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ABSTRACT

Connectivity and spanning trees of graphs

Xiaofeng Gu

This dissertation focuses on connectivity, edge connectivity and edge-disjoint spanning trees

in graphs and hypergraphs from the following aspects.

1. Eigenvalue aspect.

Let λ2(G) and τ(G) denote the second largest eigenvalue and the maximum number of edge-

disjoint spanning trees of a graph G, respectively. Motivated by a question of Seymour on the

relationship between eigenvalues of a graph G and bounds of τ(G), Cioabă and Wong conjec-

tured that for any integers d, k ≥ 2 and a d-regular graph G, if λ2(G) < d− 2k−1
d+1 , then τ(G) ≥ k.

They proved the conjecture for k = 2, 3, and presented evidence for the cases when k ≥ 4. We

propose a more general conjecture that for a graph G with minimum degree δ ≥ 2k ≥ 4, if

λ2(G) < δ − 2k−1
δ+1 , then τ(G) ≥ k. We prove the conjecture for k = 2, 3 and provide partial

results for k ≥ 4. We also prove that for a graph G with minimum degree δ ≥ k ≥ 2, if

λ2(G) < δ − 2(k−1)
δ+1 , then the edge connectivity is at least k. As corollaries, we investigate the

Laplacian and signless Laplacian eigenvalue conditions on τ(G) and edge connectivity.

2. Network reliability aspect.

With graphs considered as natural models for many network design problems, edge connectivity

κ′(G) and maximum number of edge-disjoint spanning trees τ(G) of a graph G have been used

as measures for reliability and strength in communication networks modeled as graph G. Let

κ′(G) = max{κ′(H) : H is a subgraph of G}. We present:

(i) For each integer k > 0, a characterization for graphs G with the property that κ′(G) ≤ k but

for any additional edge e not in G, κ′(G+ e) ≥ k + 1.

(ii) For any integer n > 0, a characterization for graphs G with |V (G)| = n such that κ′(G) =

τ(G) with |E(G)| minimized.

3. Generalized connectivity.

For an integer l ≥ 2, the l-connectivity κl(G) of a graph G is defined to be the minimum number

of vertices of G whose removal produces a disconnected graph with at least l components or a

graph with fewer than l vertices. Let k ≥ 1, a graph G is called (k, l)-connected if κl(G) ≥ k. A

graph G is called minimally (k, l)-connected if κl(G) ≥ k but ∀e ∈ E(G), κl(G− e) ≤ k − 1. A

structural characterization for minimally (2, l)-connected graphs and some extremal results are

obtained. These extend former results by Dirac and Plummer on minimally 2-connected graphs.



4. Degree sequence aspect.

An integral sequence d = (d1, d2, · · · , dn) is hypergraphic if there is a simple hypergraph H with

degree sequence d, and such a hypergraph H is a realization of d. A sequence d is r-uniform

hypergraphic if there is a simple r-uniform hypergraph with degree sequence d. It is proved that

an r-uniform hypergraphic sequence d = (d1, d2, · · · , dn) has a k-edge-connected realization if

and only if both di ≥ k for i = 1, 2, · · · , n and
∑n

i=1 di ≥
r(n−1)
r−1 , which generalizes the formal

result of Edmonds for graphs and that of Boonyasombat for hypergraphs.

5. Partition connectivity augmentation and preservation.

Let k be a positive integer. A hypergraph H is k-partition-connected if for every partition P of

V (H), there are at least k(|P |−1) hyperedges intersecting at least two classes of P . We determine

the minimum number of hyperedges in a hypergraph whose addition makes the resulting hy-

pergraph k-partition-connected. We also characterize the hyperedges of a k-partition-connected

hypergraph whose removal will preserve k-partition-connectedness.
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Chapter 1

Preliminaries

1.1 Notation and Terminology

We follow notations of Bondy and Murty [6] for graphs and Berge [1] for hypergraphs, unless

otherwise defined. Thus for a graph G, ω(G) denotes the number of components of G, and κ′(G)

denotes the edge connectivity of G. A graph G is nontrivial if E(G) ̸= ∅. For a connected

graph G, τ(G) denotes the maximum number of edge-disjoint spanning trees in G. A survey on

τ(G) can be found in [63]. By definition, τ(K1) = ∞.

A fundamental theorem of Nash-Williams and Tutte characterizes graphs with at least k

edge-disjoint spanning trees.

Theorem 1.1.1. (Nash-Williams [57] and Tutte [70])

Let G be a connected graph with E(G) ̸= ∅, and let k > 0 be an integer. Then τ(G) ≥ k if and

only if for any X ⊆ E(G), |X| ≥ k(ω(G−X)− 1).

Nash-Williams published a dual theorem of Theorem 1.1.1, characterizing graphs that can

be decomposed to at most k forests (Theorem 1.1.2).

Theorem 1.1.2. (Nash-Williams [58]) Let G be a connected graph and k be a positive integer.

Then a(G) ≤ k if and only if for any subgraph S, |E(S)| ≤ k(|V (S)| − 1).

Let G be a graph. The density of G is defined by

d(G) =
|E(G)|

|V (G)| − ω(G)
. (1.1)

Hence, if G is connected, then d(G) = |E(G)|
|V (G)|−1 . Following the terminology in [11], η(G) and

γ(G) are respectively defined as

η(G) = min
|X|

ω(G−X)− ω(G)
and γ(G) = max{d(H)},
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where the minimum or maximum is taken over all edge subsets X or subgraph H whenever the

denominator is non-zero. From the definitions of d(G), η(G) and γ(G), we immediately have,

for any nontrivial graph G,

η(G) ≤ d(G) ≤ γ(G). (1.2)

As in [11], a graph G satisfying d(G) = γ(G) is said to be uniformly dense.

Theorem 1.1.1 above indicates that for a connected graph G

τ(G) = ⌊η(G)⌋. (1.3)

Theorem 1.1.3. (Catlin et al. [11])

Let G be a graph. The following statements are equivalent.

(i) η(G) = d(G).

(ii) d(G) = γ(G).

(iii) η(G) = γ(G).

Let G be an undirected graph on n vertices with vertex set {v1, v2, · · · , vn}. The adjacency
matrix of G is an n by n matrix A(G) = (aij) given by aij = m(vi, vj) where m(vi, vj) denotes

the number of edges between vi and vj for 1 ≤ i, j ≤ n. By the definition, if G is simple, then

A(G) is a symmetric (0, 1)-matrix. Eigenvalues of G are the eigenvalues of A(G). We use λi(G)

to denote the ith largest eigenvalue of G; and when the graph G is understood from the context,

we often use λi for λi(G). With these notations, we always have λ1 ≥ λ2 ≥ · · · ≥ λn.

Let A(G) be the adjacency matrix of a graph G and D(G) be the diagonal matrix of row

sums of A(G) (i.e., the degrees of G), which is the degree matrix of G. The matrices L(G) =

D(G)−A(G) and Q(G) = D(G)+A(G) are the Laplacian matrix and the signless Laplacian

matrix of G, respectively. We use µi(G) and qi(G) to denote the ith largest eigenvalue of L(G)

and Q(G), respectively. It is not difficult to see that µn(G) = 0. The second smallest eigenvalue

of L(G), µn−1(G), is known as the algebraic connectivity of G.

A hypergraph H is a pair (V, E) where V is the vertex set of H and E is a collection of not

necessarily distinct nonempty subsets of V . Note that we allow a hypergraph to have isolated

vertices, which differs slightly from [1]. An element in V is a vertex of H, and an element

in E is a hyperedge or simply an edge of H. A hypergraph is nontrivial if E ̸= ∅. A single

element edge is referred as a loop and two edges with the same vertices are parallel edges.

We use K1 to denote the hypergraph with one vertex and no edges. If W ⊂ V , the hypergraph

(W, EW ), where EW = {F ∩W : ∀F ∈ E with F ∩W ̸= ∅}, is a sub-hypergraph induced by

the vertex subset W , and is denoted by H[W ]. If X ⊆ E and VX = ∪F∈XX, then (VX , X) is

defined as the sub-hypergraph induced by the edge subset X and is denoted by H[X].

A hypergraph H is nontrivial if H has at least one non loop edge. Let ω(H) denote the number
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of components in H. The degree of a vertex v in H, denoted by dH(v) or d(v), is the number

of edges in H containing v. Let E = {E1, E2, · · · , Em}. A hypergraph H is simple if Ei ⊆ Ej

implies that i = j for any i, j with 1 ≤ i, j ≤ m. Let r ≥ 2 be an integer. A hypergraph H is an

r-uniform hypergraph if |Ei| = r for each i with 1 ≤ i ≤ m. Thus a simple graph is a simple

2-uniform hypergraph, and vice versa. Let G and H be hypergraphs with V (G) ∩ V (H) = ∅.
Then G ∪H is the hypergraph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). If X

is a collection of nonempty subsets of V (H) and X ∩ E(H) = ∅, then H +X is the hypergraph

with vertex set V (H) and edge set E(H) ∪X.

Let H be a hypergraph and V1, V2, · · · , Vk be subsets of V (H). A hyperedge E ∈ E(H) is

(V1, V2, · · · , Vk)-crossing if E∩Vi ̸= ∅ for 1 ≤ i ≤ k. If in addition, E ⊆ ∪k
i=1Vi, then E is exact-

(V1, V2, · · · , Vk)-crossing. When k = 1, E is said to be V1-crossing and exact-V1-crossing,

respectively. The set of all exact-(V1, V2, · · · , Vk)-crossing edges of H is denoted by EH
V1V2···Vk

. A

walk in a hypergraph H is a finite alternating sequence W = (v0, E1, v1, E2, · · · , Ek, vk), where

vi is a vertex for i = 0, 1, · · · , k and Ej is an edge such that vj−1, vj ∈ Ej for j = 1, 2, · · · , k. A
walk W is a path if all the vertices vi for i = 0, 1, · · · , k and all the edges in W are distinct. A

hypergraph is connected if for each pair of distinct vertices there exists a path from one to the

other. Let X be a nonempty proper subset of V and X = V −X. The set of all (X,X)-crossing

hyperedges of a hypergraph H is an edge-cut of H between X and X, denoted by [X,X]H , or

[X,X]. The number of hyperedges in [X,X]H is denoted by |[X,X]H | or dH(X).

For a positive integer k, a hypergraph H is k-edge-connected if for every nonempty proper

subset U of V (H), there are at least k hyperedges intersecting both U and V (H)\U . The

edge connectivity of H is the maximum k such that H is k-edge-connected. A hypergraph

H is k-partition-connected if e(P ) ≥ k(|P | − 1) for every partition P of V (H), where |P |
denotes the number of classes in P , and e(P ) denotes the number of edges intersecting at

least two classes of P . Equivalently, H is k-partition-connected if for any subset X ⊆ E(H),

|X| ≥ k(ω(H−X)−1). As P can be any partitions of V (H) into two nonempty subsets, it follows

by definition that every k-partition-connected hypergraph must be k-edge-connected. Often a

1-partition-connected hypergraph is also referred as a partition-connected hypergaph. Note

that a graph is partition-connected if and only if it is connected. In general, partition-connected

hypergraphs must be connected, but a connected hypergraph may not be partition-connected.

The partition connectivity of H is the maximum k such that H is k-partition-connected.

1.2 Main results

The main results in the dissertation are summarized as below.

1. Seymour proposed the following problem: to determine the relationship between the eigen-
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values and the maximum number of edge-disjoint spanning trees in a graph. Cioabă and

Wong conjectured that for any integers d, k ≥ 2 and a d-regular graph G, if λ2(G) <

d − 2k−1
d+1 , then τ(G) ≥ k. They proved the conjecture for k = 2, 3, and presented ev-

idence for the cases when k ≥ 4. Thus the conjecture remains open for k ≥ 4. We

propose a more general conjecture that for a graph G with minimum degree δ ≥ 2k ≥ 4,

if λ2(G) < δ − 2k−1
δ+1 , then τ(G) ≥ k. In this paper, we prove that for a graph G with

minimum degree δ, each of the following holds.

(i) For k ∈ {2, 3}, if δ ≥ 2k and λ2(G) < δ − 2k−1
δ+1 , then τ(G) ≥ k.

(ii) For k ≥ 4, if δ ≥ 2k and λ2(G) < δ − 3k−1
δ+1 , then τ(G) ≥ k.

Our results sharpen theorems of Cioabă and Wong and give a partial solution to Cioabă

and Wong’s conjecture and Seymour’s problem. We also prove that for a graph G with

minimum degree δ ≥ k ≥ 2, if λ2(G) < δ− 2(k−1)
δ+1 , then the edge connectivity is at least k,

which generalizes a former result of Cioabă. As corollaries, we investigate the Laplacian

and signless Laplacian eigenvalue conditions on τ(G) and edge connectivity.

2. With graphs considered as natural models for many network design problems, edge con-

nectivity κ′(G) and maximum number of edge-disjoint spanning trees τ(G) of a graph G

have been used as measures for reliability and strength in communication networks mod-

eled as graph G (see [21, 54], among others). Mader [52] and Matula [53] introduced the

maximum subgraph edge connectivity κ′(G) = max{κ′(H) : H is a subgraph of G}, and
also consider κ′(G) reflecting the strength of the graph G (see [54]). Motivated by their

many useful applications in network design and by the established inequalities

κ′(G) ≥ κ′(G) ≥ τ(G),

we present the following:

(i) For each integer k > 0, a characterization for graphs G with the property that κ′(G) ≤ k

but for any additional edge e not in G, κ′(G+ e) ≥ k + 1.

(ii) For any integer n > 0, a characterization for graphs G with |V (G)| = n such that

κ′(G) = τ(G) with |E(G)| minimized.

3. For an integer l ≥ 2, the l-connectivity κl(G) of a graph G is defined to be the minimum

number of vertices of G whose removal produces a disconnected graph with at least l

components or a graph with fewer than l vertices. Let k ≥ 1, a graph G is called (k, l)-

connected if κl(G) ≥ k. A graph G is called minimally (k, l)-connected if κl(G) ≥ k but

∀e ∈ E(G), κl(G−e) ≤ k−1. We present a structural characterization for minimally (2, l)-

connected graphs and classify extremal results. These extend former results by Dirac [23]

and Plummer [64] on minimally 2-connected graphs.
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4. An integral sequence d = (d1, d2, · · · , dn) is hypergraphic if there is a simple hypergraph

H with degree sequence d, and such a hypergraph H is a realization of d. A sequence d is

r-uniform hypergraphic if there is a simple r-uniform hypergraph with degree sequence d.

Similarly, a sequence d is r-uniform multi-hypergraphic if there is an r-uniform hypergraph

(possibly with multiple edges) with degree sequence d. It is proved that an r-uniform

hypergraphic sequence d = (d1, d2, · · · , dn) has a k-edge-connected realization if and only

if both di ≥ k for i = 1, 2, · · · , n and
∑n

i=1 di ≥
r(n−1)
r−1 , which generalizes the formal result

of Edmonds for graphs and that of Boonyasombat for hypergraphs. It is also proved that

a nonincreasing integral sequence d = (d1, d2, · · · , dn) is the degree sequence of a k-edge-

connected r-uniform hypergraph (possibly with multiple edges) if and only if
∑n

i=1 di is a

multiple of r, dn ≥ k and
∑n

i=1 di ≥ max{ r(n−1)
r−1 , rd1}.

5. Let k be a positive integer. A hypergraph H is k-partition-connected if for every partition

P of V (H), there are at least k(|P | − 1) hyperedges intersecting at least two classes of P .

We determine the minimum number of hyperedges in a hypergraph whose addition makes

the resulting hypergraph k-partition-connected. We also characterize the hyperedges of a

k-partition-connected hypergraph whose removal will preserve k-partition-connectedness.

5



Chapter 2

Spanning trees, edge connectivity

and eigenvalues of graphs

2.1 Introduction

In this paper, we consider finite undirected simple graphs.

Seymour proposed the following problem on predicting τ(G) by means of the eigenvalues.

Problem 1. ( [19]) Let G be a connected graph. Determine the relationship between τ(G) and

eigenvalues of G.

Motivated by this problem of Seymour, Cioabă and Wong proposed the following conjecture.

Conjecture 2.1.1. (Cioabă and Wong [19]) Let k and d be two integers with d ≥ 2k ≥ 4. If G

is a d-regular graph with λ2(G) < d− 2k−1
d+1 , then τ(G) ≥ k.

Utilizing Theorem 1.1.1, Cioabă [17], Cioabă and Wong [19] proved a number of theorems

in this direction, settling Conjecture 2.1.1 for the cases when k ∈ {2, 3} and obtaining partial

results towards the conjecture for other values of k.

Theorem 2.1.1. (Cioabă, Theorem 1.3 in [17]) Let k and d be two integers with d ≥ k ≥ 2. If

G is a d-regular graph with λ2(G) < d− 2(k−1)
d+1 , then κ′(G) ≥ k.

Theorem 2.1.2. (Cioabă and Wong, Theorem 1.1 in [19]) Let d be an integer with d ≥ 4. If

G is a d-regular graph with λ2(G) < d− 3
d+1 , then τ(G) ≥ 2.

Theorem 2.1.3. (Cioabă and Wong, Theorem 1.2 in [19]) Let d be an integer with d ≥ 6. If

G is a d-regular graph with λ2(G) < d− 5
d+1 , then τ(G) ≥ 3.

Theorem 2.1.4. (Cioabă and Wong [19]) Let k and d be two integers with d ≥ 2k ≥ 4. If G is

a d-regular graph with λ2(G) < d− 2(2k−1)
d+1 , then τ(G) ≥ k.
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The main purpose of this paper is to continue the investigation between eigenvalues of a

simple graph (not necessarily regular) and the number of edge-disjoint spanning trees. As

suggested by Theorem 1.1.1, high edge connectivity also implies more edge-disjoint spanning

trees packing in a graph (see [36] for an example), we also investigate the relationship between

edge connectivity of a simple graph and its second largest eigenvalue. Firstly, we present a more

general conjecture, stated below.

Conjecture 2.1.2. Let k be an integer with k ≥ 2 and G be a graph with minimum degree

δ ≥ 2k. If λ2(G) < δ − 2k−1
δ+1 , then τ(G) ≥ k.

The following are the main results in this paper. Theorem 2.1.5 generalizes Theorem 2.1.1.

While Theorems 2.1.6 (i) and (ii) settle two special cases of Conjecture 2.1.2, Theorem 2.1.6

(iii) sheds some light to support Conjecture 2.1.2. Theorem 2.1.6 generalizes Theorems 2.1.2,

2.1.3 and 2.1.4, provides further evidence to support Conjectures 2.1.1 and 2.1.2, and sharpens

Theorem 2.1.4.

Theorem 2.1.5. Let k be an integer with k ≥ 2 and G be a graph with minimum degree δ ≥ k.

If λ2(G) < δ − 2(k−1)
δ+1 , then κ′(G) ≥ k.

Theorem 2.1.6. Let k ≥ 2 be an integer, G be a graph with minimum degree δ.

(i) If δ ≥ 4 and λ2(G) < δ − 3
δ+1 , then τ(G) ≥ 2.

(ii) If δ ≥ 6 and λ2(G) < δ − 5
δ+1 , then τ(G) ≥ 3.

(iii) For k ≥ 4, if δ ≥ 2k and λ2(G) < δ − 3k−1
δ+1 , then τ(G) ≥ k.

As applications of Theorem 2.1.5 and Theorem 2.1.6, we investigate the relationship between

algebraic connectivity, the second largest eigenvalue of signless Laplacian matrix and edge con-

nectivity, the number of edge-disjoint spanning trees of a simple graph.

In Section 2, we display some preliminaries and mechanisms, including eigenvalue interlacing

properties and quotient matrices. These will be applied in the proofs of the main results, to

be presented in Section 3 and 4. As corollaries, Laplacian and signless Laplacian eigenvalue

conditions on τ(G) and edge connectivity are presented in the last section.

2.2 Preliminaries

In this section, we present some of the preliminaries and former results to be used in our

arguments. Throughout this section, G always denotes a simple graph.

Let En = {(x1, x2, · · · , xn)T |
∑n

i=1 xi = 1 and xi ≥ 0 for i = 1, 2, · · · , n}.

Theorem 2.2.1. (Page 17 in [55]) Let A be an irreducible nonnegative n × n matrix with the

largest eigenvalue λ1. Then

λ1 = min
x∈En

{max
xi ̸=0

(Ax)i
xi

} = max
x∈En

{min
xi ̸=0

(Ax)i
xi

}.
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Theorem 2.2.2. (Proposition 3.1.2 in [8]) Let G be a graph with largest eigenvalue λ1, maxi-

mum degree ∆ and average degree d̄. Then d̄ ≤ λ1 ≤ ∆.

Given two real sequences θ1 ≥ θ2 ≥ · · · θn and η1 ≥ η2 ≥ · · · ≥ ηm with n > m, the second

sequence is said to interlace the first one if θi ≥ ηi ≥ θn−m+i, for i = 1, 2, · · · ,m. When we say

the eigenvalues of a matrix B interlace the eigenvalues of a matrix A, it means the non-increasing

eigenvalue sequence of B interlaces that of A. The following interlace results are well-known,

and can be found in many textbooks.

Theorem 2.2.3. (Corollary 2.2 in [38]. See also [8,31]) Let A be a real symmetric matrix and

B be a principal submatrix of A. Then the eigenvalues of B interlace the eigenvalues of A.

Corollary 2.2.4. ( [19, 38]) If H is an induced subgraph of G, then the eigenvalues of H

interlace the eigenvalues of G.

