192 research outputs found

    Psycho-acoustically motivated formant feature extraction

    Get PDF
    Proceedings of the 18th Nordic Conference of Computational Linguistics NODALIDA 2011. Editors: Bolette Sandford Pedersen, Gunta Nešpore and Inguna Skadiņa. NEALT Proceedings Series, Vol. 11 (2011), 218-223. © 2011 The editors and contributors. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/16955

    Singing information processing: techniques and applications

    Get PDF
    Por otro lado, se presenta un método para el cambio realista de intensidad de voz cantada. Esta transformación se basa en un modelo paramétrico de la envolvente espectral, y mejora sustancialmente la percepción de realismo al compararlo con software comerciales como Melodyne o Vocaloid. El inconveniente del enfoque propuesto es que requiere intervención manual, pero los resultados conseguidos arrojan importantes conclusiones hacia la modificación automática de intensidad con resultados realistas. Por último, se propone un método para la corrección de disonancias en acordes aislados. Se basa en un análisis de múltiples F0, y un desplazamiento de la frecuencia de su componente sinusoidal. La evaluación la ha realizado un grupo de músicos entrenados, y muestra un claro incremento de la consonancia percibida después de la transformación propuesta.La voz cantada es una componente esencial de la música en todas las culturas del mundo, ya que se trata de una forma increíblemente natural de expresión musical. En consecuencia, el procesado automático de voz cantada tiene un gran impacto desde la perspectiva de la industria, la cultura y la ciencia. En este contexto, esta Tesis contribuye con un conjunto variado de técnicas y aplicaciones relacionadas con el procesado de voz cantada, así como con un repaso del estado del arte asociado en cada caso. En primer lugar, se han comparado varios de los mejores estimadores de tono conocidos para el caso de uso de recuperación por tarareo. Los resultados demuestran que \cite{Boersma1993} (con un ajuste no obvio de parámetros) y \cite{Mauch2014}, tienen un muy buen comportamiento en dicho caso de uso dada la suavidad de los contornos de tono extraídos. Además, se propone un novedoso sistema de transcripción de voz cantada basada en un proceso de histéresis definido en tiempo y frecuencia, así como una herramienta para evaluación de voz cantada en Matlab. El interés del método propuesto es que consigue tasas de error cercanas al estado del arte con un método muy sencillo. La herramienta de evaluación propuesta, por otro lado, es un recurso útil para definir mejor el problema, y para evaluar mejor las soluciones propuestas por futuros investigadores. En esta Tesis también se presenta un método para evaluación automática de la interpretación vocal. Usa alineamiento temporal dinámico para alinear la interpretación del usuario con una referencia, proporcionando de esta forma una puntuación de precisión de afinación y de ritmo. La evaluación del sistema muestra una alta correlación entre las puntuaciones dadas por el sistema, y las puntuaciones anotadas por un grupo de músicos expertos

    Robust speaker recognition using both vocal source and vocal tract features estimated from noisy input utterances.

