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Approximate Min-Max Theorems for Steiner
Rooted-Orientations of Graphs and Hypergraphs

Tamás Király? and Lap Chi Lau??

Abstract

Given an undirected hypergraph and a subset of vertices S ⊆ V with a
specified root vertex r ∈ S, the Steiner Rooted-Orientation problem is
to find an orientation of all the hyperedges so that in the resulting directed
hypergraph the “connectivity” from the root r to the vertices in S is maximized.
This is motivated by a multicasting problem in undirected networks as well as
a generalization of some classical problems in graph theory. The main results
of this paper are the following approximate min-max relations:

• Given an undirected hypergraph H, if S is 2k-hyperedge-connected in H,
then H has a Steiner rooted k-hyperarc-connected orientation.

• Given an undirected graph G, if S is 2k-element-connected in G, then G
has a Steiner rooted k-element-connected orientation.

Both results are tight in terms of the connectivity bounds. These also give
polynomial time constant factor approximation algorithms for both problems.
The proofs are based on submodular techniques, and a graph decomposition
technique used in the Steiner Tree Packing problem. Some complementary
hardness results are presented at the end.

1 Introduction

Let H = (V, E) be an undirected hypergraph. An orientation of H is obtained by
assigning a direction to each hyperedge in H. In our setting, a hyperarc (a directed
hyperedge) is a hyperedge with a designated tail vertex and other vertices as head
vertices. Given a set S ⊆ V of terminal vertices (the vertices in V − S are called
the Steiner vertices) and a root vertex r ∈ S, we say a directed hypergraph is Steiner
rooted k-hyperarc-connected if there are k hyperarc-disjoint paths from the root vertex
r to each terminal vertex in S. Here, a path in a directed hypergraph is an alternating
sequence of distinct vertices and hyperarcs {v0, a0, v1, a1, . . . , ak−1, vk} so that vi
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1.1 Previous Work 2

is the tail of ai and vi+1 is a head of ai for all 0 ≤ i < k. The Steiner Rooted-
Orientation problem is to find an orientation of H so that the resulting directed
hypergraph is Steiner rooted k-hyperarc-connected, and our objective is to maximize
k.

When the Steiner Rooted-Orientation problem specializes to graphs, it is
a common generalization of some classical problems in graph theory. When there
are only two terminals (S = {r, v}), it is the edge-disjoint paths problem solved by
Menger [34]. When all vertices in the graph are terminals (S = V ), it can be shown
to be equivalent to the edge-disjoint spanning trees problem solved by Tutte [38] and
Nash-Williams [36]. An alternative common generalization of the above problems is
the Steiner Tree Packing problem studied in [25, 21, 26]. Notice that if a graph
G has k edge-disjoint Steiner trees (i.e. trees that connect the terminal vertices S),
then G has a Steiner rooted k arc-connected orientation. The converse, however, is
not true. As we shall see, significantly sharper approximate min-max relations and
also approximation ratio can be achieved for the Steiner Rooted-Orientation
problem, especially when we consider hyperarc-connectivity and element-connectivity.
This has implications in the network multicasting problem, which will be discussed
later.

Given a hypergraph H, we say S is k-hyperedge-connected in H if there are k
hyperedge-disjoint paths between every pair of vertices in S. It is not difficult to see
that for a hypergraph H to have a Steiner rooted k-hyperarc-connected orientation,
S must be at least k-hyperedge-connected in H. The main focus of this paper is to
determine the smallest constant c so that the following holds: If S is ck-hyperedge-
connected in H, then H has a Steiner rooted k-hyperarc-connected orientation.

1.1 Previous Work

Graph orientations is a well-studied subject in the literature, and there are many ways
to look at such questions (see [2]). Here we focus on graph orientations achieving high
connectivity. A directed graph is strongly k-arc-connected if there are k arc-disjoint
paths between every ordered pair of vertices. The starting point of this line of research
is a theorem by Robbins [37] which says that an undirected graph G has a strongly 1-
arc-connected orientation if and only if G is 2-edge-connected. In the following λ(x, y)
denotes the maximum number of edge-disjoint paths from x to y, which is called the
local-edge-connectivity from x to y. Nash-Williams [35] proved the following deep
generalization of Robbins’ theorem which achieves optimal local-arc-connectivity for
all pairs of vertices:

Every undirected graph G has an orientation D so that λD(x, y) ≥
bλG(x, y)/2c for all x, y ∈ V .

Nash-Williams’ original proof is quite complicated, and until now this is the only
known orientation result achieving high local-arc-connectivity. Subsequently, Frank,
in a series of works [11, 12, 14, 16], developed a general framework to solve graph ori-
entation problems achieving high global-arc-connectivity by using the submodular flow
problem introduced by Edmonds and Giles [7]. With this powerful tool, Frank greatly
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extended the range of orientation problems that can be solved concerning global-arc-
connectivity. Some examples include finding a strongly k-arc-connected orientation
with minimum weight [12], with in-degree constraints [11] and in mixed graphs [14].
Recently, this framework has been generalized to solve hypergraph orientation prob-
lems achieving high global-hyperarc-connectivity [18].

Extending graph orientation results to local hyperarc-connectivity or to vertex-
connectivity is more challenging. For the Steiner Rooted-Orientation problem,
the only known result follows from Nash-Williams’ orientation theorem: if S is 2k-
edge-connected in an undirected graph G, then G has a Steiner rooted k-arc-connected
orientation. For hypergraphs, there is no known orientation result concerning Steiner
rooted-hyperarc-connectivity. A closely related problem of characterizing hypergraphs
that have a Steiner strongly k-hyperarc-connected orientation is posted as an open
problem in [9] (and more generally an analog of Nash-Williams’ orientation theorem
in hypergraphs). For orientation results concerning vertex-connectivity, very little is
known even for global rooted-vertex-connectivity (when there are no Steiner vertices).
Frank [15] made a conjecture on a necessary and sufficient condition for the existence
of a strongly k-vertex-connected orientation, which in particular would imply that a
2k-vertex-connected graph has a strongly k-vertex-connected orientation (and hence
a rooted k-vertex-connected orientation). The only positive result along this line is a
sufficient condition due to Jordán [23] for the case k = 2: Every 18-vertex-connected
graph has a strongly 2-vertex-connected orientation.

1.2 Results

The main result of this paper is the following approximate min-max theorem on
hypergraphs. This gives a positive answer to the rooted version of the question in [9].

Theorem 1.1. Suppose H is an undirected hypergraph, S is a subset of terminal
vertices with a specified root vertex r ∈ S. Then H has a Steiner rooted k-hyperarc-
connected orientation if S is 2k-hyperedge-connected in H.

Theorem 1.1 is best possible in terms of the connectivity bound. This is shown by
any 2k-regular 2k-edge-connected non-complete graph G by setting S = V (G) (e.g.
a 2k-dimensional hypercube). We remark that no analogous result can be obtained
for Steiner strongly k-hyperarc-connected orientations: for every constant C, there
are hypergraphs which are Ck-hyperedge-connected but do not have a strongly k-
hyperarc-connected orientation.

The proof of Theorem 1.1 is constructive, and implies a polynomial time constant
factor approximation algorithm for the problem. When the above theorem specializes
to graphs, this gives a new and simpler algorithm (without using Nash-Williams’
orientation theorem) to find a Steiner rooted k-arc-connected orientation in a graph
when S is 2k-edge-connected in G. On the other hand, we prove that finding an
orientation which maximizes the Steiner rooted-arc-connectivity in a graph is NP-
complete (Theorem 6.1).

Following the notation on approximation algorithms on graph connectivity prob-
lems, by an element we mean either an edge or a Steiner vertex. For graph connectiv-
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ity problems, element-connectivity is regarded as of intermediate difficulty between
vertex-connectivity and edge-connectivity (see [22, 8]). A directed graph is Steiner
rooted k-element-connected if there are k element-disjoint directed paths from r to
each terminal vertex in S. We prove the following approximate min-max theorem
on element-connectivity, which is tight in terms of the connectivity bound. We also
prove the NP-completeness of this problem (Theorem 6.4).

Theorem 1.2. Suppose G is an undirected graph, S is a subset of terminal vertices
with a specified root vertex r ∈ S. Then G has a Steiner rooted k-element-connected
orientation if S is 2k-element-connected in G.

1.3 Techniques

Since Nash-Williams’ orientation theorem, little progress has been made on orienta-
tion problems concerning local-arc-connectivity, local-hyperarc-connectivity or vertex-
connectivity. The difficulty is largely due to a lack of techniques to work with these
more sophisticated connectivity notions. The main technical contribution of this pa-
per is a new method to use the submodular flow problem. A key ingredient in the
proof of Theorem 1.1 is the use of an “extension property” (see [26, 27]) to help de-
compose a general hypergraph into hypergraphs with substantially simpler structures.
Then, in those simpler hypergraphs, we apply the submodular flows technique in a
very effective way to solve the problem (and also prove the extension property). An
important building block of our approach is the following class of polynomial time
solvable graph orientation problems, which we call the Degree-Specified Steiner
Rooted-Orientation problem.

Theorem 1.3. Suppose G is an undirected graph, S is a subset of terminal vertices
with a specified root vertex r ∈ S, and m is an in-degree specification on the Steiner
vertices (i.e. m : (V (G)− S) → Z+). Then deciding whether G has a Steiner rooted
k-arc-connected orientation with the specified in-degrees can be solved in polynomial
time.

