the highest (or lowest) index. Then it

search for operations of the same family that will be put in the same batch.

There are three priority rules that provide good sequences = FCFS, EDD-O and

modified EDD-O. Therefore, we select the best sequence from these rule as the starting

sequence. Then, we apply Batching heuristic developed in the previous section to the

sequence. There is a minor modification on the Batching heuristic to prevent operations

from different families to be in the same batch. Then, CPI technique is applied to result.

The processing to the batch need to be determined due to the fact that pi may not equal to

pi-
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6.6 Numerical Examples

We create 50 batch machine scheduling problems with tails from decomposing the

assembly shop problems. Table 6-4 to Table 6-7 compare the results of the heuristic with

Full-Batch EDD which is used for minimizing maximum lateness by Lee et al.(1992),

Full-Batch SPT, Full-Batch LPT and Full-Batch FCFS. We generate test problems by

decomposing the assembly shop problems. The first 25 problems have 36 tasks while the

rest have 39 tasks. EBS performs particularly well when jobs have tight due dates.

Then, we apply the similar technique to the problem with multiple families.

Modified BEDD-O with batching and CPI provide good results. Most of the time, they

provide better sequences than full-batch priority rules. The test problems are quite similar

to the ones used previously. There are 36 operations divided into two families. The setup

time ranges from 0 to 3 and the processing time range from 5 to 15.

The batching step does not provide very impressive improvement as in single

family case. The objective value reduction of the batching and CPI over the best sequence

generated by priority rules is around 2%.



Table 6-4: Objective values (single family BMSPT)

SPT LPT FCFS EDD-O EBS
1 145.6 145.6 145·6 145·6 121.6
2 129.6 129.6 96.5 105.6 74.5
3 540.0 540.0 520.0 520.0 488.0
4 257.9 257.9 253.9 257.9 223.9
5 579.0 579.0 548·0 558.0 533.0
6 909.9 909.9 723.9 723.9 723·9
7 1197.8 1197.8 1197.8 1197.8 1189.8
8 1778.9 1778.9 1769.9 1763·9 1763.9
9 1672·9 1672.9 1672.8 1672.8 1672.8

10 1656.9 1656.9 1587·9 1647.9 1627.9
11 431.8 431.8 431.8 431·8 431.8
12 1099.9 1099.9 1099.9 1099.9 1095.9
13 1527.0 1527.0 1527.0 1597.0 1524·0
14 1744.9 1744.9 1744.9 1744.9 1580.9
15 1258.0 1258.0 1265.0 1258.0 1225.0
16 466.9 466.9 466·9 476.9 454.9
17 794.9 794.9 601.8 601.8 587.8
18 1042.8 1042.8 1042.8 1084.8 1000.8
19 1183.0 1183.0 1183.0 1183.0 1183.0
20 1139.9 1139·9 1139.9 1087.9 1068.9
21 11.7 11.7 -0·4 -0.4 -0.4
22 228.8 228.8 228.7 228.7 228.7
23 596.9 596.9 596.9 561.9 551.9
24 612.0 612.0 472.9 472.9 448.9
25 1550·9 1550.9 1517·9 1555·9 1451.9
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Table 6 -5: Objective values (single family BMSPT) (cont.)

SPT LPT FCFS EDD-O EBS
26 932.8 932·8 206.7 336.8 282.8
27 1454.9 1454.9 1318.8 1370.9 1313·9
28 478.8 478.8 151.6 227·6 227.6
29 2052.0 2052.0 1784.0 1852.0 1830.0
30 1503.0 1503.0 1083.9 1187.9 1187.9
31 284.4 284.4 139.2 139.2 139.2
32 544.6 544.6 462.4 449.6 447.6
33 515·6 515·6 412.5 412.4 412.4
34 1051.9 1051.9 1030.8 998.8 977.8
35 1112.9 1112.9 280.6 258.7 258·7
36 209.6 209.6 63.6 63.6 63.6
37 478.7 478.7 272.6 226.7 223.7
38 142.6 142.6 13.5 13.5 13.4
39 1234.0 1234.0 1320.0 1121.0 1041.0
40 914·0 914.0 823.0 898.0 898.0
41 273.5 273.5 130·1 119.5 119.5
42 607.6 607.6 607.5 607.5 573.5
43 188.4 188.4 -1·1 -1.1 -1·1
44 884.8 884.8 869.8 864.8 854.8
45 725.8 725.8 725·8 725.8 658.8
46 192.7 192.7 77.5 77·5 77·5
47 1159.0 1159.0 1129.8 1129.9 1097.0
48 261.9 261·9 150.6 150.7 150.7
49 1741.0 1741.0 1721.0 1741.0 1723.0
50 954.9 954.9 915.9 922.9 905.9
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Table 6-6: Variation from the minimum (single family BMSPT)

SPT LPT FCFS EDD-O EBS
1 19.79% 19.79% 19.74% 19.78% 0.00%
2 74.00% 74.00% 29.60% 41.70% 0.00%
3 10.66% 10.66% 6.56% 6.56% 0.00%
4 15.19% 15.19% 13.40% 15.19% 0.00%
5 8.63% 8·63% 2.81% 4.69% 0.00%
6 25.69% 25.69% 0.00% 0.00% 0.00%
7 0.67% 0.67% 0·67% 0.67% 0.00%
8 0.85% 0.85% 0.34% 0.00% 0.00%
9 0.00% 0.00% 0.00% 0.00% 0.00%

10 4.35% 4.35% 0.00% 3.78% 2.52%
11 0.00% 0.00% 0.00% 0.00% 0.00%
12 0.36% 0.36% 0·36% 0.36% 0.00%
13 0.20% 0.20% 0.20% 4.79% 0·00%
14 10·37% 10.37% 10.37% 10.37% 0.00%
15 2.69% 2·69% 3.27% 2.69% 0.00%
16 2.64% 2.64% 2.63% 4.83% 0.00%
17 35.23% 35.23% 2.38% 2.38% 0.00%
18 4.20% 4.20% 4.20% 8.39% 0.00%
19 0.00% 0.00% 0.00% 0.00% 0.00%
20 6.64% 6.64% 6.64% 1.78% 0.00%
21 na. na. na. na. na.
22 0.07% 0.07% 0.01% 0.00% 0.00%
23 8.15% 8.15% 8.15% 1.81% 0.00%
24 36.32% 36.32% 5.35% 5.35% 0.00%
25 6.82% 6.82% 4.55% 7.16% 0.00%
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Table 6-7: Variation from the minimum (single family BMSPT) (cont·)

SPT LPT FCFS EDD-O EBS
26 351.33% 351.33% 0.00% 62.96% 36.81%
27 10·73% 10.73% 0.37% 4.33% 0.00%
28 215.72% 215.72% 0.00% 50.11% 50·11%
29 15.02% 15.02% 0.00% 3.81% 2·58%
30 38.66% 38.66% 0.00% 9.59% 9·59%
31 104.37% 104·37% 0.03% 0.02% 0.00%
32 21.67% 21.67% 3.31% 0.46% 0.00%
33 25·00% 25.00% 0·01% 0·00% 0.00%
34 7.57% 7.57% 5.41% 2.15% 0.00%
35 330.16% 330.16% 8.47% 0.00% 0.00%
36 229·69% 229.69% 0.00% 0.01% 0.01%
37 114.00% 114·00% 21.88% 1.33% 0·00%
38 961.70% 961.70% 0.35% 0·30% 0.00%
39 18.54% 18.54% 26.80% 7.68% 0.00%
40 11.06% 11.06% 0.00% 9.11% 9.11%
41 128.93% 128.93% 8.93% 0.00% 0.00%
42 5.94% 5.94% 5·92% 5.92% 0·00%
43 na. na. na. na. na.
44 3.51% 3.51% 1.76% 1.17% 0.00%
45 10.17% 10.17% 10.17% 10.17% 0.00%
46 148.77% 148.77% 0.09% 0.00% 0.00%
47 5.65% 5.65% 3·00% 3.00% 0.00%
48 73.83% 73.83% 0.00% 0.04% 0.04%
49 1.16% 1.16% 0.00% 1·16% 0.12%
50 5.41% 5.41% 1·10% 1.88% 0.00%

Avg 64.84% 64·84% 4·56% 6.62% 2·31%
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Table 6-8: Objective value (multiple families BMSPT)

Problem ACT
(1,1)

SPT LPT FCFS EDD-O	 mod·
EDD-O

(A-1) (A-2) (A-3) reduc.

1 7542 1181 1600 736 1117 979 736 736 736 0%
2 6539 5418 2598 2412 3076 2284 2284 2284 2284 0%

3 6647 1341 1249 775 773 1109 773 773 773 0%

4 9422 4369 4063 3933 3925 3484 3484 3484 3484 0%
5 7470 2845 2492 2496 2852 2232 2232 2232 2232 0%

6 4337 984 1921 745 526 616 526 526 526 0%

7 5520 2039 3906 1907 2065 1610 1610 1610 1610 0%

8 3946 1150 1645 1356 839 1322 839 839 839 0%

9 6490 4052 2603 2178 1868 1548 1548 1548 1548 0%

10 5375 3375 1921 1755 1435 1591 1435 1435 1435 0%

11 6559 1968 702 1353 1305 249 249 249 249 0%

12 9181 2243 2387 2546 2467 1115 1115 985 985 12%

13 6965 2395 582 283 1206 147 147 123 123 16%

14 10832 4219 4668 4831 4670 3069 3069 3069 2980 3%

15 6985 5238 2565 3511 3479 2432 2432 2342 2293 6%

16 2203 941 487 290 508 530 290 290 290 0%

17 6225 1983 1592 1144 1055 806 806 806 806 0%©

18 2846 1358 551 320 538 480 320 320 320 0%

19 6161 2276 2817 2267 2177 2032 2032 1856 1856 9%

20 5213 1986 1992 1885 1988 1564 1564 1564 1564 0%

21 4155 1041 612 363 603 816 363 363 363 0%

22 7262 3208 3161 3080 2466 2353 2353 2353 2353 0%

23 4769 1248 1312 1451 611 914 611 611 611 0%

24 7376 3764 3237 3632 3180 2534 2534 2534 2534 0%

25 7640 2365 1682 2266 1806 1693 1693 1595 1595 5%

Note: (A-1) : Best sequence generated by FCFS, EDD-O and modified EDD-O

(A-2) : (A-1) and Batching

(A-3) : (A-2) and CPI
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CHAPTER 7

ASSEMBLY SHOP SCHEDULING BASED ON SHIFTING BOTTLENECK

In this chapter, we describe the method to sequence machines in the assembly shop. The

objective that we are focusing on is to minimize the weighted tardiness. First, we explain

the techniques to modify standard priority rules so that they can be used for the assembly

shop scheduling problems. These rules are used as a comparison basis. Then, we discuss

the heuristic for assembly shop scheduling with single machine workstations, which is

based on shifting bottleneck concept (a decomposition technique). It is extended to

consider the sequence dependent setup and multiple types of workstations. The results

from chapters 3, 4, 5 and 6 are required in order to develop the heuristic.

7.1 Priority Rules

There are several priority rules that can be applied to the problem with little

modifrcations. Many standard rules including Earliness Due Date (EDD), Shortest

Processing Time (SPT), Longest Processing Time (LPT) are developed for standard

single machine scheduling problems. These rules sort the jobs according to their indexing

functions. The job with the highest index is selected as the next job to be processed. The

steps are done iteratively until all jobs are sequenced.