Let S and T be disjoint subsets of V (G). We denote by E(S, T ) the set of edges each of

which has one vertex in S and the other vertex in T and let e(S, T ) = |E(S, T )|. The next useful
lemma follows immediately from Theorem 2.2.2 and Corollary 2.2.4.

Lemma 2.2.5. ( [19]) Let S and T be disjoint subsets of V (G) and e(S, T ) = 0. Then

λ2(G) ≥ λ2(G[S ∪ T ]) ≥ min{λ1(G[S]), λ1(G[T ])} ≥ min{d̄(G[S]), d̄(G[T ])},

where d̄ denotes the average degree of a graph.

Suppose that we partition V (G) into s non-empty subsets V1, V2, · · · , Vs. We denote this

partition by π. The quotient matrix Aπ(G) = A(V1, V2, · · · , Vs) of G with respect to π, is

an s by s matrix (bij) such that bij is the average number of neighbors in Vj of the vertices in

Vi for 1 ≤ i, j ≤ s. If the partition π is not specified, we often use As to denote the quotient

matrix. As As is an s by s square real matrix, the following is well known from linear algebra

(for example, see Page 289 in [68]).

λ1(As) + λ2(As) + · · · · · ·+ λs(As) = tr(As). (2.1)

We denote the average degree of Vi by di for 1 ≤ i, j ≤ s. By the definition of the quotient

matrix, the sum of all entries in the ith row is exactly di. Let ∆π(G) = max1≤i≤s{di} and

δπ(G) = min1≤i≤s{di}. The following theorem is an analogue of Theorem 2.2.2.

Theorem 2.2.6. Let G be a connected graph and π be a partition of V (G). Then

δπ ≤ λ1(Aπ) ≤ ∆π.
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Proof: Suppose that the partition π has s parts. Let x = (1s ,
1
s , · · · ,

1
s )

T ∈ Es. By Theo-

rem 2.2.1,

λ1(Aπ) ≤ max
1≤i≤s

(Ax)i
xi

= max
1≤i≤s

1
s · di

1
s

= max
1≤i≤s

di = ∆π.

Similarly, by Theorem 2.2.1,

λ1(Aπ) ≥ min
1≤i≤s

(Ax)i
xi

= min
1≤i≤s

1
s · di

1
s

= min
1≤i≤s

di = δπ.

Theorem 2.2.7. (Corollary 2.3 in [38]. See also [8,31]) Let G be a graph. Eigenvalues of any

quotient matrix of G interlace the eigenvalues of G.

Lemma 2.2.8. Let G be a graph with minimum degree δ and U be a non-empty proper subset

of V (G). If e(U, V \U) ≤ δ − 1, then |U | ≥ δ + 1.

Proof: We argue by contradiction and assume that |U | ≤ δ. Then |U |(|U | − 1) + e(U, V \U) ≥
|U |δ by counting the total degrees of vertices in U . But |U |(|U | − 1)+ e(U, V \U) ≤ δ(|U | − 1)+

(δ−1) ≤ |U |δ−1, contrary to the fact that |U |(|U |−1)+e(U, V \U) ≥ |U |δ. Thus |U | ≥ δ+1.

2.3 Eigenvalues and edge connectivity in graphs

In this section, we present the proof of Theorem 2.1.5.

Proof of Theorem 2.1.5. We argue by contradiction and assume that κ′(G) ≤ k − 1. Then

there exists a non-empty proper subset V1 ⊆ V (G) such that e(V1, V \V1) ≤ k − 1. Let r =

e(V1, V \V1) and V ′ = V \V1. By Lemma 2.2.8, |V1| ≥ δ + 1 and |V ′| ≥ δ + 1. The quotient

matrix of G with respect to the partition (V1, V
′) is

A2 =

[
d̄1 − r

|V1|
r

|V1|
r

|V ′| d̄′ − r
|V ′|

]
,

where d̄1 denotes the average degree of V1 in G and d̄′ denotes the average degree of V ′ in

G. By (2.1), λ2(A2) = tr(A2) − λ1(A2). By Theorem 2.2.6, λ1(A2) ≤ max{d̄1, d̄′} and by

Theorem 2.2.7, λ2(A2) ≤ λ2(G). Thus λ2(G) ≥ λ2(A2) ≥ tr(A2) −max{d̄1, d̄′}, which implies

that

λ2(G) ≥ tr(A2)−max{d̄1, d̄′} = d̄1 + d̄′ − (
r

|V1|
+

r

|V ′|
)−max{d̄1, d̄′} ≥ δ − 2(k − 1)

δ + 1
,

contrary to the fact that λ2(G) < δ − 2(k−1)
δ+1 . This completes the proof of the theorem.
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2.4 Eigenvalues and edge-disjoint spanning trees

The proof for Theorem 2.1.6 will be given in this section. We shall argue by contradiction and

assume that τ(G) ≤ k − 1. By Theorem 1.1.1, there exists an edge subset X ⊆ E(G) such that

|X| ≤ k(ω(G−X)− 1)− 1. Let ω(G−X) = t and G1, G2 · · · , Gt be the components of G−X.

For 1 ≤ i ≤ t, let Vi = V (Gi), Ei = E(Gi), and ri = e(Vi, V \Vi). Without lose of generality, we

always assume that

r1 ≤ r2 ≤ · · · ≤ rt. (2.2)

With these notations and by |X| ≤ k(ω(G−X)− 1)− 1, we have∑
1≤i<j≤t

e(Vi, Vj) ≤ k(t− 1)− 1 = kt− k − 1. (2.3)

Claim 1. For k ≥ 2, if λ2(G) < δ− 2k−1
δ+1 , then there exist no indices p and q with 1 ≤ p ̸= q ≤ t

such that e(Vp, Vq) = 0 and rp, rq ≤ 2k − 1.

By Lemma 2.2.8, |Vp| ≥ δ + 1 and |Vq| ≥ δ + 1. It follows that d̄(Gp) ≥ δ − 2k−1
|Vp| ≥ δ − 2k−1

δ+1

and d̄(Gq) ≥ δ − 2k−1
|Vq | ≥ δ − 2k−1

δ+1 . By Lemma 2.2.5, λ2(G) ≥ min{d̄(Gp), d̄(Gq)} ≥ δ − 2k−1
δ+1 ,

contrary to the assumption that λ2(G) < δ − 2k−1
δ+1 . Thus the proof for Claim 1 is done.

Claim 2. For k ≥ 2, if δ ≥ 2k and if λ2(G) < δ − 2k−1
δ+1 , then for any i with 1 ≤ i ≤ t, ri ≥ k.

We argue by contradiction and assume that for some i, ri < k. Then κ′(G) < k. By Theo-

rem 2.1.5, λ2(G) ≥ δ − 2(k−1)
δ+1 , contrary to the assumption that λ2(G) < δ − 2k−1

δ+1 . Therefore,

we must have ri ≥ k. This proves Claim 2.

The case when k = 2

In this subsection, we shall prove Theorem 2.1.6(i). By (2.3) with k = 2, we have

t∑
i=1

ri = 2
∑

1≤i<j≤t

e(Vi, Vj) ≤ 4t− 6.

Let xl denote the multiplicity of l in {r1, r2, · · · , rt} for l = 1, 2, 3. By Claim 2, rt ≥ · · · ≥
r2 ≥ r1 ≥ 2. Thus x1 = 0. It follows by (2.3) with k = 2 that

2x2 + 3x3 + 4(t− x2 − x3) ≤
t∑

i=1

ri ≤ 4t− 6,

which implies that 2x2 + x3 ≥ 6. Thus if x2 = 0, then x3 ≥ 6; and if x2 = 1, then x3 ≥ 4.

It follows that when 0 ≤ x2 ≤ 1, there always exist p and q with 1 ≤ p ̸= q ≤ t such that

e(Vp, Vq) = 0 and rp ≤ 3 and rq = 3. But such indices p and q are forbidden by Claim 1, a
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contradiction.

Hence we must have x2 ≥ 2, and so we may assume, by (2.2), that r1, r2 = 2 and 2 ≤ r3 ≤ 3.

Let V ′ = V \(V1 ∪ V2). Then V3 ⊆ V ′. By Lemma 2.2.8, |Vi| ≥ δ + 1 for i = 1, 2, 3, and so

|V ′| ≥ |V3| ≥ δ + 1. The quotient matrix of G with respect to the partition (V1, V2, V
′) is

A3 =


d̄1 − 2

|V1|
1

|V1|
1

|V1|
1

|V2| d̄2 − 2
|V2|

1
|V2|

1
|V ′|

1
|V ′| d̄′ − 2

|V ′|

 ,

where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average degree of

V ′ in G.

By (2.1), λ2(A3) + λ3(A3) = tr(A3)− λ1(A3). By Theorem 2.2.7, λ2(G) ≥ λ2(A3), λ3(G) ≥
λ3(A3) and by Theorem 2.2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥ tr(A3) −
max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3)−max{d̄1, d̄2, d̄′} = d̄1+d̄2+d̄′−(
2

|V1|
+

2

|V2|
+

2

|V ′|
)−max{d̄1, d̄2, d̄′} ≥ 2δ− 6

δ + 1
,

contrary to the assumption in Theorem 2.1.6 (i) that λ2(G) < δ− 3
δ+1 . This completes the proof

of Theorem 2.1.6 (i).

The case when k = 3

In this subsection, we shall prove Theorem 2.1.6(ii). By (2.3) with k = 3, we have

t∑
i=1

ri = 2
∑

1≤i<j≤t

e(Vi, Vj) ≤ 6t− 8.

Let xl denote the multiplicity of l in {r1, r2, · · · , rt} for 1 ≤ l ≤ 5. By Claim 2, rt ≥ · · · ≥ r2 ≥
r1 ≥ 3. Thus x1 = x2 = 0. It follows that

3x3 + 4x4 + 5x5 + 6(t− x3 − x4 − x5) ≤
t∑

i=1

ri ≤ 6t− 8,

which implies that 3x3 + 2x4 + x5 ≥ 8.

Case 1: x3 ≥ 2.

Then by (2.2), r1 = r2 = 3 and r3 ≤ 5. By Lemma 2.2.8, |Vi| ≥ δ + 1 for i = 1, 2, 3. Let

V ′ = V \(V1 ∪ V2). Then |V ′| ≥ |V3| ≥ δ + 1. The quotient matrix of G with respect to the

partition (V1, V2, V
′) is

A3 =


d̄1 − 3

|V1|
1

|V1|
2

|V1|
1

|V2| d̄2 − 3
|V2|

2
|V2|

2
|V ′|

2
|V ′| d̄′ − 4

|V ′|

 ,
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where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average degree of

V ′ in G.

By (2.1), λ2(A3) + λ3(A3) = tr(A3)− λ1(A3). By Theorem 2.2.7, λ2(G) ≥ λ2(A3), λ3(G) ≥
λ3(A3) and by Theorem 2.2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥ tr(A3) −
max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3)−max{d̄1, d̄2, d̄′} = d̄1+d̄2+d̄′−(
3

|V1|
+

3

|V2|
+

4

|V ′|
)−max{d̄1, d̄2, d̄′} ≥ 2δ− 10

δ + 1
,

contrary to the assumption in Theorem 2.1.6 (ii) that λ2(G) < δ − 5
δ+1 .

Case 2: x3 = 1.

Hence 2x4 + x5 ≥ 5. If x4 = 0, then x5 ≥ 5, and so there exist p and q with 1 ≤ p ̸= q ≤ t

such that e(Vp, Vq) = 0 and rp = 3 and rq = 5. This is prohibited by Claim 2. Therefore we

must have x4 ≥ 1, and so by (2.2), r1 = 3, r2 = 4, and r3, r4 ≤ 5. By Lemma 2.2.8, |Vi| ≥ δ + 1

for i = 1, 2, 3, 4. Let V ′ = V \(V1 ∪ V2). Thus V3, V4 ⊆ V ′, whence |V ′| ≥ 2(δ + 1). The quotient

matrix of G with respect to the partition (V1, V2, V
′) is

A3 =


d̄1 − 3

|V1|
1

|V1|
2

|V1|
1

|V2| d̄2 − 4
|V2|

3
|V2|

2
|V ′|

3
|V ′| d̄′ − 5

|V ′|

 ,

where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average degree of

V ′ in G.

By (2.1), λ2(A3) + λ3(A3) = tr(A3)− λ1(A3). By Theorem 2.2.7, λ2(G) ≥ λ2(A3), λ3(G) ≥
λ3(A3) and by Theorem 2.2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥ tr(A3) −
max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3)−max{d̄1, d̄2, d̄′} = d̄1+d̄2+d̄′−(
3

|V1|
+

4

|V2|
+

5

|V ′|
)−max{d̄1, d̄2, d̄′} ≥ 2δ− 19/2

δ + 1
,

contrary to the assumption in Theorem 2.1.6 (ii) that λ2(G) < δ − 5
δ+1 .

Case 3: x3 = 0.

Then 2x4+x5 ≥ 8. If x4 < 2, then either x4 = 1 and x5 ≥ 6, or x4 = 0 and x5 ≥ 8. In either

case, there exist p and q with 1 ≤ p ̸= q ≤ t such that e(Vp, Vq) = 0 and rp, rq ≤ 5, violating

Claim 2. Hence, by (2.2), we may assume that r1 = r2 = 4. Since 2x4 + x5 ≥ 8, r3, r4 ≤ 5.

Case 3.1. r5 ≤ 5.

Let V ′ = V \(V1 ∪ V2). By Lemma 2.2.8, |Vi| ≥ δ + 1 for i = 1, 2, 3, 4, 5. Then |V ′| ≥
|V3|+ |V4|+ |V5| ≥ 3(δ + 1). The quotient matrix of G with respect to the partition (V1, V2, V

′)
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is

A3 =


d̄1 − 4

|V1|
1

|V1|
3

|V1|
1

|V2| d̄2 − 4
|V2|

3
|V2|

3
|V ′|

3
|V ′| d̄′ − 6

|V ′|

 ,

where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average degree of

V ′ in G.

By (2.1), λ2(A3) + λ3(A3) = tr(A3)− λ1(A3). By Theorem 2.2.7, λ2(G) ≥ λ2(A3), λ3(G) ≥
λ3(A3) and by Theorem 2.2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥ tr(A3) −
max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3)−max{d̄1, d̄2, d̄′} = d̄1+d̄2+d̄′−(
4

|V1|
+

4

|V2|
+

6

|V ′|
)−max{d̄1, d̄2, d̄′} ≥ 2δ− 10

δ + 1
,

contrary to the assumption in Theorem 2.1.6 (ii) that λ2(G) < δ − 5
δ+1 .

Case 3.2. r5 > 5.

As 2x4 + x5 ≥ 8, we must have ri = 4 for i = 1, 2, 3, 4. If t = 4, then (V1, V2, V3, V4) is

a partition of V (G). By Claim 2, and since r1 = 4, there exists Vj (say j = 2) such that

e(V1, Vj) = 2. Let V ′ = V \(V1 ∪ V2). Then |V ′| = |V3|+ |V4| ≥ 2(δ+1). The quotient matrix of

G with respect to the partition (V1, V2, V
′) is

A3 =


d̄1 − 4

|V1|
2

|V1|
2

|V1|
2

|V2| d̄2 − 4
|V2|

2
|V2|

2
|V ′|

2
|V ′| d̄′ − 4

|V ′|

 ,

where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average degree of

V ′ in G.

By (2.1), λ2(A3) + λ3(A3) = tr(A3)− λ1(A3). By Theorem 2.2.7, λ2(G) ≥ λ2(A3), λ3(G) ≥
λ3(A3) and by Theorem 2.2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥ tr(A3) −
max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3)−max{d̄1, d̄2, d̄′} = d̄1+d̄2+d̄′−(
4

|V1|
+

4

|V2|
+

4

|V ′|
)−max{d̄1, d̄2, d̄′} ≥ 2δ− 10

δ + 1
,

contrary to the assumption in Theorem 2.1.6 (ii) that λ2(G) < δ − 5
δ+1 .

If t ≥ 5, then let V ′′ = V \(V1∪V2∪V3∪V4), and so (V1, V2, V3, V4, V
′′) is a partition of V (G).

By Claim 2, we may assume that e(Vi, Vj) ≥ 1 for 1 ≤ i, j ≤ 4. Then e(V ′′, V \V ′′) ≤ 4 ≤ δ − 1.

By Lemma 2.2.8, |V ′′| ≥ δ+1. Let V ′ = V \(V1∪V2). Then |V ′| = |V3|+|V4|+|V ′′| ≥ 3(δ+1). Let

e(V1, V2) = y. Then y ≥ 1. The quotient matrix of G with respect to the partition (V1, V2, V
′)

is

A3 =


d̄1 − 4

|V1|
y

|V1|
4−y
|V1|

y
|V2| d̄2 − 4

|V2|
4−y
|V2|

4−y
|V ′|

4−y
|V ′| d̄′ − 2(4−y)

|V ′|

 ,
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where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average degree of

V ′ in G.

By (2.1), λ2(A3) + λ3(A3) = tr(A3)− λ1(A3). By Theorem 2.2.7, λ2(G) ≥ λ2(A3), λ3(G) ≥
λ3(A3) and by Theorem 2.2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥ tr(A3) −
max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3)−max{d̄1, d̄2, d̄′}

= d̄1 + d̄2 + d̄′ − (
4

|V1|
+

4

|V2|
+

2(4− y)

|V ′|
)−max{d̄1, d̄2, d̄′}

≥ 2δ − 10

δ + 1
,

contrary to the assumption in Theorem 2.1.6 (ii) that λ2(G) < δ − 5
δ+1 . This completes the

proof.

The case when k ≥ 4

In this subsection, we shall prove Theorem 2.1.6(iii). Let xl denote the multiplicity of l in

{r1, r2, · · · , rt} for 1 ≤ l ≤ 2k − 1. By Claim 2, rt ≥ · · · ≥ r2 ≥ r1 ≥ k. Thus xj = 0 for

j = 1, 2, · · · , k − 1. By (2.3), we have

kxk+(k+1)xk+1+ · · ·+(2k−1)x2k−1+2k(t−(xk+xk+1+ · · ·+x2k−1)) ≤
t∑

i=1

ri ≤ 2kt−2(k+1),

which implies that

kxk + (k − 1)xk+1 + · · ·+ 2x2k−2 + x2k−1 ≥ 2(k + 1).

Let h be the smallest index such that xh ̸= 0. Then we have

(2k − h)xh + (2k − h− 1)xh+1 + · · ·+ 2x2k−2 + x2k−1 ≥ 2(k + 1). (2.4)

Since h ≥ k, we have 2(k + 1) > 2(2k − h).

Case 1: xh ≥ 2.

Since 2(k+1) > 2(2k−h), there exists an integer b ≥ 3 such that (b−1)(2k−h) < 2(k+1) ≤
b(2k − h). Hence h ≤ (2b−2)k−2

b < 2k − 1. It follows by (b− 1)(2k − h) < 2(k + 1) and by (2.4)

that xh+xh+1+ · · ·+x2k−2+x2k−1 ≥ b, and so by (2.2), we have r1 ≤ r2 ≤ · · · ≤ rb ≤ 2k−1. By

Lemma 2.2.8, |Vi| ≥ δ+1 with 1 ≤ i ≤ b. Let V ′ = V \(V1 ∪ V2). Then |V ′| ≥ |V3|+ · · ·+ |Vb| ≥
(b − 2)(δ + 1). Let e(V1, V2) = y. Then y ≥ 1. The quotient matrix of G with respect to the

partition (V1, V2, V
′) is

A3 =


d̄1 − h

|V1|
y

|V1|
h−y
|V1|

y
|V2| d̄2 − h

|V2|
h−y
|V2|

h−y
|V ′|

h−y
|V ′| d̄′ − 2(h−y)

|V ′|

 ,
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where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average degree of

V ′ in G.

By (2.1), λ2(A3) + λ3(A3) = tr(A3)− λ1(A3). By Theorem 2.2.7, λ2(G) ≥ λ2(A3), λ3(G) ≥
λ3(A3) and by Theorem 2.2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥ tr(A3) −
max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3)−max{d̄1, d̄2, d̄′}

= d̄1 + d̄2 + d̄′ − (
h

|V1|
+

h

|V2|
+

2(h− y)

|V ′|
)−max{d̄1, d̄2, d̄′}

≥ 2δ −
2( b−1

b−2h− y
b−2)

δ + 1
,

≥ 2(δ −
2(b−1)2

b(b−2) k − 3b−2
b(b−2)

δ + 1
),

contrary to the assumption in Theorem 2.1.6 (iii) that λ2(G) < δ − 3k−1
δ+1 . (To see this, let

f(b) = 2(b−1)2

b(b−2) . Then by Calculus, one can verify that f(b) is a decreasing function of b over the

interval [3,∞), and so for any b ≥ 3, f(b) ≤ f(3) = 8
3 < 3.) This proves Case 1.

Case 2: xh = 1.

Then (2.4) becomes (2k−h−1)xh+1+· · ·+2x2k−2+x2k−1 ≥ 2(k+1)−(2k−h) = h+2 ≥ k+2.

