26 research outputs found

    Chembench: A Publicly Accessible, Integrated Cheminformatics Portal

    Get PDF
    The enormous increase in the amount of publicly available chemical genomics data and the growing emphasis on data sharing and open science mandates that cheminformaticians also make their models publicly available for broad use by the scientific community. Chembench is one of the first publicly accessible, integrated cheminformatics Web portals. It has been extensively used by researchers from different fields for curation, visualization, analysis, and modeling of chemogenomics data. Since its launch in 2008, Chembench has been accessed more than 1 million times by more than 5000 users from a total of 98 countries. We report on the recent updates and improvements that increase the simplicity of use, computational efficiency, accuracy, and accessibility of a broad range of tools and services for computer-assisted drug design and computational toxicology available on Chembench. Chembench remains freely accessible at https://chembench.mml.unc.ed

    Predicting P-Glycoprotein-Mediated Drug Transport Based On Support Vector Machine and Three-Dimensional Crystal Structure of P-glycoprotein

    Get PDF
    Human P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter that confers resistance to a wide range of chemotherapeutic agents in cancer cells by active efflux of the drugs from cells. P-gp also plays a key role in limiting oral absorption and brain penetration and in facilitating biliary and renal elimination of structurally diverse drugs. Thus, identification of drugs or new molecular entities to be P-gp substrates is of vital importance for predicting the pharmacokinetics, efficacy, safety, or tissue levels of drugs or drug candidates. At present, publicly available, reliable in silico models predicting P-gp substrates are scarce. In this study, a support vector machine (SVM) method was developed to predict P-gp substrates and P-gp-substrate interactions, based on a training data set of 197 known P-gp substrates and non-substrates collected from the literature. We showed that the SVM method had a prediction accuracy of approximately 80% on an independent external validation data set of 32 compounds. A homology model of human P-gp based on the X-ray structure of mouse P-gp as a template has been constructed. We showed that molecular docking to the P-gp structures successfully predicted the geometry of P-gp-ligand complexes. Our SVM prediction and the molecular docking methods have been integrated into a free web server (http://pgp.althotas.com), which allows the users to predict whether a given compound is a P-gp substrate and how it binds to and interacts with P-gp. Utilization of such a web server may prove valuable for both rational drug design and screening

    Predicting Binding to P-Glycoprotein by Flexible Receptor Docking

    Get PDF
    P-glycoprotein (P-gp) is an ATP-dependent transport protein that is selectively expressed at entry points of xenobiotics where, acting as an efflux pump, it prevents their entering sensitive organs. The protein also plays a key role in the absorption and blood-brain barrier penetration of many drugs, while its overexpression in cancer cells has been linked to multidrug resistance in tumors. The recent publication of the mouse P-gp crystal structure revealed a large and hydrophobic binding cavity with no clearly defined sub-sites that supports an “induced-fit” ligand binding model. We employed flexible receptor docking to develop a new prediction algorithm for P-gp binding specificity. We tested the ability of this method to differentiate between binders and nonbinders of P-gp using consistently measured experimental data from P-gp efflux and calcein-inhibition assays. We also subjected the model to a blind test on a series of peptidic cysteine protease inhibitors, confirming the ability to predict compounds more likely to be P-gp substrates. Finally, we used the method to predict cellular metabolites that may be P-gp substrates. Overall, our results suggest that many P-gp substrates bind deeper in the cavity than the cyclic peptide in the crystal structure and that specificity in P-gp is better understood in terms of physicochemical properties of the ligands (and the binding site), rather than being defined by specific sub-sites

    Recommender systems in antiviral drug discovery

    Get PDF
    Recommender systems (RSs), which underwent rapid development and had an enormous impact on e-commerce, have the potential to become useful tools for drug discovery. In this paper, we applied RS methods for the prediction of the antiviral activity class (active/inactive) for compounds extracted from ChEMBL. Two main RS approaches were applied: Collaborative filtering (Surprise implementation) and content-based filtering (sparse-group inductive matrix completion (SGIMC) method). The effectiveness of RS approaches was investigated for prediction of antiviral activity classes ("interactions") for compounds and viruses, for which some of their interactions with other viruses or compounds are known, and for prediction of interaction profiles for new compounds. Both approaches achieved relatively good prediction quality for binary classification of individual interactions and compound profiles, as quantified by cross-validation and external validation receiver operating characteristic (ROC) score >0.9. Thus, even simple recommender systems may serve as an effective tool in antiviral drug discovery