For the assembly shop, jobs need to be processed by a series of machines. Each

processing, called operation, can be considered as the job in the prior sense. The

operations are assigned to the machines. When applying a priority rule, it might generate
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an infeasible solution if we do not consider the ongoing partial sequence. The assembly

operation cannot start until all its prior operations have been completed. In order to apply

the standard priority rules to the assembly shop problem, the following issues need to be

considered:

(i) operation dependency

(ii) machine assignment

(iii) batch assignment.

7.1.1 Operation Dependency

A job in the assembly shop needs to visit various workstations according to its predefined

route. The order of the visit cannot be altered. For example, a steal tube need to be cut

before bent. It cannot be done backward. This creates the precedent relationship between

operations. We add an investigation step to check for this dependency to prevent the

sequence dead- lock. The dead-lock occurs when there is a cycle in the selection. For

example, sequencing operation 1 after operation 4 on machine A and operation 3 after

operation 2 on machine B will create a lock up. Operations 1 to 4 can never be started

(Figure 7-1).

Figure 7-1: Sequence lock-up
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The Method

The method is based on the directed graph, D = {NC}. First, remove conjunctive arcs

(00 for all/ EN from D. Node j without arc (ij) for all i EN is defined as active node.

Let A be a set of active nodes. We apply the priority rule on set A. Index all the nodes in

A and select node/ that Index(j) Index(k) for all k EA. Sequence/ and remove (j,k) for

all kEN. Let A = A + {i; |(k,i)|= 0 for all kEN } - V; = 0 for all kEN }. Repeat the

steps until all nodes are sequenced. This method will guarantee that lock-up will never

occur.

7.1.2 Machine Assignment

For the parallel machine workstation, the operation can be processed by one of the

machines in the workstation. Let Mi be the set of machines that is able to process

operation i. When 1Mil > 1, the standard priority rules cannot judge which machine it

should assign the operation to. We attach a simple machine assignment rule to the priority

rules. It assigns the operation to the machine that is able to complete the task earliest. If

all machines have the same speed, the operation is assigned to the first available machine.

The operation is assigned to the fastest machine if all the machines are available.

7.1.3 Batch Assignment

The next deficiency of the standard priority rules is the lack of batching rule. When the

machine can process multiple jobs in a single run, the standard priority rules cannot

decide whether the machine should wait for the next task or should start the processing

immediately. We apply a simple rule for the batch assignment. It is referred as full-batch
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assignment. The batch will be started when it is full or no more job of the same family

arrives.

7.2 Assembly Shop with Single Machine Workstations

We have discussed the modifications of the priority rules that extend their capabilities to

assembly shop scheduling. These priority rules are one pass heuristics. Most of them

provides a reasonably good sequence in a flash. However, there exists needs for better

heuristics. Shifting bottleneck (SB) heuristic based on machine decomposition concept

has proved to provide good solutions for classical job-shop scheduling problems. We

extend this concept to our problem. The objective is to minimize the weighted tardiness

which is different from the original SB by Adams et al. (1988).

7.2.1 Disjunctive Graph

The disjunctive graph G(N,A,E) can be developed from the problem. N is a set of nodes

that corresponding to the set of operations. The delay precedent constraints in the job

routes are represented by arcs in set A. E is a disjunctive arc set. The disjunctive arc pairs

• connect operations that are processed on the same workstation. The arcs lengths, both

conjunctive and disjunctive arcs, are equal to the processing time of the operations that

they are originated from. A source node, node 0, and n sink nodes are added to N.

Conjunctive arcs connecting the source node to the first operations in job, j, with length

r(j) are added to represent the job release time. The arc linking the last operation, i, in job

j to sink node (j) with length pi are appended to A. Assembly operations are represented

by fork type links. See section 2.3 for further details.
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7.2.2 Workstation Objective

The assembly shop scheduling problem can be decomposed to sub-problems using the

technique discussed in Section 3.2. We may use the objective of the main problem,

minimize the weighted tardiness, on the sub-problems. However, the deficiency of this

objective occurs when there are several sequences that provide the same objective value.

In other words, there are several sequences for the sub-problem that complete all the jobs

before their due dates. The weighted tardiness of these sequences will be zero. It is likely

to occur when the shop has light to medium load. In this case, we will not be able to

judge which sequence should be selected. The selection is done randomly.

We enhance the heuristic by modifying the objective of the sub-problems. The

new objective will have two goals. The first goal is to minimize the weighted tardiness.

The next goal is to maximize the weighted earliness. This problem can be formulated as a

goal programming. The objective can be written as lexmin u = min w(j)T(j)

max w(j)E(j)  ) where w(j) is the priority of job j, T(j) is the job tardiness;

T (j) = max(C (j ) — d(j),0), E ( j ) is the job earliness; Et' ) = max(d ( j ) — C",0). First, we

'consider the first goal, the weighted tardiness. If there is a number of sequences that can

complete the jobs before their due dates, we select the sequence that gives the highest

weighted earliness. Otherwise, select the sequence that provides the minimum weighted

tardiness. The method breaks the tight by selecting the sequence that provides the highest

slacks.
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This goal programming can be replaced by a new single objective,

min Σ(w(j)  T(j) — h(j) E(j)); where h(j) is the earliness penalty of job j. When

W ( j ) » h ( j ) ,, this objective would be similar to minimizing the weighted tardiness with a

special property. It will maximize the weighted earliness when no job is tardy. Due to the

fact that the earliness penalty of the job is the reverse of the tardiness weight (because of

the minus sign), the job with highest tardiness weight should have the lowest earliness

penalty. Therefore, h(j) may be assigned with weight 
c 

1  where c is separating0) • w

parameter. The separating parameter, c, provides the gap between the weighted tardiness

and the weighted earliness. The weighted earliness will be at least c times below the

weighted tardiness. When c is high, the weighted tardiness will dominate the weighted

earliness. The objective will be min E w ( ' ) T (' ) when h ( >> =0 or c is infinite. In other

words, minimizing weighted tardiness is a subset of this objective. Please note that to

avoid divided by zero error, the job (tardiness) weights should be set positive and greater

than zero.

7.2.3 Problem Decomposition

SB is based on the intuition that highly utilized machine should be sequenced first. The

less utilized machines have longer slacks. Therefore, there is higher chance to find an

available time to process an operation on those machines. The heuristic is done

iteratively. First, find the most bottleneck machine among the unscheduled machines.
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Then, determine the sequence of that machine and fix the selection on the directed graph.

The steps are repeated until all the machines are sequenced.

Base on the disjunctive graph, G, we decompose the problem into sub-problems

according to the machine (clique). The method has been proposed in section 3.3. The

nodes that are not related to the machine are removed. The final graph contains the source

node, the operations that will be processed on the machine, the sinks, and links. The

objective of the sub-problem is to find the sequence that minimize the weighted tardiness-

earliness. This problem has been discussed in details in chapter 4.

7.2.4 Bottleneck Determination

We define the bottleneck machine as a machine that provides the highest objective value

on the decomposed problem. It is the machine that has high potential to delay high

priority tasks. Solving the decomposed problem to the optimal or near optimal may take a

considerable amount of time; therefore, we apply a priority rule, TER, to the problem.

This rule provides a rough estimation which is good enough for the heuristic.

7.2.5 Sequencing the Bottleneck

After the bottleneck machine is identified, we determine the sequence of that machine.

We apply the result from chapter 4 on this problem. The critical path improvement

method (CPI) is applied to the sequence determined by TER.
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7.2.6 Updating the Graph

After the sequence of the bottleneck is determined, the selection according to the

sequence is added to the graph (Figure 7-2). We use the modified selection method in the

heuristic. As some of the arcs in the selection are redundant, they can be discarded. For

example, arc (4,6),(4,2), and (10,2) in Figure 7-2 are redundant. They can be discarded.

The modified selection can be replaced by the one in Figure 7-3.

Figure 7-2: Adding a selection on machine 2
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Figure 7-3: The modified selection

The arc (i,j) in the selection has length pi. If the machine available time is

considered, arc (0,1) where 1 is the first operation in the sequence will be added with

length rm .

7.2.7 Local Re-Optimization

This step is added to improve the sequences of the machines in S. It can be perceived as a

local search method. Instead of randomly swapping the operations in the sequence, we

smartly determine a better sequence on the previously sequenced machine if it exists.

We remove m (=4) most recent sequences of the machines from the graph one

after another. The new sub-problem is reconstructed after each removal. This problem is

different from the one previously solved because some new links have been added in the

previous steps. We solve this problem by using the similar technique in determining the
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sequence for the bottleneck machine. We hope that re-solving the problem will generate a

better sequence. The sequence is added to the graph before removing the next sequence.

7.2.8 Global Optimization

This step is the last step of the heuristic. It is similar to local re-optimization. The

difference is that this step is done extensively. We remove all the sequences of the

machines and replace them with better sequences one after another. The step guides the

search to a new local minimum.

Example 7-1 We use the example in chapter 3 to demonstrate the heuristic. We assume

that all workstations are single machine workstations.

Iteration 1 

Unscheduled machines: 1, 2, 3

Scheduled machines: 0

The problem is decomposed to three sub-problems (# of unscheduled machines).

- By applying TER to the sub-problems, we obtain three sequences. The sequence on

machine 1 {Ml: 2, 6, 8, 1, 11, 13} has objective value = 24 while {M2: 7, 4, 10, 12, 15}

and {M3: 3, 9, 5, 14} have the values of -0.07 and 8 respectively. Therefore, machine 1 is

concerned as the bottleneck machine.

Bottleneck machine: 1 (determined by TER) We, then, apply CPI to the sequence. The

result is {Ml: 6, 8, 2, 1, 11, 13} which has objective value of 20.
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Iteration 2 

Unscheduled machines: 2, 3

Scheduled machines: 1

Similar to the previous iteration, the problem is decomposed to two sub-problems.

The bottleneck machine is the machine that its sequence has the highest objective value

as determined by TER.

Bottleneck machine: 3 (determined by TER) The objective value is 22 and the sequence

is {M3: 9, 3, 5, 14}. After applying CPI, there is no improvement.

Local re-optimization step is performed by removing the sequence on machine 1,

the previously scheduled machine. The new sub-problem on machine 1 is formulated. It

is solved by TER+CPI. The result is appended back. However, we do not find the

improvement.

Sequence summary: {M1: 6, 8, 2, 1, 11, 13; M3: 9, 3, 5, 14}

Iteration 3 

Unscheduled machines: 2

Scheduled machines: 1, 3

Bottleneck machine: 2 (determined by TER) The objective value is 22 and the sequence

is {M2: 7, 4, 10, 12, 15}. As the objective value does not increase from the previous step,

we know that there is no better sequence. Therefore CPI is skipped.

Local re-optimization step is performed by removing the sequence on machine 3

and 1 respectively. The new sub-problems are formulated after each removal. The results
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from solving the sub-problems are appended back. However, we do not find the

improvement.

Sequence summary: {M2: 7, 4, 10, 12, 15; M3: 9, 3, 5, 14; Ml: 6, 8, 2, 1, 11, 13}

Final Re-Optimization

As the number of workstations is less than four, the final re-optimization is similar to the

local re-optimization. We do not find further improvements.

Sequence summary: {M2: 7, 4, 10, 12, 15; M3: 9, 3, 5, 14; MI: 6, 8, 2, 1, 11, 13}

7.3 Assembly Shop with Single Machine Workstations
and Dependent Setup Time

In a more complex problem where dependent setup time is considered, the structure of

SB is generally the same as the previous one. There are two modifications on the

heuristic. The first one is on the heuristic used to solve the sub-problems. The other is the

graph updating step.