Let h′ be the smallest index such that xh′ > 0 with h′ > h. Then

(2k − h′)xh′ + · · ·+ 2x2k−2 + x2k−1 ≥ h+ 2 ≥ k + 2. (2.5)

As h′ ≥ h ≥ k, we have h′ + 2 > k and so k + 2 > 2k − h′. Thus there must be an integer

b′ ≥ 2 such that (b′ − 1)(2k − h′) < k + 2 ≤ b′(2k − h′). Hence h′ ≤ (2b′−1)k−2
b′ < 2k − 1. By

(b′ − 1)(2k − h′) < k + 2 and by (2.5), we have xh′ + · · ·+ x2k−2 + x2k−1 ≥ b′, and so by (2.2),

r1 ≤ r2 ≤ · · · ≤ rb′ ≤ rb′+1 ≤ 2k − 1. By Lemma 2.2.8, |Vi| ≥ δ + 1 for i = 1, 2, · · · , b′ + 1. Let

V ′ = V \(V1 ∪ V2). Then |V ′| ≥ |V3| + · · · + |Vb′+1| ≥ (b′ − 1)(δ + 1). Let e(V1, V2) = y. Then

y ≥ 1. The quotient matrix of G with respect to the partition (V1, V2, V
′) is

A3 =


d̄1 − h

|V1|
y

|V1|
h−y
|V1|

y
|V2| d̄2 − h′

|V2|
h′−y
|V2|

h−y
|V ′|

h′−y
|V ′| d̄′ − h+h′−2y

|V ′|

 ,

where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average degree of

V ′ in G.

By (2.1), λ2(A3) + λ3(A3) = tr(A3)− λ1(A3). By Theorem 2.2.7, λ2(G) ≥ λ2(A3), λ3(G) ≥
λ3(A3) and by Theorem 2.2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥ tr(A3) −
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max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3)−max{d̄1, d̄2, d̄′}

= d̄1 + d̄2 + d̄′ − (
h

|V1|
+

h′

|V2|
+

h+ h′ − 2y)

|V ′|
)−max{d̄1, d̄2, d̄′}

≥ 2δ − b′h+ b′h′ − 2y

(b′ − 1)(δ + 1)
≥ 2δ − 2(b′h′ − y)

(b′ − 1)(δ + 1)
,

≥ 2(δ −
2b′−1
b′−1 k − 3

b′−1

δ + 1
),

contrary to the assumption in Theorem 2.1.6 (iii) that λ2(G) < δ − 3k−1
δ+1 . (To see this, let

g(b′) = 2b′−1
b′−1 . Then by Calculus, one can verify that g(b′) is a decreasing function of b′ over the

interval [2,∞), and so for any b′ ≥ 2, g(b′) ≤ g(2) = 3.) This completes the proof.

2.5 Laplacian and signless Laplacian eigenvalue conditions

In this section, we will investigate the relationship between µn−1(G), q2(G) and τ(G), κ′(G) of a

simple graph G. Theorem 2.5.3 and 2.5.4 are main results, which are analogues of Theorem 2.1.5

and Theorem 2.1.6. We present a useful theorem first.

Theorem 2.5.1. (So [66]) Let B and C be Hermitian matrices of order n, and let 1 ≤ i, j ≤ n.

Then

(i) λi(B) + λj(C) ≤ λi+j−n(B + C) if i+ j ≥ n+ 1.

(ii) λi(B) + λj(C) ≥ λi+j−1(B + C) if i+ j ≤ n+ 1.

Corollary 2.5.2. Let δ, ∆, λ2, µn−1 and q2 be the minimum degree, maximum degree, second

largest eigenvalue, second smallest Laplacian eigenvalue and second largest signless Laplacian

eigenvalue of a graph G. Then

(i) µn−1 + λ2 ≤ ∆.

(ii) δ + λ2 ≤ q2.

Proof: Let A, D, L, Q be the adjacency matrix, diagonal matrix, Laplacian matrix and signless

Laplacian matrix.

(i): Since L = D−A, we have D = L+A. By Theorem 2.5.1 (i), λn−1(L)+λ2(A) ≤ λ1(D).

Thus µn−1 + λ2 ≤ ∆.

(ii): Since Q = D+A, by Theorem 2.5.1 (i), λn(D)+λ2(A) ≤ λ2(Q). Thus δ+λ2 ≤ q2.

Theorem 2.5.3. Let k ≥ 2 be an integer, G be a graph with minimum degree δ.

(i) If δ ≥ 4 and µn−1(G) > ∆− δ + 3
δ+1 , then τ(G) ≥ 2.

(ii) If δ ≥ 6 and µn−1(G) > ∆− δ + 5
δ+1 , then τ(G) ≥ 3.

(iii) For k ≥ 4, if δ ≥ 2k and µn−1(G) > ∆− δ + 3k−1
δ+1 , then τ(G) ≥ k.

(iv) For k ≥ 2 and δ ≥ k, if µn−1(G) > ∆− δ + 2(k−1)
δ+1 , then κ′(G) ≥ k.
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Proof: By Corollary 2.5.2 and Theorem 2.1.6.

Theorem 2.5.4. Let k ≥ 2 be an integer, G be a graph with minimum degree δ.

(i) If δ ≥ 4 and q2(G) < 2δ − 3
δ+1 , then τ(G) ≥ 2.

(ii) If δ ≥ 6 and q2(G) < 2δ − 5
δ+1 , then τ(G) ≥ 3.

(iii) For k ≥ 4, if δ ≥ 2k and q2(G) < 2δ − 3k−1
δ+1 , then τ(G) ≥ k.

(iv) For k ≥ 2 and δ ≥ k, if q2(G) < 2δ − 2(k−1)
δ+1 , then κ′(G) ≥ k.

Proof: By Corollary 2.5.2 and Theorem 2.1.6.
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Chapter 3

Strength extremal graphs

3.1 Introduction

With graphs considered as natural models for many network design problems, edge connectivity

and maximum number of edge-disjoint spanning trees of a graph have been used as measures

for reliability and strength in communication networks modeled as a graph (see [21,54], among

others).

We consider finite graphs with possible multiple edges in this chapter. For any graph G,

we define κ′(G) = max{κ′(H) : H is a subgraph of G}. The invariant κ′(G), first introduced

by Matula [53], has been studied by Boesch and McHugh [4], by Lai [43], by Matula [53, 54],

by Mitchem [56] and implicitly by Mader [52]. In [54], Matula gave a polynomial algorithm to

determine κ′(G).

Throughout this chapter, k and n denote positive integers, unless otherwise defined.

Mader in [52] first introduced k-maximal graphs. A graph G is k-maximal if κ′(G) ≤ k

but for any edge e ̸∈ E(G), κ′(G + e) ≥ k + 1. The k-maximal graphs have been studied

in [4, 43,52–54,56], among others.

Simple k-maximal graphs have been well studied. In [52], Mader proved that the maximum

number of edges in a simple k-maximal graph with n vertices is (n−k)k+
(
k
2

)
and characterized

all the extremal graphs. In 1990, Lai [43] showed that the minimum number of edges in a simple

k-maximal graph with n vertices is (n−1)k−
(
k
2

)
⌊ n
k+2⌋. In the same paper, Lai also characterized

all the extremal graphs and all the simple k-maximal graphs.

This chapter mainly focus on multiple k-maximal graphs, and we show that the number of

edges in a k-maximal graph with n vertices is k(n− 1) and give a complete characterization of

all k-maximal graphs as well as show several equivalent graph families.

When a network is modeled as a graph G, both κ′(G) and τ(G) have been used as measures

of the strength or reliability of the network (see [21,54]). As it is known that for any connected
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graph G, κ′(G) ≥ τ(G), it is natural to ask when the equality holds. Motivated by this question,

we characterized all graphs G satisfying κ′(G) = τ(G) with minimum number of possible edges

for a fixed number of vertices. We also investigate necessary and sufficient conditions for a graph

to have a spanning subgraph with this property or to be a spanning subgraph of another graph

with this property.

In Section 3.2, we will characterize all k-maximal graphs. The characterizations of minimal

graphs with κ′ = τ and reinforcement problems will be discussed in Sections 3.3 and 3.4,

respectively.

3.2 Characterizations of k-maximal graphs

In this section, we shall present a structural characterization of k-maximal graphs as well as

several equivalent classes of graphs, as shown in Theorem 3.2.1.

Let F (n, k) be the maximum number of edges in a graph G on n vertices that does not

contain a subgraph H with κ′(H) ≥ k+1. We define F(n, k) = {G : |E(G)| = F (n, k), |V (G)| =
n, κ′(G) ≤ k}.

Let G1 and G2 be connected graphs such that V (G1)∩V (G2) = ∅. Let K be a set of k edges

each of which has one vertex in V (G1) and the other vertex in V (G2). TheK-edge-joinG1∗KG2

is defined to be the graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ K.

When the set K is not emphasized, we use G1 ∗k G2 for G1 ∗K G2, and refer G1 ∗k G2 as a

k-edge-join.

Let Gk be a family of graphs such that for any G1, G2 ∈ Gk ∪ {K1}, G1 ∗k G2 ∈ Gk. Let

τ(G) = max{τ(H) : H is a subgraph of G}. The main theorem in this section is stated below.

Theorem 3.2.1. Let G be a graph on n vertices. The following statements are equivalent.

(i) G ∈ F(n, k);

(ii) G is k-maximal;

(iii) η(G) = κ′(G) = k;

(iv) τ(G) = κ′(G) = k;

(v) τ(G) = τ(G) = κ′(G) = κ′(G) = k;

(vi) G ∈ Gk.

In order to prove Theorem 3.2.1, we need some lemmas.

For a connected graph G with τ(G) ≥ k, we define Ek(G) = {e ∈ E(G) : τ(G− e) ≥ k}.

Lemma 3.2.2. (Lai et al. [47], Li [46])

Let G be a connected graph with τ(G) ≥ k. Then Ek(G) = ∅ if and only if d(G) = k.

Lemma 3.2.3. (Haas [37], Liu et al. [48], and Lai et al. [45])

The following statements are equivalent for a graph G.

19



(i) γ(G) ≤ k.

(ii) There exist k(|V (G)| − 1)− |E(G)| edges which when added to G result in a graph that can

be decomposed into k edge-disjoint spanning trees.

Lemma 3.2.4. Let X be a k-edge cut of a graph G. If H is a subgraph of G with κ′(H) > k,

then E(H) ∩X = ∅.

Proof: If E(H) ∩X ̸= ∅, then κ′(H) ≤ |E(H) ∩X| ≤ |X| = k < κ′(H), a contradiction.

Lemma 3.2.5. If a graph G is k-maximal, then κ′(G) = κ′(G) = k.

Proof: Since G is k-maximal, κ′(G) ≤ κ′(G) ≤ k. It suffices to show that κ′(G) = k. We

assume that κ′(G) < k and prove it by contradiction. Let X be an edge cut with |X| < k and

suppose that G = G1 ∗X G2. Let e ̸∈ E(G) be an edge with one end in V (G1) and the other end

in V (G2). By the definition of k-maximal graphs, κ′(G+ e) ≥ k+1. Thus G+ e has a subgraph

H with κ′(H) ≥ k + 1. Then it must be the case that e ∈ E(H), otherwise H is a subgraph of

G, contrary to κ′(G) ≤ k. Since X ∪ {e} is an edge cut of G + e with |X ∪ {e}| ≤ k and H is

a subgraph of G + e with κ′(H) ≥ k + 1, by Lemma 3.2.4, E(H) ∩ (X ∪ {e}) = ∅, contrary to

e ∈ E(H).

Lemma 3.2.6. If a graph G is k-maximal, then G = G1 ∗k G2 where either Gi = K1 or Gi is

k-maximal for i = 1, 2.

Proof: By Lemma 3.2.5, G has a k-edge cut X, and so G = G1 ∗k G2. For i = 1, 2, suppose

that Gi ̸= K1, we want to prove that Gi is k-maximal. Since G is k-maximal, κ′(G) ≤ k, whence

κ′(Gi) ≤ k. For any edge e ̸∈ E(Gi), κ′(G + e) ≥ k + 1. Thus G + e has a subgraph H with

κ′(H) ≥ k + 1. Since κ′(G) ≤ k, H is not a subgraph of G, and so e ∈ E(H). Since X is a

k-edge cut of G + e, by Lemma 3.2.4, E(H) ∩ X = ∅. Hence H is a subgraph of Gi + e with

κ′(H) ≥ k + 1, whence κ′(Gi) ≥ k + 1. Thus Gi is k-maximal.

Lemma 3.2.7. Let G be a graph on n vertices. Then G ∈ F(n, k) if and only if G is k-maximal.

Proof: By the definition of F(n, k), if G ∈ F(n, k), then |E(G)| = F (n, k) and κ′(G) ≤ k.

Then for any edge e ̸∈ E(G), |E(G+ e)| = |E(G)|+ 1 > F (n, k), and so κ′(G+ e) ≥ k + 1. By

the definition of k-maximal graphs, G is k-maximal.

Now we assume that G is k-maximal to prove that G ∈ F(n, k). It suffices to show that

|E(G)| = F (n, k) = k(n−1) by induction on n. When n = 2, G is kK2, which is the graph with 2

vertices and k multiple edges, and so |E(G)| = k. We assume that |E(G)| = F (n, k) = k(n− 1)

holds for smaller values of n > 2. By Lemma 3.2.6, G = G1 ∗k G2 where Gi is k-maximal

or k1 for i = 1, 2. Let |V (Gi)| = ni. By inductive hypothesis, |E(Gi)| = k(ni − 1). Thus

|E(G)| = k(n1 − 1) + k(n2 − 1) + k = k(n− 1).
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Lemma 3.2.8. F (n, k) = k(n− 1).

Proof: By Lemma 3.2.7, it suffices to show that for any k-maximal graph G with |V (G)| = n,

|E(G)| = k(n − 1). We argue by induction on n. When n = 2, by Lemma 3.2.6, G is a

graph with n = 2 vertices and k multiple edges, and thus |E(G)| = k(n − 1). Assume that

the statement holds for smaller value of n > 2. By Lemma 3.2.6, G = G1 ∗k G2 where either

Gi = K1 or Gi is k-maximal, for i = 1, 2. By inductive hypothesis, |E(Gi)| = k(|V (Gi)| − 1).

Then |E(G)| = |E(G1)| + |E(G2)| + k = k(|V (G1)| + |V (G2)| − 2) + k = k(n − 1), completing

the proof.

Lemma 3.2.9. Suppose τ(G) = τ(G) = κ′(G) = κ′(G) = k. Then G = G1 ∗k G2 where either

Gi = K1 or Gi satisfies τ(Gi) = τ(Gi) = κ′(Gi) = κ′(Gi) = k for i = 1, 2.

Proof: Since κ′(G) = k, there must be an edge-cut of size k. Hence there exist graphs G1 and

G2 such that G = G1 ∗k G2. If Gi ̸= K1, we will prove τ(Gi) = τ(Gi) = κ′(Gi) = κ′(Gi) = k,

for i = 1, 2. First, by the definition of τ , τ(Gi) ≤ τ(Gi) ≤ τ(G) = k for i = 1, 2. Since G has

k disjoint spanning trees, we have τ(Gi) ≥ k for i = 1, 2. Thus τ(Gi) = τ(Gi) = k for i = 1, 2.

Now we prove κ′(Gi) = κ′(Gi) = k for i = 1, 2. Since κ′(G) = k, κ′(Gi) ≤ κ′(Gi) ≤ k. But

κ′(Gi) ≥ τ(Gi) = k for i = 1, 2. Hence we have τ(Gi) = τ(Gi) = κ′(Gi) = κ′(Gi) = k for

i = 1, 2.

Lemma 3.2.10. Let G = G1 ∗k G2 where Gi = K1 or Gi satisfies τ(Gi) = τ(Gi) = κ′(Gi) =

κ′(Gi) = k for i = 1, 2. Then τ(G) = τ(G) = κ′(G) = κ′(G) = k.

Proof: Since G = G1 ∗k G2 and κ′(G1) = κ′(G2) = k, we have τ(G) ≤ κ′(G) = k and there

exists an edge-cut X = {x1, x2, · · · , xk} such that G = G1 ∗X G2. Let T1,i, T2,i, · · · , Tk,i be edge-

disjoint spanning trees of Gi, for i = 1, 2. Then T1,1+x1+T1,2, T2,1+x2+T2,2, · · · , Tk,1+xk+Tk,2

are k edge-disjoint spanning trees of G. Thus τ(G) = κ′(G) = k. Now we need to prove that

for any subgraph H of G, τ(H) ≤ k and κ′(H) ≤ k. If E(H) ∩ X ̸= ∅, then E(H) ∩ X is an

edge cut of H and thus τ(H) ≤ κ′(H) ≤ k. If E(H)∩X = ∅, then H is a spanning subgraph of

either G1 or G2, whence τ(H) ≤ κ′(H) ≤ k.

Now we present the proof of Theorem 3.2.1.

Proof of Theorem 3.2.1: By Lemma 3.2.7, (i) and (ii) are equivalent. By (1.3), (iii)⇒(iv).

(i)⇒(iii): By Lemma 3.2.8, |E(G)| = k(n − 1). By the definition of d(G), d(G) = k. Since

κ′(G) ≤ k, for any subgraph H of G, κ′(H) ≤ k. Hence |E(H)| ≤ k(|V (H)| − 1), whence

d(H) ≤ k. By the definition of γ(G), we have γ(G) ≤ k. Thus d(G) = γ(G) = k. By

Theorem 1.1.3, η(G) = k. Hence k = η(G) = τ(G) ≤ κ′(G) ≤ k, i.e., η(G) = κ′(G) = k.

(iv)⇒(i): By Lemma 3.2.8, |E(G)| ≤ k(n− 1). Since τ(G) = k, G has k edge-disjoint spanning
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trees, and so |E(G)| ≥ k(n− 1). Thus |E(G)| = k(n− 1), and so G ∈ F(n, k).

(iv)⇔(v): By definition, τ(G) ≤ τ(G) ≤ κ′(G) and τ(G) ≤ κ′(G) ≤ κ′(G). The equivalence

between (iv) and (v) now follow from these inequalities.

(v)⇒(vi): We argue by induction on |V (G)|. When |V (G)| = 2, a graph G with τ(G) = τ(G) =

κ′(G) = κ′(G) = k must be K1 ∗k K1, and so by definition, G ∈ Gk. We assume that (v)⇒(vi)

holds for smaller values of |V (G)|. By Lemma 3.2.9, G = G1 ∗k G2 with τ(Gi) = τ(Gi) =

κ′(Gi) = κ′(Gi) = k or Gi = K1, for i = 1, 2. If Gi ̸= K1, then by the inductive hypothesis,

Gi ∈ Gk. By definition, G ∈ Gk.

(vi)⇒(v): We show it by induction on |V (G)|. When |V (G)| = 2, by the definition of Gk,

G = K1 ∗kK1, and then τ(G) = τ(G) = κ′(G) = κ′(G) = k. We assume that it holds for smaller

values of |V (G)|. By the definition of Gk, G = G1 ∗k K1 or G = G1 ∗k G2 where G1, G2 ∈ Gk. By

inductive hypothesis, τ(Gi) = τ(Gi) = κ′(Gi) = κ′(Gi) = k for i = 1, 2, and by Lemma 3.2.10,

τ(G) = τ(G) = κ′(G) = κ′(G) = k.

3.3 Characterizations of minimal graphs with κ′ = τ

We define

Fk,n = {G : κ′(G) = τ(G) = k, |V (G)| = n and |E(G)| is minimized}

and Fk = ∪n>1Fk,n.

In this section, we will give characterizations of graphs in Fk. In addition, we use Fk,n to

characterize graphs G with κ′(G) = τ(G).

Theorem 3.3.1. Let G be a graph, then G ∈ Fk if and only if G satisfies

(i) G has an edge-cut of size k, and

(ii) G is uniformly dense with density k.

Proof: Suppose that G ∈ Fk, then τ(G) = κ′(G) = k. Hence G has an edge-cut of size k.

Since |E(G)| is minimized, we have Ek(G) = ∅, and by Lemma 3.2.2, d(G) = k. Since τ(G) = k,

by Theorem 1.1.1 and the definition of η(G), we have η(G) ≥ k. By (1.2), η(G) ≤ d(G) = k,

whence η(G) = d(G) = k, and thus G is uniformly dense with density k.

On the other hand, suppose that G satisfies (i) and (ii). By (ii) and Theorem 1.1.3, η(G) =

d(G) = k. By (1.3), τ(G) = k. Then κ′(G) ≥ τ(G) = k. But G has an edge-cut of size k, thus

κ′(G) = τ(G) = k. Since d(G) = k, by Lemma 3.2.2, Ek(G) = ∅, i.e. |E(G)| is minimized. Thus

G ∈ Fk.

Theorem 3.3.2. A graph G ∈ Fk if and only if G = G1 ∗k G2 where either Gi = K1 or Gi is

uniformly dense with density k for i = 1, 2.
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Proof: Suppose that G ∈ Fk. By Theorem 3.3.1, G has an edge-cut of size k, whence there

exist graphs G1 and G2 such that G = G1 ∗k G2. Now we will prove that Gi is uniformly

dense with density k if it is not isomorphic to K1, for i = 1, 2. Since τ(G) = k, we have

τ(Gi) ≥ k, and thus d(Gi) ≥ k, for i = 1, 2. By (1.2), (1.3) and Theorem 1.1.3, it suffices

to prove that d(Gi) = k for i = 1, 2. If not, then either d(G1) > k or d(G2) > k. By (1.1),

|E(G)| = |E(G1)| + |E(G2)| + k > k(|V (G1)| − 1) + k(|V (G2)| − 1) + k = k(|V (G)| − 1),

and thus d(G) = |E(G)|
|V (G)|−1 > k, contrary to the fact that d(G) = k. Hence d(Gi) = k, and

k ≤ τ(Gi) ≤ η(Gi) ≤ d(Gi) = k. By Theorem 1.1.3, Gi is uniformly dense with density k for

i = 1, 2. This proves the necessity.