    Get PDF
    Wang, Ning.Thesis (M.Phil.)--Chinese University of Hong Kong, 2007.Includes bibliographical references (leaves 106-115).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Introduction to Speech and Speaker Recognition --- p.1Chapter 1.2 --- Difficulties and Challenges of Speaker Authentication --- p.6Chapter 1.3 --- Objectives and Thesis Outline --- p.7Chapter 2 --- Speaker Recognition System --- p.10Chapter 2.1 --- Baseline Speaker Recognition System Overview --- p.10Chapter 2.1.1 --- Feature Extraction --- p.12Chapter 2.1.2 --- Pattern Generation and Classification --- p.24Chapter 2.2 --- Performance Evaluation Metric for Different Speaker Recognition Tasks --- p.30Chapter 2.3 --- Robustness of Speaker Recognition System --- p.30Chapter 2.3.1 --- Speech Corpus: CU2C --- p.30Chapter 2.3.2 --- Noise Database: NOISEX-92 --- p.34Chapter 2.3.3 --- Mismatched Training and Testing Conditions --- p.35Chapter 2.4 --- Summary --- p.37Chapter 3 --- Speaker Recognition System using both Vocal Tract and Vocal Source Features --- p.38Chapter 3.1 --- Speech Production Mechanism --- p.39Chapter 3.1.1 --- Speech Production: An Overview --- p.39Chapter 3.1.2 --- Acoustic Properties of Human Speech --- p.40Chapter 3.2 --- Source-filter Model and Linear Predictive Analysis --- p.44Chapter 3.2.1 --- Source-filter Speech Model --- p.44Chapter 3.2.2 --- Linear Predictive Analysis for Speech Signal --- p.46Chapter 3.3 --- Vocal Tract Features --- p.51Chapter 3.4 --- Vocal Source Features --- p.52Chapter 3.4.1 --- Source Related Features: An Overview --- p.52Chapter 3.4.2 --- Source Related Features: Technical Viewpoints --- p.54Chapter 3.5 --- Effects of Noises on Speech Properties --- p.55Chapter 3.6 --- Summary --- p.61Chapter 4 --- Estimation of Robust Acoustic Features for Speaker Discrimination --- p.62Chapter 4.1 --- Robust Speech Techniques --- p.63Chapter 4.1.1 --- Noise Resilience --- p.64Chapter 4.1.2 --- Speech Enhancement --- p.64Chapter 4.2 --- Spectral Subtractive-Type Preprocessing --- p.65Chapter 4.2.1 --- Noise Estimation --- p.66Chapter 4.2.2 --- Spectral Subtraction Algorithm --- p.66Chapter 4.3 --- LP Analysis of Noisy Speech --- p.67Chapter 4.3.1 --- LP Inverse Filtering: Whitening Process --- p.68Chapter 4.3.2 --- Magnitude Response of All-pole Filter in Noisy Condition --- p.70Chapter 4.3.3 --- Noise Spectral Reshaping --- p.72Chapter 4.4 --- Distinctive Vocal Tract and Vocal Source Feature Extraction . . --- p.73Chapter 4.4.1 --- Vocal Tract Feature Extraction --- p.73Chapter 4.4.2 --- Source Feature Generation Procedure --- p.75Chapter 4.4.3 --- Subband-specific Parameterization Method --- p.79Chapter 4.5 --- Summary --- p.87Chapter 5 --- Speaker Recognition Tasks & Performance Evaluation --- p.88Chapter 5.1 --- Speaker Recognition Experimental Setup --- p.89Chapter 5.1.1 --- Task Description --- p.89Chapter 5.1.2 --- Baseline Experiments --- p.90Chapter 5.1.3 --- Identification and Verification Results --- p.91Chapter 5.2 --- Speaker Recognition using Source-tract Features --- p.92Chapter 5.2.1 --- Source Feature Selection --- p.92Chapter 5.2.2 --- Source-tract Feature Fusion --- p.94Chapter 5.2.3 --- Identification and Verification Results --- p.95Chapter 5.3 --- Performance Analysis --- p.98Chapter 6 --- Conclusion --- p.102Chapter 6.1 --- Discussion and Conclusion --- p.102Chapter 6.2 --- Suggestion of Future Work --- p.10

    Multimodaalsel emotsioonide tuvastamisel põhineva inimese-roboti suhtluse arendamine