7.3.1 Sequencing the Bottleneck

Because the structure of the problem is altered, the sequencing method used in this step

needs an improvement. The steps can be separated into two phases. In the first phase, we

applied TER and CPI to generate a sequence which is similar to SB without dependent

setup time. It is followed by 70 random search steps explained in chapter 4.



1 5 9

7.3.2 Updating the Graph

When adding the selection to the graph, the length of the arcs cannot be set to the

operation processing time as they used to be. The arc (j,k) in the selection should have

length equal to sii + pj where i is the prior operation to j in the sequence. This is equal to

the time required for the machine to complete the task.

7.4 Assembly Shop with Multiple Types of Workstations

The structure of the heuristic for solving assembly shop scheduling problem with

multiple types of workstations is similar to the ones with single machine workstations.

The major difference is on solving the sub-problems. Although the objective for the sub-

problems and job information are the same, the machine structure is difference. Jobs can

be processed by one of the available machines in the parallel machine workstations. The

batch machine can process a number of operations in a single run.

7.4.1 Problem Decomposition

The assembly shop will be decomposed to sub-problems. The sub-problems may be the

single machine scheduling problem with tails, parallel scheduling problem with tails, or

batch machine scheduling problem with tails. We utilize the results from Chapters 4, 5,

and 6 on solving the sub-problems. We summarize the techniques used to solve each sub-

problem when setup time is not concerned in the below.

(i) Single machine workstation: TER + CPI
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First, the sequence is determined by TER, a priority rule. It provides a good

starting point for CPI. By analyzing the critical paths on the scheduling graph, we

can improve the sequence by moving some operations.

(ii) Parallel machine workstation: Beam search with beam width 3

Beam search is a good sequencing technique for parallel machine scheduling

problems. Here, we apply PEDD-O as the evaluating function.

(iii) Batch machine workstation: BEDD-O + Batching + CPI

First, the sequence is generated by BEDD-O. A full batch sequence is generated.

This sequence will be improved by Batching heuristic which will optimize the

batch sizes. After the appropriate batch sizes are determined, each batch is

perceived as a dummy operation. CPI will be applied to improve the sequence.

7.4.2 Bottleneck Determination

To improve the computational time, we use priority rules and a simple heuristic to

approximate the indices on determining the bottleneck workstation. Because we have

various types of workstations, different techniques will be used. The following list

provide a summary of the techniques.

(i) Single machine workstation : TER

(ii) Parallel machine workstation : PEDD-O

(iii) Batch machine workstation : BEDD-O + Batching
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7.4.3 Updating the Graph

After the sub-problem is solved, the sequence will be added to the disjunctive graph. The

modified disjunctive graph discussed in Section 2.6.2 is used. The followings are the

techniques to add the sequences for parallel machine workstations and batch machine

workstations to the graph.

(i) n - Parallel machine workstation: n selections will be added to the clique

associating with the workstation.

(ii) Batch machine workstation: Dummy nodes are added to represent the batch

starting times and processing times. There are arcs linking the operations, say i, in the

same batch to a dummy node and arcs linking this dummy node to the operations those

have delay precedent constraints with operation i.

Example 7-2 We use the example in chapter 3 to demonstrate the heuristic. In the

problem, there are three jobs (15 operations) to be processed on three workstations. The

first workstation is "Cutting" that has two identical machines working in parallel. The

second workstation is "Pressing" which has a single batch machine. This press machine

can process up to two jobs in a single run. The last workstation is the assembly station. It

is considered as a single machine workstation.

Iteration 1 

Unscheduled workstation: 1, 2, 3

Scheduled workstations: 0
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The problem is decomposed to three sub-problems (# of unscheduled

workstations). By applying TER to single machine workstation, PEDD-O to parallel

machine workstation and BEDD-O + Batching to batch machine workstation, we obtain

three sequences. The sequence on workstation I {M 1 : 2, 1, 11; M4: 6, 8, 13} has

objective value = 1.98 while the sequence on workstation 2 and 3 are {M2: 7, 0, 4, 0, 12,

0, 10, 0, 15} and {M3: 3, 9, 5, 14} having the objective values of -0.11 and 8

respectively. Therefore, workstation 3 is considered as the bottleneck workstation.

Bottleneck workstation: 3 (determined by TER) 	 We applied CPI to the sequence. The

result is {M3: 9, 14, 3, 5} which has objective value of 7.92.

Iteration 2

Unscheduled workstations: 1, 2

Scheduled workstations: 3

Similar to the previous iteration, the problem is decomposed to two sub-problems.

The bottleneck machine is the machine that its sequence determined by PEDD-O (parallel

machines workstation) or BEDD-O+Batching (batch machine workstation) has the

highest objective value.

Bottleneck workstation: 1 (determined by PEDD-O)	 The objective value is 12.96

and the sequence is (1\41: 2, 11, 1; M4: 6, 8, 13). After applying Beam search, the

objective value is reduced to 9.94, and the new sequence is {MI: 6, 13, 1; M4: 8, II, 2}.

Local re-optimization step is performed by removing the sequence on workstation

3, the previously scheduled workstation. The new sub-problem on machine 1 is
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formulated. It is solved by TER + CPI. The result is appended back. However, we do not

find the improvement.

Local reopt! Before obj = 9.94

Sequence summary: {MI : 6, 13, 1; M4: 8, 11, 2), {M3: 9, 14, 3, 5)

Iteration 3 

Unscheduled workstations: 2

Scheduled workstations: 3, 1

Bottleneck workstation: 2 (determined by BEDD-O + Batching) The objective value is

9.94 and the sequence is {M2: 7, 0, 12, 4, 10, 0, 15, 01. As the objective value does not

increase from the previous step, we know that there is no better sequence. Therefore CPI

is skipped.

Local optimization step is performed by removing the sequence on workstation 1

and 3 respectively. The new sub-problems are formulated after each removal. The results

from solving the sub-problems are appended back. However, we do not find the

improvement.

Sequence summary: {Ml: 6, 13, 1; M4: 8, 11, 2), {M3: 9, 14, 3, 5}, {M2: 7, 0, 12, 4, 10,

0, 15, 0}

Final Re-Optimization

As the number of workstations is less than four, the final re-optimization is similar to the

local re-optimization. We do not find further improvements.
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Sequence summary: {M1 : 6, 13, 1; M4: 8, 11, 2}, {M3: 9, 14, 3, 5}, {M2: 7, 0, 12, 4, 10,

0, 15, 0}

7.4.4 Dependent Setup

As we assume that the sequence dependent setup time is small comparing to the

processing time, there are minor modifications on the heuristic. The steps on SB remains

unchanged. The modifications are on heuristics used in solving the decomposed

problems. However, the heuristics used to determine bottleneck workstation remain

unchanged. The modified heuristics for the sub-problems are listed below.

(i) Single machine workstation : TER --> CPI --> Local search(70)

(ii) Parallel machine workstation : Beam Search with beam width 3

(iii) Batch machine workstation : Three batch priority rules --> Batching --> CPI

7.5 Numerical Examples

We test a number of priority rules with the proposing heuristic. Each rule is briefly

explained below.

SPT-1: This rule is a modification of SPT rule (for single machine) on assembly shop.

The late arrival jobs are not allowed to be sequenced until the time has increased

to some point. There exists at least an operation that can be scheduled before these

late arrival jobs and it can complete the processing before their release time.

SPT-2: We prevent the generation of dead locks in the sequence by prohibiting non-active

operations to be selected as the next operation to scheduled. The active operation

is the operation that does not have active precedent constraint (no precedent
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constraint). Among the active operations, the one with shortest processing time is

selected

LPT: Similar to SPT-2, this rule select the active operation that has the longest

processing time.

EDD-O: The rule determines local due date for each operation by backward assignment.

It select the operation with earliest due date for the next processing.

Modified EDD-O: Similar to SPT-1, modified EDD-O do not allow late arrival jobs to be

sequenced until the time has increased to some point. The operations that are able

to be sequenced will be selected using operation due date information.

EDD-J: This rule selects the operation that belongs to the job with minimum due date to

process next.

FCFS: This rule assigns the processing sequence according to the time the job arrives at

the workstation.

ATC: The Apparent Tardiness Cost rule selects the active operation according to an

max(dj — pj —
index. The index function is defined as 1 j (t) =	 exp — 	

p1	 kp

where t is the time at which the machine became free k is the scaling parameter

and is the average processing times of the remaining jobs.

SB w/o re-opt: This version of Shifting bottleneck does not include the local and global

re-optimizations.

SB /w re-opt: It is the regular Shifting bottleneck for weighted tardiness-earliness.
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We test the heuristic on Pentium 200 MHz PC rimming Microsoft Windows. We

did not spent efforts on optimizing the program. Most of the codes are designed for

general purpose scheduling heuristic development. The computation time can be reduced

further by improving the codes. Forty tested problems are generated. The problems are

separated into 2 groups — light load and high load. For the light load problems, the

processing times of the operations are randomly assigned between 3 to 10. The job

weights are between 1 to 5. The job due dates are assigned at 1.3 to 1.6 times the required

processing times. For the high load problems, the processing times are between 5 to 15.

The job weights are between 1 to 5. The due dates are assigned at 1.3 to 1.4 times the

required processing times. The job release times are between 0 to 170 for both types of

problems. We vary the problem sizes from 5 jobs with 10 operations each on 5 machines

to 10 jobs with 15 operations each on 10 machines. The average number of assembly

operations per job with 10 operations is 2.

Table 7-1 and Table 7-2 show the results for assembly shop with single machine

workstations. The improvement of SB /w re-optimizations is compared with the best

sequence generated by eight priority rules. SB provides approximately 36% improvement

(objective reduction). However, there are some cases that SB generates poor sequences.

By extending the global optimization step, better solution is expected. It is a trade-off

between the quality of solution and computation time.

Table 7-3 shows the results when sequence dependent setup is considered. The

setup time ranges from 0 to 15. We compare the heuristic with some standard priority

rules. It is shown that SB can outperform priority rules in most cases. The average

improvement over the minimum objective found is 19%. The computation time for the 10
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jobs with 15 operations each on 10 machines is less than 200 seconds on Pentium 200

MHz.

Then, we modified the problems to include multiple types of workstations. Table

7-4 and Table 7-5 show the results for assembly type job-shop scheduling with various

types of workstations. The SB can significantly outperform all priority rules that are

tested. The similar results are noticed when sequence dependent setup is considered.

Table 7-6 shows the numerical test results.



Table 7-1: Results from 5 machines assembly shop scheduling problems

Problem
# of
oper. SPT-1 SPT-2 LPT EDD-O

modified
EDD-O EDD-J FCFS ATC(1)

SB w/o re-opt SB /w re-opt
obj. time

(see)
obj. time

(see)
improv.