To prove the sufficiency, first notice that G must have an edge-cut of size k, by the definition

of the k-edge-join. In order to prove G ∈ Fk, by Theorem 3.3.1, it suffices to show that G

is uniformly dense with density k. Without loss of generality, we may assume that Gi is not

isomorphic to K1 for i = 1, 2. Then η(Gi) = d(Gi) = k for i = 1, 2. By (1.3), τ(Gi) = ⌊η(Gi)⌋ =
k. Also we have d(Gi) = |E(Gi)|

|V (Gi)|−1 = k for i = 1, 2. Hence E(G) = |E(G1)| + |E(G2)| + k =

k(|V (G1)| − 1) + k(|V (G2)| − 1) + k = k(|V (G)| − 1), whence d(G) = |E(G)|
|V (G)|−1 = k. Thus

k = τ(G) ≤ η(G) ≤ d(G) = k, i.e., η(G) = d(G) = k, and by Theorem 1.1.3, G is uniformly

dense with density k. By Theorem 3.3.1, G ∈ Fk.

Theorem 3.3.2 has the following corollary, presenting a recursive structural characterization

of graphs in Fk.

Corollary 3.3.3. Let K(k) = {G : κ′(G) > η(G) = d(G) = k}. Then a graph G ∈ Fk if

and only if G = ((G1 ∗k G2) ∗k · · · ) ∗k Gt for some integer t ≥ 2 and Gi ∈ K(k) ∪ {K1} for

i = 1, 2, · · · , t.

Now we can characterize all the graphs G with κ′(G) = τ(G) = k.

Theorem 3.3.4. A graph G with n vertices satisfies κ′(G) = τ(G) = k if and only if G has an

edge-cut of size k and a spanning subgraph in Fk,n.

Proof: First, suppose that G satisfies κ′(G) = τ(G) = k. Then G must have an edge-cut C of

size k since κ′(G) = k. Hence, G = G1∗CG2 where τ(Gi) ≥ k orGi = K1 for i = 1, 2. IfGi = K1,

then let G′
i = K1. Otherwise, Gi must have k edge-disjoint spanning trees T1, T2, · · · , Tk, and

let G′
i be the graph with V (G′

i) = V (Gi) and E(G′
i) = ∪k

j=1E(Tj). Let G′ = G′
1 ∗C G′

2. Then

G′ is a spanning subgraph of G with κ′(G′) = k and k = τ(G′) ≤ η(G′) ≤ d(G′) = k. By

Theorem 3.3.1, G′ ∈ Fk. Since |V (G′)| = n, G′ ∈ Fk,n, completing the proof of necessity.

To prove the sufficiency, first notice that κ′(G) ≤ k, since G has an edge-cut of size k. Graph

G has a spanning subgraph G′ ∈ Fk,n, so τ(G′) = k, whence τ(G) ≥ k. Thus k ≤ τ(G) ≤
κ′(G) ≤ k, and we have κ′(G) = τ(G) = k.
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3.4 Extensions and restrictions with respect to Fk,n

LetG be a connected graph with n vertices andH ∈ Fk,n. IfG is a spanning subgraph ofH, then

H is an Fk,n-extension of G. If H is a spanning subgraph of G, then H is an Fk,n-restriction

of G.

Theorem 3.4.1. Let G be a connected graph with n vertices. Then each of the following holds.

(i) G has an Fk,n-restriction if and only if G = G1 ∗k′ G2 for some k′ ≥ k and graph Gi with

η(Gi) ≥ k or Gi = K1, for i = 1, 2.

(ii) G has an Fk,n-extension if and only if κ′(G) ≤ k and γ(G) ≤ k.

Proof: (i) Suppose that G has an Fk,n-restriction H, by Theorem 3.3.2, H = H1 ∗k H2 where

τ(Hi) = η(Hi) = d(Hi) = k or Hi = K1 for i = 1, 2. Since H is a spanning subgraph of G, we

have G = G1 ∗k′ G2 for some k′ ≥ k such that Hi is a spanning subgraph of Gi for i = 1, 2. If

Hi = K1, then Gi = K1, otherwise, η(Gi) ≥ τ(Gi) ≥ τ(Hi) = k for i = 1, 2, by Formula (1.3).

To prove the sufficiency, it suffices to show that G has a spanning subgraph H ∈ Fk,n. Since

G = G1 ∗k′ G2, there exists an edge-cut X of size k′ such that G = G1 ∗X G2. Let Y be a

subset of size k of X. For i = 1, 2, if Gi = K1, then let Hi = K1. Otherwise, η(Gi) ≥ k,

and by Formula (1.3), τ(Gi) = ⌊η(Gi)⌋ ≥ k, and then Gi has k edge-disjoint spanning trees

T1,i, T2,i, · · · , Tk,i. Let Hi be the graph with V (Hi) = V (Gi) and E(Hi) = ∪k
j=1E(Tj,i), for

i = 1, 2. Let H = H1 ∗Y H2. Then H is a spanning subgraph of G and κ′(H) = τ(H) = k.

Since d(H) = k, by Lemma 3.2.2, H has the minimum number of edges with τ(H) = k. Thus

H ∈ Fk,n.

(ii) If G has an Fk,n-extension H, then G is a spanning subgraph of H and κ′(H) = τ(H) = k

with minimum number of edges. Then κ′(G) ≤ k. By Theorem 3.3.1, d(H) = k, i.e. |E(H)| =
k(|V (H)| − 1) = k(|V (G)| − 1). Thus |E(H)| − |E(G)| = k(|V (G)| − 1) − |V (G)|, and by

Lemma 3.2.3, γ(G) ≤ k.

To prove the sufficiency, it suffices to show that there is a graph H ∈ Fk,n with a spanning

subgraph G. Let κ′(G) = k′, then k′ ≤ k, and G has an edge-cut X of size k′. Hence, G =

G1∗XG2. For i = 1, 2, ifGi = K1, then letHi = K1. Otherwise, since γ(G) ≤ k, by the definition

of γ(G), we have γ(Gi) ≤ k. By Lemma 3.2.3, Gi can be reinforcing to a graph Hi which can be

decomposed into k edge-disjoint spanning trees. Then |E(Hi)| = k(|V (Hi)|−1) = k(|V (Gi)|−1),

whence d(Hi) = k. Since k = τ(Hi) ≤ η(Hi) ≤ d(Hi) = k, we have η(Hi) = d(Hi) = k, and by

Theorem 1.1.3, Hi is uniformly dense, for i = 1, 2. Let H = H1 ∗Y H2 where Y is an edge subset

of size k with X ⊆ Y . Then G is a spanning subgraph of H. By Theorem 3.3.2, H ∈ Fk,n,

completing the proof of the theorem.
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Chapter 4

Minimally (2, l)-connected graphs

4.1 Introduction

In this chapter, we consider finite graphs.

The connectivity κ(G) of a graph G is the minimum number of vertices whose removal

produces a disconnected graph or the trivial graph. For an integer l ≥ 2, Chartrand et al.

in [13] defined the l-connectivity κl(G) of a graph G to be the minimum number of vertices

of G whose removal produces a disconnected graph with at least l components or a graph with

fewer than l vertices. Thus κl(G) = 0 if and only if ω(G) ≥ l or |V (G)| ≤ l − 1. Note that

κ2(G) = κ(G).

For an integer l ≥ 2, l-edge-connectivity can be similarly defined. In [3], Boesch and Chen

defined the l-edge-connectivity λl(G) of a connected graph G to be the minimum number of

edges whose removal leaves a graph with at least l components if |V (G)| ≥ l, and λl(G) = |E(G)|
if |V (G)| < l. Note that λ2(G) = λ(G).

The generalized connectivity and edge-connectivity have been studied by many. See [3, 13,

32,33,39,40,59–61,73], among others. Let k ≥ 1, a graph G is called (k, l)-connected if κl ≥ k.

A graph G is called minimally (k, l)-connected if κl(G) ≥ k but ∀e ∈ E(G), κl(G−e) ≤ k−1.

Let G be a (k, l)-connected graph, and e ∈ E(G). An edge e ∈ E(G) is essential if G − e is

not (k, l)-connected. A graph G is called (k, l)-edge-connected if λl(G) ≥ k. A graph G is

minimally (k, l)-edge-connected if λl(G) ≥ k but for any edge e ∈ E(G), λl(G− e) ≤ k − 1.

Therefore, a (2, 2)-connected graph is just a 2-connected graph, and a (2, 2)-edge-connected

graph is a 2-edge-connected graph.

Let F (n, k, l) be the set of all connected and minimally (k, l)-connected graphs with n

vertices. We define F (n, k, l) = max{|E(G)| : G ∈ F (n, k, l)} and f(n, k, l) = min{|E(G)| :
G ∈ F (n, k, l)}. Let I (n, k, l) = {i ∈ N : f(n, k, l) ≤ i ≤ F (n, k, l) and ∃G ∈ F (n, k, l)

such that |E(G)| = i}, which is referred as the (n, k, l)-spectrum of F (n, k, l). We further
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define Ex(n, k, l) = {G : G ∈ F (n, k, l), |E(G)| = F (n, k, l)} and Sat(n, k, l) = {G : G ∈
F (n, k, l), |E(G)| = f(n, k, l)}.

Chaty and Chein presented a structural characterization of minimally (2, 2)-edge-connected

graphs [14]. Hennayake et al. [39] then generalized it to minimally (k, k)-edge-connected graphs

by presenting a structural characterization of all minimally (k, k)-edge-connected graphs. A

structural characterization of minimally (2, 2)-connected graphs was obtained independently

by Dirac [23] and by Plummer [64]. A purpose of this paper is to give a characterization of

minimally (2, l)-connected graphs when l > 2 (Theorem 4.3.2 and Theorem 4.3.5) by presenting

the structures of such graphs.

The value of F (n, 2, 2) was discovered independently by Dirac [23] and by Plummer [64]

(Theorem 4.2.1 in this paper). Another purpose of this paper is to determine F (n, 2, l) and

f(n, 2, l) when l > 2. The families Ex(n, 2, l), Sat(n, 2, l) and I (n, 2, l) will also be determined

in the paper. These extend former results by Dirac [23] and Plummer [64] on minimally (2,2)-

connected graphs.

In Section 2, we will present some preliminaries as preparations for the proofs. Sections 3

and 4 are devoted to the investigations of the structural characterization of minimally (2, l)-

connected graphs, and of F (n, 2, l), f(n, 2, l), Ex(n, 2, l), Sat(n, 2, l) and I (n, 2, l), respectively.

4.2 Preliminaries

We start with a theorem by Dirac and Plummer. These results were obtained by Dirac and by

Plummer independently. A chord of a cycle C in a graph G is an edge in E(G) \E(C) both of

whose ends lie on C.

Theorem 4.2.1. (Dirac [23] and Plummer [64], see also [5])

(i) A 2-connected graph is minimally 2-connected if and only if no cycle has a chord.

(ii) A minimally 2-connected graph of order n ≥ 4 has the size at most 2n − 4. Furthermore,

F (n, 2, 2) = 2n− 4 and Ex(n, 2, 2) = {K2,n−2} for n ≥ 4.

A divalent path P in a graph G is a path all of whose internal vertices have degree 2 in G.

A lane of a graph G is a maximal divalent path in G. For convenience, a cycle is considered as

a lane of itself. Let L be a lane in graph G, we define L0 to be the set of all internal vertices of

L if L is not an edge of G. If L is an edge e of G, then L0 = {e}.
By definition, every edge of a graph G is in a divalent path of G. Hence, we have the following

observation:

Observation 1. Every edge of a graph G lies in a lane in G.

A graph is acyclic if it does not contain a cycle. Otherwise, the graph is called cyclic.

A cyclic block of a graph is a block which is not isomorphic to K2. Let G be a connected
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graph with blocks B1, B2, . . . , Bs and cut vertices c1, c2, . . . , ct, where s ≥ 1 and t ≥ 0. The

block-cutvertex graph of G, denoted by bc(G), is the graph with vertex set {B1, B2, . . . , Bs}∪
{c1, c2, . . . , ct} and edge set {Bicj : cj ∈ V (Bi)} for 1 ≤ i ≤ s and 0 ≤ j ≤ t. By definition, the

block-cutvertex graph of graph G is a tree, and so it is also called the block tree of G.

The distance dG(x, y) of two vertices x and y in a graph G is the length of a shortest (x, y)-

path in G, and if no such path exists, then the distance is set to be ∞. Let G be a graph and

U ⊆ V (G). The diameter of U in G, denoted by diamG(U), is the greatest distance dG(x, y)

for ∀x, y ∈ U . If U = V (G), then the diameter of G is simply denoted as diam(G).

The local connectivity κG(x, y) of two non-adjacent vertices x and y in a graph G is the

minimum number of vertices separating x from y. If x and y are adjacent vertices, their local

connectivity is defined as κH(x, y) + 1, where H = G− xy.

4.3 Minimally (2, l)-connected graphs

In this section, we shall present a characterization of minimally (2, l)-connected graphs.

Lemma 4.3.1. Let G be a (k, l)-connected graph. Then

(i) |V (G)| ≥ k + l − 1.

(ii) Suppose that l′ > l ≥ 2 and |V (G)| ≥ k + l′ − 1. If G is (k, l)-connected, then G is

(k, l′)-connected, but cannot be minimally (k, l′)-connected.

Proof: (i) Suppose that |V (G)| < k+l−1. Let X ⊆ V (G) with |X| = k−1. Then |V (G−X)| <
l, and so κl(G) ≤ k − 1, contrary to the fact that G is (k, l)-connected.

(ii) Suppose that G is not (k, l′)-connected. Then κl′(G) ≤ k− 1, and so there exists X ⊂ V (G)

with |X| ≤ k − 1 such that either ω(G−X) ≥ l′ > l, whence κl(G) ≤ κl′(G) ≤ k − 1, contrary

to κl(G) ≥ k; or |V (G−X)| ≤ l′ − 1, whence |V (G)| < k + l′ − 1, contrary to the assumption.

Hence κl′(G) ≥ k.

To prove that G is not minimally (k, l′)-connected, we argue by contradiction and assume

that G is minimally (k, l′)-connected. Then ∀e ∈ E(G), κl′(G − e) ≤ k − 1. There exists an

X ⊂ V (G−e) = V (G) with |X| ≤ k−1. If ω(G−e−X) ≥ l′, then ω(G−X) ≥ l′−1 ≥ l, whence

κl(G) ≤ k − 1, contrary to κl(G) ≥ k. If |V (G − e − X)| ≤ l′ − 1, then since |V (G − X)| =
|V (G − e − X)|, we have |V (G)| < k + l′ − 1, contrary to |V (G)| ≥ k + l′ − 1. Thus, G is

(k, l′)-connected, but not minimally (k, l′)-connected.

Suppose that l ≥ 3 and H is a tree such that there are at least two non-adjacent vertices

u, v ∈ V (H) satisfying d(u) = d(v) = l − 1 = ∆(G). Let T (l − 1) be the set of all such trees,

and let Tn(l − 1) = {H ∈ T (l − 1) : |V (H)| = n}.

Theorem 4.3.2. Let G be a tree and l ≥ 3. Then G is minimally (2, l)-connected if and only if

G ∈ T (l − 1).
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Proof: First we assume that G ∈ T (l− 1). Since ∆(G) = l− 1, κl(G) ≥ 2. To prove that G is

minimally (2, l)-connected, we need to show that ∀e ∈ E(G), κl(G− e) ≤ 1. By assumption, G

has at least one vertex v which is not incident with edge e, such that d(v) = l− 1. Since G is a

tree, both ω(G−v) = l−1 and each component of G−v is a tree. As e must be in a component

of G− v, ω(G− e− v) = l, whence κl(G− e) = 1.

We now assume that G is minimally (2, l)-connected to prove the necessity. Since G is a tree

and κl(G) ≥ 2, we have ∆(G) ≤ l − 1.

Claim 1: Let e ∈ E(G). Then ∃u ∈ V (G) which is not incident with e such that d(u) = l−1.

Proof of Claim 1: Since G is minimally (2, l)-connected, κl(G− e) = 1, and so ∃u ∈ V (G)

such that ω(G − e − u) ≥ l. Thus ω(G − u) ≥ l − 1 and d(u) ≥ l − 1. Since ∆(G) ≤ l − 1,

∆(G) = d(u) = l−1. Note that u is not incident with e, as otherwise, ω(G−u) = ω(G−e−u) ≥ l,

contrary to the fact that G is (2, l)-connected. Thus Claim 1 must hold.

By Claim 1, ∆(G) = l−1 and so ∃u ∈ V (G), d(u) = l−1. Let e′ ∈ E(G) be an edge incident

with u. By Claim 1, there exists a vertex u′ ∈ V (G) such that d(u′) = l−1 and e′ is not incident

with u′. Thus u′ ̸= u. If u′ is not adjacent to u, then the theorem holds. Hence we assume

that e′′ = uu′ ∈ E(G). By Claim 1, there exists a vertex u′′ ∈ V (G) such that d(u′′) = l − 1

and u′′ ̸∈ {u, u′}. Thus G has 3 vertices with degree l − 1. Since G is a tree, at least 2 of these

vertices of degree l − 1 are non-adjacent. Hence G ∈ T (l − 1).

Corollary 4.3.3. Let G be a tree. Then G is minimally (2, 3)-connected if and only if G is a

path Pn (a path with n vertices), where n ≥ 5.

Let G be a graph, and k ≥ 1, l ≥ 2 be integers. A (k, l)-cut of G is a set F ⊆ V (G) such that

|F | = k and ω(G− F ) ≥ l. As any (1, l)-cut consists of a single vertex, a (1, l)-cut is also called

a (1, l)-cut-vertex. We shall use the notation J l(G) to denote the set of all (1, l)-cut-vertices

of G.

Lemma 4.3.4. Let l ≥ 3. Suppose that G is a connected, minimally (2, l)-connected graph. Let

B be a cyclic block of G. Then ∀e ∈ E(B), ∃u ∈ V (B) such that u ∈ J l−1(G) and such that u

is not incident with e.

Proof: Since G is minimally (2, l)-connected and e ∈ E(B) ⊆ E(G), κl(G − e) = 1. Thus

∃u ∈ V (G − e) = V (G) such that ω(G − e − u) ≥ l. Hence ω(G − u) ≥ l − 1. Since G is

(2, l)-connected, it must be the case that ω(G− u) = l− 1, and so u is a (1, l− 1)-cut-vertex of

graph G. We claim that u ∈ V (B). If not, then u ̸∈ V (B) = V (B−e), and so B−e is contained

in a component of G− e−u. Hence ω(G−u) = ω((G− e−u)+ e) = ω(G− e−u) ≥ l, contrary

to the fact that G is (2, l)-connected. We also claim that u is not incident with edge e. If not,

then ω(G − u) = ω(G − e − u) ≥ l, contrary to the fact that G is (2, l)-connected. Thus the

lemma must hold.
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Theorem 4.3.5. Let l ≥ 3. A connected graph G is minimally (2, l)-connected if and only if

each of the following holds.

(i) Each cut vertex of G has degree no more than l − 1 in the block-cutvertex graph of G.

(ii) If G is a tree, then G ∈ T (l − 1).

(iii) For each cyclic block B not isomorphic to K3 and for each lane L of B, if J(B − L0)

denotes the set of all cut vertices of B − L0 and S = V (L) ∩ J l−1(G), then either |S| ≥ 2 and

diamL(S) ≥ 2, or J(B − L0) ∩ J l−1(G) ̸= ∅.
(iv) If a block B of G is isomorphic to K3, then ∀v ∈ V (B), v ∈ J l−1(G).

Proof: Assume that G is connected and minimally (2, l)-connected.

(i) Since G is (2, l)-connected, G has no (1, l)-cut-vertices. Thus each cut vertex of G has degree

at most l − 1 in the block-cutvertex graph of G.

(ii) It follows from Theorem 4.3.2.

(iii) Since G is connected and minimally (2, l)-connected, ∀e ∈ E(L) ⊆ E(G), κl(G − e) = 1,

and so ∃u ∈ V (G − e) = V (G) such that ω(G − e − u) ≥ l. Thus ω(G − u) ≥ l − 1 and u is a

(1, l − 1)-cut-vertex of G. Suppose first that u /∈ V (L). If B − L0 is contained in a component

of G− u−L, then ω(G− u) = ω(G− u−L) = ω(G− u− e) ≥ l, contrary to the fact that G is

(2, l)-connected. Thus u must be a cut vertex of B − L0, and so J(B − L0) ∩ J l−1(G) ̸= ∅, and
(iii) holds.

Now assume that u ∈ V (L). Let e′ ∈ E(L) be an edge incident with u. By Lemma 5.2.2,

∃v ∈ V (B) which is not incident with e′ such that v ∈ J l−1(G). Thus v ̸= u. If v /∈ V (L), then

J(B − L0) ∩ J l−1(G) ̸= ∅, and (iii) holds. Thus we may assume that v ∈ V (L). If u and v are

non-adjacent, then |S| ≥ 2 and diamL(S) ≥ 2, and (iii) holds. If u and v are adjacent in L, then

let e′′ = uv. By Lemma 5.2.2, ∃x ∈ V (B) such that x ∈ J l−1(G) and such that x is not incident

with e′′. Thus x ̸∈ {u, v}. If x ̸∈ V (L), then J(B − L0) ∩ J l−1(G) ̸= ∅, and (iii) holds. Hence

we assume that x ∈ V (L). Then u, v, x ∈ V (L). Now we claim that L is not isomorphic to K3.

