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Quasi-optimal grouping for broadcast
systems with hierarchical modulation

H. Méric, J.M. Piquer and J. Lacan

Recently, the present authors proposed to combine time sharing with

hierarchical modulation to increase the transmission rate of broadcast

systems. The proposal involves grouping the receivers in pairs in

order to transmit with hierarchical modulation. Several grouping strat-

egies were introduced but the optimal matching remained an open

question. In this reported work, it is shown that the optimal grouping

is the solution of an assignment problem, for which efficient algorithms

exist such as the Hungarian method. Based on this algorithm, the per-

formance of the optimal grouping in terms of spectrum efficiency for a

digital video broadcasting – satellite – second generation (DVB-S2)

system is studied.

Introduction: Modern broadcasting systems such as digital video

broadcasting – satellite – second generation (DVB-S2) or digital video

broadcasting – satellite to handheld (DVB-SH) rely mainly on a time-

sharing strategy to optimise the transmission rate. Recently, we

showed that combining time sharing with hierarchical modulation, a

technique that merges several data streams in a same symbol, can

provide significant gains (in terms of spectrum efficiency) compared

with the best time-sharing strategy [1, 2].

In this Letter, we consider one source communicating with n re-

ceivers. The objective is to offer the same average spectrum efficiency

to all the receivers. We assume that the transmitter has knowledge of

the signal-to-noise ratio (SNR) at the receivers. A concrete example is

a DVB-S2 system that implements adaptive coding and modulation.

Moreover, the system also implements hierarchical modulation with

two layers, i.e. two data streams are merged in a same symbol.

Receiver i (1≤ i≤ n) has a spectrum efficiency Ri that corresponds to

the best spectrum efficiency it can manage. The value of Ri depends on

SNRi, the SNR of receiver i, and the transmission parameters (code rate

and modulation). For instance, if the source transmits a quadrature phase

shift keying (QPSK) modulated signal and the code rate is 1/3, then

Ri = 2 × 1/3 bit/symbol. However, if receiver i is paired with receiver j

(1≤ j≤ n, j≠ i) and hierarchical modulation is used, the spectrum effi-

ciency of receivers i and j is Rhm
ij , which depends on SNRi, SNRj and the

transmission parameters. The computation of Rhm
ij is detailed in [1].

During the transmission, the source can either communicate directly

with a receiver (called a single receiver) or group it with another receiver

and use hierarchical modulation (called paired receivers). This process is

called the grouping strategy or matching. Once the strategy is decided,

the average spectrum efficiency offered to all the receivers is

R =
∑

k

1

Rk

+
∑

(i, j)

1

Rhm
ij

( )−1

(1)

where the sum over k takes into account the single receivers and the sum

over (i, j) the paired receivers. Equation (1) is a direct extension of (9) in

[2]. As an example, Fig. 1 illustrates a system with eight receivers and a

given grouping strategy. In that case, the average spectrum efficiency is

R =
1

Rhm
1, 2

+
1

Rhm
3, 4

+
1

R5

+
1

R6

+
1

Rhm
7, 8

( )−1

(2)

Compared with our previous works [1, 2], the matching considered in

this Letter allows communicating directly with a receiver without

pairing it with another receiver. Thus, the framework is more general.

R5

R6R1,2
hm

R3,4
hm

R7,8
hm

Fig. 1 Broadcast system with eight receivers and given grouping strategy

Optimal matching: In [1], we introduced several grouping strategies.

Among the proposed strategies, the one that achieves the best

performance consists of grouping the two receivers with the largest

SNR difference and repeating this operation until each receiver is in a

pair. However, the optimal matching, i.e. the one that maximises the

average spectrum efficiency in (1), remains an open question.

For a system with n receivers, we note sn as the number of possible

strategies consisting of single or paired receivers. The sequence

(sn)n ≥ 1 verifies

sn = sn−1 + (n− 1)sn−2 (3)

for n≥ 3, with s1 = 1 and s2 = 2. To obtain (3), we consider a system with

n receivers. Then receiver n can either be a single receiver and in that

case we group the remaining n− 1 receivers; or receiver n can be

paired with another receiver (there are exactly n− 1 possibilities) and

we group the remaining n− 2 receivers. From (3), we can show by recur-

sion that sk≥ 2k for k≥ 5. For large broadcast systems, it is thus imposs-

ible to test all the possible matchings to determine the optimal one.