5x10 228 1596 1183 36 0 394 70 1352 9 1 0 4 0%

2 5x10 137 1369 1725 211 0 157 55 1383 100 1 68 5 -
3 5x10 746 2626 1068 368 174 220 101 1807 128 2 63 4 38%

4 5x10 194 2421 2275 151 0 702 41 1847 0 1 0 6 0%
5 5x10 477 1399 2429 148 118 281 287 624 19 1 16 6 86%

6 5x10 1160 2199 3246 586 465 947 707 2076 263 2 263 11 43%
7 5x10 655 3088 4975 547 305 916 485 2706 77 2 77 7 75%

8 5x10 1004 2590 3559 753 673 1473 701 2046 419 2 411 8 39%
9 5x10 1359 4036 3733 865 647 1175 858 2470 609 3 371 8 43%
10 5x10 992 2048 2777 975 750 1581 839 1636 336 2 336 11 55%

11 10x10 2485 7985 7732 1884 1481 3063 1833 5015 630 11 592 58 60%
12 10x10 1410 7228 9316 1111 638 865 917 5251 455 12 404 58 37%
13 10x10 1407 8207 9336 344 207 693 414 5593 603 12 260 48 -26%
14 10x10 559 7756 10272 598 230 1037 345 5446 211 9 211 41 8%
15 10x10 1171 8358 8088 1262 801 1476 992 6493 535 14 511 82 36%
16 10x10 3230 9345 9232 2585 1830 3825 2033 7374 2053 15 1349 73 26%
17 10x10 3879 11005 12803 2432 1585 4798 1987 6649 1187 14 1043 91 34%
18 10x10 4426 12773 12976 2353 1814 4471 2389 8040 1913 24 1727 112 5%
19 10x10 3960 9548 10663 1537 1296 3033 1895 4815 1168 25 753 118 42%
20 10x10 3557 8295 10666 2911 2312 4223 2331 6934 1825 20 1583 67 32%

168
8



Table 7-2: Results from 10 machines assembly shop scheduling problems

Problem
# of

operatio
ns

SPT-1 SPT-2 LPT EDD-O
modified
EDD-O EDD-J FCFS ATC(1)

SB w/o re-opt SB /w re-opt
obj. time

(sec)
obj. time

(sec)
improv.

10x10 891 5639 4829 399 287 2195 429 3706 314 6 251 28 13%
2 10x10 1312 8021 5448 908 401 4072 531 4121 388 6 255 31 36%
3 10x10 439 4068 4439 325 259 1914 184 2213 46 6 46 24 75%
4 10x10 1250 5632 4520 1019 372 2882 402 3833 219 10 178 31 52%
5 10x10 485 4209 4008 517 315 2334 154 2070 161 5 144 27 6%
6 10x10 1451 4912 7887 1550 1097 3091 858 3000 477 6 307 28 64%
7 10x10 2320 6968 6246 2291 999 2974 877 3738 876 8 755 27 14%
8 10x10 2117 6663 8285 1400 1218 2293 1189 4267 683 8 604 39 49%
9 10x10 1992 6141 8620 2907 1542 4969 1553 4361 1216 11 785 47 49%
10 10x10 1773 5388 10279 2275 1332 4571 1573 4994 1203 16 1099 52 17%
11 10x15 533 6285 6835 407 331 2869 290 5022 543 12 138 39 52%
12 10x15 436 4384 4349 701 227 2246 270 3661 177 10 189 44 17%

13 10x15 570 6544 7122 416 169 2201 339 4472 245 12 95 91 44%
14 10x15 1251 8206 9188 1069 537 3206 818 5021 638 21 470 57 12%
15 10x15 776 8466 6910 707 313 2761 404 4641 320 16 63 130 80%
16 10x15 1052 9892 9653 467 213 3556 310 5081 125 41 96 222 55%
17 10x15 3195 13529 11951 3206 2167 5843 1860 10206 1939 52 1602 249 14%
18 10x15 2610 11759 12714 1334 685 6028 1008 7860 601 60 506 183 26%
19 10x15 2291 11939 14112 2884 1623 6993 1906 8913 941 43 912 74 44%
20 1 	10x15 1992 12860 11416 1951 823 5507 1116 6437 681 19 576 80 30%



Table 7-3: Test results (assembly shop with single machine workstations) — objective value

# of

machines

# of

open SPT-1 SPT-2 LPT EDD-O

modified

EDD-O EDD-J FCFS ATC(1, I)

SB w/o re-opt SB /w re-opt

obj. time (sec) obj. time (sec) improv.

5 5x10 662 1860 1334 191 74 536 154 1757 110 3 26 6 65%

5 5x10 220 1601 1963 367 25 244 96 1676 69 5 41 9 -64%

5 5x10 1012 3029 1313 493 287 317 234 2382 266 3 146 9 38%

5 5x10 338 2582 2513 372 23 857 81 1839 189 2 74 9 -222%

5 5x10 517 1483 2548 279 215 357 372 1588 40 3 39 7 82%

5 5x10 3450 8911 8305 2401 1925 3529 2356 9870 1204 16 1214 69 37%

5 5x10 2090 8185 10344 1467 1072 961 1307 6974 706 17 566 56 41%

5 5x10 1559 8804 10140 624 453 816 764 6961 543 13 333 76 26%

5 5x10 1188 8794 11237 918 619 1535 635 8689 575 22 372 62 40%

5 5x10 1777 9206 8787 1678 1149 1640 1522 8609 818 20 1080 72 6%

10 10x10 1121 6214 5120 603 761 2485 739 4718 341 9 281 35 53%

10 10x10 1598 8919 6186 1188 897 4451 1077 8730 1020 12 645 26 28%

10 10x10 628 4561 5065 699 646 2155 405 4008 198 13 224 28 45%

10 10x10 1741 6004 4991 1302 738 3334 901 6519 492 11 466 26 37%

10 10x10 601 4838 4141 765 501 2663 243 3573 268 11 283 38 -16%

10 10x15 915 6828 7524 836 529 3323 598 6033 621 36 581 77 -10%

10 10x15 412 4697 4663 969 465 2411 509 4350 279 46 155 130 62%

10 10x15 1003 7246 8149 840 516 2555 791 6870 395 48 231 193 55%

10 10x15 1560 9154 10261 1492 859 3907 1214 8218 774 82 535 72 38%

10 10x15 949 9159 7531 1233 367 3258 538 6052 442 42 200 126 46%



Table 7-4: Test results (two single m/c workstations; one 2-parallel m/c workstation; one batch machine)

Problem
# of

opera-
tions

SPT LPT EDD-O EDD-J FCFS ATC(1)
SB w/o re-opt SB w/o re-opt
obj. time

(sec.)
obj. time

(sec.)
obj

reduc.

I 5x10 174 207 198 165 174 85 8 1 8 3 91%

2 5x10 36 52 30 52 46 52 30 1 22 5 27%
3 5x10 391 191 125 96 71 173 20 5 20 15 72%
4 5x10 552 835 621 621 514 651 336 1 291 2 43%
5 5x10 45 168 45 60 160 80 5 1 5 10 89%

6' 5x10 601 497 601 601 601 393 131 5 123 18 69%
7' 5x10 758 800 824 784 648 588 270 1 228 3 61%
8' 5x10 624 695 277 397 362 596 109 0 105 16 62%
9' 5x10 454 953 870 514 369 856 70 5 18 6 95%
10' 5x10 359 387 499 349 459 297 165 6 145 16 51%
11 10x10 377 443 471 314 467 437 138 61 125 80 60%
12 10x10 1016 1264 1043 1204 1247 1197 417 84 405 99 60%
13 10x10 803 1094 1051 981 846 2050 278 68 299 235 63%
14 10x10 265 273 131 313 505 367 129 82 62 240 53%
15 10x10 779 341 585 940 413 344 46 3 46 16 87%

16' 10x10 2084 2280 1728 1659 2091 2473 1321 87 1007 110 39%
17' 10x10 3575 4159 4126 3067 3254 3569 2761 101 1814 252 41%
18 * 10x10 3806 4690 4100 3291 3971 3665 1680 87 1583 102 52%
19* 10x10 3475 4273 2990 2842 3424 2651 1530 96 921 281 65%
20'  10x10 2724 3072 2721 2576 2836 2917 1084 5 910 115 65%



Table 7-5: Test results (four single m/c workstations; two 2-parallel m/c workstations; one batch machine)

Problem
# of

opera-
tions

SPT LPT EDD EDD-J FCFS ATC(1)
SB w/o re-opt SB w/o re-opt
obj. time

(sec.)
obj. time

(sec.)
obj

reduc.

1 10x 10 361 270 273 162 233 315 134 26 57 151 65%
2 10x 10 482 633 431 425 506 1002 60 14 35 141 92%
3 10x 10 1050 945 1156 930 692 1198 408 20 224 181 68%

4 10x 10 647 714 631 441 495 887 625 29 270 130 39%
5 10 x 10 146 133 599 86 123 637 31 23 25 127 71%
6' 10x 10 1554 1746 1340 1762 1207 3036 701 39 699 122 42%
7' 10x 10 1477 1872 2116 1393 1171 2277 598 27 596 182 49%
8' 10x 10 1520 1550 1922 1081 1196 2120 927 26 748 191 31%
9' 10x 10 1678 1691 2264 1762 1833 2944 1764 25 1302 202 22%
10' 10 x10 1539 2205 3117 1247 1584 2581 519 24 483 200 61%
11 10 x 15 903 742 1004 678 575 939 302 136 231 672 60%
12 10x 15 379 445 396 328 416 402 58 92 72 716 78%
13 10 x 15 742 481 272 254 224 612 245 94 84 462 63%
14 10x 15 410 432 464 367 567 572 195 20 205 577 44%
15 10x 15 1269 1175 1716 1107 1613 1151 1176 194 726 68-/ 34%
16' 10x 15 2436 3022 2810 2187 2765 2454 2027 111 1624 894 26%
17 ° 10 x15 1112 1394 1487 1015 1149 2063 621 127 541 698 47%
18' 10x 15 1267 1797 1346 1379 1610 1426 1307 23 1041 651 18%
19' 10x 15 1536 1805 1461 1361 1322 1197 1033 21 821 744 31%
20' 10x 15 1898 2293 2242 1521 2179 1506 1341 25 1312 939 13%



Table 7-6: Test results (multiple types of workstations assembly shop with sequence dependent setup)

# of

machines

# of

operations SPT LPT EDD EDD-J FCFS ATC(1,1)

SB w/o re-opt SB /w re-opt

w/o re-opt time (sec.) /w re-opt time (sec.) reduc.
5 5 x10 274 341 301 274 283 292 135 5 107 8 61%
5 5 x 10 209 109 129 205 205 157 52 5 52 15 52%
5 5 x 10 391 284 207 134 67 165 20 2 20 8 70%
5 5 x 10 693 785 864 689 774 778 330 6 369 8 46%
5 5 x 10 213 426 264 220 259 153 53 6 53 9 65%
5 10x 10 1102 745 1041 707 710 986 433 69 314 86 56%
5 10x 10 2669 2190 3221 1811 1860 1954 961 51 863 306 52%
5 10x 10 1658 1970 2928 1656 1547 1689 993 52 798 269 48%
5 10x 10 886 1314 1377 664 686 1841 333 84 325 104 51%
5 10x 10 841 1001 941 1358 794 1133 1142 64 427 204 46%
9 10 x10 485 485 1031 410 335 1328 136 36 136 133 59%

9 10x 10 481 951 782 503 460 682 242 26 234 151 49%
9 10 x10 1157 1251 1304 1047 1091 1473 410 32 343 214 67%
9 10x 10 826 826 879 828 718 1234 560 11 568 69 21%
9 10x 10 232 352 747 216 210 1039 129 20 63 144 70%
9 10x 15 2345 1874 1147 1382 1039 1930 805 141 715 625 31%
9 10x 15 1700 1245 984 1035 1786 701 691 145 556 539 21%
9 10x 15 879 1087 630 712 828 763 472 125 362 501 43%
9 10x 15 1097 1075 891 771 888 1164 1137 53 752 650 2%
9 10x 15 1733 1544 2522 1569 1740 1911 1725 165 1048 838 32%



CHAPTER 8

ASSEMBLY TYPE JOB-SHOPS WITH OTHER OBJECTIVES

Until this moment, the only objective that we have emphasized is minimizing the

weighted tardiness. In this chapter, we will discuss the development of shifting bottleneck

heuristics for other objectives. The objectives can be categorized into two types. The first

type is the objective that is related to the job completion time. There is a small

modification on the heuristic for this type. The other is the objective that is not directly

related to the job completion time such as the number of late jobs.

