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Abstract
Some antipsychotic drugs are known to cause valvular heart disease by activating serotonin 5-
HT2B receptors. We have developed and validated binary classification QSAR models capable of
predicting potential 5-HT2B binders. The classification accuracies of the models to discriminate 5-
HT2B actives from the inactives were as high as 80% for the external test set. These models were
used to screen in silico 59,000 compounds included in the World Drug Index and 122 compounds
were predicted as actives with high confidence. Ten of them were tested in radioligand binding
assays and nine were found active suggesting a success rate of 90%. All validated binders were
then tested in functional assays and one compound was identified as a true 5-HT2B agonist. We
suggest that the QSAR models developed in this study could be used as reliable predictors to flag
drug candidates that are likely to cause valvulopathy.

Introduction
During the last decade, several drugs have been shown to cause cardiac valvulopathy in
humans. The initial discovery of drug-induced valvulopathy occurred when the anorectic
drug fenfluramine (approved by the FDA in 1973), one of the active ingredients of the
anorectic drug combination fen-phen, was found to increase the risk of developing two
potentially serious conditions, pulmonary hypertension and valvular heart disease (VHD), in
individuals receiving these medications to treat obesity.1 More recently, a group at the Mayo
Clinic reported VHD in patients taking the anti-Parkinson drug pergolide.2 After the initial
2002 report, other cases of VHD associated with pergolide or other dopamine agonists such
as cabergoline used as anti-parkinsonian drugs were identified.3-5 In January of 2007, the
New England Journal of Medicine published two large European studies that independently
verified the association of VHD with pergolide and cabergoline.6;7 Finally, on March 29,
2007, the Food and Drug Administration issued a Public Health Advisory for the voluntary
market withdrawal of pergolide. These stunning withdrawals of drugs from the market
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stressed the importance of elucidating the mechanism by which these drugs induce
valvulopathy and of determining the valvulopathic risk that may be associated with new
drug candidates or even existing drugs.

To date, all but two of the VHD-associated drugs are ergoline derivatives
(dihydroergotamine, methysergide, pergolide and carbergoline) (see Table 1). The two non-
ergoline VHD-associated drugs are fenfluramine1 and 3,4-
methylenedioxymethamphetamine (MDMA, ecstasy),8;9 both of which are amphetamine
analogues (see Table 1). Thus, it appears that compounds from both the ergoline and
phenylisopropylamine families can produce VHD.10

There is increasing evidence that activation of serotonin 2B receptors (5-HT2B) may play a
significant role in the pathogenesis of drug-induced valvulopathy.11-13 For instance, VHD-
associated drugs such as fenfluramine,14 ergotamine,14 pergolide9;15 and cabergoline, and/or
selected active metabolites (such as norfenfluramine and methylergonovine),14 all potently
activate 5-HT2B receptors. Chemically similar medications that do not activate 5-HT2B
receptors (e.g., lisuride) seemingly do not cause valvular heart disease, further implicating
the 5-HT2B receptor—but not other receptors that bind ergopeptines/ergolines and
phenylisoproylamines with high affinity—in the pathogenesis of heart-valve disease.13

Additionally, valvulopathy-associated drugs have been shown to induce DNA synthesis in
cultured interstitial cells from human cardiac valves via 5-HT2B receptor activation.9 It has
been suggested that the valvulopathy induced by 5-HT2B receptor agonists is caused by the
inappropriate mitogenic stimulation of normally quiescent valve cells, resulting in an
overgrowth valvulopathy.9;13 Although the precise signaling pathways underlying drug-
induced valvulopathy remain elusive, 5-HT2B receptors are known to activate mitogenic
pathways through the phosphorylation of Src kinase and extracellular regulated kinases
(ERK), as well as through receptor tyrosine kinase transactivation,16;17 consistent with a
role in regulating heart valve interstitial cell proliferation.

The discoveries that 5-HT2B receptors were (1) abundantly expressed in heart valves,18 (2)
activated by fenfluramine and its metabolite, norfenfluramine,11;18 and (3) activated by
other valvulopathy-inducing drugs9;11 suggested that 5-HT2B receptors were involved in the
etiology of valvulopathy.11;18 Subsequently, several other 5-HT2B agonists were also found
to be valvulopathogenic.9 Since 5-HT2B agonists have the potential of causing valvulopathic
side-effects, it has been suggested that all pharmaceuticals should be screened for activity at
5-HT2B receptors prior to further commercial development.13;19

Similar to experimental high throughput screening (HTS), virtual screening (VS) is typically
employed as a ‘hit’ identification tool.20 The experimental screening of all molecules
against all biological targets is generally cost- and time-prohibitive. Therefore, pre-selection
of compounds by VS that have a reasonable probability to act against a given biological
target is highly attractive. Typically, VS approaches imply the use of structure based
methodologies; nevertheless, we have repeatedly advocated for the use of ligand based
cheminformatics approaches such as QSAR models in virtual screening (reviewed in a
recent monograph21).

Herein, we report on the development of in silico screening tools for identifying compounds
with potentially serious valvulopathic side effects. These tools can be employed as filters to
flag and de-select the potentially harmful compounds at the preclinical stage of drug
development, thereby potentially avoiding significant economic and human health
consequences incurred at later stages of drug discovery. To achieve this goal, validated and
externally predictive, binary QSAR models were generated for 5-HT2B active vs. inactive
compounds as defined in 5-HT2B functional assays. Similar studies to develop QSAR
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models for 5-HT2B actives vs. inactives were reported recently by Chekmarev et al.22

However, in our investigations we considered a larger dataset that contained the most
complete set of all known valvulopathogens reported by Huang et al,23 and we validated our
predictions experimentally in binding assays.