Perhaps Theorem 1.3 does not seem to be very useful at first sight, but it turns out
to be surprisingly powerful in some situations when we have a rough idea on what the
indegrees of Steiner vertices should be like. To prove Theorem 1.3, we shall reduce this
problem to a submodular flow problem from which we can also derive a sufficient and
necessary condition for the existence of a Steiner rooted k-arc-connected orientation.
This provides us with a crucial tool in establishing the approximate min-max relations.

Interestingly, the proof of Theorem 1.2 is also based on the Degree-Specified
Steiner Rooted-Orientation problem (Theorem 1.3) which is designed for edge-
connectivity problems. For a similar step in the hypergraph orientation problem, we
shall use a technique in [5] to obtain a graph with simpler structures.

1.4 The Network Multicasting Problem

The Steiner Rooted-Orientation problem is motivated by the multicasting prob-
lem in computer networks, where the root vertex (the sender) must transmit all its
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data to the terminal vertices (the receivers) and the goal is to maximize the trans-
mission rate that can be achieved simultaneously for all receivers. The connection is
through a beautiful min-max theorem by Ahlswede et. al. [1]:

Given a directed multigraph with unit capacity on each arc, if there are k
arc-disjoint paths from the root vertex to each terminal vertex, then the
root vertex can transmit k units of data to all terminal vertices simulta-
neously.

They prove the theorem by introducing the innovative idea of network coding [1], which
has generated much interest from information theory to computer science. These stud-
ies focus on directed networks, for example the Internet, where the direction of data
movement on each link is fixed a priori. On the other hand, there are practical net-
works which are undirected, i.e. data can be sent in either direction along a link.
By using the theorem by Ahlswede et. al., computing the maximum multicasting
rate in undirected networks (with network coding supported) reduces to the Steiner
Rooted-Orientation problem. This has been studied in the graph model [29, 30]
and efficient (approximation) algorithms have been proposed. An important example
of undirected networks is wireless networks (equipped with omni-directional anten-
nas), for which many papers have studied the advantages of incorporating network
coding (see [32] and the references therein). However, there are some aspects of wire-
less communications that are not captured by a graph model. One distinction is that
wireless communications in such networks are inherently one-to-many instead of one-
to-one. This motivates researchers to use the directed hypergraph model (see [6, 32])
to study the multicasting problem in wireless networks. A simple reduction shows
that the above theorem by Ahlswede el. al. applies to directed hypergraphs as well.
Therefore, computing the maximum multicasting rate in an undirected hypergraph
(with network coding supported) reduces to the Steiner Rooted-Orientation
problem of hypergraphs.

In the multicasting problem, the Steiner Tree Packing problem is used to
transmit data when network coding is not supported. However, one cannot hope
for analogous results of Theorem 1.1 or Theorem 1.2 for the corresponding Steiner
Tree Packing problems. In fact, both the hyperedge-disjoint Steiner tree packing
problem and the element-disjoint Steiner tree packing problem are shown to be NP-
hard to approximate within a factor of Ω(log n) [5]. (It was also shown in [4] that no
constant connectivity bound implies the existence of two hyperedge-disjoint spanning
sub-hypergraphs.) As a consequence, Theorem 1.1 indicates that multicasting with
network coding in the hypergraph model could be much more efficient in terms of the
throughput achieved (an Ω(log n) gap in the worst case).

2 The Basics

Let H = (V, E) be an undirected hypergraph. Given X ⊆ V , we say a hyperedge
e enters X if 0 < |e ∩ X| < |e|. The rank of H is the cardinality of the largest
hyperedge of H. We define δH(X) to be the set of hyperedges that enter X, and
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dH(X) := |δH(X)|. We also define E(X) to be the number of induced hyperedges

in X. In a directed hypergraph ~H = (V,
−→E ), a hyperarc a enters a set X if the tail

of a is not in X and some head of a is in X. We define δin
~H
(X) to be the set of

hyperarcs that enter X, and din
~H
(X) := |δin

~H
(X)|. Similarly, a hyperarc a leaves a set

X if a enters V −X. We define δout
~H

(X) to be the set of hyperarcs that leave X, and

dout
~H

(X) := |δout
~H

(X)|.
Let V be a finite ground set. Two subsets X and Y are intersecting if X − Y ,

Y −X, X ∩ Y are all non-empty. X and Y are crossing if they are intersecting and
X ∪ Y 6= V . For a function m : V → R we use the notation m(X) :=

∑
(m(x) : x ∈

X). Let f : 2V → R be a function defined on the subsets of V . The set-function f is
called (intersecting, crossing) submodular if the following inequality holds for any two
(intersecting, crossing) subsets X and Y of V :

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ). (1)

The set function f is called (intersecting, crossing) supermodular if the reverse in-
equality of (1) holds for any two (intersecting, crossing) subsets X and Y of V .

2.1 Submodular Flows and Graph Orientations

Now we introduce the submodular flow problem. Let D = (V, A) be a digraph,
F be a crossing family of subsets of V (if X, Y are two crossing sets in F , then
X ∪ Y,X ∩ Y ∈ F), and b : F → Z be a crossing submodular function. Given such
D,F , b, a submodular flow is a function x : A→ R satisfying:

xin(U)− xout(U) ≤ b(U) for each U ∈ F .

Given two functions f : A → Z ∪ {−∞} and g : A → Z ∪ {∞}, a submodular
flow is feasible with respect to f, g if f(a) ≤ x(a) ≤ g(a) holds for all a ∈ A. The
Edmonds-Giles theorem [7] (roughly) says that the set of feasible submodular flows
(with respect to given D,F , b, f, g) has an integer optimal solution for any objective
function min{

∑
a∈A(D) c(a) · x(a)}. From the Edmonds-Giles theorem, Frank [13]

derived a necessary and sufficient condition to have a feasible submodular flow if b is
intersecting submodular. From this characterization, using the same approach as in
[14, 16], we can derive the following theorem for finding an orientation covering an
intersecting supermodular function. Let h : 2V → Z be an integer valued set-function
with h(∅) = h(V ) = 0. We say an orientation ~H covers h if din

~H
(X) ≥ h(X) for all

X ⊆ V .

Theorem 2.1. Let G = (V, E) be an undirected graph. Let h : 2V → Z ∪ {−∞}
be an intersecting supermodular function with h(∅) = h(V ) = 0. Then there exists an
orientation D of G satisfying

din
D (X) ≥ h(X) for all X ⊂ V

if and only if

eP ≥
t∑

i=1

h(Xi)
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2.2 Mader’s Splitting-Off Theorem 7

holds for every subpartition P = {X1, X2, . . . , Xt} of V . Here eP counts the number
of edges which enter some member of P.

Our original approach used Theorem 2.1 as the basis for the results of Section 3
(see [28]), which works for arbitrary intersecting supermodular functions. For non-
negative intersecting supermodular functions (which include the Degree-Specified
Steiner Rooted-Orientation problem), we can simplify the proofs by using the
following results.

Lemma 2.2. ([19]) Let G = (V, E) be an undirected graph, x : V → Z+ an indegree
specification, and h : 2V → Z+ a non-negative function. Then G has an orientation
D that covers h and din

D (v) = x(v) for every v ∈ V if and only if

x(X) ≥ E(X) + h(X) for every X ⊆ V .

Theorem 2.3. (see [31]) Let h : 2V → Z+ be a non-negative intersecting supermod-
ular set function, and let l be a non-negative integer. The polyhedron

B := {x ∈ RV : x(X) ≥ h(X) for X ⊆ V , x(V ) = l}

is non-empty if and only if the following conditions hold:

1. h(∅) = 0,

2.
∑

X∈F h(X) ≤ l for every partition F of V .

If B is non-empty, then it is a base polyhedron, so its vertices are integral.

2.2 Mader’s Splitting-Off Theorem

Let G be an undirected graph. Splitting-off a pair of edges e = uv, f = vw means that
we replace e and f by a new edge uw (parallel edges may arise). The resulting graph
will be denoted by Gef . When a splitting-off operation is performed, the local edge-
connectivity never increases. The content of the splitting-off theorem is that under
certain conditions there is an appropriate pair of edges {e = uv, f = vw} whose
splitting-off preserves all local or global edge-connectivity between vertices distinct
from v. The following theorem by Mader [33] proves to be very useful in attacking
edge-connectivity problems.

Theorem 2.4. Let G = (V, E) be a connected undirected graph in which 0 < dG(s) 6= 3
and there is no cut-edge incident with s. Then there exists a pair of edges e = su, f =
st so that λG(x, y) = λGef (x, y) holds for every x, y ∈ V − s.

3 Degree-Specified Steiner Orientations

In this section we consider the Degree-Specified Steiner Orientation prob-
lem1, which will be the basic tool for proving the main theorems. Note that we shall

1 The study of this problem is suggested by Frank (personal communication).
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Section 3. Degree-Specified Steiner Orientations 8

only consider this problem in graphs. Given a graph G = (V, E), a terminal set
S ⊆ V (G) and a connectivity requirement function h : 2S → Z, we say the connectiv-
ity requirement function h∗ : 2V → Z is the Steiner extension of h if h∗(X) = h(X∩S)
for every X ⊆ V . Suppose G, S, h are given as above, and an indegree specification
m(v) for each Steiner vertex is given. The goal of the Degree-Specified Steiner
Orientation problem is to find an orientation D of G that covers the Steiner exten-
sion h∗ of h, with an additional requirement that din

D (v) = m(v) for every v ∈ V (G)−S.
This problem is a generalization of the hypergraph orientation problem studied in

[3, 18, 24]. Given a hypergraph H = (V, E), we construct the bipartite representation
B of H for which the terminal vertices correspond to V (H) and the Steiner vertices
correspond to E(H). Now, by specifying the indegree of each Steiner vertex to be
exactly 1, an orientation of B with the specified indegrees corresponds to a hypergraph
orientation of H.