Otherwise, if L is isomorphic to K3, and by the definition of a lane, there is at most one vertex

in L whose degree is greater than 2 in B. If V (B − L) ̸= ∅ then κ(B) = 1, contrary to the fact

that B is a cyclic block. if V (B − L) = ∅, which means L is B itself, contrary to the fact that

B is not isomorphic to K3. Hence L is not isomorphic to K3 and so at least one of vertices u, v

is non-adjacent to x. Hence (iii) must hold.

(iv) By Lemma 5.2.2, ∀e ∈ E(K3), the non-adjacent vertex is in J l−1(G). Thus, ∀v ∈ V (K3),

v ∈ J l−1(G).

We now prove the sufficiency. By Theorem 4.3.2, we may assume that G is not a tree. By

(i), G has no (1, l)-cut-vertices. Thus κl(G) ≥ 2 and so G is (2, l)-connected. We need to prove

∀e ∈ E(G), κl(G− e) ≤ 1. (4.1)

Pick an edge e ∈ E(G). There are 3 cases:
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Case 1: The edge e lies in a cyclic block B which is isomorphic to K3.

Let v be the vertex in B such that v is not incident with e. By (iv), v is a (1, l−1)-cut-vertex

of G. Thus ω(G− v) ≥ l− 1. Since B is isomorphic to K3, e must be a cut edge of a component

H of G− v. Hence ω(G− e− v) ≥ l, and so κl(G− e) = 1. Thus (1) holds.

Case 2: Edge e lies in a cyclic block B which is not isomorphic to K3.

Let L be the lane in B such that e ∈ E(L). Then either J(B − L0) ∩ J l−1(G) ̸= ∅, or
|S| ≥ 2 and diamL(S) ≥ 2. Assume first that |S| ≥ 2 and diamL(S) ≥ 2. Then L has at least

2 non-adjacent vertices which are (1, l − 1)-cut-vertices of G. Hence there is a vertex v ∈ V (L)

such that v ∈ J l−1(G) and such that v is not incident with e. Thus ω(G − v) ≥ l − 1. Since

e ∈ E(L) and L is a lane in B, by the definition of a lane, e must be a cut edge of a component

of G − v. Thus ω(G − e − u) ≥ l, and so κl(G − e) = 1. Hence (1) holds. Therefore, by (iii),

we assume that J(B − L0) ∩ J l−1(G) ̸= ∅. Let v ∈ J(B − L0) ∩ J l−1(G). Since v ∈ J l−1(G),

ω(G− v) ≥ l − 1 and e is in a component H of G− v. Let x and y be the end vertices of lane

L. Since v is a cut vertex of B − L0, κG(x, y) = 2, whence e is a cut edge of the component H

in G− v. Then ω(G− e− v) ≥ l, whence κl(G− e) = 1, and so (1) holds.

Case 3: The edge e does not lie in any cyclic block of G.

Since G is not a tree, Gmust have a cyclic block B. By (iii) and (iv), whether B is isomorphic

to K3 or not, G has a (1, l−1)-cut-vertex v which is not incident with e. Hence ω(G−v) ≥ l−1

and e lies in a component H of G− v. Since e does not lie in any cyclic block of G, e must be

a cut edge of H. Thus ω(G− e− v) ≥ l, whence κl(G− e) = 1, and so (1) holds.

Corollary 4.3.6. Let G be a connected, minimally (2, l)-connected graph. Then every cyclic

block of G is minimally 2-connected.

Proof: Let B be a cyclic block of G. By Theorem 4.2.1, to prove B is minimally 2-connected,

it suffices to show that each cycle in B has no chords. Assume that there is a cycle C in B with

a chord e = xy. By the definition of a lane, e is a lane of B. By Theorem 4.3.5 (iii), it must be

the case that J(B − e) ∩ J l−1(G) ̸= ∅, and let v ∈ J(B − e) ∩ J l−1(G). Since B is 2-connected

and v is a cut vertex of B − e, x and y must be in different components of B − e − v, whence

κB−e(x, y) = 1. But since e is a chord of cycle C in B, κB−e(x, y) ≥ 2. We get a contradiction.

Hence, every cyclic block of G is minimally 2-connected.

4.4 F (n, 2, l), f(n, 2, l), Ex(n, 2, l), Sat(n, 2, l) and I (n, 2, l)

In this section, we shall determine the value of F (n, 2, l) and f(n, 2, l), and discover the family

of Ex(n, 2, l), Sat(n, 2, l) and I (n, 2, l).

Lemma 4.4.1. Let G be a connected, minimally (2, l)-connected graph. Let l ≥ 3 and |V (G)| =
n.
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(i) If G is acyclic, then 2l − 1 ≤ n;

(ii) If G is cyclic, then 2l ≤ n.

Proof: (i) By Theorem 4.3.2, there are two non-adjacent vertices u and v such that d(u) =

d(v) = l − 1. Hence 2(l − 1)− 1 + 2 ≤ n, that is 2l − 1 ≤ n.

(ii) By Corollary 4.3.6, there must be a cyclic block which is minimally 2-connected. There are

two cases here. If the cyclic block is a K3, then by Theorem 4.3.5, all the three vertices of K3 are

(1, l− 1)-cut-vertices, and hence there are at least 3(l− 2)+ 3 vertices. Thus n ≥ 3(l− 2)+ 3 =

3l − 3 ≥ 2l, since l ≥ 3. If the cyclic block is not a K3, then the block has at least 4 vertices,

and by Theorem 4.3.5, at least 2 of them are (1, l− 1)-cut-vertices. Hence n ≥ 2(l− 2)+ 4, that

is 2l ≤ n.

Lemma 4.4.2. Let G be a connected, minimally (2, l)-connected graph with |V (G)| = n and

|E(G)| = m. Then

(i) n− 1 ≤ m ≤ 2n− 2l.

(ii) m = 2n− 2l holds if and only if one of the following holds:

(a) G is a tree and n = 2l − 1; or

(b) G has only one cyclic block, the cyclic block is isomorphic to K2,n−2l+2, and G has exactly

two non-adjacent (1, l − 1)-cut-vertices; or

(c) l = 3, n = 6 and the only cyclic block of G is isomorphic to K3.

Proof: If G is a tree, then m = n − 1. By Lemma 4.4.1, 2l − 1 ≤ n. Hence m = n − 1 ≤
n− 1 + n− (2l − 1) ≤ 2n− 2l, where equality holds if and only if n = 2l − 1. Thus the lemma

must hold.

Now we assume that G is cyclic. Since G is connected, m ≥ n. We still need to prove

m ≤ 2n − 2l. Suppose that G has t cyclic blocks which are not isomorphic to K3, denoted by

H1,H2, . . . , Ht, and s cyclic blocks which are isomorphic to K3. Let n′ be the total number of

vertices of all cyclic blocks, ans so n′ = 3s+(n1+n2+ · · ·+nt). Each Hi has ni vertices and mi

edges, for i = 1, 2, . . . , t. By Corollary 4.3.6, each cyclic block is a minimally 2-connected graph.

By Theorem 4.2.1, mi ≤ 2ni− 4 for i = 1, 2, . . . , t. Then m = 3s+m1+m2+ · · ·+mt+(t+ s−
1)+n− (3s+n1+n2+ · · ·+nt) ≤ 3s+(n1+n2+ · · ·+nt)+n−3t−2s−1 = n′+n−3t−2s−1.

Let M = n′ + n− 3t− 2s− 1. We have the following claim.

Claim: When M reaches the maximum value, there is exactly one cyclic block in the graph.

Proof of the Claim: Without loss of generality, we may assume that n′ ≥ 4. If the number

of cyclic blocks is 1, then by Corollary 4.3.6 and Theorem 4.2.1, the maximum value of M is

2n′ − 4 + (n− n′) = n′ + n− 4. If the number of cyclic blocks is at least 2, then t+ s ≥ 2. The

maximum value of M is n′ + n − 3t − 2s − 1 = n′ + n − 2(t + s) − t − 1 < n′ + n − 4. This

completes the proof of the claim.
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(a) G2,s,t (b) T3,t

Figure 4.1: Some classes of graphs

Case 1: t ̸= 0. By the Claim, when M reaches the maximum value, t = 1, s = 0 and

M = n′ + n − 4 = n1 + n − 4. By Theorem 4.3.5, there are at least two (1, l − 1)-cut-vertices

in a minimally (2, l)-connected graph. Hence n1 ≤ n − 2(l − 2). Thus m ≤ 2n − 2l, and (i)

must hold. The equality holds if and only if t = 1, s = 0, n1 = n− 2(l − 2) and m1 = 2n1 − 4.

By Theorem 4.2.1, m1 = 2n1 − 4 if and only the cyclic block is isomorphic to K2,n−2l+2. And

n1 = n− 2(l − 2) holds if and only if there are exactly two vertices which are not in the cyclic

block, i.e., G has exactly two non-adjacent (1, l − 1)-cut-vertices, by Theorem 4.3.5. Thus (ii)

must hold.

Case 2: t = 0. By the Claim, when M reaches the maximum value, t = 0, s = 1 and

M = n′ + n− 3 = n. By Lemma 4.4.1, M = n ≤ 2n− 2l, and the equality holds if and only if

n = 2l. Since the only cyclic block is a K3, by Theorem 4.3.5, each vertex of the cyclic block is

a (1, l− 1)-cut-vertex, and thus the number of vertices in the graph is n = 3+ 3(l− 2) = 3l− 3.

Hence M = 2n− 2l holds if and only if n = 2l and n = 3l − 3, i.e., l = 3 and n = 6.

Let K2,s be a complete bipartite graph with bipartition (A,B) such that |A| = 2 and |B| = s.

Let G2,s,t denote the graph obtained from K2,s by joining each vertex in set A to t new vertices,

respectively, as shown in Figure 4.1(a). Let u and v be two non-adjacent vertices of P3. Let

T3,t denote the graph obtained from P3 by joining each of u, v to t new vertices, respectively, as

shown in Figure 4.1(b). Graph G3,3 is shown in Figure 4.2(a).

Theorem 4.4.3. (i) F (n, 2, l) = 2n− 2l.

(ii) Ex(5, 2, 3) = {P5}; Ex(6, 2, 3) = {G3,3, G2,2,1}; Ex(n, 2, 3) = {G2,n−4,1} for n ≥ 7.

(iii) When l ≥ 4 and n = 2l − 1, Ex(n, 2, l) = {T3,l−2}.
(iv) When l ≥ 4 and n ≥ 2l, Ex(n, 2, l) = {G2,n−2l+2,l−2}.

Proof: When l = 2, by Theorem 4.2.1, F (n, 2, 2) = 2n− 4 and Ex(n, 2, 2) = {K2,n−2}. So we

assume that l ≥ 3. By Lemma 4.4.2, F (n, 2, l) ≤ 2n− 2l. In order to prove F (n, 2, l) = 2n− 2l,

it suffices to show that there exists a connected, minimally (2, l)-connected graph with n vertices

and 2n − 2l edges. When l = 3, by Lemma 4.4.1, n ≥ 5 and G is tree if n = 5. By Corollary
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(a) G3,3 (b) G2,2,1

Figure 4.2: Extremal graphs for F (6, 2, 3)

Figure 4.3: An example when l = 5, n = 14 and m = 16 in the proof of Theorem 4.4.5

4.3.3, Ex(5, 2, 3) = {P5}. If n = 6, G is cyclic and by Lemma 4.4.2, Ex(6, 2, 3) = {G3,3, G2,2,1}.
If n ≥ 7, ∀G ∈ Ex(n, 2, 3), by Lemma 4.4.2, the only cyclic block of G is K2,n−2l+2, and G has

exactly two non-adjacent (1, l − 1)-cut-vertices. Hence, Ex(n, 2, 3) = {G2,n−4,1}.
When l ≥ 4, by Lemma 4.4.1, n ≥ 2l − 1. If n = 2l − 1, then G is a tree, and by Theorem

4.3.2, ∀G ∈ Ex(n, 2, l), G ∈ T (l−1). Then there are two non-adjacent vertices with degree l−1.

Since n = 2l−1, G must be T3,l−2. If n ≥ 2l, then by Lemma 4.4.2, Ex(n, 2, l) = {G2,n−2l+2,l−2}.
Thus, the theorem holds.

Theorem 4.4.4. (i) f(n, 2, l) = n− 1.

(ii) Sat(n, 2, l) = Tn(l − 1).

Proof: By Lemma 4.4.2, f(n, 2, l) ≥ n − 1. In order to prove f(n, 2, l) = n − 1, it suffices

to show that there’s a connected, minimally (2, l)-connected graph G such that |V (G)| = n

and |E(G)| = n − 1. Graph g must be a tree, since |E(G)| = |V (G)| − 1. By Theorem 4.3.2,

G ∈ T (l−1). Thus (i) holds. Since G has n vertices, Sat(n, 2, l) = Tn(l−1). (ii) must hold.

Theorem 4.4.5. I (n, 2, l) = {i ∈ N : n− 1 ≤ i ≤ 2n− 2l}.

Proof: It suffices to show that for each m ∈ N∩ [n− 1, 2n− 2l], there is a graph G ∈ F (n, 2, l)

such that |E(G)| = m. For each m, we will construct a minimally (2, l)-connected graph with

n vertices and m edges. When m = n − 1, G = Pn. When n ≤ m ≤ 2n − 2l, we construct a
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minimally (2, l)-connected graph G as follows: Let C be a cycle with 2n−m− 2(l− 2) vertices,

and u1, u2 are two non-adjacent vertices in C. Let V1 and V2 be two sets of (l − 2) vertices,

and V1 ∩ V2 = ∅. Then G is the graph obtained from C by joining ui to each vertex in Vi

respectively for i=1,2, and joining u1 and u2 by m− n disjoint paths. These disjoint paths are

m−n copies of P3. Obviously, |E(G)| = m and |V (G)| = n. By Theorem 4.3.5, G is a minimally

(2, l)-connected graph. An example is shown in Figure 4.3 when l = 5, n = 14 and m = 16.
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Chapter 5

Degree sequences and

k-edge-connected uniform

hypergraphs

5.1 Introduction

This chapter focuses on the study of degree sequences in hypergraphs.

If a hypergraph H has vertices v1, v2, · · · , vn, then the sequence (d(v1), d(v2), · · · , d(vn))
is a degree sequence of H. A sequence d = (d1, d2, · · · , dn) is hypergraphic if there is

a simple hypergraph H with degree sequence d, and such a hypergraph H is a realization

of d, or a d-realization. A sequence d is r-uniform hypergraphic if there is a simple r-

uniform hypergraph H with degree sequence d. Similarly, a sequence d is multi-hypergraphic

if there is a hypergraph (possibly with multiple edges) with degree sequence d. A sequence d

is r-uniform multi-hypergraphic if there is a r-uniform hypergraph (possibly with multiple

edges) with degree sequence d. A 2-uniform hypergraphic sequence is also referred to as a

graphic sequence.

Edmonds gave the following characterization for a graphic sequence to have a k-edge-

connected realization.

Theorem 5.1.1. (Edmonds [24])

A graphic sequence d = (d1, d2, · · · , dn) has a k-edge-connected realization if and only if

(i) di ≥ k for i = 1, 2, · · · , n;
(ii)

∑n
i=1 di ≥ 2(n− 1) if k = 1.

Characterizations of uniform hypergraphic sequences or uniform multi-hypergraphic sequences

to have connected realizations have been obtained by Boonyasombat [7] and Tusyadej, respec-
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tively.

Theorem 5.1.2. (Boonyasombat, Theorem 4.1 of [7])

An r-uniform hypergraphic sequence d = (d1, d2, · · · , dn) has a connected realization if and only

if

(i) di ≥ 1 for i = 1, 2, · · · , n;
(ii)

∑n
i=1 di ≥

r(n−1)
r−1 .

Theorem 5.1.3. (Tusyadej, Page 4 of Berge [1])

A nonincreasing integer sequence d = (d1, d2, · · · , dn) is the degree sequence of a connected r-

uniform hypergraph (possibly with multiple edges) if and only if each of the following holds

(i)
∑n

i=1 di is a multiple of r;

(ii) dn ≥ 1; and

(iii)
∑n

i=1 di ≥ max{ r(n−1)
r−1 , rd1}.

Degree sequence problems of hypergraphs are much harder than those of graphs. Actually

the characterizations of hypergraphic sequences is still open for r ≥ 3 (see [1, 2, 20, 22, 26]).

The problem seems to be difficult even for r = 3. In [15], only the necessary condition for a

hypergraphic sequence was given for r = 3. In fact, in [20], the authors reported that they

were neither able to give a polynomial time algorithm nor able to prove that the problem is

NP-complete even for r = 3.

In this paper, we investigate necessary and sufficient conditions for an r-uniform hyper-

graphic sequence to have a k-edge-connected realization. Our main results, Theorem 5.1.4 and

Theorem 5.1.5 below, generalize Theorems 5.1.1, 5.1.2 and Theorem 5.1.3, respectively.

Theorem 5.1.4. An r-uniform hypergraphic sequence d = (d1, d2, · · · , dn) has a k-edge-connected

realization if and only if

(i) di ≥ k for i = 1, 2, · · · , n;
(ii)

∑n
i=1 di ≥

r(n−1)
r−1 if k = 1.

Theorem 5.1.5. A nonincreasing integer sequence d = (d1, d2, · · · , dn) is the degree sequence

of a k-edge-connected r-uniform hypergraph (possibly with multiple edges) if and only if each of

the following holds

(i)
∑n

i=1 di is a multiple of r;

(ii) dn ≥ k; and

(iii)
∑n

i=1 di ≥ max{ r(n−1)
r−1 , rd1}.

In Section 2 and Section 3, we will present the proofs of Theorem 5.1.4 and Theorem 5.1.5

respectively. A further conjecture will be proposed in Section 4.
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5.2 The Proof of Theorem 5.1.4

The main effort will be the proof for the sufficiency. We will first show that d has an h-edge

connected realization H for some h ≥ 1. If h < k, then we will show that it is possible to

perform some edge switching to find a d-realization with higher edge connectivity.

The following lemmas hold for any possibly nonsimple hypergraph.

Lemma 5.2.1. Let H be an r-uniform hypergraph on n vertices. If H is connected, then

|E(H)| ≥ n−1
r−1 . Moreover, the equality holds if and only if for any edge E ∈ E(H), H − E has r

components.

Proof: We establish the inequality by induction on n. If n = r, then it has an edge containing

all vertices and so |E(H)| ≥ 1 (|E(H)| = 1 for simple hypergraphs). Assume that n ≥ r + 1

and that the inequality holds for smaller values of n. We remove edges from H one by one until

there are at least 2 components. Let H1,H2, · · · ,Ht be these components. Removing a single

edge can only create at most r components, thus 2 ≤ t ≤ r. Suppose that the number of vertices

in Hi is ni for 1 ≤ i ≤ t. Then
∑t

i=1 ni = n. By the inductive hypothesis, |E(Hi)| ≥ ni−1
r−1 . Thus

|E(H)| ≥
∑t

i=1 |E(Hi)|+ 1 = n−t
r−1 + 1 ≥ n−r

r−1 + 1 = n−1
r−1 .

Now suppose that the equality holds. If there exists an edge E0 ∈ E(H) such that H − E0

has less than r components, denoted by H1,H2, · · · ,Ht, where 1 ≤ t < r. Let ni be the number

of vertices in Hi for 1 ≤ i ≤ t. Then
∑t

i=1 ni = n. Since each Hi is a connected r-uniform

hypergraph, |E(Hi)| = ni−1
r−1 . Then |E(H)| =

∑t
i=1 |E(Hi)| + 1 = n−t

r−1 + 1 > n−r
r−1 + 1 = n−1

r−1 ,

contrary to |E(H)| = n−1
r−1 . Hence for any edge E ∈ E(H), H − E has r components.

To prove the sufficiency of the second part, we argue by induction on n. If n = r, then

|E(H)| = 1 = n−1
r−1 , and so we assume that n > r and it holds for smaller values of n. Pick

E ∈ E(H). Let H1,H2, · · · ,Hr be the components of H−E and ni = |V (Hi)| for i = 1, 2, · · · , r.
We claim that for each i and any edge E′ ∈ E(Hi), Hi − E′ has r components. If not, then

there exist j with 1 ≤ j ≤ r and an edge E′′ ∈ E(Hj) such that Hj − E′′ has less than

r components. Then H − E′′ = (Hj − E′′) ∪ (∪i̸=jHi) + {E} has less than r components,

contrary to the assumption. Hence the claim holds and by induction, |E(Hi)| = ni−1
r−1 . Thus

|E(H)| =
∑r

i=1 |E(Hi)|+ 1 = n−r
r−1 + 1 = n−1

r−1 , completing the proof.

Lemma 5.2.2. Let H be an r-uniform h-edge-connected hypergraph and [X,X] be an edge-cut

of size h. Then for any vertex u ∈ X with dH(u) > h and for any vertex v ∈ X, there exist

vertices u2, u3, · · · , ur ∈ X such that {u, u2, · · · , ur} ∈ E(H) and {v, u2, · · · , ur} ̸∈ E(H).