To obtain the most statistically robust and predictive models, we have employed the
combinatorial QSAR strategy24;25 implemented as part of our predictive QSAR modeling
workflow (reviewed in Tropsha and Golbraikh26). All models were subjected to rigorous
internal and external validation. The results confirmed the high external prediction accuracy
of our computational models, which led us to conclude that these models can be used
reliably to screen chemical databases to identify putative 5-HT2B actives. Screening the
World Drug Index (WDI) database using these models led to the identification of 122
possible 5-HT2B actives; 10 of these computational hit compounds were experimentally
tested in 5-HT2B radioligand binding assays at the NIMH Psychoactive Drug Screening
Program (PDSP), UNC Chapel Hill (http://pdsp.med.unc.edu/). Experiments confirmed that
9 out of 10 compounds were true actives implying a hit rate of 90%. These results indicate
the reliability of our computational models as efficient predictors of compounds’ affinity
towards 5-HT2B receptors. We suggest that the computational models developed in this
study could be used as drug liability predictors similar to commonly used predictors27;28 of
other undesired side effects such as carcinogenicity,29-31 mutagenicity,29;32;33 PGP
binding,24 or hERG binding.34-37 Our models can be used to flag compounds that are
expected to bind to 5-HT2B receptors but they cannot distinguish agonists from antagonists.
Nevertheless, as demonstrated in this study, these putative 5-HT2B binders can be tested in
functional assays for their potential to activate 5-HT2B receptors to further assess their
valvulopathic potential.

Materials and Methods
Dataset

The PDSP recently screened roughly 2,200 FDA-approved drugs and investigational, drug-
like molecules against 5-HT2B receptors.23 However, this modeling study was initiated prior
to the completion of the screening of the entire compound library. At the time this study
began, screening against 5-HT2B receptors had been completed for 800 compounds. This set
became the basis for our model development. After preprocessing of the 800-compound
dataset and deleting duplicates, the final dataset consisted of a class of 146 ‘actives’, and
another class of 608 ‘inactives’. Detailed PDSP protocols are available online
(http://pdsp.med.unc.edu/) and in Huang et al.23 All chemical structures were obtained from
PubChem38 as SDF files. By the time our modeling studies were completed, functional data
for the remainder of the 2,200 compounds (1,400 compounds) had become available. These
‘new’ data became a source for additional, independent validation sets.

Preprocessing of the Dataset
For the purposes of this work, the data were curated as follows: First, all molecules were
“washed” using the Wash Molecules tool in MOE39 (v.2007.09). Using this tool, we
processed chemical structures by carrying out several standard operations including 2D
depiction layout, hydrogen correction, salt and solvent removal, chirality and bond type
normalization (all details are found in the MOE manual39). Second, we used ChemAxon
Standardizer40 to harmonize the representation of aromatic rings. Finally, the analysis of the
normalized molecular structures resulted in detection of 46 duplicate compounds (i.e.,
different salts or isomeric states). The functional data for duplicated compounds were found
to be identical, so in each case a single example was removed. The curated subset of the
original 5-HT2B dataset used in this work contains 754 unique organic compounds (146
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actives and 608 inactives). All details about the dataset are available in Supporting
Information.

Dataset Division for Model Building and Validation
All QSAR models generated in this study to classify actives vs. inactives were validated by
predicting two external validation sets. Each dataset employed in QSAR studies was first
randomly divided into a modeling and a validation sets. Additionally, as described above, an
independent validation set became available after we completed our modeling studies.
Details about this external set are available in Supporting Information, and in Huang et al.23

Another level of internal validation was achieved by comparing model performance for
training and test sets. This approach is always employed as a part of our predictive QSAR
modeling workflow26 to emphasize the fact that training-set-only modeling is not sufficient
to obtain reliable models that are externally predictive.41 Thus, for each collection of
descriptors, the modeling sets were further partitioned into multiple chemically diverse
training and test sets of different sizes using the Sphere Exclusion method implemented in
our laboratory.42 Only models that were highly predictive on the test sets were retained for
the consensus prediction of the external validation sets. Finally, only those models that were
shown to be highly predictive on both external sets were used in consensus fashion for
virtual screening of external compound libraries.

Computational Methods
A combinatorial QSAR approach (Combi-QSAR)24;25 was used to generate classification
models for actives vs. inactives (Fig. 1). In this study, four types of descriptors were applied
in combination with three types of statistical methods.

Molecular Descriptors
Four sets of molecular descriptors were considered in our modeling studies: Dragon,43

MolConnZ (MZ),44 MOE,39 and subgraph descriptors (SG)45 developed in this laboratory.
Each type of descriptors was used separately with each of the classification methods in the
context of our Combi-QSAR strategy.

DRAGON Descriptors—The Dragon Professional version 5.4 software43 was used to
calculate 2D descriptors. These included topological descriptors, constitutional descriptors,
walk and path counts, connectivity indices, information indices, 2D autocorrelations, edge
adjacency indices, Burden eigenvalues, topological charge indices, eigenvalue-based
indices, functional group counts, atom-centered fragments and molecular properties. The
initial descriptor set was reduced by eliminating the constant and near-constant variables
using built-in functions within the software. The pairwise correlations for all descriptors
were examined and one of the two descriptors with the correlation coefficient R2 of 0.95 or
higher was excluded. The calculation procedures for these descriptors, with related literature
references, are reported by Todeschini and Consonni.46 Finally, the remaining descriptors
were normalized by range-scaling so that their values were distributed within the interval
0-1.

MolConnZ Descriptors—The MolConnZ software44 available from EduSoft affords the
computation of a wide range of topological indices of molecular structure. These indices
include, but are not limited to, the following descriptors: valence, path, cluster, path/cluster
and chain molecular connectivity indices,47-49 kappa molecular shape indices,50;51

topological52 and electrotopological state indices,53-56 differential connectivity indices,47;57

graph's radius and diameter,58 Wiener59 and Platt60 indices, Shannon 61 and Bonchev-
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Trinajstić62 information indices, counts of different vertices, counts of paths and edges
between different types of vertices (http://www.edusoftlc.com/molconn/manuals/400).
Descriptors with zero values or zero variance were removed; the remaining descriptors were
normalized by range-scaling so that their values were distributed within the interval 0-1.