We show that the Degree-Specified Steiner Orientation problem can be
solved in polynomial time if h is a non-negative intersecting supermodular set func-
tion. Notice that h∗ is not an intersecting submodular function in general, and there-
fore Theorem 2.3 (or Theorem 2.1) cannot be directly applied. Nonetheless, we can
reformulate the problem so that we can use Theorem 2.3.

Since the indegrees of the vertices in V − S are fixed, we have to determine the
indegrees of the vertices in S. By Lemma 2.2, a vector x : S → Z+ with x(S) =
|E| −m(V − S) is the vector of indegrees of a degree-specified Steiner orientation if
and only if x(X) + m(Z) ≥ h(X) + E(X ∪ Z) for every X ⊆ S and Z ⊆ V − S. Let
us define the following set function on S:

h′(X) := h(X) + max
Z⊆V−S

(E(X ∪ Z)−m(Z)) for X ⊆ S.

It follows that there is a degree-specified Steiner orientation such that x is the vector
of indegrees of the vertices of S if and only if x(X) ≥ h′(X) for every X ⊆ S and
x(S) = |E| −m(V − S).

Lemma 3.1. The set function h′ is intersecting supermodular if h is intersecting
supermodular.

Proof. Let X1 ⊆ S and X2 ⊆ S be two intersecting sets. There are sets
Z1 ⊆ V − S and Z2 ⊆ V − S such that h′(X1) = h(X1) + E(X1 ∪ Z1) −m(Z1) and
h′(X2) = h(X2)+E(X2∪Z2)−m(Z2). By the properties of the set functions involved,
we have the following inequalities:

• h(X1) + h(X2) ≤ h(X1 ∩X2) + h(X1 ∪X2).

• E(X1∪Z1)+E(X2∪Z2) ≤ E((X1∩X2)∪ (Z1∩Z2))+E((X1∪X2)∪ (Z1∪Z2)).

• m(Z1) + m(Z2) = m(Z1 ∩ Z2) + m(Z1 ∪ Z2).
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Thus

h′(X1) + h′(X2)

= h(X1) + h(X2) + E(X1 ∪ Z1) + E(X2 ∪ Z2)−m(Z1)−m(Z2)

≤ h(X1 ∩X2) + E((X1 ∩X2) ∪ (Z1 ∩ Z2))−m(Z1 ∩ Z2) + h(X1 ∪X2)
+E((X1 ∪X2) ∪ (Z1 ∪ Z2))−m(Z1 ∪ Z2)

≤ h′(X1 ∩X2) + h′(X1 ∪X2).

Let us consider the following polyhedron:

B := {x ∈ RS : x(X) ≥ h′(X) for every X ⊆ S, x(S) = |E| −m(V − S).}

The integer vectors of this polyhedron correspond to indegree vectors of degree-
specified Steiner orientations. By Theorem 2.3, B is non-empty if and only if the
following two conditions hold:

1. h′(∅) = 0,

2.
∑

X∈F h′(X) ≤ |E| −m(V − S) for every partition F of S.

If B is non-empty, then it is a base polyhedron, so its vertices are integral. As we have
seen, such a vertex is the indegree vector of a degree-specified Steiner orientation.
Thus the non-emptiness of B is equivalent to the existence of a degree-specified ori-
entation. Since a vertex of a base polyhedron given by an intersecting supermodular
set function can be found in polynomial time, we obtained the following results:

Theorem 3.2. Let G = (V, E) be an undirected graph with a terminal set S ⊆ V .
Let h : 2S → Z+ be a non-negative intersecting supermodular set function and m :
(V − S) → Z+ be an indegree specification. Then G has an orientation covering the
Steiner extension h∗ of h with the specified indegrees if and only if E(Z) ≤ m(Z) for
every Z ⊆ V − S and for every partition F of S∑

X∈F

(h(X) + max
Z⊆V−S

(E(X ∪ Z)−m(Z))) ≤ |E| −m(V − S).

Theorem 3.3. If h is non-negative and intersecting supermodular, then the Deg-
ree-Specified Steiner Orientation problem can be solved in polynomial time.

We remark that while Theorem 3.2 is not true without the non-negativity condition,
the degree-specified Steiner orientation problem can be solved in polynomial time for
arbitrary intersecting supermodular connectivity requirement functions. In fact the
following, more general result is also true:

Theorem 3.4. Let G = (V, E) be an undirected graph with a terminal set S ⊆ V . Let
h : 2V → Z be a set function with the property that h(X)+h(Y ) ≤ h(X∩Y )+h(X∪Y )
whenever X ∩Y ∩S 6= ∅, and h(∅) = h(V ) = 0. Let m : (V −S)→ Z+ be an indegree
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3.1 Steiner Rooted-Orientations of Graphs 10

specification. Then G has an orientation covering h with the specified indegrees if and
only if

eP ≥
t∑

i=1

h′(Xi)

holds for every subpartition P = {X1, X2, . . . , Xt} of V , where h′(X) :=
maxY {h(X ∪ Y ) + d(X,Y ) + E(Y )−m(Y )} for each X ⊆ S, Y ⊆ V − S
m(X) for each X = {v}, v ∈ V − S,
0 if X = ∅ or X = V,
−∞ otherwise.

An orientation can be found in polynomial time using submodular flows.

We omit the proof of this theorem, since it is not needed for the main results of
the paper. The main observations needed for the proof are that G has an orientation
covering h with the specified indegrees if and only if it has an orientation covering
h′, and that the set function h′ is intersecting supermodular. Therefore we can use
Theorem 2.1 for h′.

An example where the connectivity requirement function can have negative values
is the degree specified Steiner orientation of a mixed graph. A mixed graph G on a
ground set V consists of a set E of undirected edges and a set A of directed edges.
An orientation of G is a directed graph obtained by orienting all edges in E. So G
has an orientation that covers a given set function h if and only if the undirected
graph G′ = (V, E) has an orientation that covers h− din

A . The latter set function can
have negative values, but we can use Theorem 3.4 if h is the Steiner extension of an
intersecting supermodular set function.

3.1 Steiner Rooted-Orientations of Graphs

In the following we focus on the Steiner Rooted Orientation problem. First
we derive Theorem 1.3 as a corollary of Theorem 3.2. In contrast with Theorem 3.3,
the Steiner Rooted Orientation problem is NP-complete (Theorem 6.1). That
said, in general, finding an in-degree specification for the Steiner vertices to maximize
the Steiner rooted-edge-connectivity is hard.

Proof of Theorem 1.3: Let S be the set of terminal vertices and r ∈ S be the root
vertex. Set h(X) := k for every X ⊆ S with r /∈ X, and h(X) := 0 otherwise. Then h
is an intersecting supermodular function on S. By Menger’s theorem, an orientation
is Steiner rooted k-arc-connected if and only if it covers the Steiner extension of h.
Thus, by Theorem 3.2, the problem of finding a Steiner rooted-orientation with the
specified indegrees can be solved in polynomial time.

The following theorem can be derived from Theorem 3.2, which will be used to
prove a special case of Theorem 1.1. This is one of the examples that the Degree-
Specified Steiner Orientation problem is useful. The key observation is that
we can “hardwire” the indegrees of the Steiner vertices to be 1, which can be seen by
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using submodularity. The following theorem is also implicit in [3], we omit the proof
here.

Theorem 3.5. Let G = (V, E) be an undirected graph with terminal set S ⊆ V (G).
If every Steiner vertex (vertices in V (G) − S) is of degree at most 3 and there is no
edge between two Steiner vertices in G, then G has a Steiner rooted k-edge-connected
orientation if and only if

eP ≥ k(t− 1)

holds for every partition P = (V1, . . . , Vt) of V (G) such that each Vi contains a termi-
nal vertex, where eP denotes the number of crossing edges. In fact, there exists such
an orientation with every Steiner vertex of indegree 1.

4 Proof of Theorem 1.1

In this section, we present the proof of the main result of this paper (Theorem 1.1).
We shall consider a minimal counterexample H of Theorem 4.2 with the minimum
number of edges and then the minimum number of vertices. Note that Theorem 4.2
is a stronger version of Theorem 1.1 with an “extension property” introduced (Defi-
nition 4.1). The extension property allows us to apply a graph decomposition proce-
dure to simplify the structures of H significantly (Corollary 4.5, Corollary 4.6). With
these structures, we can construct a bipartite graph representation B of H. Then, the
Degree-Specified Steiner Rooted Orientation problem can be applied in the
bipartite graph B to establish a tight approximate min-max relation (Theorem 4.10).
To better illustrate the proof idea, we also include a proof of Theorem 4.2 in the
special case of rank 3 hypergraphs (Lemma 4.7), where every hyperedge is of size at
most 3.

We need some notation to state the extension property. A hyperarc a is in δin(X; Y )
if a enters X and a∩Y = ∅. If Y is an emptyset, then δin(X; Y ) is the same as δin(X).

We use din(X; Y ) to denote |δin(X; Y )|. A hyperarc a is in
−→
E (X, Y ; Z) if a leaves X,

enters Y and a ∩ Z = ∅. If Z is an emptyset, we denote
−→
E (X,Y ; Z) by

−→
E (X, Y ).