Proof: Let dH(u) = k and k′ be the number of (X,X)-crossing edges containing u. Then

k′ ≤ h < k, and there are k−k′ exact-X-crossing edges containing u. That is, there exist distinct

(r− 1)-subsets U1, U2, · · · , U(k−k′) of X such that for each i = 1, 2, · · · , k− k′, Ui ∪ {u} ∈ E(H).
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Let v be any vertex in X. If for each i = 1, 2, · · · , k − k′, Ui ∪ {v} ∈ E(H), then |[X,X]| ≥
k′ + (k − k′) > h, contrary to |[X,X]| = h. Thus there exists a set Uj where 1 ≤ j ≤ k − k′

such that Uj ∪ {v} ̸∈ E(H). Let Uj = {u2, u3, · · · , ur}. Then {u, u2, · · · , ur} ∈ E(H) but

{v, u2, · · · , ur} ̸∈ E(H).

Lemma 5.2.3. Let d be a sequence satisfying Theorem 5.1.4 (i) and (ii). Then for any discon-

nected d-realization H with components H1,H2, · · · ,Hl, there exists an edge E ∈ E(Hj) such

that the number of components of Hj − E is at most r − 1, for some j with 1 ≤ j ≤ l.

Proof: Suppose that there is no such edge E ∈ E(Hi) for i = 1, 2, · · · , r. Let |V (H)| = n

and |V (Hi)| = ni for each i = 1, 2, · · · , l. By Lemma 5.2.1, |E(Hi)| = ni−1
r−1 . Thus |E(H)| =∑l

i=1 |E(Hi)| = n1+n2+···+nr−l
r−1 = n−l

r−1 < n−1
r−1 , and so

∑n
i=1 di = r|E(H)| < r(n−1)

r−1 , contrary to

Theorem 5.1.4 (ii).

Lemma 5.2.4. Suppose that H is an r-uniform hypergraph with edges E0 = {u, x2, x3, · · · , xr}
and F0 = {v, y2, y3, · · · , yr}. Let H ′ be a hypergraph obtained from H by deleting edges E0 and

F0, and adding edges {v, x2, x3, · · · , xr} and {u, y2, y3, · · · , yr}. Let Z be a nonempty proper

subset of V (H). If dH′(Z) < dH(Z), then one of the following must hold.

(i) u, y2, y3, · · · , yr ∈ Z, v ∈ Z and at least one of x2, x3, · · · , xr is in Z;

(ii) u, y2, y3, · · · , yr ∈ Z, v ∈ Z and at least one of x2, x3, · · · , xr is in Z;

(iii) v, x2, x3, · · · , xr ∈ Z, u ∈ Z and at least one of y2, y3, · · · , yr is in Z;

(iv) v, x2, x3, · · · , xr ∈ Z, u ∈ Z and at least one of y2, y3, · · · , yr is in Z.

Proof: By symmetry, it suffices to show one of the cases. Since dH′(Z) < dH(Z), at least one

of the two new edges of H ′ is not (Z,Z)-crossing. Without loss of generality, we may assume

that u, y2, y3, · · · , yr ∈ Z. Then v ∈ Z, otherwise, F0 is not (Z,Z)-crossing in H, and thus

removing F0 will not decrease the number of (Z,Z)-crossing edges, contrary to dH′(Z) < dH(Z).

Similarly, if x2, x3, · · · , xr ∈ Z, then E0 is not (Z,Z)-crossing in H and thus removing E0 will

not decrease the number of (Z,Z)-crossing edges, contrary to dH′(Z) < dH(Z). Thus at least

one of x2, x3, · · · , xr is in Z, completing the proof of (i).

Let h be a positive integer, an h-minimal set of a hypergraphH is a nonempty proper subset

X of V (H) with dH(X) = h such that for any nonempty proper subset X ′ of X, dH(X ′) > h.

By definition, if H is h-edge-connected, then any subset S ⊆ V (H) with dH(S) = h contains an

h-minimal set of H.

Lemma 5.2.5. Suppose that X is an h-minimal set of an r-uniform hypergraph H. Let X1 and

X2 be nonempty proper subsets of X with X1 ∪X2 = X. Then each of the following statements

holds.
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(i) |EH
X1X2

| ≥ |EH
X1X

|+ 1 and |EH
X1X2

| ≥ |EH
X2X

|+ 1.

(ii) |EH
X1X2

| ≥ h
2 −

|EH
X1X2X

|
2 + 1.

Proof: (i) Since X is an h-minimal set of H, dH(X) = |EH
X1X

| + |EH
X2X

| + |EH
X1X2X

| = h and

dH(X1) = |EH
X1X

| + |EH
X1X2

| + |EH
X1X2X

| ≥ h + 1. Thus |EH
X1X2

| ≥ |EH
X2X

| + 1. By symmetry,

|EH
X1X2

| ≥ |EH
X1X

|+ 1.

(ii) By (i), 2|EH
X1X2

|+ |EH
X1X2X

| ≥ |EH
X1X

|+ 1 + |EH
X2X

|+ 1 + |EH
X1X2X

| = h+ 2. Thus |EH
X1X2

| ≥

h
2 −

|EH
X1X2X

|
2 + 1.

Suppose that [Z,Z] is an edge-cut of a hypergraph H. Let X1, Y1 ⊆ Z with X1 ∩Y1 = ∅ and

X2, Y2 ⊆ Z with X2 ∩ Y2 = ∅. Let EH
O be the set of all other edges of [Z,Z] which are not in

EH
X1X2

and EH′
Y1Y2

. Then

dH(Z) = |EH
X1X2

|+ |EH
Y1Y2

|+ |EH
O |. (5.1)

Now we are ready to prove Theorem 5.1.4.

Proof of Theorem 5.1.4: Suppose that d has a k-edge-connected r-uniform realization H.

For any vertex v ∈ V (H) whose degree is di, di = |[{v}, V −{v}]| ≥ k, for i = 1, 2, · · · , n. When

k = 1, by Lemma 5.2.1, |E(H)| ≥ ⌈n−1
r−1 ⌉, and so

∑n
i=1 di ≥

r(n−1)
r−1 .

To prove the sufficiency, let h be the maximum edge connectivity among all d-realizations.

By contradiction, we assume that

h < k. (5.2)

First we prove that h ≥ 1 by showing that d has a simple connected r-uniform realization.

Let H be a simple r-uniform d-realization with l components such that

l is minimized. (5.3)

If l = 1, then H is connected, and we are done. Hence we may assume that l ≥ 2 and let

H1,H2, · · · ,Hl be the components of H.

By Lemma 5.2.3, we may assume that H1 has an edge E = {u1, u2, · · · , ur} such that H1−E

has a component U with u1, u2 ∈ V (U). Let E′ = {v1, v2, · · · , vr} ∈ E(Hi) for some i with

i > 1. Let G be a hypergraph obtained from H by deleting edges E and E′, and adding edges

{v1, u2, u3, · · · , ur} and {u1, v2, v3, · · · , vr}, as shown in Figure 5.1. Then V (Hi) and V (H1)

are in the same component of G, and for each j with 1 ≤ j ≤ l, vertices in V (Hj) are in the

same component of G. Thus the number of components of G is at most l− 1, contrary to (5.3).

therefore there exists a connected r-uniform d-realization, and so h ≥ 1.
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Figure 5.1: The construction of G from H

Let H be an r-uniform d-realization with edge connectivity h and

with fewest number of edge-cuts of size h. (5.4)

Let X be an h-minimal set of H. Since dH(X) = h, X must contain an h-minimal

set, denoted by Y . Since H is connected, there exist u ∈ X, v ∈ Y and a path P =

(u, F1, w1, F2, w2, · · · , Ft, v) such that

F1 is (X,X)-crossing and Ft is (Y, Y )-crossing. (5.5)
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(b) H ′

Figure 5.2: The construction of H ′ from H

By Theorem 5.1.4 (i), dH(u) ≥ k > h = |[X,X]|. Then by Lemma 5.2.2, there exist

vertices x2, x3, · · · , xr ∈ X such that E1 = {u, x2, x3, · · · , xr} ∈ E(H) but {v, x2, x3, · · · , xr} ̸∈
E(H). Similarly, there exist y2, y3, · · · , yr ∈ Y such that E2 = {v, y2, y3, · · · , yr} ∈ E(H)

but {u, y2, y3, · · · , yr} ̸∈ E(H). Let H ′ be the hypergraph obtained from H by deleting edges
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E1 and E2, and by adding edges E′
1 = {v, x2, x3, · · · , xr} and E′

2 = {u, y2, y3, · · · , yr}, as

shown in Figure 5.2. Then dH′(X) = h + 2 and dH′(Y ) = h + 2. By the definition of H ′,

E(H ′) = (E(H)− {E1, E2}) ∪ {E′
1, E

′
2}. An edge-cut is new if it is not an edge-cut of H.

Claim 1: If H ′ has a new edge-cut [Z,Z] of size at most h, then each of the following holds.

(i) H has an (X ∩ Z,X ∩ Z, Y ∩ Z, Y ∩ Z)-crossing edge.

(ii) H has no edges crossing exactly three of X ∩ Z, X ∩ Z, Y ∩ Z and Y ∩ Z.

Proof of Claim 1: Suppose that H ′ introduces a new edge-cut [Z,Z] with size ≤ h. Then

dH′(Z) ≤ h < dH(Z). By Lemma 5.2.4 and by symmetry, we may assume that u, y2 ∈ Z and

v, x2 ∈ Z, as shown in Figure 5.3.
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ZY?
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(b) H ′

Figure 5.3: New edge-cut [Z,Z] in H ′

Let X ∩ Z = X1, X ∩ Z = X2, Y ∩ Z = Y1 and Y ∩ Z = Y2. By Lemma 5.2.5, |EH
X1X2

| ≥
h
2 −

|EH
X1X2X

|
2 + 1 and |EH

Y1Y2
| ≥ h

2 −
|EH

Y1Y2Y
|

2 + 1. By the construction of H ′ from H, we have

|EH′
X1X2

| = |EH
X1X2

| − 1 and |EH′
Y1Y2

| = |EH
Y1Y2

| − 1. By (5.1),

dH′(Z) = |EH′
X1X2

|+ |EH′
Y1Y2

|+ |EH′
O |

= |EH
X1X2

|+ |EH
Y1Y2

|+ |EH′
O | − 2

≥ h+ |EH′
O | −

|EH
X1X2X

|
2

−
|EH

Y1Y2Y
|

2

= h+
|EH′

O | − |EH
X1X2X

|
2

+
|EH′

O | − |EH
Y1Y2Y

|
2

.

By (5.5), there must be an edge in EH′
O contained in the path P and so EH′

O ̸= ∅. Since EH
X1X2X

and EH
Y1Y2Y

are subsets of EH′
O , if one of them is a proper subset of EH′

O , then dH′(Z) > h, contrary

to dH′(Z) ≤ h. Thus EH
X1X2X

= EH
Y1Y2Y

= EH′
O ̸= ∅. By the definitions of EH

X1X2X
and EH

Y1Y2Y
,

there exists an (X∩Z,X∩Z, Y ∩Z, Y ∩Z)-crossing edge, and there are no edges crossing exactly

three of X ∩ Z,X ∩ Z, Y ∩ Z, Y ∩ Z. This completes the proof of Claim 1.

41



Since [X,X]H′ is no longer an edge-cut of size h in H ′, if there is not a new edge-cut with size

at most h in H ′, then the number of edge-cuts with size h of H ′ is less than that of H, contrary to

(5.4). Thus, we may assume that H ′ has a new edge-cut [Z,Z]H′ with size at most h. By Claim

1, there is an edge E0 = {a1, a2, · · · , ar} ∈ E(H) which is (X ∩Z,X ∩Z, Y ∩Z, Y ∩Z)-crossing

with minimized |E0 ∩X|. (Notice that if r = 3, then H can never have such an edge, contrary

to Claim 1. Hence we may assume that, in the rest of the proof, r ≥ 4.)
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Figure 5.4: The construction of H ′′ from H

Denote E0 ∩ X = {a1, a2, · · · , as}, where 2 ≤ s ≤ r − 2. As Y \E0 ̸= ∅, let b1 ∈ Y \E0.

Since dH(b1) ≥ k > h, by Lemma 5.2.2, there exist vertices b2, b3, · · · , br ∈ Y such that F0 =

{b1, b2, · · · , br} ∈ E(H) but E′
0 = {a1, b2, b3, · · · , br} ̸∈ E(H). See Figure 5.4(a).

If F ′
0 = {b1, a2, · · · , ar} ∈ E(H), then F ′

0 crosses at least three of X ∩Z,X ∩Z, Y ∩Z, Y ∩Z.

By Claim 1(ii), F ′
0 is (X∩Z,X∩Z, Y ∩Z, Y ∩Z)-crossing, contrary to the minimality of |E0∩X|.

Thus F ′
0 = {b1, a2, · · · , ar} ̸∈ E(H). Let H ′′ be the hypergraph obtained from H by replacing

E0 and F0 by E′
0 and F ′

0, as shown in Figure 5.4(b).

Claim 2: H ′′ does not have any new edge-cut of size at most h.

Proof of Claim 2: Suppose that there is a new edge-cut [D,D] of H ′′ with size at most h.

Then dH′′(D) ≤ h < dH(D). By Lemma 5.2.4 and by symmetry, we may assume that a1 ∈ D

and b1 ∈ D, as depicted in Figure 5.5.

Let X ∩D = X3, X ∩D = X4, Y ∩D = Y3 and Y ∩D = Y4. By Lemma 5.2.5, |EH
X3X4

| ≥
h
2 −

|EH
X3X4X

|
2 + 1 and |EH

Y3Y4
| ≥ h

2 −
|EH

Y3Y4Y
|

2 + 1. By the construction of H ′′ from H, we have
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Figure 5.5: New edge-cut [D,D] in H ′′

|EH′′
X3X4

| = |EH
X3X4

| and |EH′′
Y3Y4

| = |EH
Y3Y4

| − 1. By (5.1),

dH′′(D) = |EH′′
X3X4

|+ |EH′′
Y3Y4

|+ |EH′′
O |

= |EH
X3X4

|+ |EH
Y3Y4

|+ |EH′′
O | − 1

≥ h+ 1 + |EH′′
O | −

|EH
X3X4X

|
2

−
|EH

Y3Y4Y
|

2

≥ h+ |EH′′
O ∪ {E0}| −

|EH
X3X4X

|
2

−
|EH

Y3Y4Y
|

2

= h+
|EH′′

O ∪ {E0}| − |EH
X3X4X

|
2

+
|EH′′

O ∪ {E0}| − |EH
Y3Y4Y

|
2

.

Since EH
X3X4X

and EH
Y3Y4Y

are subsets of EH′′
O ∪ {E0}, if one of them is a proper subset of

EH′′
O ∪{E0}, then dH′′(D) > h, contrary to dH′′(D) ≤ h. Hence EH

X3X4X
= EH

Y3Y4Y
= EH′′

O ∪{E0}.
Then E0 ∈ EH

X3X4X
∩ EH

Y3Y4Y
, which means E0 = {a1, a2, · · · , ar} must be (X3, X4, Y3, Y4)-

crossing. Thus the new edge F ′
0 = {b1, a2, · · · , ar} must be in EH′′

O . But F ′
0 is not an edge in

H, whence it is not in EH
X3X4X

and EH
Y3Y4Y

, contrary to EH
X3X4X

= EH
Y3Y4Y

= EH′′
O ∪ {E0}. This

completes the proof of Claim 2.

By Claim 2, the number of edge-cuts of size h of H ′′ is less than that of H, contrary to (5.4).

Thus a contradiction will always occur if (5.2) holds, and so we must have h = k.

5.3 The Proof of Theorem 5.1.5

The necessity of Theorem 5.1.5 is straightforward. We only need to prove the sufficiency. The ar-

gument to prove the sufficiency of Theorem 5.1.5 is similar to that in the proof of Theorem 5.1.4.

Theorem 5.1.5 can now be established by combining the two lemmas below.

Lemma 5.3.1. (Gale [30], Ryser [65], See also Page 5 of Berge [1])

A nonincreasing integer sequence d = (d1, d2, · · · , dn) is the degree sequence of an r-uniform
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hypergraph (possibly with multiple edges) if and only if

(i)
∑n

i=1 di is a multiple of r;

(ii)
∑n

i=1 di ≥ rd1.

Lemma 5.3.2. An r-uniform multi-hypergraphic sequence d = (d1, d2, · · · , dn) has a k-edge-

connected realization if and only if

(i) di ≥ k for i = 1, 2, · · · , n;
(ii)

∑n
i=1 di ≥

r(n−1)
r−1 if k = 1.

Proof: The proof is essentially identical to that of Theorem 1.4 (except that now we do not

need to avoid multiple edges), thus, it is omitted here.

5.4 Concluding remark

A hypergraph H is linear if for any two distinct edges E and F in H, |E ∩F | ≤ 1. A sequence d

is linear hypergraphic if there is a linear hypergraph with degree sequence d. Usually problems

of linear hypergraphic sequences are more difficult than those of hypergraphic sequences. The

proof of Theorem 5.1.4 cannot be applied to linear uniform hypergraphic sequences since the

graphs constructed in the proof may not be linear. However, we believe that the following analog

of Theorem 5.1.4 for linear r-uniform hypergraphs holds.

Conjecture 5.4.1. A linear r-uniform hypergraphic sequence d = (d1, d2, · · · , dn) has a k-edge-

connected realization if and only if

(i) di ≥ k for i = 1, 2, · · · , n;
(ii)

∑n
i=1 di ≥

r(n−1)
r−1 if k = 1.
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Chapter 6

Augmenting and preserving partition

connectivity of a hypergraph

6.1 The Problem

The problem of edge connectivity augmentation seems to be initiated by Watanabe and Naka-

mura [71], in which they investigated the minimum number of edges that must be added to

a graph G so that the resulting graph is k-edge-connected, for given integer k and graph G.

Frank [27] provided an efficient algorithm to solve this kind of problems. For connectivity

augmentation in graphs and hypergraphs, two recent survey papers [41] and [69] are very infor-

mative.

Frank, Király and Kriesell [29] introduced k-partition-connected hypergraphs as a general-

ization of k-edge-connected hypergraphs. The augmentation and preservation problems related

to partition connectivity of graphs and hypergraphs have been investigated in [28,37,42,47,48],

among others.

Theorem 6.1.1. Let G be a graph and k be a positive integer. The following are equivalent.

(1) There exists an edge set X such that G+X is k-partition-connected.

(2) (Frank and Király, a weaker statement of Theorem 5.2 of [28]) |X| ≥ k(|P | − 1)− e(P ) for

every partition P of V (G), where e(P ) is the number of edges whose ends are in different classes

of P .

(3) (Haas, Theorem 1 of [37]) |X| = k(|V (G)| − 1) − |E(G)| and for subgraphs S of G with at

least two vertices, |E(S)| ≤ k(|V (S)| − 1).

Theorem 6.1.2. (Király and Makai, a weaker statement of Corollary 4.13 of [42]) Let H be a

hypergraph and k be a positive integer. The following are equivalent.

(1) There exists a hyperedge set X such that H +X is k-partition-connected.
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(2) |X| ≥ k(|P |−1)−e(P ) for every partition P of V (H), where e(P ) is the number of hyperedges

intersecting at least two classes of P .

Liu, Lai and Chen [48] generalize Theorem 6.1.1 and find the exact minimum number of

edges that must be added to make the resulting graph be k-partition-connected.

The research in this paper is motivated by the results above. Our goal is to determine the

minimum number of hyperedges in a hypergraph whose addition makes the resulting hypergraph

k-partition-connected (Theorem 6.5.4 and 6.5.8 show the exact minimum value and a minimax

formula). We also characterize the hyperedges in a k-partition-connected hypergraph whose

removal will preserve the k-partition-connectedness of the hypergraph (Theorem 6.6.2).

Relevant definitions and preliminaries will be presented in Section 6.2. Undefined terms can

be found in [1] for hypergraphs and [6] for graphs. In Section 6.3, uniformly dense hypergraphs

and their relationship with partition connectivity of hypergraphs will be discussed. A few useful

tools (Theorem 6.4.4 and 6.4.9) will be developed in Section 6.4. These tools will be applied to the

studies of the augmentation and preservation problems of partition connectivity of hypergraphs

in Sections 6.5 and 6.6.

6.2 Notations and Preliminaries

A hypergraph H is a hyperforest if for every nonempty subset U ⊆ V (H), |E(H[U ]) ≤ |U |−1.

A hyperforest T is a hypertree if |E(T )| = |V (T )| − 1. For a hypergraph H, let τ(H) be the

maximum number of edge-disjoint spanning hypertrees in H and a(H) be the minimum number

of edge-disjoint hyperforests whose union is E(H). For a graph G, τ(G) is the spanning tree

packing number of G and a(G) is the arboricity of G.

Theorem 1.1.1 shows that the k-partition-connectedness of a graph G is equivalent to the

property that G has k edge-disjoint spanning trees, while Theorem 1.1.2 characterizing graphs

that can be decomposed to at most k forests. Frank, Király and Kriesell [29] extended both

results to hypergraphs.

Theorem 6.2.1. (Frank, Király and Kriesell [29]) Let H be a hypergraph and k be a positive

integer. Then τ(H) ≥ k if and only if for every X ⊆ E(H), |X| ≥ k(ω(H − X) − 1) (or

equivalently, H is k-partition-connected).

By Theorem 6.2.1, τ(H) is the partition connectivity of H and a hypertree is a minimal

partition-connected hypergraph.

Theorem 6.2.2. (Frank, Király and Kriesell [29]) Let H be a hypergraph and k be a positive

integer. Then α(H) ≤ k if and only if for any subgraph S, |E(S)| ≤ k(|V (S)| − 1).
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Let H1,H2, · · · ,Hc be the components of a hypergraph H such that each Hi has a spanning

hypertree Ti for i = 1, 2, · · · , c. Then ∪iTi is a hyperbase of H. By definition, if H is connected,

then a hyperbase is a spanning hypertree of H. Theorem 6.2.1 implies the following corollary.