MOE Descriptors—MOE 2007.09 software39 was used to generate 2D MOE descriptors.
These included physical properties, subdivided surface areas, atom and bond counts, Kier
and Hall connectivity47-49 and kappa shape indices,50;51 adjacency and distance matrix
descriptors,58;59;63;64 pharmacophore feature descriptors, and partial charge descriptors. 39

Descriptors with zero values or zero variance were removed; the remaining descriptors were
normalized by range-scaling so that their values were distributed within the interval 0-1.

Subgraph Descriptors (SG)—Frequent subgraph mining of chemical structures is a
novel approach to generating fragment descriptors that was developed recently in our
group.45 SG descriptors are derived from each dataset, i.e., not pre-defined which gives the
advantage of finding important chemical fragments that may have not been defined a priori
by other fragment descriptor generating methods. The fragments are derived based on
recurring substructures found in at least a subset of molecules (defined by a support value σ)
in the dataset. These recurring substructures can implicate chemical features responsible for
compounds’ biological activities. First, chemical structures were converted into labeled,
undirected graph representations where nodes were labeled by atom types and edges
corresponded to chemical bonds. Fast frequent subgraph mining (FFSM) algorithm65 was
then used to find common frequent subgraphs for a given support value (σ), which is one of
the variables defined by the user that determines the size of the set of subgraphs generated
using FFSM. Obviously, the larger is the value of the support, the smaller is the number of
subgraphs descriptors. As the support value decreases, the number of subgraphs increases
dramatically. Redundant subgraphs were identified and removed leaving only the so called
“closed subgraphs”. A subgraph SGi is closed in a database if there exists no supergraph
SGj such that SGi ⊆ SGj and σSGi = σSGj. However, subgraph SGi would not be deleted if it
also occurs by itself (not as part of the SGj) in the graph database. Removing redundant
subgraphs (fragments) reduces the number of subgraphs descriptors drastically and therefore
makes the subsequent calculations more efficient. The frequency of individual ‘closed
subgraphs’ in each molecule of the dataset is calculated and used as the descriptor value for
each molecule. In this study, a support value of 12 % was used, and the upper size limit of
the generated subgraphs was 7 atoms.

Balancing the Dataset Using Similarity Searching
The dataset used for model building was imbalanced, consisting of 146 actives vs. 608
inactives. Therefore, only a subset of the larger class of inactives of approximately the same
size as the actives was used in model building unless otherwise indicated. This subset was
selected to include inactives that were most similar to the actives. Given the vast array of
available chemical descriptors and the large number of similarity measures, it is always
difficult to decide a priori which combination of descriptors/similarity metrics to use. This
problem has been highlighted in several recent publications.66;67 Therefore, similarity
searching studies were performed using three types of molecular descriptors: fingerprints
(FP), Dragon, and MZ, and applying two similarity metrics, i.e., Euclidean distance and
Tanimoto coefficient (Tc). The similarity cutoff was chosen to obtain the most balanced
(with roughly equal number of compounds from each class) subset of compounds.

Fingerprints (FP)—166 MACCS68 structural keys implemented in MOE 2007.09
software39 were calculated for all compounds. The similarity searching was performed using
an in-house written script applying Tanimoto coefficients for similarity measures.
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Dragon Descriptors—Normalized Dragon descriptors of the original dataset were
employed to calculate similarities between all compounds in the dataset using Euclidean
distance as similarity metric; variable similarity thresholds were used to down-sample the
larger class (inactives). Although many schemes could be considered for down-sampling the
larger classes, we used the similarity threshold based approach since it restricts the larger
class to compounds most similar to the smaller class molecules. This approach makes it
more challenging to develop statistically significant models capable of discriminating
smaller class compounds from most chemically similar molecules in the larger class.
Therefore, it increases the robustness of the binary QSAR models.

MolConnZ Descriptors (MZ)—Similar procedures to those described above for Dragon
descriptors were used.

QSAR Methods
k Nearest Neighbors (kNN) QSAR—The kNN QSAR method69 is based on the k
nearest neighbors principle and the variable selection procedure. It employs the leave-one-
out (LOO) cross-validation (CV) procedure and a simulated-annealing algorithm70;71 to
optimize variable selection. The procedure starts with the random selection of a predefined
number of descriptors from all descriptors. If the number of nearest neighbors k is higher
than one, the estimated activities ŷi of compounds excluded by the LOO procedure are
calculated using the following formula:

(1)

where yj is the activity of the j-th compound. Weights wij are defined as:

(2)

and dij is Euclidean distances between compound i and its j-th nearest neighbor. However, if
the number of nearest neighbors k is equal to one, then the estimated activity ŷi of the
compound will be equal to the activity of this one nearest neighbor.

For classification kNN, the predicted ŷi values (see expression (1)) are rounded to the
closest whole numbers (which are, in fact, the class numbers), and the prediction accuracy
(correct classification rate, CCRtrain) is calculated as follows:

(3)

where  and  are the number of correctly classified and total number of compounds
of class j (j=1, 2). Then, a predefined small number of descriptors are randomly replaced by
other descriptors from the original pool, and the new value of CCRtrain is obtained. If
CCRtrain (new) > CCRtrain (old), the new set of descriptors is accepted. If CCRtrain (new) ≤
CCRtrain (old), the new set of descriptors is accepted with probability p = exp (CCR (new) -
CCR (old))/T, or rejected with probability (1-p), where T is a simulated annealing (SA)
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“temperature” parameter. During this process, T is decreasing until a predefined threshold.
Thus, the optimal (highest) CCRtrain is achieved. For the prediction, the final set of selected
descriptors is used, and expressions (1) and (2) are applied to predict activities of
compounds of the test sets. Then the activities are rounded to the closest whole numbers,
and the correct classification rate for the test set is calculated using formula (3).