We use
−→
d (X, Y ; Z) to denote |−→E (X, Y ; Z)|, and

−→
d (X, Y ) to denote |−→E (X,Y )|. The

following extension property is at the heart of our approach.

Definition 4.1. Given H = (V, E), S ⊆ V and a vertex s ∈ S, a Steiner rooted-
orientation D of H extends s if:

1. din
D (s) = dH(s);

2. din
D (Y ; s) ≥ −→d D(Y, s) for every Y ⊆ V for which Y ∩ S = ∅.

As mentioned previously, we shall prove the following stronger theorem which im-
mediately implies Theorem 1.1.

Theorem 4.2. Suppose H is an undirected hypergraph, S is a subset of terminal
vertices with a specified root vertex r ∈ S. Then H has a Steiner rooted k-hyperarc-
connected orientation if S is 2k-hyperedge-connected in H. In fact, given any vertex
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s ∈ S of degree 2k, H has a Steiner rooted k-hyperarc-connected orientation that
extends s. We call the special vertex s the sink of H.

The next lemma shows that the choice of the root vertex does not matter. The
proof idea is that we can reverse the directions of the arcs in the r, v-paths.

Lemma 4.3. Suppose there exists a Steiner rooted k-hyperarc-connected orientation
that extends s with r as the root. Then there exists a Steiner rooted k-hyperarc-
connected orientation that extends s with v as the root for every v ∈ S − s.

Proof. Let D be a Steiner rooted k-hyperarc-connected orientation that extends
s with r as the root. Let v 6= r be another terminal vertex which is not the special
sink s. By assumption, there are k hyperarc-disjoint paths {−→P1, . . . ,

−→
Pk} between r

and v. Now, let D′ be an orientation with the same orientation as D except the
orientations of all the hyperarcs in P1 ∪ . . .∪ Pk are reversed. To be more precise, let−→
Pi = {v0, a0, v1, a1, . . . , al−1, vl} where ai has vi as the tail and vi+1 as a head, then
←−
Pi = {vl,←−−al−1, . . . ,←−a0 , v0} where←−ai has vi+1 as the tail and vi as a head. For a directed

path
−→
P = {v0, a0, v1, a1, . . . , al−1, vl}, we say a hyperarc ai enters a subset of vertices

X if vi /∈ X and vi+1 ∈ X; and ai in
−→
P leaves X if vi ∈ X and vi+1 /∈ X.

We claim that D′ is a Steiner rooted k-hyperarc-connected orientation that extends
s with v as the root. First we check that din

D′(X) ≥ k for every X ⊆ V (H) which

satisfies v /∈ X and X ∩ S 6= ∅. If r ∈ X, then {←−P1, . . . ,
←−
Pk} are k hyperarc-disjoint

paths from v to r in D′, where
←−
Pi denotes the reverse path of

−→
Pi . Hence din

D′(X) ≥ k
for such X. So we assume r /∈ X. As D is a Steiner rooted k-hyperarc-connected
orientation, we have din

D (X) ≥ k. Recall that D and D′ differ only on the orientations

of the paths in {P1, . . . , Pk}. Notice that each path
−→
Pi has both endpoints outside

of X, and thus
−→
Pi enters X the same number of times as it leaves X. Therefore,

by reorienting
−→
Pi to

←−
Pi for all i, we have din

D′(X) = din
D (X) ≥ k for those X which

contains a terminal but contains neither v nor r. This confirms that D′ is a Steiner
rooted k-hyperarc-connected orientation with v as the root.

To finish the proof, we need to check that D′ extends s as defined in Definition 4.1.
Since s is a sink in D, by reorienting paths which do not start and end in s, s is still a
sink in D′. So the first condition in Definition 4.1 is satisfied. For a subset Y ⊆ V (H)

with Y ∩ S = ∅, −→Pi enters Y and leaves Y the same number of times. Let a1 be a
hyperarc that enters Y and a2 be a hyperarc that leaves Y in D. Suppose we reverse
a1 and a2 in D′. We have four cases to consider.

• s ∈ a1 and s ∈ a2. Then din
D′(Y ; s) = din

D (Y ; s) ≥ −→d D(Y, s) =
−→
d D′(Y, s).

• s ∈ a1 and s /∈ a2. Then din
D′(Y ; s) = din

D (Y ; s) + 1 ≥ −→d D(Y, s) + 1 =
−→
d D′(Y, s).

• s /∈ a1 and s ∈ a2. Then din
D′(Y ; s) = din

D (Y ; s)− 1 ≥ −→d D(Y, s)− 1 =
−→
d D′(Y, s).

• s /∈ a1 and s /∈ a2. Then din
D′(Y ; s) = din

D (Y ; s) ≥ −→d D(Y, s) =
−→
d D′(Y, s).

Since we have din
D (Y ; s) ≥ −→d D(Y, s) to start with, by reorienting

−→
Pi to

←−
Pi , we still have

din
D′(Y ; s) ≥ −→d D′(Y, s). Hence the second condition in Definition 4.1 is also satisfied.
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Figure 1: An illustration of the proof of Lemma 4.4.

Therefore, D′ is a Steiner rooted k-hyperarc-connected orientation that extends s.
This proves the lemma.

In the following we say a set X is tight if dH(X) = 2k; X is nontrivial if |X| ≥ 2
and |V (H) − X| ≥ 2. The following is the key lemma where we use the graph
decomposition technique (see Figure 1 for an illustration).

Lemma 4.4. There is no nontrivial tight set in H.

Proof. Suppose there exists a nontrivial tight set U , i.e. dH(U) = 2k, |U | ≥ 2 and
|V (H)−U | ≥ 2. Contract V (H)−U of H to a single vertex v1 and call the resulting
hypergraph H1 (notice this may create parallel hyperedges); similarly, contract U of
H to a single vertex v2 and call the resulting hypergraph H2. We assume s ∈ H2. See
Figure 1 (b) for an illustration. So, V (H1) = U ∪ {v1}, V (H2) = (V (H)− U) ∪ {v2}
and there is an one-to-one correspondence between the hyperedges in δH1(v1) and the
hyperedges in δH2(v2). To be more precise, for a hyperedge e ∈ E(H), it decomposes
into e1 = (e ∩ V (H1)) ∪ {v1} in H1 and e2 = (e ∩ V (H2)) ∪ {v2} in H2 and we refer
them as the corresponding hyperedges of e in H1 and H2 respectively.

Since U is non-trivial, both H1 and H2 are smaller than H. We set S1 :=
(S ∩ V (H1)) ∪ v1 and S2 = (S ∩ V (H2)) ∪ v2, and set the sink of H1 to be v1

and the sink of H2 to be s. Clearly, S1 is 2k-hyperedge-connected in H1 and S2

is 2k-hyperedge-connected in H2. By the minimality of H, H2 has a Steiner rooted
k-hyperarc-connected orientation D2 that extends s. By Lemma 4.3, we can choose
the root of D2 to be v2. Similarly, by the minimality of H, H1 has a Steiner rooted
k-hyperarc-connected orientation D1 that extends v1. Let the root of D1 be r. See
Figure 1 (c) for an illustration.

We shall prove that the concatenation D of the two orientations D1, D2 gives a
Steiner rooted k-hyperarc-connected orientation of H that extends s. Notice for a
hyperedge e in δH(U), its corresponding hyperedge e1 in H1 is oriented with v1 as a
head (by the extension property of D1), and its corresponding hyperedge e2 in H2 is
oriented so that v2 is the tail (as v2 is the root of D2). So, in D, the orientation of e is
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well-defined and has its tail in H1. See Figure 1 (d) for an illustration. Now we show
that D is a Steiner rooted k-hyperarc-connected orientation. By Menger’s theorem, it
suffices to show that din

D (X) ≥ k for any X ⊆ V (H) for which r /∈ X and X ∩ S 6= ∅.
Suppose X ∩S1 6= ∅. Then din

D1
(X−V (H2)) ≥ k by the orientation D1 of H1. Since

v1 is the sink of G1, there is no hyperarc going from V (H2) to V (H1) in D. Hence we
have din

D (X) ≥ din
D1

(X − V (H2)) ≥ k.
Suppose X ∩ S1 = ∅. Let X1 = X ∩H1 and X2 = X ∩H2. The case that X1 = ∅

follows from the properties of D2. So we assume both X1 and X2 are non-empty. We
have the following inequality:

din
D (X) ≥ din

D1
(X1; v1) + din

D2
(X2)−

−→
d D(X1, X2). (2)

Note that
−→
d D1(X1, v1) ≥

−→
d D(X1, X2). So, by property (ii) of Definition 4.1,

din
D1

(X1; v1) ≥
−→
d D1(X1, v1) ≥

−→
d D(X1, X2). Hence din

D (X) ≥ din
D2

(X2) ≥ k, where
the second inequality is by the properties of D2.

This implies that D is a Steiner rooted k-hyperarc-connected orientation of H. To
finish the proof, we need to check that D extends s. The first property of Definition 4.1
follows immediately from our construction. It remains to check that property (ii) of
Definition 4.1 still holds in D. Consider a subset Y ⊂ V (H) with Y ∩ S = ∅. Let
Y1 = Y ∩H1 and Y2 = Y ∩H2. The following inequality is important:

din
D (Y ; s) ≥ din

D1
(Y1; v1) + din

D2
(Y2; s)−

−→
d D(Y1, Y2; s). (3)

By property (ii) of the extension property of D1, we have din
D1

(Y1; v1) ≥
−→
d D1(Y1, v1) ≥−→

d D(Y1, Y2; s)+
−→
d D(Y1, s). Therefore, din

D (Y ; s) ≥ −→d D(Y1, s)+din
D2

(Y2; s). By property

(ii) of the extension property of D2, we have din
D2

(Y2; s) ≥
−→
d D2(Y2, s). Hence, by (3),

din
D (Y ; s) ≥ −→d D(Y1, s)+

−→
d D2(Y2, s) =

−→
d D(Y1, s)+

−→
d D(Y2, s) =

−→
d D(Y, s), as required.