Corollary 6.2.3. A hypergraph H has k edge-disjoint hyperbases if and only if for every X ⊆
E(H), |X| ≥ k(ω(H −X)− ω(H)).

6.3 Uniformly Dense Hypergraphs

In this section, we consider only loopless hypergraphs. Let E be a hyperedge in a hypergraph H.

ByH/E we denote the hypergraph obtained fromH by contracting the hyperedge E into a new

vertex v0 and by removing resulting loops if there are any. That is, V (H/E) = (V (H)\E)∪{v0}
and a hyperedge E′ ∈ E(H/E) if and only if either E′ = E′′ for some E′′ ∈ E(H) with E′′∩E = ∅
or E′ = (E′′\E) ∪ {v0} for some E′′ ∈ E(H)\{E} with E′′ ∩ E ̸= ∅. The hyperedge E′ is called

the image of E′′ and E′′ is a preimage of E′. Let X ⊆ E(H), H/X is a hypergraph obtained

from H by contracting all edges in X. Let S be a sub-hypergraph of H, H/S denotes H/E(S).
For any nonempty subset X ⊆ E(H) , the density of X is defined to be

dH(X) =
|X|

|V (H[X])| − ω(H[X])
.

We often use d(H) for d(E(H)). If X ⊂ E(H), then by the definition of contraction, d(H/X) =
|E(H)−X|

V (H/X)− ω(H)
. Following [11], the strength η(H) and the fractional arboricity γ(H) of

a nontrivial hypergraph H are defined, respectively, as

η(H) = min

{
|E(H)−X|

V (H/X)− ω(H)
: X ⊆ E ]

}
, and γ(H) = max {d(H[X] : X ⊆ E} , (6.1)

where the minimum or maximum is taken over all edge subsets of E so that the denominators

are nonzero. By convention, η(K1) = d(K1) = γ(K1) = ∞. It follows immediately that for any

loopless nontrivial hypergraph H,

η(H) ≤ d(H) ≤ γ(H). (6.2)

Let H be a hypergraph and t be a positive integer. A t-packing of H is a family F of

hyperbases in H such that each hyperedge of H is in at most t members of F . Let ηt(H)

denote the largest cardinality of t-packings of H. Dually, a t-covering of H is a family F of

hyperforests in H such that each hyperedge of H is in at least t members of F . Let γt(H)

denote the smallest cardinality of t-coverings of H. (If H has a loop, then γt(H) = ∞.)

The proposition below follows from Theorems 6.2.1, 6.2.2 and Corollary 6.2.3.
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Proposition 6.3.1. For any hypergraph H, each of the following holds.

(i) α(H) = γ1(H) = ⌈γ(H)⌉.
(ii) η1(H) = ⌊η(H)⌋.
(iii) If H is connected, then τ(H) = η1(H).

Let H = (V, E) be a hypergraph and let t > 0 be an integer. The hypergraph H(t) = (V, E ′)

has the same vertex set V , where E ′ is obtained by replacing each hyperedge in E by a set of t

parallel hyperedges.

Theorem 6.3.2. Let H be a hypergraph and s, t > 0 be integers. Each of the following holds.

(i) H has a t-packing of cardinality s if and only if η(H) ≥ s/t.

(ii) H has a t-covering of cardinality s if and only if γ(H) ≤ s/t.

(iii) ηt(H) = ⌊tη(H)⌋ and γt(H) = ⌈tγ(H)⌉.

Proof: It suffices to prove (i) and (ii).

(i) H has a t-packing of cardinality s if and only if H(t) has s edge-disjoint hyperbases. By

Proposition 6.3.1, this is equivalent to η(H(t)) ≥ η1(H
t) ≥ s. By definition, it is equivalent to

tη(H) ≥ s, or η(H) ≥ s/t.

(ii) H has a t-covering of cardinality s if and only if H(t) can be decomposed into s hyperforests.

By Proposition 6.3.1, this is equivalent to γ(H(t)) ≤ s. By definition, it is equivalent to tγ(H) ≤
s, or γ(H) ≤ s/t.

A hypergraph H is uniformly dense if d(H) = γ(H). The next result extends Theorem 6

of [11].

Theorem 6.3.3. Let H be a hypergraph. The following are equivalent.

(i) η(H) = γ(H).

(ii) η(H) = d(H).

(iii) d(H) = γ(H).

(iv) There is a family F of hyperbases of H and a positive integer t such that F is both a

t-packing and a t-covering.

Proof: (i)⇒(ii) and (i)⇒(iii) follow from (6.2).

(ii)⇒(iv): Suppose that η(H) = d(H) = h
t for some integers h, t > 0. By Theorem 6.3.2

(iii), h = tη(H) = ηt(H), and so H has a family F = {T1, T2, · · · , Th} of hyperbases such

that every hyperedge E ∈ E(H) is in at most t members of F . As η(H) = d(H), we have

tη(H)(|V (H)|−ω(H)) = ηt(H)(V (H)−ω(H)) =
∑h

i=1 |Ti| ≤ t|E(H)| = tη(H)(|V (H)|−ω(H)),

and so every hyperedge of H is in exactly t members of F . Thus (iv) holds.

(iii)⇒(iv): Let g ≥ t > 0 be integers such that d(H) = γ(H) = g
t . By Theorem 6.3.2 (iii),

g = tγ(H) = γt(H), and soH has a family F = {B1, B2, · · · , Bh} of hyperforests such that every
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hyperedge E ∈ E(H) is in at least t members of F . As η(H) = d(H), we have tγ(H)(|V (H)| −
ω(H)) = γt(H)(V (H) − ω(H)) ≥

∑g
i=1 |Bi| ≥ t|E(H)| = tγ(H)(|V (H)| − ω(H)), and so each

Bi is a hyperbase of H for 1 ≤ i ≤ g; and every hyperedge of H is in exactly t members of F .

Thus (iv) holds.

(iv)⇒(i): Since F is a t-packing as well as a t-covering of cardinality s, by Theorem 6.3.2,

η(H) ≥ s
t ≥ γ(H) ≥ η(H). Thus (i) holds.

Lemma 6.3.4. Let H be a nontrivial hypergraph and l ≥ 1 be a fractional number. Then each

of the following holds.

(i) If X ⊆ E(H), then η(H) ≤ η(H/X).

(ii) If X ⊆ E(H) and η(H[X]) > η(H), then η(H/X) = η(H).

(iii) If d(H) ≥ l, then there exists a nonempty subset X ⊆ E(H) such that η(H[X]) ≥ l.

Proof: (i) By definition, there exists Y ′ ⊆ E(H/X) such that η(H/X) = d((H/X)/Y ′). Let

Y ⊆ E(H) be a preimage of Y ′. Then η(H/X) = d((H/X)/Y ′) = d(H/(X ∪ Y )) ≥ η(H). (If

H[X] is spanning, then η(H/X) = ∞.)

(ii) It suffices to show that η(H) ≥ η(H/X). By definition, there exists a nonspanning subset

T of E(H) such that η(H) = d(H/T ) = |E(H)\T |
|V (H/T )|−ω(H) . We use Xc to denote E(H)\X and let

X ∩ T = T1 and Xc ∩ T = T2. Then

η(H) =
|X\T1|+ |Xc\T2|
|V (H/T )| − ω(H)

. (6.3)

If V (H[T1]) = V (H[X]), then let T ′
2 ⊆ E(H/T1) be the image of T2. By definition, η(H/X) =

η(H/T1) ≤ d((H/T1)/T
′
2) = d(H/T ) = η(H). Therefore, we assume that V (H[T1]) ̸= V (H[X]).

By definition, η(H[X]) ≤ d(H[X]/T1) =
|X\T1|

|V (H[X]/T1)|−ω(H[X]) , and so

|X\T1| ≥ η(H[X])(|V (H[X]/T1)| − ω(H[X])) > η(H)(|V (H[X]/T1)| − ω(H[X])). (6.4)

By (6.3) and (6.4),

η(H)(|V (H/T )| − ω(H)− |V (H[X]/T1)|+ ω(H[X])) > |Xc\T2|. (6.5)

We also have |V (H/(X ∪ T2))| = |V (H/T )| − |V (H[X]/T1)|+ ω(H[X]). By (6.5),

η(H)(|V (H/(X ∪ T2))| − ω(H)) > |Xc\T2|. (6.6)

Since the inequality (6.6) is strict, |V (H/(X ∪ T2))| − ω(H) ̸= 0, and so

η(H) >
|Xc\T2|

|V (H/(X ∪ T2))| − ω(H)
. (6.7)
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Let T ′
2 ⊆ E(H/X) be the image of T2. Since |V (H/(X ∪ T2))| − ω(H) ̸= 0, V (H/X[T ′

2]) ̸=
V (H/X). By definition, η(H/X) ≤ d((H/X)/T ′

2) = d(H/(X ∪ T2)), and thus

η(H/X) ≤ E(H)\(X ∪ T2)

|V (H/(X ∪ T2))| − ω(H)
≤ |Xc\T2|

|V (H/(X ∪ T2))| − ω(H)
. (6.8)

By (6.7) and (6.8), η(H) > η(H/X), which is impossible by (i). This completes the proof.

(iii) Since γ(H) ≥ d(H) ≥ l, by the definition of γ(H), there exists a nonempty subset

X ⊆ E(H) such that γ(H) = d(H[X]). Thus γ(H[X]) ≤ γ(H) = d(H[X]) ≤ γ(H[X]), and we

have γ(H[X]) = d(H[X]) ≥ l. By Theorem 6.3.3, η(H[X]) = d(H[X]) = γ(H[X]) ≥ l.

Lemma 6.3.5. Let H be a nontrivial hypergraph. The following are equivalent.

(i) H is uniformly dense.

(ii) For any nontrivial sub-hypergraph S, d(S) ≤ η(H).

(iii) For any nontrivial sub-hypergraph S, η(S) ≤ η(H).

Proof: (i) =⇒ (ii). As H is uniformly dense, d(S) ≤ γ(H) = η(H), and so (ii) holds.

(ii) =⇒ (iii). By (6.2), η(S) ≤ d(S) ≤ η(H), and so (iii) holds.

(iii) =⇒ (i). If H is not uniformly dense, then by (6.2) and (6.1), for some subset X ⊆ E ,
d(X) = γ(H) > η(H). Let S = H[X]. By (6.1) again, d(S) = γ(S) = γ(H), and so by

Theorem 6.3.3, η(S) = d(S) = γ(H) > η(H), contrary to (iii). This completes the proof.

6.4 Complete Families and Decomposition Theorems

Throughout this section, unless otherwise stated, sub-hypergraphs of a hypergraph H are all

edge induced, and so we adopt the convention to use a subset S of E(H) to denote both the

edge subset as well as the edge induced sub-hypergraph of H. In particular, if S1, S2 are sub-

hypergraphs of H, then S1 ∪ S2 denotes the sub-hypergraph of H induced by the edge subset

S1 ∪ S2.

Let k ≥ 1 be an integer and let Tk be the family of all k-partition-connected hypergraphs.

ThusK1 ∈ Tk and every hypergraph in Tk is connected. A decomposition theorem that partitions

the hyperedges set E of a hypergraph H according to the different level of partition connectivity,

and other related results, will be presented in Theorem 6.4.4, 6.4.9, Proposition 6.4.1 and 6.4.6

in this section. Connected graph families satisfying (C1), (C2) and (C3) as stated in Proposition

6.4.1 are often referred as complete families, as seen in [9, 12,44], among others.

Proposition 6.4.1. For any positive integer k, each of the following statements holds.

(C1) Tk ̸= ∅.
(C2) If E ∈ E(H) and H ∈ Tk, then H/E ∈ Tk.
(C3) If for some S ⊂ E(H), both S,H/S ∈ Tk, then H ∈ Tk.
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Proof: Since K1 ∈ Tk, (C1) holds.
Let E = {v1, v2, · · · , v|E|} and v be the vertex of H/E onto which E is contracted. Let

π = {V1, V2, · · · , V|π|} denote a partition of V (H/E). Without loss of generality, we assume that

v ∈ V1. Define V ′
1 = (V1\{v}) ∪ {v1, v2, · · · , v|E|}. Then π′ = {V ′

1 , V2, · · · , V|π|} is a partition

of V (E). Since H ∈ Tk, e(π′) ≥ k(|π′| − 1) = k(|π| − 1). By the definition of contraction,

e(π) = e(π′) ≥ k(|π| − 1), whence H/E ∈ Tk, and so (C2) follows.

Let π = {V1, V2, · · · , V|π|} be a partition of H. Without lost of generality, we assume that

for some integer t ≥ 1, Vj ∩ V (S) ̸= ∅ for 1 ≤ j ≤ t, and Vj ∩ V (S) = ∅ for t + 1 ≤ j ≤ |π|.
Then π1 = {V1 ∩ V (S), V2 ∩ V (S), · · · , Vt ∩ V (S)} is a partition of V (S). As S ∈ Tk, e(π1) ≥
k(|π1| − 1) = k(t − 1). Moreover, let π2 = {V0, Vt+1, Vt+2, · · · , V|π|} be a partition of V (H/S).

As H/S ∈ Tk, e(π2) ≥ k(|π2| − 1) = k(|π| − t). It follows that e(π) = e(π1) + e(π2) ≥ k(|π| − 1),

and so H ∈ Tk. This proves (C3).

Corollary 6.4.2. If S1 and S2 are sub-hypergraphs of a hypergraph H such that S1, S2 ∈ Tk
and V (S1) ∩ V (S2) ̸= ∅, then S1 ∪ S2 ∈ Tk.

Proof: Let H = S1 ∪ S2. Since S1 ∈ Tk, by Proposition 6.4.1(C2), H/S2 ∈ Tk. Since S2 ∈ Tk,
by Proposition 6.4.1(C3), H ∈ Tk.

LetH be a nontrivial partition-connected hypergraph. For any positive integer r, a nontrivial

sub-hypergraph S of H is Tr-maximal or r-maximal for short, if S ∈ Tr and if there is no

sub-hypergraph K of H such that K contains S properly and such that K ∈ Tr. A Tr-maximal

sub-hypergraph S of H is an r-region if r = τ(S). Sometimes an r-region is called a region if

r is not specified. We define τ(H) = max{r : H has a sub-hypergraph as an r-region}.

Lemma 6.4.3. Let S be a nontrivial connected sub-hypergraph of H and r be a positive integer.

If τ(S) = r, then there is always a region L of H with S ⊆ E(L) and with τ(L) ≥ r.

Proof: If S is r-maximal, then L = S is an r-region of H. Otherwise, H has a connected

sub-hypergraph L properly containing S with τ(L) ≥ r and such that L is maximal with respect

to these properties. Since H is finite, L exists and so L is a desirable region.

Theorem 6.4.4. Let H be a nontrivial partition-connected hypergraph. Then

(i) There exist a positive integer m and an m-tuple (i1, i2, · · · , im) of positive integers with

τ(H) = i1 < i2 < · · · < im = τ(H)

and a sequence of edge subsets

Em ⊂ · · · ⊂ E2 ⊂ E1 = E(H)
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such that each component of the induced sub-hypergraph H[Ej ] is an r-region of H for some r

with r ≥ ij where 1 ≤ j ≤ m, and such that at least one component S in H[Ej ] is an ij-region

of H.

(ii) If S is a sub-hypergraph of H with τ(S) ≥ ij, then E(S) ⊆ Ej.
(iii) The integer m and the sequence of edge subsets are uniquely determined by H.

Proof: (i) Let R(H) denote the collection of all regions of H. Since H itself is a region of

H, R(H) is not empty. Since H is a finite hypergraph, |R(H)| is finite. We define sp(H) =

{τ(S) : S ∈ R(H) is nontrivial}. Then |sp(H)| is finite and |sp(H)| ≥ 1. Let m = |sp(H)| and
sp(H) = {i1, i2, · · · , im} with i1 < i2 < · · · < im. Since H ∈ R(H), τ(H) ≥ i1. If τ(H) > i1,

then for some region S ∈ R(H), τ(S) = i1 < τ(H), contrary to the fact that S is a region of H.

Hence we must have τ(H) = i1.

For each j ∈ {1, 2, · · · ,m}, we define Ej =
∪

τ(S)≥ij ,S∈R(H) E(S). As Ti1 ⊃ Ti2 ⊃ · · · ⊃ Tim ,
we have E1 ⊃ E2 ⊃ · · · ⊃ Em. In particular, E1 = ∪τ(S)≥i1E(S) = ∪τ(S)≥τ(H)E(S) = E(H).

Claim 1. For any j ∈ {1, 2, · · · ,m}, each component of H[Ej ] is an r-region of H with r ≥ ij .

Proof of Claim 1. Let L be a nontrivial component of H[Ej ]. By the definition of Ej , we
may assume that there are s regions L1, L2, · · · , Ls such that each Lt is an rt-region with rt ≥ ij

for 1 ≤ t ≤ s, and such that L = ∪s
t=1Lt. Without loss of generality, we may assume that

r1 ≤ r2 ≤ · · · ≤ rs. If s ≥ 2, then L1 must share a common vertex with some Lt with t ≥ 2 since

L is connected. By Corollary 6.4.2, L1 ∪ Lt ∈ Tr1 , contrary to the fact that L1 is r1-maximal.

Hence s = 1 and L = L1. Thus L is an r1-region of H with r1 ≥ ij , completing the proof of the

claim.

We still need to show thatH[Ej ] contains a component as an ij-region ofH. Since ij ∈ sp(H),

there is an ij-region S of H, and so S ⊆ Ej . The maximality of a region implies that S is a

component of H[Ej ].
(ii) follows from Lemma 6.4.3 and the definition of Ej .
(iii) follows from the fact that R(H) is uniquely determined by H.

Theorem 6.4.4 will be a useful tool to prove our main results in the last two sections. It also

has a fractional version to be developed in Theorem 6.4.9 below.

Lemma 6.4.5. Let H be a nontrivial connected hypergraph. Then

(i) For some S ⊆ E(H), S is uniformly dense with η(S) = γ(H).

(ii) τ(H) = ⌊γ(H)⌋.

Proof: (i) By (6.1) and (6.2), for some S ⊆ E(H), S is connected and d(S) = γ(H). Hence

d(S) ≤ γ(S) ≤ γ(S) = d(S), and so by Theorem 6.3.3, S is uniformly dense with η(S) = d(S) =

γ(H). This proves (i).
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(ii) By the definition of τ(H), for some region R of H, τ(R) = τ(H). By (6.1) and (6.2),

τ(H) = τ(R) ≤ η(R) ≤ d(R) ≤ γ(R) ≤ γ(H).

Let k > 0 be an integer with γ(H) ≥ k. By (i), for some S ⊆ E(H), S is connected and

η(S) = γ(H) ≥ k. By Lemma 6.4.3, H has a region L such that τ(L) ≥ τ(S) ≥ k. It follows

that τ(H) ≥ τ(L) ≥ k, and so (ii) must hold.

For each rational number l ≥ 0, we define Sl = {H : η(H) ≥ l}.

Proposition 6.4.6. The hypergraph family Sl has the following properties.

(C1) Sl is nonempty.

(C2) If H ∈ Sl and E ∈ E(H), then H/E ∈ Sl.

(C3) Let X ⊆ E(H). If H/X ∈ Sl and H[X] ∈ Sl, then H ∈ Sl.

Proof: As (C1) and (C2) follow from the fact K1 ∈ Sl and Lemma 6.3.4(i), respectively, it

suffices to show (C3). Suppose that under the assumption of (C3), we still have η(H) < l. Then

η(H[X]) ≥ l > η(H). By Lemma 6.3.4(ii), η(H/X) = η(H) < l, contrary to H/X ∈ Sl. Thus

H ∈ Sl.

Lemma 6.4.7. Let X and X ′ be subsets of E(H) and l be a rational number. If η(X) ≥ l and

η(X ′) ≥ l, then η(X ∪X ′) ≥ l.

Proof: By Proposition 6.4.6 (C2), (X ∪ X ′)/X = X ′/(X ∩ X ′) ∈ Sl. As X ′ ∈ Sl, it follows

from Proposition 6.4.6(C3), that η(X ∪X ′) ≥ l.

Let H be a nontrivial hypergraph. A subset S ∈ E(H) is η-maximal if for any subset

S′ ∈ E(H) with S ⊂ S′ properly, we always have η(S′) < η(S).

Lemma 6.4.8. Let S be a sub-hypergraph of H. Then H has an η-maximal sub-hypergraph L

such that E(S) ⊆ E(L) and such that η(S) ≤ η(L).

Proof: Let l = η(S) and F be the collection of all sub-hypergraphs S′ of H with η(S′) ≥ l.

Let X = ∪S′∈FE(S′) and L = H[X]. By Lemma 6.4.7, η(L) ≥ l. By the definition of L, L is

η-maximal with E(S) ⊆ E(L) and η(S) ≤ η(L).

Theorem 6.4.9. Let H be a nontrivial hypergraph. Then each of the following holds.

(i) There exist a positive integer m and an m-tuple (l1, l2, · · · , lm) of positive rational numbers

with

η(H) = l1 < l2 < · · · < lm = γ(H) (6.9)
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and a sequence of edge subsets

Jm ⊂ · · · ⊂ J2 ⊂ J1 = E(H) (6.10)

such that for each i with 1 ≤ i ≤ m, Ji is η-maximal with η(H[Ji]) = li.

(ii) The integer m and the sequences above are uniquely determined by H.