In the case when compounds belong to two classes (e.g., active and inactive compounds), a
2 × 2 confusion matrix can be defined, where N(1) and N(0) are the number of compounds in
the data set that belongs to classes (1) and (0) respectively. TP, TN, FP, and FN are the
number of true positives (actives predicted as actives), true negatives (inactives predicted as
inactives), false positives (inactives predicted as actives), and false negatives (actives
predicted as inactives), respectively. The following classification accuracy characteristics
associated with confusion matrices are widely used in QSAR studies: sensitivity (SE=TP/
N(1)), specificity (SP=TN/N(0)), and enrichment E = TP*N/[(TP+FP)*N(1)]. In this study,
we have employed normalized confusion matrices. A normalized confusion matrix can be
obtained from the non-normalized one by dividing the first column by N(1) and the second
column by N(0). Normalized enrichment is defined in the same way as E but is calculated
using a normalized confusion matrix: En = 2TP*N(0)/[TP*N(0)+FP*N(1)]. En takes values
within the interval of [0, 2].25;72

Classification Based on Association (CBA)—This method integrates both
classification rule mining,73;74 which aims to discover a small set of rules in the database
that forms an accurate classifier, and association rule mining,75 which finds all the rules
existing in the database that satisfy some minimum support and minimum confidence
constraints. For association rule mining, the target of discovery is not pre-determined, while
for classification rule mining there is one and only one predetermined target. The integration
is done by focusing on mining a special subset of association rules, called class association
rules (CARs). An efficient algorithm is also used for building a classifier based on the set of
discovered CARs.

The CBA algorithm76;77 consists of two parts, a rule generator, which is based on the a
priori algorithm for finding association rules, and a classifier builder. The candidate rule
generator is similar to the a priori one. The difference is that CBA updates the support value
in each step while the a priori algorithm only updates this value once. This allows us to
compute the confidence of the ruleitem. A ruleitem is of the form: <condset, y> where
condset is a set of items, y ∈ Y is a class label. The support count of the condset (called
condsupCount) is the number of cases in the dataset (D) that contain the condset.

Next, a classifier is built from CARs. To produce the best classifier out of the whole set of
rules would involve evaluating all the possible subsets of it on the training data and selecting
the subset with the right rule sequence that gives the least number of errors. There are 2m
such subsets, where m is the number of rules. It is a heuristic algorithm. Given two rules, ri
and rj, ri precedes rj if (1) the confidence of ri is greater than that of rj, or (2) their
confidences are the same, but the support of ri is greater than that of rj, or (3) both the
confidences and the supports of ri and rj are the same, but ri is generated earlier than rj. If R
is a set of generated rules (i.e. CARs) and D the training data, the basic idea of the algorithm
is to choose a set of high precedence rules in R to cover D. The classifier follows this
format: <r1, r2, . . ., rn, default_class>, where ri ∈ R. In classifying an unseen case, the first
rule that satisfies the case will classify it. If there is no rule that applies to the case, it takes
on the default class.
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The descriptors used with CBA need to be discrete in nature76 as is the case with SG
descriptors but not Dragon, MolConnZ or MOE. Hence, this method was only used with SG
descriptors using CBA (v2.1) software.78

Distance Weighted Discrimination (DWD)—This method was initially proposed by
Marron and Todd79 with the goal of improving the performance of SVM80;81 in high
dimensional low sample size (HDLSS) contexts. The main idea is to improve upon the
criterion used for “separation of classes” in SVM. SVM has data piling problems along the
margin, because it is maximizing the minimum distance to the separating plane, and there
are many data points that achieve the minimum. A natural improvement is to replace the
minimum distance by a criterion that allows all the data to have an influence on the result.
DWD does this by maximizing the sum of the inverse distances. This results in directions
that are less adversely affected by spurious sampling artifacts. The major contribution of this
new discrimination method is that it avoids the data piling problem, to give the anticipated
improved generality. Like SVM, DWD is based on computationally intensive optimization;
however, while SVM uses well known quadratic programming algorithms, DWD uses
interior-point methods for so-called Second-Order Cone Programming (SOCP) problems.82

Detailed discussion of these issues may be found in Marron and Todd (2007),79 which is
available with the supporting information at https://genome.unc.edu/pubsup/dwd/. All DWD
computations were performed using the DWD software83 written in Matlab84 and kindly
provided by Dr. Marron.

Robustness of QSAR Models
Y-randomization test is a widely used validation technique to ensure the robustness of a
QSAR model.85 This test includes (i) randomly shuffling the dependent-variable vector, Y-
vector of training sets (class labels in this study) and (ii) rebuilding models with the
randomized activities (class labels) of the training set. All calculations are repeated several
times using the original independent-variable matrix. It is expected that the resulting QSAR
classification models, built with randomized activities for the training set, should generally
have low CCRs for training, test, and external validation sets. It is likely that sometimes,
though infrequently, high CCR values may be obtained due to a chance correlation or
structural redundancy of the training set. However, if some QSAR classification models
obtained in the Y-randomization test have relatively high CCR it implies that an acceptable
QSAR classification model cannot be obtained for the given dataset by the particular
modeling method. Y-randomization test was applied to all datasets considered in this study,
and the test was repeated five times in each case.

Applicability Domain of kNN QSAR Models
Formally, a QSAR model can predict the target property for any compound for which
chemical descriptors can be calculated. However, since the training set models are
developed in kNN QSAR modeling by interpolating activities of the nearest neighbor
compounds, a special applicability domain (i.e., similarity threshold) should be introduced to
avoid making predictions for compounds that differ substantially from the training set
molecules.86

The similarity was estimated using Euclidean distances in high-dimensional descriptors
space. Compounds with the smallest distance between them have the highest similarity. The
distribution of distances (pairwise similarities) of compounds in our training set is computed
to produce an applicability domain threshold, DT, calculated as follows:

(4)
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Here, ȳ is the average Euclidean distance of the k nearest neighbors of each compound
within the training set, σ is the standard deviation of these Euclidean distances, and Z is an
arbitrary parameter to control the significance level. Based on previous studies, we set the
default value of this parameter as 0.5, which formally places the boundary for the
applicability domain at one-half of the standard deviation. Thus, if the distance of the
external compound from at least one of its nearest neighbors in the training set exceeds this
threshold, no prediction is made.86 In this study two types of applicability domains were
employed. First, a global applicability domain that ensures some level of global similarity
(using all descriptors for similarity calculations) between the predicted compounds and the
compounds in the modeling set. The second is a local domain which is the applicability
domain of each of the individual models using only descriptors used for the model building.