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneÜks afektiivse arvutiteaduse peamistest huviobjektidest on mitmemodaalne emotsioonituvastus, mis leiab rakendust peamiselt inimese-arvuti interaktsioonis. Emotsiooni äratundmiseks uuritakse nendes süsteemides nii inimese näoilmeid kui kakõnet. Käesolevas töös uuritakse inimese emotsioonide ja nende avaldumise visuaalseid ja akustilisi tunnuseid, et töötada välja automaatne multimodaalne emotsioonituvastussüsteem. Kõnest arvutatakse mel-sageduse kepstri kordajad, helisignaali erinevate komponentide energiad ja prosoodilised näitajad. Näoilmeteanalüüsimiseks kasutatakse kahte erinevat strateegiat. Esiteks arvutatakse inimesenäo tähtsamate punktide vahelised erinevad geomeetrilised suhted. Teiseks võetakse emotsionaalse sisuga video kokku vähendatud hulgaks põhikaadriteks, misantakse sisendiks konvolutsioonilisele tehisnärvivõrgule emotsioonide visuaalsekseristamiseks. Kolme klassifitseerija väljunditest (1 akustiline, 2 visuaalset) koostatakse uus kogum tunnuseid, mida kasutatakse õppimiseks süsteemi viimasesetapis. Loodud süsteemi katsetati SAVEE, Poola ja Serbia emotsionaalse kõneandmebaaside, eNTERFACE’05 ja RML andmebaaside peal. Saadud tulemusednäitavad, et võrreldes olemasolevatega võimaldab käesoleva töö raames loodudsüsteem suuremat täpsust emotsioonide äratundmisel. Lisaks anname käesolevastöös ülevaate kirjanduses väljapakutud süsteemidest, millel on võimekus tunda äraemotsiooniga seotud ̆zeste. Selle ülevaate eesmärgiks on hõlbustada uute uurimissuundade leidmist, mis aitaksid lisada töö raames loodud süsteemile ̆zestipõhiseemotsioonituvastuse võimekuse, et veelgi enam tõsta süsteemi emotsioonide äratundmise täpsust.Automatic multimodal emotion recognition is a fundamental subject of interest in affective computing. Its main applications are in human-computer interaction. The systems developed for the foregoing purpose consider combinations of different modalities, based on vocal and visual cues. This thesis takes the foregoing modalities into account, in order to develop an automatic multimodal emotion recognition system. More specifically, it takes advantage of the information extracted from speech and face signals. From speech signals, Mel-frequency cepstral coefficients, filter-bank energies and prosodic features are extracted. Moreover, two different strategies are considered for analyzing the facial data. First, facial landmarks' geometric relations, i.e. distances and angles, are computed. Second, we summarize each emotional video into a reduced set of key-frames. Then they are taught to visually discriminate between the emotions. In order to do so, a convolutional neural network is applied to the key-frames summarizing the videos. Afterward, the output confidence values of all the classifiers from both of the modalities are used to define a new feature space. Lastly, the latter values are learned for the final emotion label prediction, in a late fusion. The experiments are conducted on the SAVEE, Polish, Serbian, eNTERFACE'05 and RML datasets. The results show significant performance improvements by the proposed system in comparison to the existing alternatives, defining the current state-of-the-art on all the datasets. Additionally, we provide a review of emotional body gesture recognition systems proposed in the literature. The aim of the foregoing part is to help figure out possible future research directions for enhancing the performance of the proposed system. More clearly, we imply that incorporating data representing gestures, which constitute another major component of the visual modality, can result in a more efficient framework

    Simple acoustic features can explain phoneme-based predictions of cortical responses to speech

    Get PDF
    When we listen to speech, we have to make sense of a waveform of sound pressure. Hierarchical models of speech perception assume that, to extract semantic meaning, the signal is transformed into unknown, intermediate neuronal representations. Traditionally, studies of such intermediate representations are guided by linguistically defined concepts, such as phonemes. Here, we argue that in order to arrive at an unbiased understanding of the neuronal responses to speech, we should focus instead on representations obtained directly from the stimulus. We illustrate our view with a data-driven, information theoretic analysis of a dataset of 24 young, healthy humans who listened to a 1 h narrative while their magnetoencephalogram (MEG) was recorded. We find that two recent results, the improved performance of an encoding model in which annotated linguistic and acoustic features were combined and the decoding of phoneme subgroups from phoneme-locked responses, can be explained by an encoding model that is based entirely on acoustic features. These acoustic features capitalize on acoustic edges and outperform Gabor-filtered spectrograms, which can explicitly describe the spectrotemporal characteristics of individual phonemes. By replicating our results in publicly available electroencephalography (EEG) data, we conclude that models of brain responses based on linguistic features can serve as excellent benchmarks. However, we believe that in order to further our understanding of human cortical responses to speech, we should also explore low-level and parsimonious explanations for apparent high-level phenomena