This shows that D extends s, which contradicts that H is a counterexample.

The following are two important properties obtained from Lemma 4.4.

Corollary 4.5. Each hyperedge of H of size at least 3 contains only terminal vertices.

Proof. Suppose e is a hyperedge of H of size at least 3 and t ∈ e is a Steiner
vertex. Let H ′ be a hypergraph with the same vertex and edge set as H except
we replace e by e′ := e − t. If H ′ is 2k-hyperedge-connected, then by the choice
of H, H ′ has a Steiner rooted k-hyperedge-connected orientation, hence H also has
one; a contradiction. Therefore, there exists a set X which separates two terminals
with dH(X) = 2k and dH′(X) < 2k. So e ∈ δH(X). Suppose t ∈ X. Since X
contains a terminal, |X| ≥ 2. Also, e− t must be contained in V (H)−X; otherwise
dH(X) = dH′(X). Hence |V (H)−X| ≥ |e− t| ≥ 2. Therefore, X is a nontrivial tight
set, which contradicts Lemma 4.4.

Corollary 4.6. There is no edge between two Steiner vertices in H.

Proof. This follows from a similar argument as in Corollary 4.5. Let e be an edge
which connects two Steiner vertices. If H− e is 2k-hyperedge-connected, then by the
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Figure 2: The bipartite representation B of H.

choice of H, H − e has a Steiner rooted k-hyperarc-connected orientation, hence H
also has one; a contradiction. Otherwise, there exists a set X which separates two
terminals with dH(X) = 2k and dH−e

(X) < 2k. So e ∈ δH(X). Since X contains
a terminal vertex and an endpoint of e which is a Steiner vertex, |X| ≥ 2. Similarly,
|V (H)−X| ≥ 2. Hence X is a nontrivial tight set, which contradicts Lemma 4.4.

4.1 The Bipartite Representation of H
Using Corollary 4.5 and Corollary 4.6, we shall construct a bipartite graph from H,
which allows us to apply the results on the Degree-Specified Steiner Rooted-
Orientation problem to H. Let S be the set of terminal vertices in H. Let E ′ be the
set of hyperedges in H which do not contain a Steiner vertex, i.e. a hyperedge e is in
E ′ if e∩ (V (H)−S) = ∅. We construct a bipartite graph B = (S, (V (H)−S)∪E ′; E)
from the hypergraph H as follows. Every vertex v in H corresponds to a vertex v in
B, and also every hyperedge e ∈ E ′ corresponds to a vertex ve in B. By Corollary 4.5,
hyperedges which intersect V (H)− S are graph edges (i.e. hyperedges of size 2); we
add these edges to E(B). For every hyperedge e ∈ E ′, we add vew to E(B) if and only
if w ∈ e in H. Let the set of terminal vertices in B be S (the same set of terminal
vertices in H); all other vertices are non-terminal vertices in B. By Corollary 4.5 and
Corollary 4.6, there is no edge between two non-terminal vertices in B. Hence B is
a bipartite graph. To distinguish the non-terminal vertices corresponding to Steiner
vertices in H and the non-terminal vertices corresponding to hyperedges in E ′, we call
the former the Steiner vertices and the latter the hyperedge vertices. See Figure 2 for
an illustration.

4.2 Rank 3 Hypergraphs

To better illustrate the idea of the proof, we first prove Theorem 4.2 for the case
of rank 3 hypergraphs. This motivates the proof for general hypergraphs, which is
considerably more complicated.

Lemma 4.7. H is not a rank 3 hypergraph.

Proof. Since H is of rank 3, all hyperedge vertices in B are of degree at most 3.
The crucial use of the rank 3 assumption is the following simple observation, which
allows us to relate the hyperedge-connectivity of H to edge-connectivity of B.
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Proposition 4.8. S is 2k-hyperedge-connected in H if and only if S is 2k-edge-
connected in B.

Proof. Consider a, b ∈ S. If there are 2k hyperedge-disjoint paths from a to b
in H, then clearly there are 2k edge-disjoint paths from a to b in B. Suppose there
are 2k edge-disjoint paths from a to b in B. Since each hyperedge vertex z ∈ E ′ is of
degree at most 3, no two edge-disjoint paths in B share a hyperedge vertex. Hence
there are 2k hyperedge-disjoint paths from a to b in H.

We remark that Proposition 4.8 does not hold for hypergraphs of rank greater than
3. With Proposition 4.8, we can apply Mader’s splitting off theorem to prove the
following.

Lemma 4.9. Steiner vertices of H are of degree at most 3.

Proof. If a Steiner vertex v is not of degree 3 in H, then it is not of degree 3 in
B. So we can apply Mader’s splitting-off theorem (Theorem 2.4) to find a suitable
splitting at v in B. Let e1 = s1v and e2 = vs2 be the pair of edges that we split-off,
and e = s1s2 be the new edge. By Corollary 4.6, s1 and s2 are terminal vertices. We
add a new Steiner vertex ve to V (B) and replace the edge s1s2 by two new edges
ves1 and ves2. Since B is bipartite, the resulting graph, denoted by B′, is bipartite.
Notice that B′ corresponds to a hypergraph H ′ with V (H ′) = V (H) and E(H ′) =
E(H) − {e1, e2} + {e}. S remains k-edge-connected in B′, so by Proposition 4.8, S
is k-hyperedge-connected in H ′. By the minimality of H, there is a Steiner rooted
k-hyperarc-connected orientation of H ′. Suppose s1s2 in H ′ is oriented as −−→s1s2 in H ′,
then we orient vs1 and vs2 as −→s1v and −→vs2 in H. All other hyperedges in H have the
same orientations as the corresponding hyperedges in H ′. It is easy to see that this
orientation is a Steiner rooted k-hyperarc-connected orientation of H, and also the
extension property holds, a contradiction.

Now we are ready to finish the proof of Lemma 4.7. Construct B′ = B − s, where
we remove all edges in B which are incident with s. We shall use Theorem 3.5 to prove
that there is a Steiner rooted k-arc-connected orientation of B′. Since S is 2k-edge-
connected in B, for any partition P = {P1, . . . , Pt} of V (B′) such that each Pi contains
a terminal vertex, we have

∑t
i=1 dB′(Pi) =

∑t
i=1 dB(Pi)−dB(s) ≥ 2kt−2k = 2k(t−1).

So there are at least k(t− 1) edges crossing P in B′.
By Theorem 3.5, there is a Steiner rooted k-edge-connected orientation D′ of B′

with the additional property that each Steiner vertex has indegree exactly 1. By
orienting the edges in δB(s) to have s as the head, we obtain an orientation D of B.
Note that each Steiner vertex still has indegree exactly 1, and so D corresponds to a
hypergraph orientation of H. Also, by this construction, property (i) of Definition 4.1
is satisfied.

Consider an arbitrary Y for which Y ∩ S = ∅. Since every vertex y in Y is of
degree at most 3 by Lemma 4.9, y can have at most one outgoing arc to s; otherwise
dH({s, y}) < 2k which contradicts our connectivity assumption since dH(s) = 2k.
(recall that dH(s) = 2k as s is the sink). Since Y induces an independent set by Corol-
lary 4.6 and each vertex in Y has indegree exactly 1, each y ∈ Y has an incoming arc

EGRES Technical Report No. 2006-13



4.3 General Hypergraphs 17

from outside Y . Notice that those incoming arcs are of size 2 by Corollary 4.5, So we
have din

D (Y ; s) ≥ −→d (Y, s). This implies that D satisfies property (ii) of Definition 4.1
as well.

Finally we verify that D is a Steiner rooted k-hyperedge-connected orientation.
Consider a subset X ⊆ V (H) which contains a terminal but not the root. If X
contains a terminal other than s, then clearly din

D (X) ≥ k by the orientation on H−s.
So suppose X ∩ S = s. As argued above, since each Steiner vertex v is of degree 3, v
has at most one outgoing arc to s. As each Steiner vertex is of indegree 1 and there is
no edge between two Steiner vertices, we have din

D (X) ≥ din
D (s) = 2k as s is the sink.

This shows that D is a Steiner rooted k-hyperarc-connected orientation that extends
s, which contradicts the assumption that H is a counterexample.

4.3 General Hypergraphs

For the proof of Theorem 4.2 for the case of rank 3 hypergraphs, a crucial step is to
apply Mader’s splitting-off lemma to the bipartite representation B of H to obtain
Lemma 4.9. In general hypergraphs, however, a suitable splitting at a Steiner vertex
which preserves the edge-connectivity of S in B might not preserve the hyperedge-
connectivity of S in H. And there is no analogous edge splitting-off result which
preserves hyperedge-connectivity.