8.1 Job Completion Time Related Objectives

This type of objectives includes one related to makespan, flow-time, lateness, tardiness,

and earliness related objective. This type of objectives can be modeled with the modified

disjunctive graph. The objective value can be determined directly from the graph.

Therefore, the SB concept can be applied. In the following, we discuss the methods for

sequencing the workstation when other types of objectives are concerned.

8.1.1 CPI on Other Objectives

Most of the heuristics developed in the previous chapters are based on critical path

improvement technique. This technique determines the operations that contribute to the

completion time of the jobs. Then the sequence improvement is done by moving these

operations in a way such that it will reduce the jobs completion time. Therefore, this

174
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technique can be applied to other objectives such as minimize the makespan (maximum

job completion time), minimize the weighted completion time, minimizing job lateness,

minimizing weighted lateness, etc. By modifying the objective function, CPI should be

able to adapt to the new environment. The details of CPI for some objectives are

discussed below.

Minimizing the Makespan

This objective is the most common objective. It considers the completion time of all the

jobs processed. Minimizing the makespan can be viewed as maximizing the machine

utilization as we try to pack the processing close together.

To apply CPI on this objective, only the critical path related to the job that

contributes the highest completion time will be focused. The completion time of this job

determines the objective value. The rest will be discarded. However, the branch and

bound method developed by Carlier is more suitable for this objective.

Minimizing the Maximum Job Lateness

Similar to minimizing makespan objective, single critical path is focused. The job

lateness is determined from the difference between the job completion and the job due

date. After the critical operations have been determined, we check for the moves that will

provide benefit. The objective function used in this step is max(C ( j ) — d(j )) where j =

1,...,n.
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Minimizing the Weighted Completion Time or Minimizing the Weighted Lateness

Proposition 1: The minimizing weighted completion time and minimizing the weighted
lateness objectives are equivalent.

where K is a constant

For these two objectives, we may apply CPI method by modifying the objective

function on determining benefits of moving operations.

Minimizing the Maximum Weighted Lateness

This objective is focusing on high priority jobs. These jobs are assigned with high penalty

costs. When a high weight job is delayed, it contributes high objective value. Similar to

other objectives, CPI method may be applied after modifying the objective function.

However, only the critical path that passing through the most tardy job need to be

focused.
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Limitation of CPI Method

CPI method is based on moving operations to reduce the job completion time. Therefore,

CPI cannot be applied with the objective that does not improve when the job completion

time reduces, ie. minimizing the job earliness, minimizing the number of late jobs, etc.

8.1.2 Combination of Shifting Bottleneck and Simulated Annealing

In order to accommodate general objectives, we need a heuristic that is highly flexible.

Neighborhood search technique can provide this type of flexibility. However, the

computation time of the neighborhood search seems to be rather high when considering a

large size problem. Therefore, we may apply the combination of SB and neighborhood

search technique on solving the problem. SB provides the means to decompose the large

size problem into small size ones. These small problems could be solved by SA in an

acceptable amount of time.

8.1.2.1 Simulated Annealing (SA): SA is a type of neighborhood search technique that

can be applied to various types of combinatorial optimization problems. It was proved

that this method can generate a very good solution comparable to a specially designed

heuristic. This does not consider the computation time.

8.1.2.2 Neighborhood Structure: The efficiency of the SA technique depends on the

designed of the neighborhood structure and parameters determination. In the following,

we discuss the neighborhood structure. We propose neighborhood structures for the three

types of workstation. However, we skip their performance evaluation.
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Single Machine Workstation 

The neighborhood can be generated from the current sequence by interchanging two

operations on the sequence. There are two issues that should be considered. First,

operations dependency has to be checked to ensure that the generated sequence will be

feasible. Second, the critical path should pass through one of the interchanging

operations. Swapping two operations that are not on the critical path will never improve

the objective value.

Parallel Machine Workstation 

The neighbor structure for parallel machine workstation can be based on string sequence.

First, transform the parallel machine sequences to a string sequence. Then apply the

interchanging method similar to the single machine case. Check for the precedent

constraints violation. After a new sequence is generated, transform it back to parallel

machine sequences.

Batch Machine Workstation

Similar to parallel workstation, the neighbor of the batch machine sequence can be

developed by converting the batch sequence to a string sequence. Apply the interchange

method. Then, use the batching heuristic presented in chapter 6 to assign the operations to

the batches.

8.1.2.3 The Heuristic Development Guideline: The following procedure is a guideline

to develop the SA for sequencing the workstations. The steps in SB remain the same
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except the bottleneck sequencing phase. SA method will replace the workstation

sequence heuristics.

First, generate a feasible sequence from a priority rule such as EDD-J, EDD-O,

SPT, ATC, etc. Then, generate n number of neighbors (n=30). Use the statistical analysis

to set the temperature parameter. After this initialize stage, the annealing stage can be

started. The neighbor will be generated using the provided structure depending on the

type of the workstation. If the new neighbor provide a better sequence, accept it as a new

generating point. If it does not, accept it with a probability p. Continue until no

improvement is found for the last m repetitions. Report the best sequence found.

8.2 Minimizing Weighted Number of Tardy Jobs

In job shop scheduling, minimizing number of tardy jobs is one of the important

objectives beside minimizing makespan and tardiness. This problem was well studied on

one machine problem. A well known heuristic by Moore (1968) is proved to find the

optimal solution for 1||IEUj. The 11I Σ wj.Uj is proved to be an NP-hard problem by Karp

(1972). Approximation algorithms were developed by Sahni (1976), Gens and Levner

(1981), Ibarra and Kim (1978). In the following, we proposed an extended shifting

bottleneck heuristic on weighted tardiness in chapter 7 to accommodate this objective.

The classical job shop problem is described as follows. There are n jobs to be

processed on m machines. Each job has a pre-defined release time and due date. The

machine can process one job at a time. The processing on the machine is called an

operation. The machine routing (series of operations) is fixed and known in advance. The

objective of the problem is to find the sequence of the operation of each machine that will
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minimize the number of tardy jobs. The mathematical formulation for this problem is as

is a large number,

equals 1 if job j is late or 0 if job j is on time,

is the tardiness of job j,

is the completion time of job j (starting time of the sink node),

is the due date of job j,

is the starting time of operation s,

is the processing time of operation j,

is the set of pairs of operations that have precedent relationship

(conjunctive arcs set),

is the releasing time of job j,

is the set of operations that need to be processed on machine k

(disjunctive arcs set).
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8.2.1 The Concept

The method in solving job shop scheduling with minimize number of tardy jobs is based

on the following two propositions.

Proposition 1: If no late job schedule exists, the algorithm to minimize the weighted

tardiness or maximum tardiness will provide the optimal schedule for

minimizing the number of tardy jobs.

Proof? If no late job schedule exists, the algorithm to minimize the weighted tardiness or

maximum tardiness will provide a schedule with objective value of zero. No job will be

late. Hence, they provide the optimal schedule for minimizing the number of tardy jobs.

Proposition 2: Only re-scheduling the jobs that have operations on the critical path(s)

can improve the objective value (weighted number of tardy jobs).

Proof Re-schedule the operations that are not on the critical path(s) will not change the

objective value unless they are on the critical path of the new schedule. If they are, the

objective value will increase.

From the above propositions, the heuristic based on shifting bottleneck heuristic

can be developed. The structure of SB is quite similar to one in chapter 7. The major

modification is on workstation sequencing.

8.2.1.1 Bottleneck Determination: We can determine the bottleneck workstation from

the following steps. First, select a focused workstation. Fix the sequences of the other
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workstations. Then, find the sequence that provide the lowest objective value. Save this

value as the bottleneck index. Repeat the steps but change the focused workstation until

indices are determined for all workstations. The bottleneck workstation is the one that has

the highest index.

To improve the computation time, rough estimation will be applied to this step.

TER, PEDD-O or BEDD-O+Batching are used instead of lengthy calculation ones.

Though, fast heuristics may not correctly determine the bottleneck workstation every

time, they determine the bottleneck or near bottleneck workstation that is sufficient for

the shifting bottleneck heuristic.

8.2.1.2 Removing Job: When we solve the workstation sequencing problem and found

that there is no possible alternative to sequence the operations in such a way that no job is

delayed. We know that at least one job will be delayed. We can select to delay any job.

The one to select is the one that has high processing time on the critical path related to the

late jobs. Delaying this job will create large space on highly utilized workstations for the

other jobs. As delaying a job will increase the objective value equally no matter how late

it is, it is better to put the job to the last position in the sequence on all machines. In other

words, we can discard this job and its operations from the problem. After the sequences

have been fixed for the remaining jobs, this job will be re-considered. The operations

belong to it will be processed last on the sequences.

8.2.1.3 Workstation Sequencing: After we have selected the bottleneck workstation, the

sequence for that workstation will be fixed by applying the heuristic on chapters 4, 5 or 6
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to the decomposed problem according to the structure. If the sequence generated does not

provide the job lateness, there is no late job. We do not need an extra work. Otherwise,

find the job that has the highest total processing time on the critical paths that related to

late jobs. Remove that job from the problem. After all the operations belong to the job

have been removed, re-apply the heuristic. Repeat the steps until there is no delay job.

If SB on min ΣwjTj provides a solution with no late job, this schedule is optimal.

If late jobs exist, some jobs among the late jobs need to be postponed. As a result, the rest

of the late jobs have potential to finish their processing before their due dates. Hence, it is

reasonable to postpone the job that will provide the greatest slacks for the rest. The late

job that has the longest weighted processing time on the critical path(s) is chosen. This

job is removed from our consideration. Later, it will he scheduled as the last job with the

lowest priority. The new job completion times can be determined. If there is no late job,

this new schedule is optimal.

8.2.2 The Heuristic

In proposition 1, we suggest that both heuristics that minimize the maximum tardiness or

the weighted tardiness provide the optimal schedule if no late job schedule exists. The

reason that we choose the heuristic that minimize the weighted tardiness is as follows.

The heuristic that minimize the maximum tardiness tends to balance the lateness among

all the jobs. It has potential to create more critical paths with less processing time on them

for each job. Hence, removing the late job according to step 2 will provide less slacks for

the rest.
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1. Decompose the problem into sub-problems. Each sub-problem is a

workstation sequencing problem with tails.

2. Determine the bottleneck workstation

3. Sequence the bottleneck workstation. If tardy job exists, remove the job that

has the longest processing time on the critical paths from the problem.

4. Apply local re-optimization steps.

5. Apply global re-optimization steps.

6. Append the operations of the removed jobs from step 3 to the end of the

sequences.

Example 8-1: We use the same problem illustrated in chapter 7 (Example 7-1). However,

the objective changes from minimize weighted tardiness to minimize number of late jobs.

Iteration 1 

Job: 1, 2, 3

Unscheduled machines: 1, 2, 3

Scheduled machines: 0

Bottleneck machine: 1

The sequence after CPI was applied is {Ml: 6, 8, 2, 1, 11, 13} which has objective

value of 20.

Remove: Job 2

As the weighted tardiness is greater than 0, there is at least one late job. Job 1 is late

and the summation of the length on critical paths for job 1 is 4+3+6+6 = 19. Job 2 is
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late with the total lengths on critical path of 5+3+4+2=12. Therefore, job 1 will be

removed.

Iteration 2 

Job: 1, 3

Unscheduled machines: 1, 2, 3

Scheduled machines: 0

Bottleneck machine: 1

It is determined by TER. We applied CPI to the sequence. The result is {M 1: 2, 1, 11,

13} which has objective value of 0.