Consensus Prediction
Our experience suggests that consensus prediction of the target property for external
compounds, i.e., when the compound activity is calculated by averaging values predicted by
all individual models that satisfy our acceptability criteria always provides the most stable
and accurate solution87. In general, consensus prediction implies averaging the predictions
for each compound by majority voting for classification QSAR models, using all models
passing the validation criteria (e.g., CCRtrain ≥ 0.70 and CCRtest ≥ 0.70). In order to
determine the confidence in the obtained predictions we need to define a consensus score.
The consensus scores employed in this study take into account the total number of models
used to predict the compound's activity, and the number of models that predicted the
compound to belong to a specific class. Since we define two classes of compounds, i.e.,
class 1 (actives) and class 0 (inactives), some models may predict a compound to belong to
class 0 and others may predict it to belong to class 1. As a result, a consensus score between
0 and 1 will be obtained for each of the predicted compounds. As an additional measure of
confidence (and an additional applicability domain criterion) we only accepted those
predictions that had an average predicted value (consensus score) above 0.7 (for actives) or
below 0.3 (for inactives).

Virtual Screening and Compound Selection for Experimental Validation
To identify putative actives, validated consensus models generated for 5-HT2B ligands were
used for virtual screening of ca. 59,000 molecules within the WDI chemical library; the
selection of hits was limited by the applicability domains of each models.88 122 compounds
were identified as VS hits (by consensus agreement between all accepted models, see Table
S1 of Supporting Information for details) and 10 structurally diverse and commercially
available hits were purchased from different suppliers and tested at PDSP in 5-HT2B
radioligand binding assays.

Results and Discussion
Combinatorial QSAR Modeling of 5-HT2B Actives vs. Inactives

Balancing the Dataset—The original dataset of 146 actives and 608 inactives was first
balanced by downsizing the class of inactives. Similarity searching between active and
inactive compounds using Tc cutoff of 0.7 resulted in 195 inactives (that were similar to at
least one active compound with Tc above 0.7), which were combined with the 146 actives to
form the modeling set of 342 compounds. Dragon and MZ descriptors were generated for
this 342-compound modeling set to be used separately with kNN. However, similarity
searching using Dragon and MZ descriptors and applying Euclidean distance-based
threshold resulted in a 304- (146 actives and 158 inactives) and 325-compound (146 actives
and 179 inactives) modeling sets respectively. Thus, slightly different modeling sets were
used depending on the type of descriptors.
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k NN Classification—kNN method was used with each of the following descriptor types:
DRAGON, MZ, MOE, and SG descriptors. Models were built for the three datasets resulting
from the down-sampling of the original dataset. First, a validation set (15-20% of the
dataset) was excluded from each of the resulting datasets randomly. The compounds in the
remaining modeling set (85-80% of the original dataset) were divided into multiple training
and test sets (28-40 divisions). Multiple QSAR models were generated independently for all
training sets and applied to the test sets. Generally, we accepted models with CCR values for
both the training and test set greater than 0.70. kNN combined with subgraphs and Dragon
descriptors were the two best performing methods based on validation set statistics (Table
2). kNN-subgraphs (kNN-SG) had a CCRevs = 0.80, while kNN-Dragon gave a CCRevs =
0.72.

Results of the Y-randomization test (Table 2) confirmed that kNN classification models with
CCRtrain and CCRtest values ≥ 0.70 were robust. None of the models with randomized class
labels of the training set compounds had CCRrand > 0.54 for any dataset.

Classification Based on Association (CBA)—The CBA method was applied to
classify the dataset using SG descriptors. A dataset of 342 compounds (146 actives and 196
inactives), resulting from the downsizing process with FP and Tanimoto distances, was used.
The dataset was split randomly into training (267 compounds) and validation sets (75
compounds). A total of 1371 closed frequent subgraphs were generated with FFSM (see
Methods) from the training set using a support value of 12% and a maximum size limit of
the fragments of 7. The training set consisting of 267 compounds (111 actives and 156
inactives) was then used to build the classifier in CBA. The classifier gave a CCRtrain of
0.79. Then the validation set consisting of 75 compounds (35 actives and 40 inactives) was
used to assess the robustness of the classifier. The CCRevs was 0.65 which is not as high as
the CCR value for the training set.

DWD Modeling—The DWD method was applied to classify the dataset using Dragon
descriptors. A dataset of 304 compounds (146 actives and 158 inactives), resulting from the
downsizing process with Dragon descriptors and Euclidean distances, was used. The dataset
was split randomly into training (244 compounds) and validation sets (60 compounds). A
total of 387 Dragon descriptors were generated for the training set. The training set
consisting of 244 compounds (120 actives and 124 inactives) was then used to build the
DWD model. The DWD model was able to group compounds in this dataset based on their
biological classes with a CCRevs = 0.70 (TP=18, TN=24, FP=10, FN=8), setting the cutoff at
“0.15”. DWD was further used to rank Dragon descriptors according to their importance for
discriminating the two classes of compounds (actives vs. inactives). DWD uses class label
information where positive (for actives) and negative (for inactives) signs are assigned to
each descriptor value to indicate its importance to the corresponding class. The top 20 highly
weighted descriptors (based only on weights’ values and ignoring the signs) are presented in
Table S2 of Supporting Information.

Comparison of Binary QSAR Approaches for Classifying 5-HT2B Actives vs. Inactives
The performance of different binary QSAR approaches employed as part of combinatorial
QSAR strategy for 5-HT2B, and based on validation set statistics, is summarized in Figure 2.
kNNSG, and kNN-Dragon were the best performing methods for classifying 5-HT2B actives
vs. inactives based on validation set statistics (Table 2), yielding the highest CCRevs of 0.80
in case of kNN-SG. On the contrary, kNN-MZ was the worst performing method with a
CCRevs of 0.57 which was very close to random. It was also interesting to see that kNN-SG
performed much better than CBA-SG with CCRevs = 0.80 in the former case and 0.65 in the
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latter. These results confirm the importance of employing the combinatorial QSAR approach
to find the most predictive QSAR method/descriptor combination for each specific dataset.

