563 research outputs found

    Combined Use of Terrestrial Laser Scanning and IR Thermography Applied to a Historical Building

    Get PDF
    Abstract: The conservation of architectural heritage usually requires a multidisciplinary approach involving a variety of specialist expertise and techniques. Nevertheless, destructive techniques should be avoided, wherever possible, in order to preserve the integrity of the historical buildings, therefore the development of non-destructive and non-contact techniques is extremely important. In this framework, a methodology for combining the terrestrial laser scanning and the infrared thermal images is proposed, in order to obtain a reconnaissance of the conservation state of a historical building. The proposed case study is represented by St. Augustine Monumental Compound, located in the historical centre of the town of Cosenza (Calabria, South Italy). Adopting the proposed methodology, the paper illustrates the main results obtained for the building test overlaying and comparing the collected data with both techniques, in order to outline the capabilities both to detect the anomalies and to improve the knowledge on health state of the masonry building. The 3D model, also, allows to provide a reference model, laying the groundwork for implementation of a monitoring multisensor system based on the use of non-destructive techniques

    Integrative IRT for documentation and interpretation of archaeological structures

    Get PDF
    The documentation of built heritage involves tangible and intangible features. Several morphological and metric aspects of architectural structures are acquired throughout a massive data capture system, such as the Terrestrial Laser Scanner (TLS) and the Structure from Motion (SfM) technique. They produce models that give information about the skin of architectural organism. Infrared Thermography (IRT) is one of the techniques used to investigate what is beyond the external layer. This technology is particularly significant in the diagnostics and conservation of the built heritage. In archaeology, the integration of data acquired through different sensors improves the analysis and the interpretation of findings that are incomplete or transformed. Starting from a topographic and photogrammetric survey, the procedure here proposed aims to combine the bidimensional IRT data together with the 3D point cloud. This system helps to overcome the Field of View (FoV) of each IRT image and provides a three-dimensional reading of the thermal behaviour of the object. This approach is based on the geometric constraints of the pair of RGB-IR images coming from two different sensors mounted inside a bi-camera commercial device. Knowing the approximate distance between the two sensors, and making the necessary simplifications allowed by the low resolution of the thermal sensor, we projected the colour of the IR images to the RGB point cloud. The procedure was applied is the so-called Nymphaeum of Egeria, an archaeological structure in the Caffarella Park (Rome, Italy), which is currently part of the Appia Antica Regional Park

    Non-destructive techniques (NDT) for the diagnosis of heritage buildings: Traditional procedures and futures perspectives

    Get PDF
    It is estimated that EU cultural heritage (CH) buildings represent 30% of the total existing stock. Nevertheless, all actions in terms of refurbishment need a deep knowledge based on the diagnosis of the built quality. For this reason, the paper aims to provide a comprehensive review about the applicability of non-destructive techniques (NDT) and advanced modelling technologies for the diagnosis of heritage buildings. Considering a time span of two decades (2001–2021), a bibliometric analysis was performed, using data statistics and science mapping. Subsequently, the most relevant studies on this topic were evaluated for each technique. The main findings revealed that: (i) most of studies were conducted on Southern European countries; (ii) 36% of publications were journal papers and only 2% corresponded to reviews; (iii) “photogrammetry” and “laser applications” were identified as consolidated techniques for historic preservation, but they are only linked with HBIM and deep learning; (iv) a significant gap on quantitative NDT was detected and consequently, future researches should be performed to propose a common diagnosis protocol; (v) artificial neural networks have several barriers (i.e. data privacy, network security and quality of datasets). Hence, a holistic approach should be adopted by the European countries

    Close-Range Sensing and Data Fusion for Built Heritage Inspection and Monitoring - A Review