Iteration 3 

Job: 1, 3

Unscheduled machines: 2, 3

Scheduled machines: 1

Bottleneck machine: 3

After applied CPI, the result is {M3: 3, 5, 14} with objective value of 2.

Remove: Job 3

As the weighted tardiness is greater than 0, there is at least one late job. From the

determined sequence, job 3 is late and the summation of the length on critical path

related to job 3 for job 1 is 4+3+6 = 13. The one for job 3 is 6+4+5+3=18. Therefore,

job 3 will be removed.
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Iteration 4

There is only job 1 left. Therefore, the number of late job = 1. Then, we add jobs 2 and 3

to form the final sequence.

Sequence summary: {Ml: 2, 1, 6, 8, 11, 13; M2: 4, 7, 10, 12, 15; M3: 3, 5, 9, 14}

8.3 Numerical Examples

The same set of problems used in testing the heuristic in chapter 7 is reused for testing

modified SB for other objectives. We test the performance of three versions of SB on

makespan, weighted flow time, and weighted lateness objectives. They show

improvement on most cases.

On minimizing maximum completion time, FCFS rule performs very well when

shops have light loads. The performance of SB improves as the problem becomes more

congested. As the number of jobs increases, the weighted flow time increases. The

improvement of the heuristic is determined by dividing the difference between the best

objective value from other priority rules and the objective value from SB by the objective

value from SB. Therefore, the improvement on the objective seems to be reduced as the

number of jobs grows. Table 8-1 shows the improvement of the objective value when

applying SB. The test results are shown in Table 8-2 to Table 8-7.

Table 8-1: Average improvement of SB heuristics on 3 different objectives

Makespan
(Cmax)

Weighted flow
time

Weighted
lateness

5 machines
1° machines

3%
5%

9%
3%

40%
46%



Table 8-2: Minimize maximum completion time of jobs (5 machines)

Problem
# of
oper. SPT-1 SPT-2 LPT EDD-O

modified
EDD-O EDD-J FCFS ATC(1)

SB
obj. time (sec) improv.

1 5x10 142 1596 1183 143 135 181 131 259 133 2 -2%
2 5x10 132 195 217 151 119 148  128 214 124 3 -4%
3 5x10 191 301 235 185 167 181 158 288 160 3 - 1%

4 5x10 158 271 258 162 142 213 141 271 140 4 1%
5 5x10 168 232 302 177 148 185 140 208 140 3 0%
6 5x10 236 345 423 245 227 311 217 379 220 9 -1%

7 5x10 231 372 439 234 204 287 206 408 191 7 6%
8 5x10 259 397 444 233 222 336 210 432 210 9 0%
9 5x10 253 439 461 248 238 339 227 467 208 11 8%

10 5x10 292 395 397 258 240 358 240 435 220 9 8%

11 10x10 254 457 442 255 236 341 231 410 225 28 3%

12 10x10 294 466 482 286 260 308 262 453 256 45 2%

13 10x10 294 515 543 259 249 327 259 493 236 38 5%

14 10x10 245 469 525 270 238 308 238 467 230 52 3%

15 10x10 282 514 461 280 258 337 258 479 252 39 2%
16 10x10 351 555 586 381 325 496 322 596 300 81 7%

17 10x10 356 606 720 367 328 546 344 572 296 53 10%

18 10x10 386 689 727 344 319 514 325 698 299 70 6%

19 10x10 398 624 636 343 333 484 357 566 317 138 5%

20 10x10 368 652 719 382 335 503 339 681 297 53 11%



Table 8-3: Minimize maximum completion time of jobs (10 machines)

Problem

# of

oper. SPT-1 SPT-2 LPT EDD-O

modified

EDD-O EDD-J FCFS ATC(1)

SB

obj. time (sec) improv.

I 10x10 151 330 280 154 148 284 151 318 137 16 7%

2 10x10 164 352 259 173 139 311 135 281 131 22 3%

3 10x10 152 282 297 152 149 246 143 262 135 19 6%

4 10x10 161 322 285 187 146 304 145 313 132 16 9%

5 10x10 176 339 315 173 159 290 140 327 128 17 9%

6 10x10 249 406 457 263 247 403 223 379 225 24 -1%

7 10x10 255 436 395 284 227 454 238 429 216 31 5%

8 10x10 240 358 453 236 216 321 224 415 211 33 2%

9 10x10 222 427 458 271 213 456 218 429 205 41 4%

10 10x10 228 333 482 254 223 406 216 377 213 54 1%

11 10x15 246 519 497 267 249 427 254 551 233 33  5%

12 10x15 230 463 461 258 224 426 223 521 213 43 4%

13 10x15 223 461 456 255 218 374 217 491 218 44 0%

14 10x15 228 415 414 252 219 388 224 387 205 41 6%

15 10x15 229 475 446 265 232 438 230 466 220 72 4%

16 10x I 5 309 670 657 327 308 680 294 631 274 173 7%

17 10x15 316 659 616 402 331 650 278 699 262 182 6%

18 10x15 313 712 791 348 267 691 270 773 248 128 7%

19 10x15 321 656 608 347 301 676 284 621 264 72 7%

20 10x15 329 740 659 395 316 646 305 611 302 84 1%

00
CO



Table 8-4: Minimize weighted flow time (5 machines)

Problem

# of

oper. SPT-1 SPT-2 LPT EDD-O

modified

EDD-O EDD-J FCFS ATC(1)

SB

obj time (sec) improv.

5x10 1194 2590 2177 1006 907 1331 978 2346 865 3 5%
2 5x10 961 2228 2584 1045 760 961 801 2242 674 5 11%

3 5x10 2001 3881 2323 1567 1373 1375 1265 3062 1153 5 9%

4 5x10 1258 3485 3339 1195 869 1718 980 2911 884 4 -2%
5 5x10 1263 2185 3215 934 892 1002 1028 1410 752 4 16%
6 5x10 2351 3390 4437 1776 2525 3000 2768 4137 1391 9 22%
7 5x10 2067 4500 6387 1911 1717 2256 1849 4118 1446 6 16%
8 5x10 2519 4105  5074 2268 2186 2967 2197 3561 1774 6 19%
9 5x10 2768 5445 5142 2274 2056 2539 2267 3864 1830 11 I I%
10 5x10 2131 3187 3916 2114 1889 2703 1977 2715 1503 10 20%
11 10x10 4243 9743 9490 3642 3239 4818 3585 6773 2626 33 19%
12 10x10 3152 8973 11061 2814 2326 2480 2572 6996 2204 41 5%
13 10x10 2919 9758 10887 1879 1681 2138 1878 7144 1552 47 8%

14 10x10 2224 9426 11942 2211 1838 2650 1973 7116 1805 33 2%
15 10x10 2873 10100 9830 2985 2454 3083 2659 8235 2512 37 -2%
16 10x10 5253 11368 11255 4608 3799 5776 4035 9397 3648 61 4%
17 10x10 6436 13562 15360 4983 4132 7327 4544 9206 4107 64 1%

18 10x10 6841 15188 15391 4744 4172 6859 4804 10455 3988 81 4%
19 10x10 6183 11771 12886 3723 3460 5206 4118 7038 2949 100 15%
20 10x10 5388 10126 12497 4742 4143 6032 4162 8765 3983 52 4%

00



Table 8-5: Minimize weighted flow time (10 machines)

Problem

# of

oper. SPT-1 SPT-2 LPT EDD-O

modified

EDD-O EDD-J FCFS ATC(1)

SB

obj. time (sec) improv.
1 10x10 2565 7352 6542 2112 1961 3848 2124 5419 1801 19 8%

2 10x10 3609 10318 7745 3163 2643 6330 2777 6373 2537 18 4%
3 10x10 1909 5561 5932 1790 1716 3407 1655 3706 1422 21 14%
4 10x10 3202 7608 6496 2995 2225 4841 2158 5769 2107 22 2%
5 10x10 2019 5802 5601 2061 1852 3863 1635 3563 1600 23 2%
6 10x10 3476 6970 9945 3608 3134 5103 2859 5058 2836 16 1%
7 10x10 4785 9441 8719 4764 3457 5363 3266 6106 3217 22 2%
8 10x10 5071 9617 11239 4318 4076 5137 4139 7221 3542 38 13%
9 10x10 4769 8918 11397 5684 4279 7746 4290 7138 3771 50 12%
10 10x10 5050 8701 13592 5570 4627 7824 4868 8187 4950 60 -7%

11 10x15 2633 8423 8973 2507 2436 4991 2365 7084  2377 28 -1%
12 10x15 1762 5724 5689 2041 1541 3577 1570 5001 1425 34 8%
13 10x15 2487 8482 9060 2348 2051 4123 2241 6410 2042 59 0%
14 10x I5 3717 10758 11740 3451 2909 5629 3201 7573 3051 50 -5%
15 10x15 3087 10789 9233 2985 2492 4954 2591 6964 2162 74 13%
16 10x15 3376 12216 11977 2720 2400 5820 2519 7405 2625 81 -9%
17 10x15 6424 16758 15180 6435 5396 9033 5089 13435 5083 205 0%
18 10x I 5 5445 14594 15549 4133 3508 8848 3810 10635 3509 144 0%
19 10x15 5681 15349 17522 6266 5021 10351 5264 12323 5023 57 0%
20 10x15 5162 16030 14586 5121 3979 8665 4286 9607 3484 77 12%

VD



Table 8-6: Minimize the maximum weighted lateness (5 machines)

Problem

# of

oper. SPT-1 SPT-2 LPT EDD-O

modified

EDD-O EDD-J FCFS ATC( I )

SB

obj. time (sec) improv.
I 5x10 102 500 321 20 0 172 63 417 0 3 0%
2 5x10 80 415 595 84 0 75 40 475 9 2 -
3 5x10 332 808 388 140 60 120 56 664 20 5 64%
4 5x10 65 870 676 85 0 340 40 620 0 5 0%
5 5x10 250 550 980 69 70 138 164 188 51 4 26%
6 5x10 357 654 792 586 135 387 171 567 120 10 11%
7 5x10 280 912 1408 260 140 472 180 760 38 7 73%
8 5x10 345 955 920 275 220 790 264 468 152 11 31%

9 5x10 414 1172 1240 295 245 555 280 693 100 11 59%
10 5x10 264 470 1040 380 290 880 290 412 126 12 52%
11 10x10 450 1228 1695 455 360 885 348 819 150 43 57%
12 10x10 415 1360 1475 250 170 312 270 892 92 35 46%
13 10x10 360 1570 1930 120 90 324 144 924 50 41 44%
14 10x10 156 1100 1768 152 76 228 140 837 76 30 0%
15 10x10 255 1800 1810 355 245 525 245 1020 171 44 30%
16 10x10 681 1760 1374 568 344 896 456 1071 250 59 27%
17 10x10 832 2044 2340 460 430 1140 635 1230 244 58 43%
18 10x10 1120 2115 2665 432 392 968 590 890 216 94 45%
19 10x10 627 1479 1710 895 650 1130 520 1088 151 109 71%
20 10x10 625 2020 2290 484 328 1200 392 924 196 54 40%



Table 8-7: Minimize the maximum weighted lateness (10 machines)

Problem
# of

open. SPT-1 SPT-2 LPT EDD-0
modified

EDD-O EDD-J FCFS ATC(1)

SB

obj. time (sec) improv.
1 10x10 260 1330 1065 145 64 735 105 585 58 18 9%
2 10x10 305 1245 728 215 140 905 140 633 96 16 31%
3 10x10 152 820 724 80 80 368 60 424 25 18 58%
4 10x10 265 1070 780 196 105 656 99 636 60 15 39%
5 10x10 210 1025 830 195 125 780 74 387 34 18 54%
6 10x10 312 915 1448 300 282 702 210 432 101 28 52%
7 10x10 530 1196 1275 535 315 1010 225 500 95 24 58%
8 10x10 550 1110 1780 284 285 616 450 609 145 22 49%
9 10x10 385 1265 1485 555 340 988 380 840 129 51 62%
10 10x10 372 792 1775 415 325 1025 385 736 228 48 30%
11 10x15 215 1130 1325 140 140 748 170 856 68 26 51%
12 10x15 152 756 1005 160 81 725 99 561 33 37 59%
13 10x15 180 1148 1216 155 80 750 105 674 39 36 51%
14 10x15 295 1695 1500 250 190 920 230 995 117 43 38%
15 10x15 228 1785 1820 200 124 930 200 710 35 51 72%
16 10x15 228 2264 2024 120 82 826 132 696 36 142 56%
17 10x15 696 1956 1760 608 392 1161 400 1425 232 158 41%
18 10x15 708 2304 2348 312 183 1716 220 1293 132 158 28%
19 10x15 560 2170 2036 725 495 2345 324 1232 212 72 35%
20 10x15 690 2745 2032 357 180	 I 1380 320 952 93 94 48%

NJ



CHAPTER 9

SCHEDULING INFORMATION SYSTEM

In this chapter, we describe the scheduling system for assembly shop environment. First,

we discuss the general picture of the information system for production facilities. Then,

we discuss LEKIN which is an assembly job-shop scheduling system developed for

research purposes. The system is focused on the graphic user interface as well as

scheduling tools development. We employ object oriented design and programming on

the developing phase.