Our models also indicated that the nature of the descriptors used has a dramatic effect on the
performance of the modeling methods. It was clear that MOE and MolConnZ descriptors did
not perform very well in all tested cases irrespective of the applied modeling techniques. On
the contrary, Dragon descriptors afforded most significant models with all methods and in
all tests, for both validation and external sets.

Additional Model Validation
Model Validation by Predicting Drugs Known to be 5-HT2B Actives and
Valulopathogens—Both fenfluramine and dexfenfluramine (known to be 5-HT2B actives
and agonists, which were not included in our modeling sets) were predicted as 5-HT2B
actives using consensus models to classify actives vs. inactives. The consensus scores using
kNN-Dragon were 0.79 for both compounds. Our previous studies suggest that consensus
prediction that is based on the results obtained by all validated predictive models always
provides the most stable solution.87 A 5-HT2B active compound can have consensus scores
in the interval [0.5-1.0]. The closer value to 1.0 the greater is the confidence in the
prediction. Therefore, we can claim that both compounds were predicted as actives with
statistically significant consensus scores.

These results highlight the predictive power of our validated models that could have
predicted the possible dangerous side effects of these two drugs by suggesting that they may
be 5-HT2B actives. This prediction would have suggested that these compounds should be
tested experimentally in 5-HT2B functional assays and prevented from further development
as potentially unsafe medicines. This example illustrates the potential use of models
developed in this study as computational drug safety alerts.

Model Validation by Predicting an External Set—An additional 16-compound set
was obtained from PDSP after we finished out modeling studies. This external set was used
to further assess the robustness and the predictive power of our models. All 16 compounds
were 5-HT2B actives including 4 agonists and 12 antagonists.

The 16 external compounds were predicted using all consensus models built to classify
actives vs. inactives. kNN-Dragon was the best performing method on this external set with
a CCRex of 0.81. Predictions were made by applying local model applicability domains with
Z = 0.5 (see Applicability Domain of kNN QSAR Models). It was interesting to find that
kNN-Dragon had CCR ≥ 0.72 with both the validation (CCRevs = 0.72) and the external
(CCRex = 0.81) sets. However, kNN-SG (the best performing method on validation sets)
was not as good with the external set (CCRex = 0.65) as it was with the validation set
(CCRevs = 0.80). CBA-SG gave a CCRex = 0.65, which was consistent with its performance
with the validation set (CCRevs = 0.65) but less than CCRtrain (0.79). The latter results using
SG descriptors with kNN and CBA might be due to the limitation that frequent subgraphs
are derived from the training set compounds; therefore, it is possible that fragments that are
frequent in the external set are not represented in the frequent subgraphs used for prediction.
Our current applicability domain filter, which is calculated using the fragments in the
training set, does not account for this possibility. It is clear that a more stringent applicability
domain filter could be applied in this case, which uses the distribution of subgraphs counts
between the training and test set, but this has not been implemented yet within our current
method.
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The Importance of Variable Selection
Since kNN-Dragon was the best performing method to classify actives vs. inactives based
on the results for all validation sets, we thought it would be interesting to check the
performance of kNN using all 387 Dragon descriptors, generated for the actives vs. inactives
modeling set, without variable selection. The results of this test are shown in Table 3.
Comparison of modeling results for kNN-variable-selection (CCRevs = 0.72) vs. kNN-
without-variable-selection (CCRevs = 0.52) clearly indicates that variable selection is a vital
part of modeling. Furthermore, the top 20 most frequent descriptors (MFD) selected by kNN
models (Table S3 of Supporting Information) and top 20 highly weighted descriptors by
DWD based only on weights and ignoring the sign (Table S2 of Supporting Information)
were used independently with the kNN method (with no variable selection) to predict actives
vs. inactives (Table 3). Models built with either the top 20 DWD-selected Dragon
descriptors or MFD from Dragon-kNN and using 1-5 nearest neighbors gave CCRevs ~ 0.5
(Table 3). These results illustrated again that SA-based variable selection procedures
implemented in our kNN QSAR method69 lead to models with the highest external
predictive power as compared to any other approach not relying on variable selection for
model optimization.

Mechanistic interpretability is frequently regarded as very important feature of QSAR
models. We generally argue that only models that have been extensively validated on
external datasets and identified experimentally-confirmed hits should be subjected to
interpretation. Furthermore, very few classes of models, specifically, those based on
(multiple) linear regression and small number of descriptors can afford a relatively
straightforward interpretation. The interpretation of multi-parametric statistical models
developed with non-linear optimization algorithms (as in this study) should be attempted
with great care because of strong and often poorly understood interplay between descriptors.
Furthermore, although we could foresee that in some cases medicinal chemists may want to
modify their candidate compounds to prevent 5HT2B binding, the tools developed in this
study are predominantly intended for virtual screening of libraries of drug candidates to flag
and possibly eliminate compounds that are likely to bind 5HT2B receptor, not to design new
compounds; and any compound designed by chemists could be passed through our models.
Therefore, we only restricted the discussion in this paper to the most frequent descriptors
found by all acceptable kNN models and the most highly weighted descriptors selected by
DWD to stress that the process of variable selection employed as part of model optimization
has indeed converged on a small number of descriptors.

Virtual Screening of the World Drug Index Database to Identify Putative 5-HT2B Ligands
Since our models proved to be reasonably accurate based on two external validation sets, we
used the best models to mine a large external database of approved and potential drugs for
putative 5-HT2B actives. An important condition that assures reliable predictions by the
model is the use of AD. Therefore, two types of AD were employed in the virtual screening
of compound databases. The first is a global AD that acts as a filter and ensures some level
of global similarity between the predicted compounds and the compounds in the modeling
set. The second is a local AD which is defined for each of the individual classification
models.