    Get PDF
    Built cultural heritage is under constant threat due to environmental pressures, anthropogenic damages, and interventions. Understanding the preservation state of monuments and historical structures, and the factors that alter their architectural and structural characteristics through time, is crucial for ensuring their protection. Therefore, inspection and monitoring techniques are essential for heritage preservation, as they enable knowledge about the altering factors that put built cultural heritage at risk, by recording their immediate effects on monuments and historic structures. Nondestructive evaluations with close-range sensing techniques play a crucial role in monitoring. However, data recorded by different sensors are frequently processed separately, which hinders integrated use, visualization, and interpretation. This article’s aim is twofold: i) to present an overview of close-range sensing techniques frequently applied to evaluate built heritage conditions, and ii) to review the progress made regarding the fusion of multi-sensor data recorded by them. Particular emphasis is given to the integration of data from metric surveying and from recording techniques that are traditionally non-metric. The article attempts to shed light on the problems of the individual and integrated use of image-based modeling, laser scanning, thermography, multispectral imaging, ground penetrating radar, and ultrasonic testing, giving heritage practitioners a point of reference for the successful implementation of multidisciplinary approaches for built cultural heritage scientific investigations

    rigorous procedure for mapping thermal infrared images on three dimensional models of building facades

    Get PDF
    A rigorous methodology for mapping thermal and RGB images on three-dimensional (3-D) models of building facades is presented. The developed method differs from most existing approaches because it relies on the use of thermal images coupled with 3-D models derived from terrestrial laser scanning surveying. The primary issue for an accurate texturing is the coregistration of the geometric model of the facade and the thermal images in the same reference system. This task is done by using a procedure standing out from other approaches adopted in current practice, which are mainly based on the independent registration of each image on the basis of homography or space resection techniques. A rigorous photogrammetric orientation of both thermal and RGB images is computed together in a combined bundle adjustment. This solution allows one to have a better control of the quality of the results, especially to reduce errors and artifacts in areas where more images are mosaicked onto the 3-D model. Several products can be obtained: 3-D triangulated textured models or raster products like orthophotos, having the temperature as radiometric value. The proposed approach is tested on different buildings of Politecnico di Milano University. Applications demonstrated the performance of the procedure and its technical applicability in routine thermal surveys

    3D INTERPRETATION AND FUSION OF MULTIDISCIPLINARY DATA FOR HERITAGE SCIENCE: A REVIEW

    Get PDF
    Activities related to the protection of tangible heritage require extensive multidisciplinary documentation. The various raw data that occur have been oftentimes been processed, visualized and evaluated separately leading to aggregations of unassociated information of varying data types. In the direction of adopting complete approaches towards more effective decision making, the interpretation and fusion of these data in three dimensions, inserting topological information is deemed necessary. The present study addresses the achieved level of three-dimensional interpretation and fusion with geometric models of data originating from different fields, by providing an extensive review of the relevant literature. Additionally, it briefly discusses perspectives on techniques that could potentially be integrated with point clouds or models

    Review of InfraRed Thermography and Ground-Penetrating Radar applications for building assessment

    Get PDF
    The first appearance of concern for the good condition of a building dates back to ancient times. In recent years, with the emergence of new inspection technologies and the growing concern about climate change and people’s health, the concern about the integrity of building structures has been extended to their analysis as insulating envelopes. In addition, the growing network of historic buildings gives this sector special attention. Therefore, this study presents a comprehensive review of the application of two of the most common and most successful Non-Destructive Techniques (NDTs) when inspecting a building: InfraRed Thermography (IRT) and Ground-Penetrating Radar (GPR). To the best knowledge of the authors, it is the first time that a joint compilation of the state-of-the-art of both IRT and GPR for building evaluation is performed in the same work, with special emphasis on applications that integrate both technologies. The authors briefly explain the performance of each NDT, along with the individual and collective advantages of their uses in the building sector. Subsequently, an in-depth analysis of the most relevant references is described, according to the building materials to be studied and the purpose to be achieved: structural safety, energy efficiency and well-being, and heritage preservation. Then, three different case studies are presented with the aim of illustrating the potential of the combined use of IRT and GPR in the evaluation of buildings for the purposes defined. Last, the final remarks and future lines are described on the application of these two interesting inspection technologies in the preservation and conservation of the building sector.European Union Next GenerationEU/PRTRAgencia Estatal de Investigación | Ref. PDC2021-121239-C32Agencia Estatal de Investigación | Ref. RYC2019-026604-
    • …
    corecore