To obtain the optimal strategy, we write the problem in matrix form.

A grouping strategy can be represented by an n × n assignment matrix X,

where

Xi, j =
1, if receiver i is paired with receiver j

0, otherwise

{

(4)

By definition, X is symmetric and contains exactly n non-zero entries,

and also there is exactly one non-zero entry in each row and column.

In other words, X is a symmetric permutation matrix. Note that the

ones in the diagonal correspond to the single receivers. Then, we

define the n × n cost matrix C by

Ci, j =
1/Ri, if i = j

1/ 2Rhm
ij

( )

, if i = j

{

(5)

where 1≤ i, j≤ n. The cost matrix is also symmetric.

In combinatorial optimisation, the assignment problem can be formu-

lated as follows: given a cost matrix C, find an assignment (i.e. a set of n

entry positions, so no two of which lie in the same row or column) such

that the sum of the n entries is the smallest possible. The sum of the n

entries is the assignment cost. By noting that maximising the average

spectrum efficiency in (1) amounts to minimising the term

∑

k

1

Rk

+
∑

(i, j)

1

Rhm
ij

(6)

the optimal grouping strategy is (almost) equivalent to an assignment

problem with the cost matrix C defined in (5). Indeed, for a given group-

ing with assignment matrix X, the assignment cost of X is equal to (6).

The only difference with the classical problem is that X is required to be

symmetric.

Several efficient algorithms solve the general assignment problem.

For instance, the Munkres’ assignment algorithm or Hungarian

method solves it in polynomial time [3, 4]. For an n × n cost matrix,

the algorithm can achieve aO(n3) time complexity. The implementation

requires easy operations on the cost matrix. We use this method with the

cost matrix defined previously to obtain a quasi-optimal grouping.

Implementation issue: Henceforth, we have a heuristic to compute the

optimal matching. Given the cost matrix defined in (5), the Hungarian

method will always find a solution. However, the assignment matrix

provided by the algorithm may not be symmetric, while our problem

requires a symmetric X. We will now discuss the following two ques-

tions: (a) knowing that the cost matrix C is symmetric, is there always

a symmetric solution? and (b) can the Hungarian method find an

optimal symmetric X solution to our problem?

To answer (a), we consider the following cost matrix

C =

3 4 1

4 7 3

1 3 2







 (7)

where the bold and underlined numbers correspond to the two optimal

assignments. We conclude that even if C is symmetric, there is not

always a symmetric assignment matrix that solves the problem. Thus,

the Hungarian method only provides an upper bound for the spectral

efficiency, where the bound equals the inverse of the assignment cost

returned by the algorithm.

Concerning (b), we will present how to use the Munkres’ algorithm to

obtain a quasi-optimal matching. Our simulations with the cost matrix



defined previously show that the assignment matrix returned by the

Hungarian method is generally not symmetric. This may be due to the

fact that many coefficients in the matrix are the same. However, we

remark that for random matrices, the probability to obtain a symmetric

assignment matrix is greater. Thus, our idea is to add a small pertur-

bation to the cost matrix C and run the Hungarian method on the per-

turbed matrix C′. In practice, we compute C′ as follows: C′ = C + e,

where e is a symmetric matrix whose coefficients are drawn according

to N (0, s2) with σ = 10−3.

Using this technique, we obtained a symmetric assignment most of the

time (more details are given in the following Section). We then compared

the average spectrum efficiency of this grouping with the upper bound

computed by the Hungarian method. As the results demonstrate, the per-

formance of the matching obtained with the perturbed cost matrix is very

close to the upper bound, justifying the term quasi-optimal of ourmethod.

Performance evaluation: To evaluate the performance of the

quasi-optimal matching, we use the simulation framework proposed in

[1, 2]. We give the main characteristics. More details can be found in

the previous papers. First, the physical layer is based on theDVB-S2 stan-

dard [5]. The code rates and modulations are given in Table 1. The hier-

archical 16-APSK, which is not in the DVB-S2 standard, was introduced

in [1]. Then, the transmission is subject to additive white Gaussian noise.