Our key observation is that, if we were able to apply Mader’s lemma as in the
proof of Lemma 4.7, then every Steiner vertex would end up with indegree bd(v)/2c
in the resulting orientation of B. This motivates us to apply the Degree-Specified
Steiner Rooted-Orientation problem by “hardwiring” m(v) = bd(v)/2c to “sim-
ulate” the splitting-off process. Also, we “hardwire” the indegree of the sink to be 2k
for the extension property. (In the example of Figure 2, the indegrees of the Steiner
vertices are specified to be 3,2,1 from left to right; the sink becomes a non-terminal
vertex with specified indegree 2k.) Quite surprisingly, such an orientation always
exists when S is 2k-hyperedge connected in H. The following theorem is the final
(and most technical) step to the proof of Theorem 4.2, which shows that a minimal
counterexample of Theorem 4.2 does not exist.

Theorem 4.10. Suppose that S is 2k-hyperedge-connected in H, there is no edge
between two Steiner vertices, and no hyperedge of size at least 3 contains a Steiner
vertex. Let s0 ∈ S be a vertex of degree 2k. Then H has a Steiner rooted k-hyperarc-
connected orientation that extends s0.

Proof. We will use the theorem on the Degree-Specified Steiner Rooted-
Orientation problem of graphs (Theorem 3.2). To get an instance of that problem,
we consider the bipartite representation B = (V ′, E ′) of H that was defined in Sub-
section 4.1 (i.e. we replace each hyperedge in E ′ by a hyperedge vertex). Let the set
of terminals in B be S ′ := S − s0. The indegree specification m′ : V ′ − S ′ → Z+ is
defined by

m′(v) :=


bdH(v)/2c if v is a Steiner vertex
1 if v is a hyperedge vertex
2k if v = s0 is the sink
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We shall show that if B has a Steiner rooted k-arc-connected orientation with the
specified indegrees, then H has a Steiner rooted k-hyperarc-connected orientation
that extends s0. By Theorem 3.2, this graph has a Steiner rooted k-arc-connected
orientation with the specified indegrees if and only if the following conditions hold:

EB(Z) ≤ m′(Z) for every Z ⊆ V ′ − S ′, (4)∑
X∈F

(h(X) + max
Y⊆V ′−S′

(EB(X ∪ Y )−m′(Y ))) ≤ |E ′| −m′(V ′ − S ′) (5)

for every partition F of S ′, where h : S ′ → Z+ is defined by

h(X) :=

{
k if ∅ 6= X ⊆ S ′ − r,
0 otherwise.

It is easy to see that condition (4) is always satisfied, since the only edges spanned
by V ′ − S ′ are those incident to s0, and dB(s0) = 2k = m′(s0).

Proposition 4.11. Condition (5) is satisfied if∑
e∈E

(|{X ∈ F : e ∩X 6= ∅}| − 1) +
∑

v/∈∪F+s0

⌈
dH(v)

2

⌉
≥ k(|F| − 1) (6)

for every subpartition F of V for which S ∩X 6= ∅ for every X ∈ F , and S ∩ (∪F) =
S − s0.

Proof. Suppose that there is a partition F of S ′ where (5) does not hold. By the
definition of h,

k(|F| − 1) +
∑
X∈F

max
Y⊆V ′−S′

(EB(X ∪ Y )−m′(Y )) > |E ′| −m′(V ′ − S ′). (7)

For a given X ∈ F we can determine the set Y where the maximum is attained.
We can assume that s0 is not in Y , since its inclusion would increase m′(Y ) by 2k,
and EB(X ∪ Y ) can increase by at most 2k.

We can assume that Y contains all the hyperedge vertices corresponding to hyper-
edges that are not disjoint from X. The inclusion of such a vertex increases m′(Y ) by
1, and increases EB(X∪Y ) by at least 1. By a similar argument, we may assume that
Y does not contain hyperedge vertices corresponding to hyperedges that are disjoint
from X, since the inclusion of such a vertex would not increase EB(X ∪ Y ).

Finally, if we take into account the above observations, the inclusion in Y of a
Steiner vertex v increases m′(Y ) by bdH(v)/2c, and increases EB(X ∪ Y ) by |{e ∈ E :
v ∈ e ⊆ X + v}|. Therefore we may assume that a Steiner vertex v is included in Y
if and only if |{e ∈ E : v ∈ e ⊆ X + v}| > bdH(v)/2c.

For a given X, we determined a set Y ⊆ V ′ − S ′ where the maximum in (7) is
attained. Let X∗ := X ∪ (Y ∩ (V − S)). If X1 ⊆ S − s0 and X2 ⊆ S − s0 are
disjoint sets, then X∗

1 and X∗
2 are also disjoint, since a node in V − S cannot have
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4.3 General Hypergraphs 19

more than half of its neighbors in both X1 and X2. So if F is a partition of S − s0,
then F∗ := {X∗ : X ∈ F} is a subpartition of V for which S ∩ X∗ 6= ∅ for every
X ∈ F∗, and S ∩ (∪F∗) = S − s0.

Since (7) holds for F , the following holds for F∗:

k(|F∗| − 1) = k(|F| − 1) > |E ′| −m′(V ′ − S ′)−
∑
X∈F

max
Y⊆V ′−S′

(EB(X ∪ Y )−m′(Y )) .

Here

|E ′| = |E|+
∑
e∈E ′

(|e| − 1),

m′(V ′ − S ′) = |E ′|+ 2k +
∑

v∈V−S

⌊
dH(v)

2

⌋
,

max
Y⊆V ′−S′

(EB(X ∪ Y )−m′(Y )) =
∑
e∈E

max{0, |e ∩X∗| − 1} −
∑

v∈X∗∩(V−S)

⌊
dH(v)

2

⌋
.

Using these identities, and the fact that dH(s0) = 2k, we get the following inequal-
ities:

k(|F∗| − 1)

> |E|+
∑
e∈E ′

(|e| − 2)−
∑
e∈E

∑
X∗∈F∗

max{0, |e ∩X∗| − 1} − 2k −
∑

v/∈∪F∗+s0

⌊
dH(v)

2

⌋

=
∑
e∈E

(
|e| − 1−

∑
X∗∈F∗

max{0, |e ∩X∗| − 1}

)
− 2k −

∑
v/∈∪F∗+s0

⌊
dH(v)

2

⌋
=
∑
e∈E

(|e ∩ (V − ∪F∗)|+ |{X∗ ∈ F∗ : e ∩X 6= ∅}| − 1)− 2k −
∑

v/∈∪F∗+s0

⌊
dH(v)

2

⌋
=
∑
e∈E

(|e ∩ (V − (∪F∗ + s0))|+ |{X∗ ∈ F∗ : e ∩X 6= ∅}| − 1)−
∑

v/∈∪F∗+s0

⌊
dH(v)

2

⌋
=
∑
e∈E

(|{X∗ ∈ F∗ : e ∩X 6= ∅}| − 1) +
∑

v/∈∪F∗+s0

⌈
dH(v)

2

⌉
.

But this means that property (6) does not hold for the subpartition F∗.

Notice that Proposition 4.11 is formulated in terms of the original hypergraph H.
We will prove that the bipartite representation B of H has the desired degree-specified
orientation by showing that the conditions in Proposition 4.11 are satisfied if S is 2k-
hyperedge-connected in H.

Let F be a subpartition of V for which S∩X 6= ∅ for every X ∈ F , and S∩(∪F) =
S − s0. Let E1 denote the set of hyperedges of H which enter exactly 1 member of
F , and let E2 denote the set of hyperedges of H which enter at least 2 members of
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4.3 General Hypergraphs 20

F . Let U := V − (∪F + s0). Then the only hyperedges that are disjoint from every
member of F are the edges between U and s0, so∑

e∈E

(
|{X ∈ F : e ∩X 6= ∅}| − 1

)
+

∑
v/∈∪F+s0

⌈
dH(v)

2

⌉
≥
∑
X∈F

dE2(X)

2
− dH(U, s0) +

∑
v∈U

dH(v)

2
(8)

=
∑
X∈F

dE2(X)

2
+

dH(U, S − s0)

2
− dH(U, s0)

2
.

Here

dH(U, S − s0) =
∑
X∈F

dE1(X)− |{e ∈ E1 : e ∩ U = ∅}| =
∑
X∈F

dE1(X)− dH(V − U, s0),

and so

dH(U, S − s0)− dH(U, s0) =
∑
X∈F

dE1(X)− dH(s0) =
∑
X∈F

dE1(X)− 2k.

Using this identity in inequality (8) we get that∑
e∈E

(
|{X ∈ F : e ∩X 6= ∅}| − 1

)
+

∑
v/∈∪F+s0

⌈
dH(v)

2

⌉

≥
∑
X∈F

(dE2(X) + dE1(X)

2

)
− k ≥ k(|F| − 1),

where the last inequality holds because dE2(X) + dE1(X) ≥ 2k for every X ∈ F as S
is 2k-hyperedge-connected in H.

We proved that the conditions of type (6) in Proposition 4.11 are satisfied. There-
fore, we have the desired degree-specified orientation of the bipartite representation
B of H. Since every hyperedge vertex has indegree 1 in B, this orientation cor-
responds to a Steiner rooted k-hyperarc-connected orientation of H. It remains to
check that this orientation extends s0. The first property of the extension property
(Definition 4.1) follows immediately from our construction, since the indegree of s0 is
2k. To check the second property of the extension property, we use a similar argument
as in Lemma 4.7. Consider an arbitrary Y ⊂ V (H) for which Y ∩ S = ∅. Since s0 is
of degree 2k and S is 2k-hyperedge-connected in H, each vertex v ∈ Y has at most
bd(v)/2c edges to s0. Recall that the indegree of v in the orientation is bd(v)/2c.
Since there are no edges between two Steiner vertices, all the incoming arcs of v come
from V (H) − Y . Notice that these incoming arcs are of size 2 by Corollary 4.5, and

so do not intersect s0. Hence, din(Y ; s) ≥ −→d (Y, s), as required.