Proof: LetR(H) denote the collection of all η-maximal sub-hypergraphs ofH. ThenH ∈ R(H)

and |R(H)| are finite. Let spη(H) = {η(S) : S ∈ R(H)}, m = |spη(H)| and spη(H) =

{l1, l2, · · · , lm} such that l1 < l2 < · · · < lm.

Since H ∈ R(H), η(H) ≥ l1. If for some K ∈ R(H), with η(K) = l1 < η(H), then K is

not η-maximal. Therefore, η(H) = l1. By Lemma 6.4.5(i), γ(H) ≤ lm. If for some K ∈ R(H),

with η(K) = lm > γ(H), then by (6.2), d(K) ≥ η(K) > γ(H), contrary to (6.1). Therefore,

γ(H) = lm.

Fix an i with 1 ≤ i ≤ m, by the definition of li, for some S ∈ R(H), η(S) = li. Define Ji

to be the set of all hyperedges of H which are in some S ∈ R(H) with η(S) = li. Then by

Proposition 6.4.6 (C3), Jm ⊂ · · · ⊂ J2 ⊂ J1 = E(H). This proves (i).

(ii) follows from the fact that R(H) is uniquely determined by H.

The m-tuple (l1, l2, · · · , lm) in (6.9) and the sequence J1, J2, · · · , Jm in (6.10) are referred as

the η-spectrum and the η-decomposition of H, respectively.

Corollary 6.4.10. Let H be a nontrivial hypergraph with η-spectrum and η-decomposition de-

scribed in Theorem 6.4.9 with m > 1. Then H/J2 is uniformly dense with η(H/J2) = γ(H/J2) =

η(H).

Proof: Since m > 1, η(H[J2]) = l2 > l1 = η(H). By Lemma 6.3.4(ii), η(H/J2) = η(H) = l1. It

remains to show that γ(H/J2) = η(H/J2).

If not, then by Lemma 6.4.5(i) and by (6.1) and (6.2), for some J ′ ⊂ E(H/J2), η(H/J2[J
′]) =

dH/J2(J
′) = γ(H/J2) > η(H/J2) = l1. Let J ′′ ⊆ E(H) be a preimage of J ′. Then J ′′ ∩ J2 = ∅

and, since J2 is η-maximal, η(J ′′ ∪ J2) < η(J2) = l2. By Lemma 6.3.4(ii), η(J ′′ ∪ J2) =

η((J ′′ ∪ J2)/J2) = η(H/J2[J
′]) > l1. By Lemma 6.4.8, H has an η-maximal sub-hypergraph L

with η(L) ≥ η(J ′′ ∪ J2) with J ′′ ∪ J2 ⊆ L. If η(L) ≥ l2, then L ⊆ J2, contrary to J ′′ ∩ J2 = ∅.
Hence l2 > η(L) ≥ η(J ′′ ∪ J2) > l1, and so the η-spectrum of H should include η(L), contrary

to the uniqueness of the η-spectrum of H.

Corollary 6.4.11. Let H be a hypergraph with η-spectrum (6.9). Then H is uniformly dense

if and only if m = 1.

54



6.5 Augmenting Partition Connectivity of a Hypergraph

Throughout this section, k > 0 denotes an integer, and H denotes a hypergraph. If X is

a collection of (not necessarily distinct) subsets of V (H) and X ∩ E(H) = ∅, then we use

H +X to denote the hypergraph (V (H), E ∪X). Define f(H, k) to be the minimum number of

hyperedges that must be added to H so that the resulting hypergraph is k-partition-connected.

By Theorem 6.2.1, it suffices to investigate the minimum number of hyperedges that must be

added to H so that the resulting hypergraph has k edge-disjoint spanning hypertrees. In this

section, we determine the value of f(H, k) together with a min-max formula (Theorem 6.5.4 and

6.5.8). Matroid arguments will be used in some of the proofs, and we refer to [62] for undefined

terms for matroid theory.

Lemma 6.5.1. Every hyperforest in a partition-connected hypergraph is a spanning sub-hypergraph

of a hypertree.

Proof: Lorea [51] proved that all hyperforests of a hypergraphH form the family of independent

sets of a matroidMH , called the circuit matroid ofH, on E(H). Frank, Király and Kriesell [29]

proved that, if H is partition-connected, then any spanning hypertree of H is a base of MH .

It follows that any hyperforest in a partition-connected hypergraph can be augmented to a

hypertree.

Lemma 6.5.2. Suppose that τ(H) < k. If γ(H) ≤ k, then there exists an edge set X with

|X| = k(|V (H)|−1)−|E(H)| such that H+X is the union of k edge-disjoint spanning hypertrees.

Proof: Since γ(H) ≤ k, by Theorem 6.2.2 or Proposition 6.3.1, there exist edge-disjoint span-

ning hyperforests F1, F2, · · · , Fk such that E(H) = ∪k
i=1E(Fi). By Lemma 6.5.1, for each i with

1 ≤ i ≤ k, each Fi can be augmented to a hypertree by adding a set X ′
i of |V (Fi)| − 1− |E(Fi)|

hyperedges. For each i with 1 ≤ i ≤ k, let Xi be a set of new hyperedges duplicating the edges

in X ′
i, and let X = ∪k

i=1Xi. Then H + X is the union of k edge-disjoint spanning hypertrees

and |X| =
∑k

i=1(|V (Fi)| − 1− |E(Fi)|) = k(|V (H)| − 1)− |E(H)|.

Lemma 6.5.3. Let H be a hypergraph and let W ⊆ E(H) such that every component of W is

in Tk. If for a set X ′ of hyperedges not in E(H/W ), H/W +X ′ ∈ Tk, then for some set X of

hyperedges not in E(H), H +X ∈ Tk and |X| = |X ′|.

Proof: Suppose that H[W ] has c components H1,H2, · · · ,Hc and let v1, v2, · · · , vc be the ver-

tices in H/W onto which H1,H2, · · · ,Hc are contracted, respectively. We will construct an

edge set X from X ′ as follows: Label X ′ = {E′
1, E

′
2, · · · , E′

s}, where s = |X ′|. For each i with

1 ≤ i ≤ s, we have the following.

(a) If E′
i ∩ {v1, v2, · · · , vc} = ∅, then Ei = E′

i ∈ X.
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(b) If E′
i ∩ {v1, v2, · · · , vc} = {vi1 , vi2 , · · · , vit} for some 1 ≤ t ≤ c, then choose uj ∈ V (Hij ) for

each j with 1 ≤ j ≤ t, and define Ei = (E′
i\{v1, v2, · · · , vt}) ∪ {u1, u2, · · · , ut}.

Therefore, |X| = |X ′|. By the definition of contraction, H/W + X ′ ∼= (H + X)/W . Since

Hi ∈ Tk, and since (H +X)/W ∼= H/W +X ′ ∈ Tk, by Proposition 6.4.1, H +X ∈ Tk.

Let H be a partition-connected hypergraph and ij , Ej be defined in Theorem 6.4.4 for j =

1, 2, · · · ,m. Let k be a positive integer. If k ≤ im, we define i(k) = min{ij : ij ≥ k}. If k > im,

we define i(k) = ∞ and E∞ = ∅. Let ck(H) be the number of components of H[Ei(k)] and
wk(H) = |V (H[Ei(k)])|. Note that ck(H) = wk(H) = 0 if i(k) = ∞.

Theorem 6.5.4. Let H be a partition-connected hypergraph with τ(H) < k. Then f(H, k) =

k(|V (H)| − wk(H) + ck(H)− 1)− (|E(H)| − |Ei(k)|).

Proof: If γ(H) < k, then by Lemma 6.4.5, im = τ(H) ≤ γ(H) < k. Then i(k) = ∞, and we

have ck(H) = wk(H) = 0. Then the theorem follows from Lemma 6.5.2. Hence we may assume

that γ(H) ≥ k.

Let H ′ = H/Ei(k). Then |E(H ′)| = |E(H)| − |Ei(k)| and |V (H ′)| = |V (H)| − wk(H) + ck(H).

Claim 2. γ(H ′) ≤ k.

Proof of Claim 2. By contradiction, we assume that γ(H ′) > k.

By Lemma 6.4.5, H ′ has an r-region L′ with r ≥ k. Suppose that H[Ei(k)] has c com-

ponents H1,H2, · · · ,Hc and let v1, v2, · · · , vc be the vertices in H/Ei(k) onto which the com-

ponents H1,H2, · · · ,Hc are contracted, respectively. By Theorem 6.4.4, τ(Hi) ≥ k for i =

1, 2, · · · , c. If V (L′) ∩ {v1, v2, · · · , vc} = ∅, then L′ is a sub-hypergraph of H with τ(L′) ≥
k. By Theorem 6.4.4, E(L′) ⊆ Ei(k), contrary to the fact that L′ is a sub-hypergraph of

H/Ei(k). If V (L′) ∩ {v1, v2, · · · , vc} ̸= ∅, then without loss of generality, we may assume that

V (L′) ∩ {v1, v2, · · · , vc} = {v1, v2, · · · , vt} for some t ≤ c. Let Epre be a preimage of E(L′) and

L = H[∪t
i=1E(Hi) ∪ Epre]. Note that L′ = L/ ∪t

i=1 E(Hi). Since L′ ∈ Tk and each component of

H[∪t
i=1E(Hi)] is in Tk, by Proposition 6.4.1, L ∈ Tk. By Theorem 6.4.4, E(L) ⊆ Ei(k), contrary

to the fact that L′ is a sub-hypergraph of H ′. This proves the claim.

By Claim 2 and Lemma 6.5.2, there exists an edge set X ′ disjoint from E(H) with |X ′| =
k(|V (H ′)| − 1)− |E(H ′)| such that H ′ +X ′ is the union of k edge-disjoint spanning hypertrees.

This is the minimum number of hyperedges that must be added to H ′ in order to have k edge-

disjoint spanning hypertrees.

By Lemma 6.5.3 withW = Ei(k), for some edge subsetX disjoint from E(H), with |X| = |X ′|,
such that H +X ∈ Tk. Thus f(H, k) = k(|V (H ′)|− 1)−|E(H ′)| = k(|V (H)|−wk(H)+ ck(H)−
1)− (|E(H)| − |Ei(k)|).
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In the rest of this section, we present a related min-max formula for f(H, k) (Theorem 6.5.8).

For any subset X ⊆ E(H), define

fk(H,X) = k(ω(H −X)− 1)− |X| and Fk(H) = max
X⊆E(H)

{fk(H,X)}.

Note that Fk(H) ≥ fk(H, ∅) = 0.

Lemma 6.5.5. Let X ⊆ E(H) be a subset with fk(H,X) = Fk(H) and C be a component of

H −X.

(i) For any subset XC of E(C), fk(H,X ∪XC) = fk(H,X) + fk(C,XC).

(ii) Fk(C) = 0.

(iii) τ(C) ≥ k (and so C ∈ Tk).

Proof: (i) fk(H,X∪XC) = k(ω(H−(X∪XC))−1)−|X∪XC | = k(ω(H−X)−1+ω(C−XC)−
1)− |X| − |XC | = k(ω(H −X)− 1)− |X|+ k(ω(C −XC)− 1)− |XC | = fk(H,X) + fk(C,XC).

(ii) By (i), for any XC ⊆ E(C), fk(C,XC) = fk(H,X ∪ XC) − fk(H,X) = fk(H,X ∪ XC) −
Fk(H) ≤ 0. Thus Fk(C) = 0.

(iii) By (ii), for any XC ⊆ E(C), fk(C,XC) ≤ 0. In particular, for any XC ⊆ E(C) with

ω(C − XC) > 1, k(ω(C − XC) − 1) − |XC | ≤ 0. Thus |XC |
ω(C−XC)−1 ≥ k. By Theorem 6.2.1,

τ(C) ≥ k.

Lemma 6.5.6. If H is connected and Fk(H) = fk(H, E(H)), then γ(H) ≤ k.

Proof: Let S be an induced sub-hypergraph of H. By the definition of γ(H), it suffices to show

that |E(S)| ≤ k(|V (S)| −ω(S)). By definition, Fk(H) = fk(H, E(H)) = k(|V (H)| − 1)− |E(H)|.
LetX = E(H)\E(S). Then the components ofH−X is the components of S and |V (H)|−|V (S)|
isolated vertices. Thus fk(H,X) = k(ω(H −X)− 1)− |X| = k(ω(S) + |V (H)| − |V (S)| − 1)−
(|E(H)| − |E(S)|) = k(|V (H)| − 1)− |E(H)|+ k(ω(S)− |V (S)|) + |E(S)| = Fk(H)− k(|V (S)| −
ω(S)) + |E(S)|. Since fk(H,X) ≤ Fk(H), we have Fk(H)− k(|V (S)| − ω(S)) + |E(S)| ≤ Fk(H),

that is, |E(S)| ≤ k(|V (S)| − ω(S)), completing the proof.

Lemma 6.5.7. Let H be a hypergraph and X be a subset of E(H) such that fk(H,X) = Fk(H).

Let H0 = H/(E(H)\X) and X0 ⊆ E(H0) be the image of X. Then fk(H0, X0) = Fk(H0) =

Fk(H).

Proof: First noticing that ω(H −X) = ω(H0 −X0) and |X0| ≤ |X| (this is because the images

of some hyperedges might be loops and will be removed), by the definition of fk(H,X), we

have fk(H,X) ≤ fk(H0, X). Thus Fk(H0) ≥ fk(H0, X0) ≥ fk(H,X) = Fk(H). On the other

hand, we may choose X ′
0 ⊆ X0 such that Fk(H0) = fk(H0, X

′
0). Let X ′ ⊆ E(H) be a set of

preimages of hyperedges of X ′
0. Then |X ′| = |X ′

0|. Since ω(H − X ′) = ω(H0 − X ′
0), we have

fk(H,X ′) = fk(H0, X
′
0), and thus Fk(H) ≥ fk(H,X ′) = fk(H0, X

′
0) = Fk(H0). It follows that

fk(H0, X0) = Fk(H0) = Fk(H).
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Theorem 6.5.8. Let H be a connected hypergraph. Then f(H, k) = Fk(H).

Proof: Let X be a subset of E(H) such that fk(H,X) = Fk(H). Let H0 = H/(E(H)\X)

and X0 ⊆ E(H0) be the image of X. By Lemma 6.5.7, fk(H0, X) = Fk(H0) = Fk(H). By

Lemma 6.5.6, γ(H0) ≤ k. Thus, by Lemma 6.5.2, f(H0, k) = k(|V (H0)| − 1) − |E(H0)| =

fk(H0, X0) = Fk(H0) = Fk(H).

Let W = E(H)\X. By Lemma 6.5.5, each component of W is in Tk. Let Y0 be the edge

set with |Y0| = f(H0, k) such that τ(H0 + Y0) ≥ k. By Lemma 6.5.3, there exists a set Y of

hyperedges not in E(H) such that H + Y ∈ Tk with |Y | = |Y0|. Thus f(H, k) ≤ f(H0, k) =

Fk(H).

To prove f(H, k) ≥ Fk(H), we assume that Z is a set of hyperedges such that τ(H + Z) ≥
k and |Z| = f(H, k). Let Z ′ ⊆ E((H + Z)/W ) be the image of Z. Then |Z ′| ≤ |Z| and
(H+Z)/W = H/W +Z ′ = H0+Z ′. Since τ(H+Z) ≥ k, by Proposition 6.4.1, τ(H0+Z ′) ≥ k.

Thus Fk(H) = f(H0, k) ≤ |Z ′| ≤ |Z| = f(H, k), completing the proof.

6.6 Preserving Partition Connectivity of a Hypergraph

For a positive integer k and a hypergraph H with τ(H) ≥ k, we define Ek(H) = {E ∈ E(H) :

τ(H − E) ≥ k}. In this section, we determine the set Ek(H) for a k-partition-connected hyper-

graph H. Theorem 6.6.2 is the main result.

Lemma 6.6.1. Let H be a hypergraph. if there exists X ⊆ E(H) such that

(a) τ(H/X) ≥ k and τ(H[X]) ≥ k, and

(b) Ek(H[X]) = E(H[X]) and Ek(H/X) = E(H/X), then Ek(H) = E(H).

Proof: For any E ∈ E(H), if E ∈ X, then by Ek(H[X]) = E(H[X]), we have τ(H[X]−E) ≥ k.

We also have τ((H −E)/(X −E)) = τ(H/X) ≥ k. By Proposition 6.4.1(C3), τ(H −E) ≥ k. If

E ̸∈ X, then let E′ ∈ E(H/X) be the image of E. Since Ek(H/X) = E(H/X), τ(H/X−E′) ≥ k.

Thus τ((H − E)/X) = τ(H/X − E′) ≥ k. We also have τ((H − E)[X]) = τ(H[X]) ≥ k. By

Proposition 6.4.1(C3), τ(H − E) ≥ k. Hence Ek(H) = E(H).

Theorem 6.6.2. Let k be a positive integer and H be a hypergraph with τ(H) ≥ k and η-

decomposition (6.10). Then each of the following holds.

(i) Ek(H) = ∅ if and only if d(H) = k.

(ii) Ek(H) = E(H) if and only if η(H) > k.

(iii) If η(H) = k, then Ek(H) = J2.

Proof: (i). Since τ(H) ≥ k, d(H) = k if and only if |E(H)| = k(|V (H)| − 1), if and only if H

is a union of k edge-disjoint spanning hypertrees, and if and only if Ek(H) = ∅.
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(ii). By Proposition 6.3.1, η(H) ≥ τ(H) ≥ k. We argue by contradiction to prove the

necessity. Suppose that η(H) = k. Let (l1, l2, · · · , lm) and the sequence J1, J2, · · · , Jm be the η-

spectrum and the η-decomposition of H. By Corollary 6.4.10, d(H/J2) = η(H/J2) = γ(H/J2) =

η(H) = k. By (i), for any E′ ∈ E(H/J2) and its preimage E ∈ E(H), τ((H − E)/J2) =

τ(H/J2 − E′) < k. By Proposition 6.4.1(C2), τ(H − E) < k, contrary to Ek(H) = E(H). This

proves the necessity.

We argue by contradiction to prove the sufficiency. Let H be a hypergraph with

η(H) > k and Ek(H) ̸= E(H) such that V (H) is minimized. (6.11)

Since Ek(H) ̸= E(H), there exists E0 ∈ E(H) such that

τ(H − E0) ≤ k − 1. (6.12)

Claim 3. For any nontrivial sub-hypergraph S of H with |V (S)| < |V (H)|, η(S) ≤ k.

Proof of Claim 3. Suppose not and we have η(S) > k. By (6.11), Ek(S) = E(S). By

Lemma 6.3.4(i), η(H/S) ≥ η(S) > k, and so by (6.11), Ek(H/S) = E(H/S). It follows from

Lemma 6.6.1 that Ek(H) = E(H), contrary to (6.11). This proves Claim 3.

By Claim 3, for any S ⊆ E(H), η(S) ≤ k < η(H). By Lemma 6.3.5(ii), H is uniformly

dense. Then d(H) = η(H) > k, and so |E(H)| ≥ k(|V (H)| − 1) + 1. We have d(H − E0) =
|E(H−E0)|

|V (H−E0)|−ω(H−E0)
≥ |E(H)|−1

|V (H)|−1 ≥ k. By Lemma 6.3.4(iii), there exists a nonempty subset X ⊆
E(H − E0) such that η((H − E0)[X]) ≥ k. Thus τ((H − E0)[X]) = ⌊η((H − E0)[X])⌋ ≥ k.

By Lemma 6.3.4(i), η(H/X) ≥ η(H) > k. Let E′
0 ∈ E(H/X). By (6.11), H is a minimal

counterexample, and so τ(H/X − E′
0) ≥ k. Thus τ((H − E0)/X) = τ(H/X − E′

0) ≥ k. As

τ((H − E0)[X]) ≥ k, by Proposition 6.4.1(C3), τ(H − E0) ≥ k. contrary to (6.12). This com-

pletes the proof of the sufficiency.

(iii) Suppose that η(H) = k. If d(H) = k, then by (i), Ek(H) = ∅. On the other hand, by

Theorem 6.3.3, H is uniformly dense. By Corollary 6.4.11, m = 1 and so J2 = ∅. Thus Ek(H) =

J2. If d(H) > k, then H is not uniformly dense, and by Corollary 6.4.11, m > 1. Suppose that

H has η-spectrum (6.9) and η-decomposition (6.10). By Theorem 6.4.9, η(H[J2]) = l2 > l1 =

η(H) = k. It follows from (ii) that Ek(H[J2]) = J2. By Corollary 6.4.10, H/J2 is uniformly

dense with η(H/J2) = d(H/J2) = k, and so by (i), Ek(H/J2) = ∅. Then for any hyperedge

E ∈ J2, τ((H −E)[J2 −E]) = τ(H[J2]−E) = k and τ((H −E)/(J2 −E)) = τ(H/J2) = k. By

Proposition 6.4.1(C3), τ(H − E) = k. Thus J2 ⊆ Ek(H). To complete the proof, we still need

to show that Ek(H) ⊆ J2. It suffices to prove that for any E ∈ E(H)\J2, τ(H −E) < k. If not,

we have τ(H − E) = k and let E′ ∈ E(H/J2) be the image of E, and by Proposition 6.4.1(C2),

τ(H/J2 −E′) = τ((H − E)/J2) = k, contrary to Ek(H/J2) = ∅. Hence Ek(H) = J2.
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[28] A. Frank and T. Király, Combined connectivity augmentation and orientation problems,

Discrete Applied Math., 131 (2003), 401-419.

61
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