Finally, the channel model to estimate the SNR distribution of the recei-

vers in a spot beam takes into account two sources of attenuation: the rela-

tive location of the terminal with respect to the centre of (beam) coverage

and the weather. For a given simulation, the only parameter to set is the

SNR at the centre of the spot beam SNRmax.

Table 1: Transmission parameters

Code rate 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, 9/10

Modulation
QPSK, 8-phase shift keying (PSK), 16-APSK, 32-APSK

hierarchical 8-PSK, hierarchical 16-APSK

Fig. 2 presents the gains (in terms of spectrum efficiency) when com-

bining hierarchical modulation with time sharing for a broadcasting area

with 500 receivers. For one system configuration (i.e. the parameter

SNRmax is set), we present the average, minimum and maximum gains

over 100 simulations for the quasi-optimal matching obtained with the

Hungarian method and for the best strategy in [1] (which was described

previously). The results demonstrate that the quasi-optimal strategy pro-

vides some gains compared with the strategy proposed in [1]. However,

the margin is small; in the best case (SNRmax = 9 dB), we increase the

performance from 6 to 8%. Even if we only notice a slight improvement,

the maximum gain is now known for our framework.
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Fig. 2 Average spectrum efficiency gains (in comparison with time sharing
without hierarchical modulation) for several matchings with 500 receivers

Wementioned before that the Hungarian algorithm does not generally

return a symmetric assignment. To tackle this problem, we proposed to

add a small perturbation to the cost matrix. During our simulations, our

technique did not succeed to find a symmetric assignment for only a few

cases: 8 simulations over 108 for SNRmax = 9 dB and 4 over 104 for

SNRmax = 10 dB. Our method is thus quite reliable to find a symmetric

assignment. Moreover, we compared the performance of the symmetric

assignment and the optimal assignment (provided by the Hungarian

method and not necessarily symmetric). In all the simulations, the differ-

ence between the two is <1%. In conclusion, we may not find the

optimal symmetric assignment (as we use a perturbed cost matrix) but

the performance is very close to the upper bound.

Finally, we were interested in studying the structure of the

quasi-optimal groupings. Are the matchings random or is there a pattern

(e.g. group the receivers with the largest SNR difference as in [1])? To

that end, we used the simulations to compute the probability that a coeffi-

cient in the assignment matrix X is equal to one, i.e. Pr(Xi,j = 1).

To observe if there exists a pattern in the grouping process, we sorted

the receivers by increasing SNR. With that representation, the best strat-

egy proposed in [1] corresponds to the anti-diagonal matrix. Indeed, this

strategy consists of grouping the two receivers with the largest SNR

difference and repeating this operation. After sorting the receiver by

increasing SNR, receiver 1 which has the lowest SNR is matched to

receiver n which has the largest SNR, so X1,n = Xn,1 = 1. For 1≤ k ≤ n,

receiver k is matched to receiver n + 1− k and the corresponding assign-

ment matrix is the anti-diagonal matrix. Note that time sharing, where

there is no grouping, always corresponds to the identity matrix.

We present the structure of the assignment matrix in Fig. 3 for several

values of SNRmax. We see clearly in Figs. 3b and c that the quasi-

optimal grouping usually matches low SNR receivers with large SNR

receivers. This explains why the matching proposed in [1] performs

well. Moreover, when the gains compared with time sharing are low

(see Figs. 3a and d ), the optimal matching exhibits many single recei-

vers as time sharing.
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Fig. 3 Structure of quasi-optimal assignment matrix (Pr(Xi,j= 1))

a SNRmax = 7 dB
b SNRmax = 10 dB
c SNRmax = 13 dB
d SNRmax = 16 dB

Conclusion: We have shown how to obtain a close-to-optimal (in terms

of spectrum efficiency) grouping strategy in a broadcast system that

relies on time sharing and hierarchical modulation with two layers.

The matching is the solution of an assignment problem that we solve

using the Hungarian method. We compared the performance of the

quasi-optimal strategy with a previously proposed matching and also

studied its behaviour. In a future work, we will investigate how to

obtain the optimal symmetric matching.
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