Since a minimal counterexample H must satisfy the condition of Theorem 4.10,
Theorem 4.10 proves that H does not exist. So Theorem 4.2 (and hence Theorem 1.1)
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is proven. We remark that in the proof of Theorem 4.10, the indegree specifications
on the Steiner vertices have two uses. The major use is to apply Theorem 3.2 to
establish the connectivity upper bound, which consists of the bulk of the proof. The
other use is that it is crucial in proving the extension property (Definition 4.1).

5 Proof of Theorem 1.2

In this section we show another application of the Degree-Specified Steiner
Orientation problem. We consider the Element-Disjoint Steiner Rooted
Orientation problem where our goal is to find an orientation D of G that maximizes
the Steiner rooted-element-connectivity. The proof of Theorem 1.2 consists of two
steps. The first step is to reduce the problem from general graphs to the graphs
with no edges between Steiner vertices. This technique was used in [20, 5] but we
will give a proof here for completeness. The second step is to reduce the problem in
this special instance into the Degree-Specified Steiner Rooted Orientation
problem. The idea is that if we specify the indegree of each Steiner vertex to be 1, then
a Steiner rooted k-arc-connected orientation is a Steiner rooted k-element-connected
orientation, since each Steiner vertex cannot be in two edge-disjoint paths. It turns out
that such a degree-specified orientation always exists when S is 2k-element-connected
in G.

We remark that the property that every Steiner vertex is of indegree 1 in the
orientation will be used twice - once in Lemma 5.2 to establish the connectivity upper
bound, and once in the following lemma for the reduction. In the following lemma
conditions (1)-(3) have been proved in [20, 5].

Lemma 5.1. (See also [20, 5].) Given an undirected graph G and a set S of terminal
vertices. Suppose S is k-element-connected in G. Then we can construct in polynomial
time a graph G′ with the following properties:

1. S ⊆ V ′;

2. there is no edge between Steiner vertices in G′;

3. S is k-element-connected in G′;

4. if there is a Steiner rooted k′-element-connected orientation in G′ with the in-
degrees of the Steiner vertices being 1, then there is a Steiner rooted k′-element-
connected orientation in G.

Proof. Given G, if there is no edge uv between two Steiner vertices, then G′ := G
and we have nothing to prove. In the following, we will show that we can construct G′

from G by deleting and/or contracting edges between Steiner vertices. Let G0 := G.
By assumption, G0 satisfies properties (1) and (3). Suppose Gt satisfies properties (1)
and (3) for t ≥ 0. If Gt also satisfies (2), then G′ := Gt as desired. Otherwise, we shall
construct a graph Gt+1 which still satisfies properties (1) and (3) and has fewer edges
between Steiner vertices than that in Gt. Let uv be an edge in Gt between two Steiner
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vertices. If S is k-element-connected in Gt− uv, then we simply set Gt+1 := Gt− uv.
Clearly, Gt+1 still satisfies properties (1) and (3) and has fewer edges between Steiner
vertices than that in Gt, as required.

So suppose S is not k-element-connected in Gt − uv; we shall show that Gt+1 :=
Gt/{uv} would have the desired properties (recall that Gt/{uv} means contracting
the edge uv in Gt). Property (1) is trivial. It is also clear that Gt+1 has fewer edges
between Steiner vertices than that in Gt. It remains to show that S is k-element-
connected in Gt+1 (i.e. property (3) is satisfied). Since S is not k-element-connected
in Gt− uv, by Menger’s theorem, in Gt, there is a set T of k elements which contains
uv and whose removal disconnects a pair of terminal vertices a, b. Suppose Pab is an
arbitrary set of k element-disjoint paths between a and b. Then Pab must contain a
path that uses the edge uv. Suppose, by way of contradiction, that S is not k-element-
connected in Gt/{uv}. By Menger’s theorem, in Gt, there is a set R of k elements
which contains {u, v} and whose removal disconnects a from another terminal vertex
c. Since Pab must contain a path that uses the edge uv and R contains {u, v}, R
cannot intersect all k element disjoint paths in Pab and hence R cannot disconnect a
and b. So c 6= b. Suppose Pac is an arbitrary set of k element-disjoint paths between
a and c. Then Pac must contain a path that uses u but not v, and a path that uses
v but not u. In particular Pac does not use the edge uv. Since a, b are in the same
component, by the same argument, any set of k element-disjoint paths between b and
c does not use the edge uv. This implies a and b are connected in Gt − uv, through
c, and thus yields a contradiction. Therefore, S is k-element-connected in Gt+1, as
required.

By repeating the above procedure, we will eventually obtain a graph Gm such that
it satisfies properties (1) and (3), and also has no edges between two Steiner vertices.
We set G′ := Gm, and hence (1)-(3) hold.

Finally we prove (4) by showing that if we have a Steiner rooted l-element-connected
orientation of G′ = Gm with every Steiner vertex of indegree 1, then there is a Steiner
rooted l-element-connected orientation of G = G0. In the following, we say a graph G
is good if G has a subgraph H such that H has a Steiner rooted l-element-connected
orientation with every Steiner vertex of indegree 1. Clearly, if G is good, then G has
a Steiner rooted l-element-connected orientation by orienting the edges without an
orientation arbitrarily. By assumption, G′ = Gm is good. Suppose Gt+1 is good, then
we shall show that Gt is good too. Suppose we delete an edge ab between two Steiner
vertices a, b in Gt to obtain Gt+1. In this case we do not assign an orientation to
the edge ab in Gt, while all other edges in Gt has the same orientation as in Gt+1

(including the edges without an orientation). Clearly Gt is good.
Suppose we contract an edge ab between two Steiner vertices a, b in Gt to one Steiner

vertex c in Gt+1. By the assumption that Gt+1 is good, Gt+1 has a subgraph Ht+1

for which there is a l-element-connected orientation Dt+1 with every Steiner vertex of
indegree 1. If c has no incoming arc in Dt+1, then c is not useful in the orientation
Dt+1, and hence Gt is good by using the same orientation as in Gt+1 (with all the
edges between a and b unoriented). So assume that x is the only vertex adjacent to c
with xc oriented as −→xc in Dt+1. If the preimage of the edge xc in Gt+1 is the edge xa,
then we orient ab as

−→
ab in Gt; if the preimage of the edge xc in Gt+1 is xb, then we
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orient ab as
−→
ba in Gt. If there are multiple edges between a and b, then only one of

them is assigned an orientation. All other edges in Gt have the same orientation as in
Gt+1 (including the edges without an orientation). We set Ht to be the subgraph of
Gt with edges having an orientation, and Dt be the orientation of Ht. It is easy to see
that if there are l element-disjoint paths between the root and a terminal vertex in
Dt+1, then there are l element-disjoint paths between the root and a terminal vertex
in Dt (since c is of indegree 1 in Dt+1). Furthermore, every Steiner vertex is still of
indegree 1 in Dt. So, Gt is good. Repeating the same argument, G = G0 is good, and
we are done.

The following lemma can be shown to be a special case of Theorem 4.10.

Lemma 5.2. Given an undirected graph G = (V, E) and a set S of terminal vertices.
If S is 2k-element-connected in G and there are no edges between vertices in V (G)−S,
then G has a Steiner rooted k-element-connected orientation with the indegrees of the
Steiner vertices being 1.

Proof. We construct a hypergraph H as follows. The vertex set of H is S.
For each vertex v ∈ V (G) − S, we add a hyperedge NG(v) to H. Note that since
there are no edges between two vertices in V (G) − S, NG(v) ⊆ S and so is well-
defined. Also, we keep all the edges in G between two vertices in S. Since S is
2k-element-connected in G, S is 2k-hyperedge-connected in H. Theorem 4.10 implies
that H (which has no Steiner vertices) has a Steiner rooted k-hyperarc-connected
orientation. This corresponds to a Steiner rooted k-element-connected orientation
with the indegrees of the Steiner vertices being 1.

Theorem 1.2 follows immediately from Lemma 5.2 and Lemma 5.1.

6 Hardness Results

Nash-Williams’ orientation theorem implies that the maximum k for which a graph has
a Steiner strongly k-arc-connected orientation can be found in polynomial time. By
the theorem, this is equivalent to finding the maximum k for which the graph is Steiner
2k-edge-connected, and this can be done using O(n) flow computations. Moreover,
the algorithmic proof of Nash-Williams’ theorem provides an algorithm for finding
such an orientation. Usually the rooted counterparts of graph connectivity problems
are easier to solve. For example, finding a minimum cost k-arc-connected subgraph of
a directed graph is NP-hard, while a minimum cost rooted k-arc-connected subgraph
can be found in polynomial time [17]. It is a very rare phenomenon that the rooted
version of a connectivity problem is more difficult than the non-rooted one. In this
light, the following result is somewhat surprising.

Theorem 6.1. Given a graph G, a set of terminals S, and a root vertex r ∈ S, it is
NP-complete to determine if G has a Steiner rooted k-arc-connected orientation.

Proof. First we introduce the NP-complete problem to be reduced to the Steiner
Rooted-Orientation problem. Let G = (V, E) be a graph, and R : V × V → Z+
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a demand function for which R(v, v) = 0 for every v ∈ V . An R-orientation of G is
an orientation where for every pair u, v ∈ V there are at least R(u, v) edge-disjoint
paths from u to v.