The WDI database of ca. 59,000 compounds (approved or investigational drugs) was used
for virtual screening (Fig. 3). This original collection had many duplicates (i.e., many salt
forms for the same chemical entity). The duplicates were removed using MOE: keeping
unique structures and deleting duplicates. We also removed all compounds included in our
modeling and external validation sets. Dragon descriptors were generated for the remaining
46,859 unique compounds in the database; 926 compounds were excluded because Dragon
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was unable to calculate at least one of the descriptors generated for the modeling set. The
remaining 45,933 compounds were then subjected to a global AD filter for the actives vs.
inactives modeling set using a strict Z cutoff of 0.5 (which formally places the allowed
pairwise distance threshold at the mean of all pairwise distance distribution for the training
set plus one-half of the standard deviation). Obviously, increasing the AD would increase
the number of computational hits identified by virtual screening. However, our experience
suggests that such increase is typically accompanied by the decrease in prediction accuracy.
Additionally, we required that the nearest neighbor in the modeling set of a compound from
the virtual library be an active. The resulting 7,286 compounds were then classified into
actives vs. inactives using DWD-Dragon classifier resulting in 891 actives. Next, all kNN-
Dragon models with CCRtrain and CCRtest ≥ 0.70 were employed in consensus fashion to
predict these 891 compounds resulting in a selection of the 500 active hits. At this point, SG
descriptors were generated for these 500 molecules. CBA-SG classifier followed by kNN-
SG consensus models were used as final filters for the determination of 122 compounds
regarded as putative 5-HT2B actives.

Experimental Validation
Ten structurally diverse hits (1-10, see Table 4) were selected from the final consensus
virtual screening hits for further experimental validation taking into account both their
commercial availability and cost (see Table 4). To our satisfaction, nine compounds were
confirmed to inhibit 5-HT2B radioligand binding, which implies a hit rate of 90 %. Ki values
were in the range 0.8 – 3,127 nM, with 4 compounds having Ki values < 100 nM. The four
highest affinity compounds were: 4 (Ki=33 nM, see Fig. 4 (A)), 7 (Ki=0.8 nM, see Setola et
al, 20039), 9 (Ki=70 nM, see Fig. 4 (B)), and 10 (Ki=69 nM, see Fig. 4 (C)).. It should be
noted that methylergometrine, though not included initially in our dataset, was known to be
a valvulopathic compound and had been tested against 5-HT2B receptors in both binding (K
=0.8 nM)9 and functional assays (pEC50 for 5-HT2B-Mediated calcium flux = 7.67)23. In
order to determine the activity of the remaining eight 5-HT2B ligands, all compounds were
tested at the PDSP in 5-HT2B functional assays. Results indicated that methylergometrine
was the only compound among the 9 5-HT2B ligands that possessed strong agonist activity.

This low hit rate of 11.1% for identifying validated agonists is in fact not surprising in light
of Huang et al23 major finding that potent 5-HT2B receptor agonism is a relatively rare
occurrence among drugs and drug-like compounds. However, to arrive at such conclusions,
Huang et al screened a composite library containing three publicly available collections of
FDA-approved and investigational medications and one internally compiled library. Of the
approximately 2200 compounds screened, 27 5-HT2B receptor agonists were identified;
thus, the validated hit rate was 1.2%.

These results illustrate that the validated QSAR workflow, as employed in this paper, could
be used as a general tool for identifying 5-HT2B ligands by the means of virtual screening of
chemical libraries using rigorously built QSAR models. As we demonstrated in this study,
our models identify a relatively small number of VS hits making it feasible to employ
experimental tools to validate predictions in 5-HT2B binding and functional assays. Ten
compounds selected from a large external library have been tested experimentally in this
proof-of-concept study resulting in very high experimentally confirmed hit rate. The list of
all compounds predicted to be 5-HT2B actives is available in the Supporting Information
(Table S1).

To verify the diversity of the experimentally validated hits, we have compared the results of
QSAR-based virtual screening with simple similarity searches. Similarity calculations were
done using two different descriptor-metric combinations: (1) MACCS structural keys and
Tanimoto coefficients (as a standard similarity searching approach, see Table S9 and Figure
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S1 in Supporting Information) and (2) Dragon descriptors and Euclidean distances (to
compare directly with our best performing QSAR models of kNN-Dragon, see Table S10
and Figure S2 in Supporting Information). The nearest neighbor compounds (based on
Tanimoto similarities and MACCS keys) from the active compounds in the dataset and the
10 experimentally validated VS hits are reported in Table 5. Results of similarity analyses
indicated that neither technique would be able to efficiently identify the diverse hits obtained
with our methods (see Supporting Information for details). Hence, our studies illustrated the
power of combi-QSAR-based VS in prioritizing compounds (which are not just close
analogs of the modeling set compounds) from screening libraries to achieve high success
rates when experimentally validated.

We also think that agonist vs. antagonist models will be highly useful as more data about
agonist compounds become available. The small number of known 5-HT2B agonists made it
impossible at this stage to develop statistically significant models that could distinguish
agonists from antagonists. Thus, the current study was limited to building binder vs. non-
binder models. We will continue with our efforts to develop quantitative 5-HT2B agonist
predictors as we accumulate more experimental data.

Conclusions
QSAR models are becoming increasingly attractive as robust computational tools for virtual
screening due to both their computational efficiency and success rates [reviewed in26 as well
as in a recent monograph21]. In this study, we have applied a combinatorial QSAR approach
to a dataset of 800 compounds experimentally annotated as 5-HT2B receptor agonists,
antagonists and inactives resulting in statistically validated and externally predictive models.
Specifically, we have applied a combi-QSAR approach utilizing three different classification
methods (kNN, CBA and DWD) and four different descriptor types (Dragon, MZ, MOE and
SGs) to generate classification QSAR models to discriminate between 5-HT2B actives
(agonists and antagonists) from inactives. Predictive models with classification accuracies as
high as 0.80 for actives vs. inactives, as estimated on external validation sets, were obtained.

