110 research outputs found

    Combining Adaptive Coding and Modulation With Hierarchical Modulation in Satcom Systems

    Get PDF
    We investigate the design of a broadcast system in order to maximize throughput. This task is usually challenging due to channel variability. Forty years ago, Cover introduced and compared two schemes: time sharing and superposition coding. Even if the second scheme was proved to be optimal for some channels, modern satellite communications systems such as DVB-SH and DVB-S2 rely mainly on a time sharing strategy to optimize the throughput. They consider hierarchical modulation, a practical implementation of superposition coding, but only for unequal error protection or backward compatibility purposes. In this article, we propose to combine time sharing and hierarchical modulation together and show how this scheme can improve the performance in terms of available rate. We introduce a hierarchical 16-APSK to boost the performance of the DVB-S2 standard. We also evaluate various strategies to group the receivers in pairs when using hierarchical modulation. Finally, we show in a realistic case, based on DVB-S2, that the combined scheme can provide throughput gains greater than 10% compared to the best time sharing strategy

    Quasi-optimal grouping for broadcast systems with hierarchical modulation

    Get PDF
    Recently, we proposed to combine time sharing with hierarchical modulation to increase the transmission rate of broadcast systems. Our proposal involves to group the receivers in pairs in order to transmit with hierarchical modulation. We introduced several grouping strategies but the optimal matching remained an open question. In this letter, we show that the optimal grouping is the solution of an assignment problem, for which efficient algorithms exist such as the Hungarian method. Based on this algorithm, we study the performance of the optimal grouping in terms of spectrum efficiency for a DVB-S2 system.Comment: Submitte

    Identification of Technologies for Provision of Future Aeronautical Communications

    Get PDF
    This report describes the process, findings, and recommendations of the second of three phases of the Future Communications Study (FCS) technology investigation conducted by NASA Glenn Research Center and ITT Advanced Engineering & Sciences Division for the Federal Aviation Administration (FAA). The FCS is a collaborative research effort between the FAA and Eurocontrol to address frequency congestion and spectrum depletion for safety critical airground communications. The goal of the technology investigation is to identify technologies that can support the longterm aeronautical mobile communication operating concept. A derived set of evaluation criteria traceable to the operating concept document is presented. An adaptation of the analytical hierarchy process is described and recommended for selecting candidates for detailed evaluation. Evaluations of a subset of technologies brought forward from the prescreening process are provided. Five of those are identified as candidates with the highest potential for continental airspace solutions in L-band (P-34, W-CDMA, LDL, B-VHF, and E-TDMA). Additional technologies are identified as best performers in the unique environments of remote/oceanic airspace in the satellite bands (Inmarsat SBB and a custom satellite solution) and the airport flight domain in C-band (802.16e). Details of the evaluation criteria, channel models, and the technology evaluations are provided in appendixes

    Multilevel coding for non-orthogonal broadcast

    Get PDF
    This paper defines an information-theoretical framework for non-orthogonal broadcast systems with multilevel coding and gives design guidelines for the rate selection of multiple broadcast streams. This description includes hierarchical modulation and superposition coding with codes defined in a finite field as a special case. We show how multilevel coding can be applied to multiple antennas where, in contrast to most spacetime coding and hierarchical modulation schemes, no capacity loss occurs

    Application of advanced on-board processing concepts to future satellite communications systems: Bibliography

    Get PDF
    Abstracts are presented of a literature survey of reports concerning the application of signal processing concepts. Approximately 300 references are included

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Performance Study of Layered Division Multiplexing Based on SDR Platform

    Get PDF
    [EN] Two of the main drawbacks of the current broadcasting services are, on the one hand, the lack of flexibility to adapt to the new generation systems requirements, and on the other hand, the incapability of taking a piece of the current mobile services market. In this paper, Layered Division Multiplexing (LDM), which grew out of the concept of Cloud Txn, is presented as a very promising technique for answering those challenges and enhancing the capacity of broadcasting systems. The major contribution of this work is to present the first comprehensive study of the LDM performance behavior. In particular, in this paper, the theoretical considerations of the LDM implementation are completed with the first computer based simulations and laboratory tests, covering a wide range of stationary channels and the mobile TU-6 channel. The results will support LDM as a strong candidate for multiplexing different services in the next generation broadcasting systems, increasing both flexibility and performance.This work has been financially supported in part by the University of the Basque Country UPV/EHU (UFI 11/30), by the Basque Government (IT-683-13 and SAIOTEK), by the Spanish Ministry of Science and Innovation under the project NG-RADIATE (TEC2009-14201), by the Spanish Ministry of Economy and Competitiveness under the project HEDYT-GBB (TEC2012-33302) and the European Regional Development Fund (ERDF)

    64-APSK Constellation and Mapping Optimization for Satellite Broadcasting Using Genetic Algorithms

    Full text link
    DVB-S2 and DVB-SH satellite broadcasting standards currently deploy 16- and 32-amplitude phase shift keying (APSK) modulation using the consultative committee for space data systems (CCSDS) mapping. Such standards also include hierarchical modulation as a mean to provide unequal error protection in highly variable channels over satellite. Foreseeing the increasing need for higher data rates, this paper tackles the optimization of 64-APSK constellations to minimize the mean square error between the original and received symbol. Optimization is performed according to the sensitivity of the data to the channel errors, by means of genetic algorithms, a well-known technique currently used in a variety of application domains, when close form solutions are impractical. Test results show that through non-uniform constellation and asymmetric symbol mapping, it is possible to significantly reduce the distortion while preserving bandwidth efficiency. Tests performed on real signals based on perceptual quality measurements allow validating the proposed scheme against conventional 64-APSK constellations and CCSDS mapping
    • …
    corecore