    Modeling Liver-Related Adverse Effects of Drugs Using kNN QSAR Method

    Get PDF
    Adverse effects of drugs (AEDs) continue to be a major cause of drug withdrawals both in development and post-marketing. While liver-related AEDs are a major concern for drug safety, there are few in silico models for predicting human liver toxicity for drug candidates. We have applied the Quantitative Structure Activity Relationship (QSAR) approach to model liver AEDs. In this study, we aimed to construct a QSAR model capable of binary classification (active vs. inactive) of drugs for liver AEDs based on chemical structure. To build QSAR models, we have employed an FDA spontaneous reporting database of human liver AEDs (elevations in activity of serum liver enzymes), which contains data on approximately 500 approved drugs. Approximately 200 compounds with wide clinical data coverage, structural similarity and balanced (40/60) active/inactive ratio were selected for modeling and divided into multiple training/test and external validation sets. QSAR models were developed using the k nearest neighbor method and validated using external datasets. Models with high sensitivity (>73%) and specificity (>94%) for prediction of liver AEDs in external validation sets were developed. To test applicability of the models, three chemical databases (World Drug Index, Prestwick Chemical Library, and Biowisdom Liver Intelligence Module) were screened in silico and the validity of predictions was determined, where possible, by comparing model-based classification with assertions in publicly available literature. Validated QSAR models of liver AEDs based on the data from the FDA spontaneous reporting system can be employed as sensitive and specific predictors of AEDs in pre-clinical screening of drug candidates for potential hepatotoxicity in humans

    Računarski modeli za predviđanje transporta lekova posredovanog P-glikoproteinom

    Get PDF
    P-glycoprotein (Pgp) is a transmembrane transporter which can, by transporting structurally diverse compounds, influence the absorption, distribution and efficacy of a number of drugs. Pgp overexpression in cells is a major contributing factor to the development of drug resistance. For these reasons, potential for compound efflux by Pgp should be assessed early on in the drug discovery process, preferably even prior to compound synthesis. To meet this demand, numerous computational models have been developed during the past decade, capable of predicting Pgp-mediated transport based solely on chemical structures. This paper summarizes the various approaches that have been used for model development, discusses their advantages and disadvantages and focuses on key factors that influence model reliability. The promiscuous nature of the transport can be seen as a major challenge for most computational chemistry methods. Nevertheless, the attained level of accuracy of literature models suggests that they can be useful in the drug discovery setting. Greater availability of experimental data and integration of predictions made by different modeling methods has the potential to further improve the reliability of computational predictions.P-glikoprotein (Pgp) je transmembranski transporter koji, transportujući strukturno raznovrsne lekove iz unutrašnjosti ćelije u ekstracelularnu sredinu, može uticati na resorpciju, distribuciju i efikasnost većeg broja lekova. Prekomerna ekspresija Pgp-a u ćelijama predstavlja jedan od mehanizama razvoja rezistencije na lekove. Iz ovih razloga, potrebno je u ranoj fazi otkrića leka predvideti da li je potencijalni lek supstrat za Pgp, idealno i pre same sinteze. U tu svrhu, tokom poslednje decenije razvijen je veliki broj računarskih modela koji omogućavaju predviđanje transporta posredstvom Pgp-a samo na osnovu hemijske strukture. U ovom radu prikazan je pregled različitih pristupa koji su korišćeni u razvoju modela, razmotrene su njihove prednosti i nedostaci, kao i faktori koji u najvećoj meri utiču na pouzdanost predviđanja. Polispecifičnost ovog transportera predstavlja značajan izazov za većinu metoda računarske hemije. Ipak, dostignut nivo tačnosti modela koji su prikazani u litearaturi ukazuje na činjenicu da oni mogu doprineti racionalizaciji procesa dizajniranja novih lekova. Šira dostupnost eksperimentalnih podataka, kao i kombinovanje različitih pristupa modelovanju transporta, mogu dodatno unaprediti postojeće modele