Classification models for actives vs. inactives were further validated by predicting an
external validation set obtained after we completed the modeling studies. The high accuracy
of prediction for the second external validation set proved that our models were indeed
rigorous. Therefore, we posited that our studies afforded a robust computational tool to
predict potential 5-HT2B activity and consequently prioritize hits for testing in functional 5-
HT2B assays to predict valvulopathic side effects of drugs and drug candidates that act as 5-
HT2B agonists. We suggested that this computational predictor could be used to eliminate
high risk compounds at the early stages of the drug development process. To illustrate this
point, we have used this predictor retrospectively to evaluate the valvulopathic potential of
two drugs withdrawn from the U.S. market for this reason, i.e., fenfluramine and
dextrofenfluramine. Both drugs were not included in our modeling set and both were indeed
predicted with high confidence as actives for binding to 5-HT2B receptors.

Encouraged by our model validation results, we have applied these models for virtual
screening of the 59,000 compounds in WDI database. Our classification strategies identified
122 potential 5-HT2B ligands. Ten structurally diverse VS hits were experimentally tested at
PDSP. Nine compounds were experimentally confirmed as 5-HT2B ligands thereby
demonstrating a very high success rate of 90%.

The predictor developed in this report is similar in its potential use to other predictors of
drug liability such as carcinogenicity and mutagenicity that are widely used in
pharmaceutical industry. For instance, the TOPKAT program available in the Discovery
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Studio,89 is a QSAR-based system that generates and validates accurate, rapid assessments
of various types of chemical toxicity solely from a chemical's molecular structure. In
contrast, our predictor is a unique specialized tool for the prediction of 5-HT2B activity and
therefore prioritizing compounds for functional testing against 5-HT2B receptors to assess
their valvulopathic potential. Therefore, this predictor can be used, along with other
computational chemical health risk assessment tools, to evaluate compounds’ safety at early
stages of the drug development. It can be used as well to verify that all drugs available on
the market are free from possibly fatal valvulopathic risk. This predictor will be made
publicly available at the ChemBench server established in the Laboratory for Molecular
Modeling (chembench.mml.unc.edu). We will also gladly apply this predictor to any
compound library that may be of interest to any researcher.

Experimental Section
Radioligand Binding Assays

This screen was performed by the National Institute of Mental Health Psychoactive Drug
Screening Program (PDSP). Radioligands were purchased by PDSP from Perkin-Elmer or
GE Healthcare. Competition binding assays were performed using transfected or stably
expressing cell membrane preparations as previously described (Shapiro et al. 2003;90 Roth
et al. 200291) and are available online (http://pdsp.med.unc.edu). All experimental details
are available online (http://pdsp.med.unc.edu/UNC-CH%20Protocol%20Book.pdf).

Chemistry
Chemical compounds predicted as hits from the virtual screening were obtained from
commercial suppliers according to their availability. All compounds were ordered to have ≥
95% purity. Additionally, all compounds were subjected to purity assessment using LC/MS
by the Center for Integrative Chemical Biology and Drug Discovery at UNC-Chapel Hill.
LC/MS spectra of all compounds were acquired from an Agilent 6110 Series system with
UV detector set to 220 nm. Samples were injected (5 uL) onto an Agilent Eclipse Plus 4.6 ×
50 mm, 1.8 uM, C18 column at room temperature. A linear gradient from 10% to 100% B
(MeOH + 0.1% Acetic Acid) in 5.0 min was followed by pumping 100% B for another 2
minutes with A being H2O + 0.1% acetic acid. The flow rate was 1.0 mL/min.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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5-HT2B 5-Hydroxy Tryptamine subtype 2B receptors

AD Applicability Domain
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CARs Class Association Rules

CBA Classification Based on Association

CCR Correct Classification Rate

CCRtrain Correct Classification Rate for training set

CCRtest Correct Classification Rate for test set

CCRevs Correct Classification Rate for external validation set

CCRex Correct Classification Rate for external set

CCRrand Correct Classification Rate of the random models using the external
validation set

CV Cross Validation

DWD Distance Weighted Discrimination

E Enrichment

En Normalized Enrichment

FN False Negative

FP False Positive

HTS High Throughput Screen

kNN K Nearest Neighbor

LOO-CV Leave-One-Out Cross Validation

MFD Most Frequent Descriptors

MOE Molecular Operating Environment

MZ MolConnZ descriptors

PDSP NIMH Psychoactive Drug Screening Program

QSAR Quantitative Structure Activity Relationships

SA Simulated Annealing

SE Sensitivity

SG Subgraph

SP Specificity

TP True Positive

TN True Negative

VHD Valvular Heart Disease

VS Virtual Screening

WDI World Drug Index
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Figure 1.
The workflow for QSAR model building and validation as applied to the 5-HT2B dataset
(see text for abbreviations).
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Figure 2.
Comparison of CCR values for the external validation set (CCRevs) for different QSAR
models developed to classify actives vs. inactives. CCRevs values for models built with both
real (blue) and randomized (red) activities of the training sets are shown (see text for
abbreviations).
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Figure 3.
Steps of the virtual screening of the WDI database to identify putative 5-HT2B ligands (see
text for the abbreviations).
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Figure 4.
Competition binding at 5-HT2B receptors for (A) 4 (triangle) and SB206553 (square), (B) 9
(triangle) and SB206553 (square), and (C) 10 (triangle) and chlorpromazine (square), versus
[3H]LSD.
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Table 1

Chemical structures of marketed drugs known as 5-HT2B receptor agonists and associated with VHD.

Compound PubChem CID 5-HT2B Agonist VHD

54746 Yes Yes

Carbergoline

10531 Yes Yes

Dihydroergotamine

3337 Yes Yes

Fenfluramine

1614 Yes
??

a

MDA

1615 Yes Yes

MDMA
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Compound PubChem CID 5-HT2B Agonist VHD

8226 Yes Yes

Methylergonovine

47811 Yes Yes

Pergolide

a
Unknown.
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Table 5

Nearest neighbor compounds from the active compounds in the dataset and the 10 experimentally validated
VS hits.

Virtual screening hits Nearest neighbor from the modeling set compounds based on MACCS structural keys and Tanimoto
distances
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Virtual screening hits Nearest neighbor from the modeling set compounds based on MACCS structural keys and Tanimoto
distances

J Med Chem. Author manuscript; available in PMC 2012 September 11.


