4,633 research outputs found

    Advanced of Mathematics-Statistics Methods to Radar Calibration for Rainfall Estimation; A Review

    Get PDF
    Ground-based radar is known as one of the most important systems for precipitation measurement at high spatial and temporal resolutions. Radar data are recorded in digital manner and readily ingested to any statistical analyses. These measurements are subjected to specific calibration to eliminate systematic errors as well as minimizing the random errors, respectively. Since statistical methods are based on mathematics, they offer more precise results and easy interpretation with lower data detail. Although they have challenge to interpret due to their mathematical structure, but the accuracy of the conclusions and the interpretation of the output are appropriate. This article reviews the advanced methods in using the calibration of ground-based radar for forecasting meteorological events include two aspects: statistical techniques and data mining. Statistical techniques refer to empirical analyses such as regression, while data mining includes the Artificial Neural Network (ANN), data Kriging, Nearest Neighbour (NN), Decision Tree (DT) and fuzzy logic. The results show that Kriging is more applicable for interpolation. Regression methods are simple to use and data mining based on Artificial Intelligence is very precise. Thus, this review explores the characteristics of the statistical parameters in the field of radar applications and shows which parameters give the best results for undefined cases. DOI: 10.17762/ijritcc2321-8169.15012

    Vertical transportation in buildings

    Get PDF
    Nowadays, the building industry and its associated technologies are experiencing a period of rapid growth, which requires an equivalent growth regarding technologies in the field of vertical transportation. Therefore, the installation of synchronised elevator groups in modern buildings is a common practice in order to govern the dispatching, allocation and movement of the cars shaping the group. So, elevator control and management has become a major field of application for Artificial Intelligence approaches. Methodologies such as fuzzy logic, artificial neural networks, genetic algorithms, ant colonies, or multiagent systems are being successfully proposed in the scientific literature, and are being adopted by the leading elevator companies as elements that differentiate them from their competitors. In this sense, the most relevant companies are adopting strategies based on the protection of their discoveries and inventions as registered patents in different countries throughout the world. This paper presents a comprehensive state of the art of the most relevant recent patents on computer science applied to vertical transportationConsejería de Innovación, Ciencia y Empresa, Junta de Andalucía P07-TEP-02832, Spain

    Review on load frequency control for power system stability

    Get PDF
    Power system stability is the capability of power systems to maintain load magnitude within specified limits under steady state conditions in electrical power transmission. In modern days, the electrical power systems have grown in terms of complexity due to increasing interconnected power line exchange. For that, an inherent of controllers were essential to correct the deviation in the presence of external disturbances. This paper hence aims to review the basic concepts of power system stability in load frequency control. Various control techniques were analyzed and presented. Power system stability can be classified in terms of method to improve power system stability, which are rotor angle stability, frequency stability and voltage stability. It is found that each method has different purpose and focus on solving different types of problem occurred. It is hoped that this study can contribute to clarify the different types of power system stability in terms of where it occurs, and which is the best method based on different situation

    Properties of Nucleon Resonances by means of a Genetic Algorithm

    Get PDF
    We present an optimization scheme that employs a Genetic Algorithm (GA) to determine the properties of low-lying nucleon excitations within a realistic photo-pion production model based upon an effective Lagrangian. We show that with this modern optimization technique it is possible to reliably assess the parameters of the resonances and the associated error bars as well as to identify weaknesses in the models. To illustrate the problems the optimization process may encounter, we provide results obtained for the nucleon resonances Δ\Delta(1230) and Δ\Delta(1700). The former can be easily isolated and thus has been studied in depth, while the latter is not as well known experimentally.Comment: 12 pages, 10 figures, 3 tables. Minor correction

    Electroencephalogram Signalling diagnosis using Softcomputing

    Get PDF
    The two most frightening things for the researchers in clinical signal processing and computer aided diagnosis are noise and relativity of human judgment. The researchers made effort to overcome these two challenges by using various soft computing approaches. In this article the present benefits of these approaches in the accomplishment of the analysis of electroencephalogram (EEG) is acknowledge. There is also the presentation of the significance of several trend and prospects of further softcomputing methods that can produce better results in signal processing of EEG. Medical experts apply the different softcomputing techniques for disease diagnoses and decision making systems performed on brain actions and modeling of neural impulses of the human encephalon
    corecore