    MULTIVARIATE MODELING OF COGNITIVE PERFORMANCE AND CATEGORICAL PERCEPTION FROM NEUROIMAGING DATA

    Get PDF
    State-of-the-art cognitive-neuroscience mainly uses hypothesis-driven statistical testing to characterize and model neural disorders and diseases. While such techniques have proven to be powerful in understanding diseases and disorders, they are inadequate in explaining causal relationships as well as individuality and variations. In this study, we proposed multivariate data-driven approaches for predictive modeling of cognitive events and disorders. We developed network descriptions of both structural and functional connectivities that are critical in multivariate modeling of cognitive performance (i.e., fluency, attention, and working memory) and categorical perceptions (i.e., emotion, speech perception). We also performed dynamic network analysis on brain connectivity measures to determine the role of different functional areas in relation to categorical perceptions and cognitive events. Our empirical studies of structural connectivity were performed using Diffusion Tensor Imaging (DTI). The main objective was to discover the role of structural connectivity in selecting clinically interpretable features that are consistent over a large range of model parameters in classifying cognitive performances in relation to Acute Lymphoblastic Leukemia (ALL). The proposed approach substantially improved accuracy (13% - 26%) over existing models and also selected a relevant, small subset of features that were verified by domain experts. In summary, the proposed approach produced interpretable models with better generalization.Functional connectivity is related to similar patterns of activation in different brain regions regardless of the apparent physical connectedness of the regions. The proposed data-driven approach to the source localized electroencephalogram (EEG) data includes an array of tools such as graph mining, feature selection, and multivariate analysis to determine the functional connectivity in categorical perceptions. We used the network description to correctly classify listeners behavioral responses with an accuracy over 92% on 35 participants. State-of-the-art network description of human brain assumes static connectivities. However, brain networks in relation to perception and cognition are complex and dynamic. Analysis of transient functional networks with spatiotemporal variations to understand cognitive functions remains challenging. One of the critical missing links is the lack of sophisticated methodologies in understanding dynamics neural activity patterns. We proposed a clustering-based complex dynamic network analysis on source localized EEG data to understand the commonality and differences in gender-specific emotion processing. Besides, we also adopted Bayesian nonparametric framework for segmentation neural activity with a finite number of microstates. This approach enabled us to find the default network and transient pattern of the underlying neural mechanism in relation to categorical perception. In summary, multivariate and dynamic network analysis methods developed in this dissertation to analyze structural and functional connectivities will have a far-reaching impact on computational neuroscience to identify meaningful changes in spatiotemporal brain activities

    Neural representation of speech segmentation and syntactic structure discrimination

    Get PDF

    Selective attention and speech processing in the cortex

    Full text link
    In noisy and complex environments, human listeners must segregate the mixture of sound sources arriving at their ears and selectively attend a single source, thereby solving a computationally difficult problem called the cocktail party problem. However, the neural mechanisms underlying these computations are still largely a mystery. Oscillatory synchronization of neuronal activity between cortical areas is thought to provide a crucial role in facilitating information transmission between spatially separated populations of neurons, enabling the formation of functional networks. In this thesis, we seek to analyze and model the functional neuronal networks underlying attention to speech stimuli and find that the Frontal Eye Fields play a central 'hub' role in the auditory spatial attention network in a cocktail party experiment. We use magnetoencephalography (MEG) to measure neural signals with high temporal precision, while sampling from the whole cortex. However, several methodological issues arise when undertaking functional connectivity analysis with MEG data. Specifically, volume conduction of electrical and magnetic fields in the brain complicates interpretation of results. We compare several approaches through simulations, and analyze the trade-offs among various measures of neural phase-locking in the presence of volume conduction. We use these insights to study functional networks in a cocktail party experiment. We then construct a linear dynamical system model of neural responses to ongoing speech. Using this model, we are able to correctly predict which of two speakers is being attended by a listener. We then apply this model to data from a task where people were attending to stories with synchronous and scrambled videos of the speakers' faces to explore how the presence of visual information modifies the underlying neuronal mechanisms of speech perception. This model allows us to probe neural processes as subjects listen to long stimuli, without the need for a trial-based experimental design. We model the neural activity with latent states, and model the neural noise spectrum and functional connectivity with multivariate autoregressive dynamics, along with impulse responses for external stimulus processing. We also develop a new regularized Expectation-Maximization (EM) algorithm to fit this model to electroencephalography (EEG) data
    corecore