    Application of Quantitative Structure–Activity Relationship Models of 5-HT 1A Receptor Binding to Virtual Screening Identifies Novel and Potent 5-HT 1A Ligands

    Get PDF
    The 5-hydroxytryptamine 1A (5-HT1A) serotonin receptor has been an attractive target for treating mood and anxiety disorders such as schizophrenia. We have developed binary classification quantitative structure–activity relationship (QSAR) models of 5-HT1A receptor binding activity using data retrieved from the PDSP Ki database. The prediction accuracy of these models was estimated by external 5-fold cross-validation as well as using an additional validation set comprising 66 structurally distinct compounds from the World of Molecular Bioactivity database. These validated models were then used to mine three major types of chemical screening libraries, i.e., drug-like libraries, GPCR targeted libraries, and diversity libraries, to identify novel computational hits. The five best hits from each class of libraries were chosen for further experimental testing in radioligand binding assays, and nine of the 15 hits were confirmed to be active experimentally with binding affinity better than 10 μM. The most active compound, Lysergol, from the diversity library showed very high binding affinity (Ki) of 2.3 nM against 5-HT1A receptor. The novel 5-HT1A actives identified with the QSAR-based virtual screening approach could be potentially developed as novel anxiolytics or potential antischizophrenic drugs

    Development, Validation, and Use of Quantitative Structure−Activity Relationship Models of 5-Hydroxytryptamine (2B) Receptor Ligands to Identify Novel Receptor Binders and Putative Valvulopathic Compounds among Common Drugs

    Get PDF
    Some antipsychotic drugs are known to cause valvular heart disease by activating serotonin 5-HT2B receptors. We have developed and validated binary classification QSAR models capable of predicting potential 5-HT2B binders. The classification accuracies of the models to discriminate 5-HT2B actives from the inactives were as high as 80% for the external test set. These models were used to screen in silico 59,000 compounds included in the World Drug Index and 122 compounds were predicted as actives with high confidence. Ten of them were tested in radioligand binding assays and nine were found active suggesting a success rate of 90%. All validated binders were then tested in functional assays and one compound was identified as a true 5-HT2B agonist. We suggest that the QSAR models developed in this study could be used as reliable predictors to flag drug candidates that are likely to cause valvulopathy

    Machine-learning approaches in drug discovery: methods and applications

    No full text
    During the past decade, virtual screening (VS) has evolved from traditional similarity searching, which utilizes single reference compounds, into an advanced application domain for data mining and machine-learning approaches, which require large and representative training-set compounds to learn robust decision rules. The explosive growth in the amount of public domain-available chemical and biological data has generated huge effort to design, analyze, and apply novel learning methodologies. Here, I focus on machine-learning techniques within the context of ligand-based VS (LBVS). In addition, I analyze several relevant VS studies from recent publications, providing a detailed view of the current state-of-the-art in this field and highlighting not only the problematic issues, but also the successes and opportunities for further advances

    Discovery of Novel Antimalarial Compounds Enabled by QSAR-Based Virtual Screening

    Get PDF
    Quantitative structure–activity relationship (QSAR) models have been developed for a dataset of 3133 compounds defined as either active or inactive against P. falciparum. Since the dataset was strongly biased towards inactive compounds, different sampling approaches were employed to balance the ratio of actives vs. inactives, and models were rigorously validated using both internal and external validation approaches. The balanced accuracy for assessing the antimalarial activities of 70 external compounds was between 87% and 100% depending on the approach used to balance the dataset. Virtual screening of the ChemBridge database using QSAR models identified 176 putative antimalarial compounds that were submitted for experimental validation, along with 42 putative inactives as negative controls. Twenty five (14.2%) computational hits were found to have antimalarial activities with minimal cytotoxicity to mammalian cells, while all 42 putative inactives were confirmed experimentally. Structural inspection of confirmed active hits revealed novel chemical scaffolds, which could be employed as starting points to discover novel antimalarial agents
    corecore