9.1 Information System for Production Facilities

In the competitive world, the quality and the timing of the information can justify success

or failure of a company. The company success relies on the right decision at the right

time. The information system plays a major role as a decision support tool for the

management. In the following, we analyze the production information system based on

the company functions. We may divide a company into four major departments as

follows.

(i) Marketing department

(ii) Production department

(iii) Distribution department

(iv) Control and support department
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Marketing
Production

Contro
and

Suppor

Distribution

Figure 9 -1: Department relationship

Figure 9-1 shows the relationship among the departments. Each department will

respond to specified functions. A list of main functions is shown below.

(i) Sales management

(ii) Product design

(iii) Process design

(iv) Production scheduling

(v) Manufacturing control

(vi) Inventory

(vii) Transportation & distribution

(viii) Resource planning

(ix) Supporting system

The functions' relationship is described in Figure 9-2. Information transfers are shown in

arrows and dotted lines.
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Marketing	 Production	 Distribution

*Sale Mgt.- Scheduling- • Inventory

Product Design	 Machine Control 	 .--*Transportation &
.•.

Distribution
Process Design

Resource Planning &
- Man: Staffrng
- Machine: Acquiring new machines
- Material: Purchasing
- Money: Financial Management

Supporting Systems
- Maintenance
- System monitoring
- Human resource

Figure 9 -2: Relationship of functions

Information System

The information transfers between Marketing, Production and Distribution are one-

direction transfers. The bi-directions transfers are used between Control and Support

department with others. The feed backs from departments allow the management to

adjust the plans when unexpected events occur.

Marketing 

In the system, marketing functions cover product design, process design and sales

management. This department can be viewed as an interfacing between the company and

the customers. Due to this fact, marketing personnel has the best knowledge on customer

needs among all departments. Therefore, product design Therefore, they should be the
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people that design products to satisfy the customers' needs. CAD and analysis packages

are necessary software for product designing.

On the design stage, the product designer needs to concern about transforming his

design to the production line. Expert system such as knowledge based could be applied

here. The knowledge based system can recommend an appropriate process for the

production by using its database stored with knowledge from experts. This information is,

then, sent to the production department.

Sales management information provides the product manager with current market

status, historical data, forecasted information and "what if?" simulation. The system

should apply the state of the art computer learning capability with a powerful database to

create a decision simulation tool. This tool could guide product managers in making

decision in the stochastic environment. If further information is needed, he can send a

request to the supporting system. The supporting system will provide data query.

Production

Information from Marketing will be sent to production department. The important

information is order information and product routing. The resource availability is

provided from the control & support department. The schedule will be made. The

information will be sent to machine control system. This system controls the machine

operating sequences. Further details on production scheduling will be discussed in the

next section.
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Distribution 

After products are fabricated, they are ready to be sent to warehouse or customers.

Inventory system will trace and control the level of stocks to minimize cost and maximize

customer satisfactions. This system is linked to transportation and distribution system

seamlessly. The information on customers and orders will be transferred to transportation

and distribution system when the products need deliveries. The transportation and

distribution system will manage the material handling equipment, trucks, routing and

documents.

Control and Support

Control and Support department is the center of information system. It should be able to

provide job status for customer service staffs or market trend for inventory manager. The

appropriate plan to control the resources should be developed in real-time. Four important

resources are man, machine, material and money. The system will request the information

from every department. Then, the decision will be justified based on available resources.

Beside direct functions, support functions are also important. These functions

should be served to the whole company. Supporting tasks are as follows.

- Maintenance: machines, computer system, material handling system, trucks, etc.

- System monitoring: sales, costs, machine status, job status, package status, truck

status, etc.

- Human resources: health care, benefits, recruitment, etc.
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Scheduling System

The following list includes the key issues in developing a DSS in modeling scheduling

systems. The structure of the system is explained in Figure 3.

DSS

Shop Control
Structure

Object Oriented
Scheduling System

Figure 9 -3: Structure of the system and its linkage

9.2 Object Oriented Programming

Object oriented programming (OOP) is a new paradigm for computer programming.

Instead of trying to mold the problem into something familiar to the computer, it adapts

the computer to the problem. OOP supports three key features:

Abstract Data Typing: The programmer can create new data types to adapt to his needs.

The structure together with its operations (functions) are incorporated into the new data

type which is defined as object.

Inheritance: Once an object is defined, it can be the basis for a new data type.
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Polymorphism: The object can be designed to respond to the appropriate message

(command). For example, when draw is called, circle object will draw a circle while

triangle object will draw a triangle.

By using OOP, the software development is more organized. The modification

and maintenance of the software is simplified. OOP promotes the codes reusable and

enhance the encapsulating ability. Thus, it is easier to work on the complex system than

ever.

9.3 Objects and Classes

Machine Shop System is the facility and management that produce the product according

to the given demand. It can be divided into two sections -- hardware and software. On the

hardware side, there are machines. The machines in the factory shop that perform similar

tasks are normally grouped into workstations. Each workstation is assigned to perform a

specified type of work.

An order is the demand from a customer. The customer specifies the product

specifications, delivery time, quantities. and price in his order. The order is broken down

into jobs on the production level. Each job is a product or a batch of products that need to

be processed on various machines according to its routing. The processing on a machine

is called operation. It is the scheduler task to manage the machines to produce the

products according to the given demands. He needs to issue the production sequences for

each machine and send them to the operators.
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On the above paragraphs, the italic words are basic objects needed for developing

the scheduling information system. Figure 9-4 shows their relations. There are many

more classes and objects used in the system which will be discussed later.

Figure 9-4: Objects relationship

9.4 System Overview

LEKIN is a demonstration of assembly shop scheduling system. The system is designed

to ease the researcher on developing new heuristics and testing their performances. Shop

schedulers can use it to efficiently manage the scheduling problem. It is based on PC

platform operating in Microsoft windows environment (Figure 9-5).
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Figure 9 -5: LEKIN -- The assembly shop scheduling system

The system can be divided into two sections -- database & tools and user

interface. The database & tools section manages the data and is the host for the heuristics.

After the sequence is generated, the information is sent to the user interface section for

display in various forms.

9.5 Database and Tools Section (DT)

This section is developed with C++ based on ANSI C++. Therefore, the codes are

portable to other systems that have ANSI C++ compiler. The database and tools (DT) are

designed based on object oriented methodology. There are four groups of objects
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(classes) in this section -- basic data management, database, scheduling graph, and

scheduling tools. As it is named, the database group is designed for data management. It

contains the information on machines, jobs and sequence. All of these classes are

developed (inherited) from the basic data management classes which facilitate the

development process.

The scheduling graph class is based on disjunctive graph representation that is

frequently used in many scheduling heuristics. Each node in the graph represents the

operation. The precedent constraints are modeled by directed arcs. The arc length

represents the processing and setup time. It is used for feasibility verification and

operation starting/ending time determination. Last, the scheduling tool group is designed

as the foundation for developing workstation sequencing heuristics. It is used in the

decomposed problems in shifting bottleneck based heuristics. The class reference manual

can be found in the appendix.

Database

The system has a large internal database. It allows users to work on problems as large as

32,000 operations and 32,000 machines. The database can be divided into sections as

follows.

Machine: LEKIN is designed to store machine information as a list of workstations. A

workstation is a group of machines performing similar tasks. The machines

in the same workstation may not be identical. Some machines may work

faster than others. The machine speed is referenced to the average speed of

machines in the same workstation. This type of machines are normally
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referred as related machines. Some machines may require setup before

processing a particular job. The setup time depends on the current machine

status and the new status required to process the coming job. The system

provides a lookup table which allows up to ten types of machine status for

each machine. In case that some machines in a workstation have restriction

that they cannot process some particular tasks, users are able to assign only a

partial group of machines in the workstation to process those tasks.

Job:	 The system stores job information as a list. Each job is another list of

operations. The processing route may start from a number of roots. They are

assembled to sub-parts and parts are assembled to the final product.

Availability: There are two types of machine available time list kept in the database. First,

it is the working shift. Users can set up to six working periods per day. For

example, the first production shift is from 9am-12noon and 1pm-5pm. The

second shift runs from 5prn-9pm and 9pm-lam. The third shift is from 1 am-

4am and 5am-9am. These six working periods is for Monday-Friday. The

shifts on Saturday and Sunday can be set differently. Second, it is the

holidays that the shop will be closed. The holiday can be set as a full day or

a partial day.
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Heuristics

LEKIN provides basic dispatching rule such as EDD, SPT, LPT, ATCS, etc. and new

efficient heuristic like shifting bottleneck heuristics developed in this research. It allows

users to customize their heuristics and link them to the system. Furthermore, users may

input their own sequences manually.

Disjunctive Graph

The directed graph is developed from the job data. When a sequence is generated, the

selections are assigned to the graph. The job completion time as well as the operations

starting time can be determined. If the infeasible sequence is entered, the graph can detect

it and provide an error message. There are two graph: generated by the system. The first

one is a directed graph (no selection). Another one is the active graph (disjunctive graph).

The directed graph is used to improve the re-sequencing steps.

Figure 9-6: Structure of the cShop class
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Objects and Classes

cShop is the main class in this section (Figure 9-6). It contains the necessary information

of the shop. There are two members in this class that worth mentioning. DGraph, which

is created from cDGraph class, extracts the job information and produces the directed

graph. After the sequence is generated, the selections are added to the directed graph. The

new graph is stored in SGraph object. The operation starting, completion, processing, and

setup time are determined from this object. Furthermore, cShop is the host for various

heuristics. It provides general structures for priority rule and shifting bottleneck based

heuristics. Only the user defined indexing rule is needed for developing a new priority

rule. The provided sub-problem sequencing methods or user defined ones may be used to

develop a new shifting bottleneck based heuristics.

9.6 User Interface Section

There are many computer platforiiis available in the market. Our objective is to develop a

powerful scheduling system that can be easily applied in small to medium size machine

shops. We select PC based machine as our target due to the fact that most companies

already have PC in their production facility.

