13 research outputs found

    Kombinatorikus Optimalizálás: Algoritmusok, Strukturák, Alkalmazások = Combinatorial optimization: algorithms, structures, applications

    Get PDF
    Mint azt az OTKA-pályázat munkaterve tartalmazza, a pályázatban résztvevő kutatók alkotják a témavezető irányításával működő Egerváry Jenő Kombinatorikus Optimalizálási Kutatócsoportot. A csoport a kutatási tervben szereplő több témában jelentős eredményeket ért el az elmúlt 4 évben, ezekről a pályázat résztvevőinek több mint 50 folyóiratcikke jelent meg, és számos rangos nemzetközi konferencián ismertetésre kerültek. Néhány kiemelendő eredmény: sikerült polinomiális kombinatorikus algoritmust adni irányított gráf pont-összefüggőségének növelésére; jelentős előrelépés történt a háromdimenziós térben merev gráfok jellemzésével és a molekuláris sejtéssel kapcsolatban; 2 dimenzióban sikerült bizonyítani Hendrickson sejtését; a párosításelméletben egy újdonságnak számító módszerrel számos új algoritmikus eredmény született; több, gráfok élösszefüggőségét jellemző tételt sikerült hipergráfokra általánosítani. | As the research plan indicates, the researchers participating in the project are the members of the Egerváry Research Group, led by the coordinator. The group has made important progress in the past 4 years in the research topics declared in the research plan. The results have been published in more than 50 journal papers, and have been presented at several prestigious international conferences. The most significant results are the following: a polynomial algorithm has been found for the node-connectivity augmentation problem of directed graphs; considerable progress has been made towards the characterization of 3-dimensional rigid graphs and towards the proof of the molecular conjecture; Hendrickson's conjecture has been proved in 2 dimensions; several new algorithmic results were obtained in matching theory using a novel approach; several theorems characterizing connectivity properties of graphs have been generalized to hypergraphs

    Approximating Minimum Cost Connectivity Orientation and Augmentation

    Get PDF
    We investigate problems addressing combined connectivity augmentation and orientations settings. We give a polynomial-time 6-approximation algorithm for finding a minimum cost subgraph of an undirected graph GG that admits an orientation covering a nonnegative crossing GG-supermodular demand function, as defined by Frank. An important example is (k,)(k,\ell)-edge-connectivity, a common generalization of global and rooted edge-connectivity. Our algorithm is based on a non-standard application of the iterative rounding method. We observe that the standard linear program with cut constraints is not amenable and use an alternative linear program with partition and co-partition constraints instead. The proof requires a new type of uncrossing technique on partitions and co-partitions. We also consider the problem setting when the cost of an edge can be different for the two possible orientations. The problem becomes substantially more difficult already for the simpler requirement of kk-edge-connectivity. Khanna, Naor, and Shepherd showed that the integrality gap of the natural linear program is at most 44 when k=1k=1 and conjectured that it is constant for all fixed kk. We disprove this conjecture by showing an Ω(V)\Omega(|V|) integrality gap even when k=2k=2

    Approximate min–max theorems for Steiner rooted-orientations of graphs and hypergraphs

    Get PDF
    Given an undirected hypergraph and a subset of vertices S subset of V with a specified root vertex r epsilon S, the STEINER ROOTFD-ORIENTATION problem is to find an orientation of all the hyperedges so that in the resulting directed hypergraph the "connectivity" from the root r to the vertices in S is maximized. This is motivated by a multicasting problem in undirected networks as well as a generalization of some classical problems in graph theory. The main results of this paper are the following approximate min-max relations: Given an undirected hypergraph H, if S is 2k-hyperedge-connected in H, then H has a Steiner rooted k-hyperarc-connected orientation. Given an undirected graph G, if S is 2k-element-connected in G, then G has a Steiner rooted k-element-connected orientation. Both results are tight in terms of the connectivity bounds. These also give polynomial time constant factor approximation algorithms for both problems. The proofs are based on submodular techniques, and a graph decomposition technique used in the STEINER TREE PACKING problem. Some complementary hardness results are presented at the end. (c) 2008 Elsevier Inc. All rights reserved

    Approximate min-max theorems of Steiner rooted-orientations of hypergraphs

    Get PDF
    Given an undirected hypergraph and a subset of vertices S ⊆ V with a specified root vertex r ∈ S, the STEINER ROOTED-ORIENTATION problem is to find an orientation of all the hyperedges so that in the resulting directed hypergraph the "connectivity" from the root r to the vertices in S is maximized. This is motivated by a multicasting problem in undirected networks as well as a generalization of some classical problems in graph theory. The main results of this paper are the following approximate min-max relations: • Given an undirected hypergraph H, if S is 2k-hyperedge-connected in H, then H has a Steiner rooted k-hyperarc-connected orientation. • Given an undirected graph G, if S is 2k-element-connected in G, then G has a Steiner rooted k-element-connected orientation. Both results are tight in terms of the connectivity bounds. These also give polynomial time constant factor approximation algorithms for both problems. The proofs are based on submodular techniques, and a graph decomposition technique used in the STEINER TREE PACKING problem. Some complementary hardness results are presented at the end. © 2006 IEEE