Theorem 6.2. [18] The problem of finding an R-orientation of a graph is NP-
complete, even if R has maximum value 3.

In the following we show that the R-orientation problem can be reduced to the
Steiner rooted orientation problem, thus the latter is NP-complete.

Let (G = (V, E), R) be an instance of the R-orientation problem. We define a graph
G′ = (V ′, E ′) such that G is an induced subgraph of G′. In addition to the vertices of
V , V ′ contains the root r, and vertices au,v, bu,v for every ordered pair (u, v) ∈ V ×V ,
u 6= v. In addition to the edges of E, E ′ contains the following 4 types of edges:

1. R(u, v) edges from r to au,v for every pair u, v,

2. R(u, v) edges from au,v to u for every pair u, v,

3. R(u, v) edges from v to bu,v for every pair u, v,

4. for every pair of pairs (u, v) and (x, y) for which u 6= x or v 6= y, R(u, v) edges
from au,v to bx,y.

Let
S := {bu,v : u, v ∈ V, u 6= v},

k :=
∑

u,v∈V, u6=v

R(u, v).

A := {au,v : u, v ∈ V, u 6= v}.

We set the vertices in S to be the terminal vertices, and all other vertices the Steiner
vertices.

Lemma 6.3. The graph G′ has a Steiner rooted k-edge-connected orientation if and
only if G has an R-orientation.

Proof. Let D′ be a Steiner rooted k-edge-connected orientation of G′. Since
the degree of r is k in G′, each edge of type 1 must be oriented away from r. Since
the degree of every node in S is k in G, each edge of type 3 and 4 must be oriented
towards S.

For any pair (u, v) ∈ V × V , let us consider the set X = V ∪ (A − au,v) + bu,v. X
must have in-degree at least k in D′, which means, in the light of the above facts,
that the edges from au,v to u must be oriented towards u. Thus, all edges of type 2
are oriented towards V .

Let (u, v) ∈ V × V be a fixed pair. Since D′ is a Steiner rooted k-edge-connected
orientation, there are k edge-disjoint paths from r to bu,v. Of these paths, k−R(u, v)
are necessarily composed of an edge of type 1 and an edge of type 4. The remaining
R(u, v) paths necessarily start with the edges rau,v and au,vu, and end with the edge
vbu,v. Thus, in order to “complete” these paths, there must be R(u, v) edge-disjoint
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paths from u to v in D′[V ]. The above argument applied to all pairs (u, v) ∈ V × V
shows that D′[V ] is an R-orientation of G.

To prove the other direction of the claim, let D be an R-orientation of G. We define
an orientation D′ of G′ by orienting the edges in E according to D, and orienting the
other edges as described earlier in this proof. It is easy to see that the obtained
digraph D′ is a Steiner rooted k-edge-connected orientation of G′.

Since R has maximum value 3, the size of G′ is polynomial in the size of G. Thus
the construction is polynomial and this proves that the Steiner rooted orientation
problem is NP-complete.

The question remains whether the Steiner rooted k-edge-connected orientation
problem is polynomially solvable for fixed k. We do not even know whether it is
solvable for k = 2 (for k = 1 it is easy). For element-connectivity, we show that the
Steiner Rooted-Orientation problem is NP-complete.

Theorem 6.4. Given a graph G, a set of terminals S, and a root vertex r ∈ S, it is
NP-complete to determine if G has a Steiner rooted k-element-connected orientation.

Proof. We show that 3-SAT can be reduced to the Steiner element-connected
orientation problem. Suppose that we are given an instance of 3-SAT with variables
x1, . . . , xk and clauses c1, . . . , cl. We construct a graph G on the following set of nodes:

• A root r,

• Two Steiner nodes vxi
and v¬xi

for every variable xi,

• Two terminal nodes sj and s′j for every clause cj,

• 8 Steiner nodes for every clause cj: a0
j , a

1
j , a

2
j , a

3
j , b0

j , b
1
j , b

2
j , b

3
j .

Let S be the set of terminal nodes, and let k := 4l, where l is the number of clauses.
Let the graph G consist of the following edges:

• An edge between vxi
and v¬xi

for every i,

• An edge between r and aα
j for every j and every α,

• Edges from b1
j , b2

j and b3
j to b0

j and to s′j for every j,

• An edge between b0
j and sj for every j,

• If x is the α-th literal in cj, then edges from vx to aα
j and bα

j (α ∈ {1, 2, 3}), and
an edge between v¬x and a0

j ,

• Edges from a0
j to every terminal node except for sj,

• Edges from a1
j , a2

j and a3
j to every terminal node except for s′j.
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We shall show that the graph G has a Steiner rooted k-element-connected orienta-
tion if and only if the 3-SAT formula is satisfiable.

Let D be a Steiner rooted k-element-connected orientation of G. Since the degree
of r and of every terminal node is k in G, the terminals must have in-degree k and r
must have out-degree k in D. This means that we already have k− 1 paths of length
2 from r to each sj (through aα

i except a0
j), and we have k− 3 paths of length 2 from

r to each s′j (through aα
i except a1

j , a
2
j , a

3
j).

As for the remaining 3 paths from r to each s′j, their second nodes must be a1
j , a2

j

and a3
j , and their last non-terminal nodes must be b1

j , b2
j and b3

j . This means that
for each literal x ∈ cj, the edge between vx and aα

j must be oriented towards vx, and
the edge between vx and bα

j must be oriented towards bα
j (there is no other way to

complete the paths).
Let us consider the remaining one path from r to sj. The second node of the path

is a0
j , the last non-terminal node is b0

j , and the node before that is b1
j , b2

j or b3
j . By

taking into account what we have already proved about the orientations of the edges,
and the fact that all other nodes a0

j′ (j′ 6= j) are used by some other path, the path
can only be the following for some α ∈ {1, 2, 3}:

{r, a0
j , v¬x, vx, b

α
j , b0

j , sj},

where x is the α-th literal in cj. It follows that our 3-SAT formula is satisfied if we
set xi to be true if the edge (vxi

, v¬xi
) is oriented towards vxi

in D, and we set xi to
be false otherwise.

Now we prove that if the 3-SAT formula can be satisfied, then there is a Steiner
rooted k-element-connected orientation. As we have shown in the above paragraphs,
the orientation of several edges is forced, and they give k element-disjoint paths from
r to each s′j, and k − 1 element-disjoint paths from r to each sj.

We orient the edge (vxi
, v¬xi

) towards vxi
if xi is true in the valuation satisfying the

formula, and orient it towards v¬xi
if xi is false. The edges of type (bα

j , b0
j) are oriented

towards b0
j , and the edges of type (a0

j , vx) are oriented towards vx.
Suppose that x is the α-th literal in cj, and it is true in the valuation satisfying the

formula. The following path is element-disjoint from the k − 1 paths already given
from r to sj:

{r, a0
j , v¬x, vx, b

α
j , b0

j , sj}.
This shows that there are k element-disjoint paths from r to each terminal. This
completes the proof of the theorem.

One can consider minimum cost versions of the orientation problems discussed in
this chapter. For each edge, the two different orientations have separate costs, and
the cost of an orientation of the graph is the sum of the costs of the oriented edges. It
turns out that in both the edge-disjoint and the element-disjoint cases the minimum
cost problem is more difficult to approximate than the basic problem. Even for k = 1,
when the edge-disjoint and element-disjoint problems coincide, we can obtain the
following result:

Theorem 6.5. The Minimum Cost Steiner Rooted Orientation problem is
NP-hard to approximate within a factor of Ω(log(n)), even for k = 1.
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Proof. We reduce the Set Cover problem (which is NP-hard to approximate
within a factor of Ω(log(n)) [10]) to the Min Cost Steiner Rooted Orientation problem,
such that the number of sets in the cover corresponds to the cost of the orientation.

Given an instance of the set cover problem with ground set V and a family F of sets
with union V , we define a graph G′ = (V ′, E ′), and edge costs for both orientations
of each edge. Let V’ consist of the following nodes:

• the nodes in V ,

• a node vZ for each Z ∈ F ,

• a root r.

The set of terminal nodes is V . The graph G′ consists of two types of edges, with
the following costs for their orientations:

1. An edge rvZ for each Z ∈ F . The cost is 0 if oriented towards r, and 1 if
oriented towards vZ .

2. Edges between vZ and each node in Z, for every Z ∈ F . The cost is 0 if the
edge is oriented towards V , and the cost is |V | if the edge is oriented towards
vZ .

Since the union of the sets in F is V , there is a Steiner rooted connected orientation
of cost at most |V |: for each node u ∈ V we select an arbitrary set Zu ∈ F containing
u; we orient the edges rvZu towards vZu , orient the other edges of type 1 towards r,
and orient each edge of type 2 towards V . We can thus assume that in a minimum
cost orientation every edge of type 2 is oriented towards V .

Such an orientation is Steiner rooted connected if and only if the family

{Z ∈ F : the edge rvZ is oriented towards vZ}

is a set cover. So the cost of the minimum cost orientation equals the number of sets
in a minimum cover.

7 Concluding Remarks

The questions of generalizing Nash-Williams’ theorem to hypergraphs and obtaining
graph orientations achieving high vertex-connectivity remain wide open. We believe
that substantially new ideas are required to solve these problems. The following prob-
lem seems to be a concrete intermediate problem which captures the main difficulty:
If S is 2k-element-connected in an undirected graph G, is it true that G has a Steiner
strongly k-element-connected orientation? We believe that settling it would be a
major step towards the above questions.
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