The system is a 32 bits application designed to work with Microsoft Windows 95

and NT. Windows 3.1 and Windows for Workgroup need to update a component call

"win32s" to let them run 32 bits application. The instruction on how to update win32s is

provided in the appendix. The codes are developed and compiled using Visual C I. The

graphic user interface (GUI) help users on data entering, visualizing and comparing the

results while the database & tools section is used as the core on generating the sequence.
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When using the system, frrst, the machine structure information needs to be

entered. After the workstation information is input, the corresponding machines can be

inserted. The system can handle both single machine or parallel (identical or related)

machines workstation. Setup matrix is used when machines require new setting as a result

of changing from one status to another (Figure 9-7).

Figure 9-7: Entering machines information

After completing machine structure information, job information can be entered.

The job routing and machine assignment are done in the routing window. The route is

created from nodes and links. Assembly operation is formed by linking k nodes to a node.

Each node (operation) must be assigned the processing workstation and a group of

machines in that workstation that is able to process it (Figure 9-8).
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Figure 9-8: Job information and routing

After all the needed information is specified, the sequence can be generated by the

provided heuristics, manual entry, or user defined heuristic. The GUI will send a message

to DT activating the appropriate heuristic. DT will send a message back to GUI when the

sequence has been generated. The sequence for each machine including its details such as

setup duration and starting/completion time of the operations will be displayed in the

sequence window along with various shop performance indices. The system is able to

display the sequence in graphical form using Gantt chart (Figure 9-9). Users can visualize

the sequence. Furthermore, they are able to modify the sequence manually by using the

pointing device (mouse). The newly generated sequence is passed to DT to check for the

feasibility. The chart will be updated if the sequence is feasible. Normally, the system



208

will generate the semi-active sequence. However, upon request, it can generate non-active

sequence where some machines are kept idle though there are some jobs waiting for the

processing,.

Figure 9-9: Gantt chart window

The system allows users to attach their own heuristic. The heuristic can be

developed with any computer language. However, a scheduling library is provided for

C++ users. This library is helpful for developing custom priority rules or custom shifting

bottleneck based heuristics. For a quick interface, users may enter the sequence manually.

After a sequence is generated, it may be stored in a log book. The log book works

as a temporary memory for the sequence generated. The sequence will be lost if it has not

been saved as a file before exiting the system. The sequences stored in it can be retrieved



209

even after the sequence has been cleared and a new sequence has been generated. The log

book can hold up to six sequences.

Another use of the log book is that the sequences stored in it can be compared

graphically using objective command (Figure 9-10). One of the six standard performance

indices including makespan, maximum lateness, maximum weighted lateness, weighted

tardiness, weighted flow time, and number of late jobs may be selected. Two indices may

be compared in the same graph with multi -obj command (Figure 9-11).

Figure 9-10: Comparing objective values among the sequences saved in the log book



Figure 9-11: Comparing multiple objectives

There are frve main screens (windows) in the system as follows.

9.6.1 Machine Information Window (input)

• Add/edit/remove workstations

• Add/edit/remove machines

9.6.2 Job Information Window (input)

• Add/edit/remove/sort job

• Create/edit job routing

• Edit operation information

• Workstation/machine assignment

210



21 1

9.6.3 Sequence Information Window (output)

• Generate the sequences according to the selected method or apply the user defined

heuristic

• Store/retrieve previously generated sequences to/from the log book

9.6.4 Gantt Chart Viewer (output)

• Display sequence graphically (Gantt chart)

• Manually modify the sequence with feasibility checking

• Allow semi-active or non-active sequence generation

9.6.5 Objective Viewer (output)

• Compare the shop performance indices among the sequences stored in the log

book and the current one

9.7 User Defined Heuristic

As mentioned earlier, users can attach their own algorithm to the system. He/she needs to

create an excusable program. The program must be renamed to "user.exe" and placed in

the same directory with the main program.

When calling user defined heuristic command in sequence information window,

the system will save the machines and operations information in "_user.wkt" and

"_user.job". Then, it calls "user.exe" which is the user defined heuristic. After user.exe is

completed, it must save the result in "user.seq". The system will load the sequence and

update all the windows.
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The scheduling library for C 	 users is provided. The library is especially helpful

for developing priority rules or shifting bottleneck based heuristics. There is a number of

useful classes included in the library.

Example 9-1: The following example is a C++ codes for WSPT rule.

// user.exe
#include <iostream.h>
#include "lekin.h" 	 // include the scheduling library

cRuleReturn *IndexWSPT(cShop *pShop,cMCAvail &MCAvail,
cJob &jbX,cDGraph &Graph,double fK1=0,double fK2=0)

/* this function return a pointer to an operation in jbX that has
highest index and select the machine that can complete the task
earliest.

pShop is a pointer point to the database therefore the job, machine
information can be accessed through this pointer.

MCAvail store the machine available time
jbX is a set of operations that have not been sequenced and will

not create dead locks.
Graph is the directed graph after adding partial sequence from

selected operations
fK1 and fK2 are parameters that pass to the rule. They are not used

for WSPT.
cRuleReturn is a class used for returning values.

cRuleReturn *pRtn = new cRuleReturn;
cOperation *popSelect, *popTemp;
double 	 fBest=-fBigM,fTemp;
int i,iN=jbX.Num( );

for (i=1 ; i<=iN ; i++)

popTemp = jbX.Get(i);
fTemp 	 = popTemp->fWeight /popTemp->fProcessTime;

if (fTemp>fBest)

fBest = fTemp;
popSelect = popTemp;

}
pRtn->op = popSelect;
pRtn->mc = FirstFinish(pShop,MCAvail,popSelect,Graph);
return pRtn;

main()

cShop myShop;
ofstream outfile("_user.seq");
myShop.LoadWks("_user.wkt");
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myShop.LoadJob ("_user.job");
myShop.PriorityRule(IndexWSPT);
outfile<<myShop.Seq;
outfile.close();
return 0;

9.8 User Interface Classes

The object-oriented user interface classes are developed based on Microsoft Foundation

Class (MFC). Single document, CAsmDoc, is created and registered in CAsmApp. It is

linked to Six frames (CMCFrame, CJobFrame, CSeqFrame, CRouteFrame, CObjFrm,

and CGChartFrame) and six view widows (CMCView, CJobView, CSeqView,

CRouteView, CObjView, and CGChartView). Each frame has its own view, menu and

tool bar. Three main windows (Machine Structure, Job, and Sequence windows) can be

directly accessed from the main tool bar. There are 28 dialog boxes associated with

commands and more than 70 classes in used. As a normal practice, context sensitive help

is included, is can be accessed by Fl key, as well, The help file can be accessed from the

main tool bar or the menu.

9.9 Database and Tools Classes

The classes developed in this system can be used as a tool in heuristic development. We

divide the classes into four groups as shown below. The detail of each class and it syntax

are explained in the "lekin.h".

9.9.1 Database Group Classes

In the data base group, there are three major classes -- job, workstation and sequence. The

classes and sub-classes are listed as follows.
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• cJobList	 : list of cJob

• cJob	 : list of cOperation

• cOperation : basic data element of job.

• cWorkstationList : list of cWorkstation

• cWorkstation	 : a group of machines performing similar tasks

• cMachine	 : basic element of workstation

• cSequenceList	 : list of cSequence

• cSequence	 : list of operation ID that formed into a sequence on a machine

• cShop	 : the main class that host all the above classes

9.9.2 Basic Data Management Classes

• cStack	 : linked list and stack for integers

• cStack_f 	 : linked list and stack for doubles

• cStack_1	 : link list and stack for unsigned longs

• cStack_p 	 : link list and stack for pointers

• cArray_f	 : array of double that can extend its size automatically

• cArray_l	 : array of long integer that can extend its size automatically

• cArray_p 	 : array of pointers that can extend its size automatically

• cArray2_f	 : array size 2 of double that can extend its size automatically

• cArray2_l	 : array size 2 of long integer that can extend its size automatically

• str	 : string of characters that can extend its size automatically

• cDate	 : manipulate the date information



9.9.3 Scheduling Graph Classes

• cNode	 : node in the graph

• cArc	 : arc in the graph

• cDGraph	 : combine list of nodes and arcs to form a graph

9.9.4 Scheduling Tool Classes

• cTool	 : based class for other scheduling tool class

• cSMTool	 : single machine sequencing tool

• cMMTool	 : parallel machine sequencing tool

• cBMTool	 : batch machine sequencing tool
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CHAPTER 10

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

We have presented the heuristic development for assembly type job-shop scheduling

problems. They are based on decomposition technique called shifting bottleneck. This

technique was developed by Adams et al. (1988) for job-shop scheduling problem with

minimize makespan objective. We modify this technique to the new environments and

the new objectives.

In order to develop the heuristic, various sub-problems need to be studied. These

sub-problems including single machine, parallel machine, and batch machine sequencing

problems are not found in the literature. Various types of techniques are used on

developing the heuristics for these sub-problems including greedy method, beam search,

critical path analysis, local search and dynamic programming.

The first sub-problem is single machine scheduling with tails. A priority rule

called TER is developed. This priority rule outperforms most of the standard priority

rules. We develop a critical path improvement (CPI) method that, further, improve the

sequence generated from TER. A local search technique is appended to the heuristic

when sequence dependent setup is considered.

The second sub-problem is parallel machine scheduling problem with tails. We

propose two heuristics. The first one is an extension of the results from single machine

scheduling problem with tails. The other technique is based on linear sequence

representation and beam search.
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The third sub-problem is batch machine scheduling problem with tails. First, we

consider the case that the processing time of the operations are equal. A batch allocation

technique based on dynamic programming is developed. The heuristic can determine the

appropriate batch sizes. Then, we extend the results to multiple families jobs where jobs

from different families cannot be processed in the same batch, and dependent setup is

concerned.

The proposed heuristic for assembly type job-shops is based on bottleneck

concept. It formulates sub-problems dynamically and solve them iteratively to arrive at a

satisfactory solution. The test results prove that this technique is far better than current

techniques (priority rules) used in practice. We extend the research to other objectives,

i.e. minimizing the makespan, minimizing the maximum weighted lateness and

minimizing the weighted flow time. Small modifications on the sub-problems are

required. As expected, the test results show that the method is superior to the priority

rules.

Last, we develop a scheduling system, LEKIN, as the linkage between the

theoretical research and the practical world. The system can be separated into two parts.

The first part is the database and tools (DT). The other part is the user interface (UI). DT

is developed with ANSI C++ based on object oriented design. The classes are placed in

the library. They can be used as the tools for developing new heuristics. UI section is

developed with Visual C++. It operates on Windows 95 or Windows NT environments.

The user interface provides various type of interfaces including text, Gantt chart and

various type of graphs. The heuristics developed in this research can be applied.
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Future Steps

When an order of multiple items of the same product is released to the shop floor,

there are two simple alternatives to model the problem. The order can be considered as

multiple jobs or as one huge job. Both methods have some pitfalls. For the first solution,

the problem size will increase drastically. We may not be able to track the solution. For

the later one, we have restricted the problem size. However, this restriction will degrade

the solution as the later processing cannot start until all the items in the order have been

completed. Lot sizing tends be the good compromise. The problem will be tractable and

the degrading of the solution is subsided. However, a new formulation may be a better

alternative. The new disjunctive graph representation needs to be developed.

Next, the machines that we studied in the problems are discrete. Continuous

machine that accepts continuous feeds are found in some shops. The processing time of

these machines may be referred as the cycle time, c1. Feed rate, fj, indicates the capacity

of the machine. After a set of tasks have entered the machine, the first job will leave the

machine after c1. Then, every fi unit of time, a task will be completed. Although

continuous machines are seldom found in the machine shop, it is worth studying.
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