    Approximate min-max theorems for Steiner rooted-orientations of graphs and hypergraphs

    Get PDF
    Given an undirected hypergraph and a subset of vertices S ⊆ V with a specified root vertex r ∈ S, the Steiner Rooted-Orientation problem is to find an orientation of all the hyperedges so that in the resulting directed hypergraph the “connectivity” from the root r to the vertices in S is maximized. This is motivated by a multicasting problem in undirected networks as well as a generalization of some classical problems in graph theory. The main results of this paper are the following approximate min-max relations: • Given an undirected hypergraph H, if S is 2k-hyperedge-connected in H, then H has a Steiner rooted k-hyperarc-connected orientation. • Given an undirected graph G, if S is 2k-element-connected in G, then G has a Steiner rooted k-element-connected orientation. Both results are tight in terms of the connectivity bounds. These also give polynomial time constant factor approximation algorithms for both problems. The proofs are based on submodular techniques, and a graph decomposition technique used in the Steiner Tree Packing problem. Some complementary hardness results are presented at the end

    Connectivity and spanning trees of graphs

    Get PDF
    This dissertation focuses on connectivity, edge connectivity and edge-disjoint spanning trees in graphs and hypergraphs from the following aspects.;1. Eigenvalue aspect. Let lambda2(G) and tau( G) denote the second largest eigenvalue and the maximum number of edge-disjoint spanning trees of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and bounds of tau(G), Cioaba and Wong conjectured that for any integers d, k ≥ 2 and a d-regular graph G, if lambda 2(G)) \u3c d -- 2k-1d+1 , then tau(G) ≥ k. They proved the conjecture for k = 2, 3, and presented evidence for the cases when k ≥ 4. We propose a more general conjecture that for a graph G with minimum degree delta ≥ 2 k ≥ 4, if lambda2(G) \u3c delta -- 2k-1d+1 then tau(G) ≥ k. We prove the conjecture for k = 2, 3 and provide partial results for k ≥ 4. We also prove that for a graph G with minimum degree delta ≥ k ≥ 2, if lambda2( G) \u3c delta -- 2k-1d +1 , then the edge connectivity is at least k. As corollaries, we investigate the Laplacian and signless Laplacian eigenvalue conditions on tau(G) and edge connectivity.;2. Network reliability aspect. With graphs considered as natural models for many network design problems, edge connectivity kappa\u27(G) and maximum number of edge-disjoint spanning trees tau(G) of a graph G have been used as measures for reliability and strength in communication networks modeled as graph G. Let kappa\u27(G) = max{lcub}kappa\u27(H) : H is a subgraph of G{rcub}. We present: (i) For each integer k \u3e 0, a characterization for graphs G with the property that kappa\u27(G) ≤ k but for any additional edge e not in G, kappa\u27(G + e) ≥ k + 1. (ii) For any integer n \u3e 0, a characterization for graphs G with |V(G)| = n such that kappa\u27(G) = tau( G) with |E(G)| minimized.;3. Generalized connectivity. For an integer l ≥ 2, the l-connectivity kappal( G) of a graph G is defined to be the minimum number of vertices of G whose removal produces a disconnected graph with at least l components or a graph with fewer than l vertices. Let k ≥ 1, a graph G is called (k, l)-connected if kappa l(G) ≥ k. A graph G is called minimally (k, l)-connected if kappal(G) ≥ k but ∀e ∈ E( G), kappal(G -- e) ≤ k -- 1. A structural characterization for minimally (2, l)-connected graphs and some extremal results are obtained. These extend former results by Dirac and Plummer on minimally 2-connected graphs.;4. Degree sequence aspect. An integral sequence d = (d1, d2, ···, dn) is hypergraphic if there is a simple hypergraph H with degree sequence d, and such a hypergraph H is a realization of d. A sequence d is r-uniform hypergraphic if there is a simple r- uniform hypergraph with degree sequence d. It is proved that an r-uniform hypergraphic sequence d = (d1, d2, ···, dn) has a k-edge-connected realization if and only if both di ≥ k for i = 1, 2, ···, n and i=1ndi≥ rn-1r-1 , which generalizes the formal result of Edmonds for graphs and that of Boonyasombat for hypergraphs.;5. Partition connectivity augmentation and preservation. Let k be a positive integer. A hypergraph H is k-partition-connected if for every partition P of V(H), there are at least k(| P| -- 1) hyperedges intersecting at least two classes of P. We determine the minimum number of hyperedges in a hypergraph whose addition makes the resulting hypergraph k-partition-connected. We also characterize the hyperedges of a k-partition-connected hypergraph whose removal will preserve k-partition-connectedness
    corecore