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Abstract
Adverse effects of drugs (AEDs) continue to be a major cause of drug withdrawals both in
development and post-marketing. While liver-related AEDs are a major concern for drug safety,
there are few in silico models for predicting human liver toxicity for drug candidates. We have
applied the Quantitative Structure Activity Relationship (QSAR) approach to model liver AEDs.
In this study, we aimed to construct a QSAR model capable of binary classification (active vs.
inactive) of drugs for liver AEDs based on chemical structure. To build QSAR models, we have
employed an FDA spontaneous reporting database of human liver AEDs (elevations in activity of
serum liver enzymes), which contains data on approximately 500 approved drugs. Approximately
200 compounds with wide clinical data coverage, structural similarity and balanced (40/60) active/
inactive ratio were selected for modeling and divided into multiple training/test and external
validation sets. QSAR models were developed using the k nearest neighbor method and validated
using external datasets. Models with high sensitivity (>73%) and specificity (>94%) for prediction
of liver AEDs in external validation sets were developed. To test applicability of the models, three
chemical databases (World Drug Index, Prestwick Chemical Library, and Biowisdom Liver
Intelligence Module) were screened in silico and the validity of predictions was determined, where
possible, by comparing model-based classification with assertions in publicly available literature.
Validated QSAR models of liver AEDs based on the data from the FDA spontaneous reporting
system can be employed as sensitive and specific predictors of AEDs in pre-clinical screening of
drug candidates for potential hepatotoxicity in humans.

Introduction
Human adverse effects of drugs (AEDs) cost upwards of $3.6 billion each year and
constitute one of the top ten causes of death in the United States (1). Drug safety is a serious
concern for pharmaceutical companies, regulators and the general public and novel
approaches continue to be sought to facilitate the development of safe and efficacious
medicines (2). In order to accelerate the drug approval process, the FDA has reduced the
time for reviewing of most drugs from 27 months in 1993 to 14 months in 2001; however,
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drug withdrawal rates more than doubled (from 1.56% to 5.35%) in the same period (1).
Despite rigorous animal testing and human screening in clinical trials, serious AEDs are still
frequent either in late-stage clinical trials or post-marketing of the drug (3).

One of the most common reasons for drug withdrawal is evidence of liver AEDs, which can
be caused by many mechanisms and although relatively rare, can be fatal. Current
approaches for identification of the drug’s potential to be hepatotoxic are not without
limitations. It is difficult to predict both which individuals are susceptible to liver damage,
and which drugs may cause liver AEDs. In vitro testing and multi-species in vivo animal
testing have been shown to be poorly predictive of human liver AEDs (4;5). There are
currently no pre-clinical tests that identify potential human hepatotoxicants with both high
sensitivity and specificity (4;6).

With the limitations inherent in both in vitro and in vivo testing, in silico methods have been
evaluated for prediction of AEDs. In silico screening and prioritization of compounds has
been widely used for many years in the pharmaceutical industry to evaluate candidate
compounds for efficacy, metabolism, and “general toxicity” (7). For example, Quantitative
Structure Activity Relationship (QSAR) modeling relates known activities and chemical
structural properties to form models that can predict the target activities of yet untested
compounds. However, human toxicity data is often difficult to obtain; much of it is
proprietary (particularly pre-marketing data), and reports of post-marketing adverse events
are difficult to procure. In addition, systems approaches based on mathematical modeling
using the kinetics of biochemical pathways involved in liver homeostasis, coupled with in
vitro measurements to quantify drug-induced perturbations are being evaluated as part of an
integrative framework to enhance the predictivity of in vitro methods (8).

AED reporting is an involved process whereby information is conveyed to the FDA about a
patient’s reaction to a drug, with the FDA following up on each entry. While AEDs are
believed to be widely underreported, an effort to collect this information is underway (9)
through FDA’s Adverse Effects Reporting System
[http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/
AdverseDrugEffects/default.htm]. For example, elevated levels of liver enzymes in blood
samples are frequently regarded by clinicians as signs of liver damage and, if other
pathological states can be excluded, are attributed to drug-induced toxicity (10). The FDA
has compiled a Human Liver Adverse Effects Database (HLAED) using Coding Symbols
for a Thesaurus of Adverse Reaction Terms to identify reports in the FDA’s Spontaneous
Reporting System database associated with liver toxicity endpoints (11). The public version
of HLAED contains information on about 500 compounds with physician-reported cases of
drug treatment-associated elevations in activity of one or several liver enzymes. A larger
database of 3,100 unique pharmaceutical compounds and 9,685 adverse effect endpoints, not
available to the public yet, has been used recently by the FDA to develop QSAR models for
prediction of liver and kidney injury (9;12).

Here, we have aimed to develop QSAR models predictive of human liver AEDs for a broad
range of compounds in a public version of HLAED that are likely to operate via a plethora
of biological mechanisms. We show that not only could we develop models with high
sensitivity and specificity, but also that the analysis of chemical descriptors used in
modeling yielded important information about the chemical features responsible for liver
AEDs.
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Experimental Procedures
Data source

Drug names, structures and activities were obtained from the HLAED
[http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm092203.htm]. The database
contains approximately 500 compounds with five serum enzyme markers of liver toxicity:
alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase
(AST), lactate dehydrogenase (LDH), and gamma-glutamyl transpeptidase (GGT). In
addition, a “composite” liver endpoint was created by the database curators based on the
data from all five liver enzyme endpoints. The database classifies drugs as active (i.e.,
hepato-toxic in humans) or inactive (i.e., non-hepatotoxic in humans) for each of the 6
endpoints based on the number of AED reports relative to the number of “shipping units”
(11). For the purposes of this work, the data set was curated as follows. First, compounds
with marginal and “NA” scores were discarded for each endpoint. Second, we selected three
endpoints with the largest number of “active” compounds for modeling – ALT, AST, and a
“composite” score. Third, since the database has a biased distribution of active and inactive
compounds (~1:4 active/inactive ratio for each endpoint), we used a (dis)similarity search to
exclude a considerable fraction of inactive compounds from the dataset to balance the
active/inactive ratio for modeling purposes. To this end, we calculated the Molecular
ACCess System (MACCS) structural keys for all compounds in the dataset using the MOE
software (Chemical Computing Group, Montreal, Canada). All active compounds were used
as a probe subset and the Tanimoto coefficients (13) between each inactive compound and
the probe subset were calculated based on their MACCS keys. In this step, structurally
dissimilar inactive compounds (Tanimoto coefficient >0.7) were removed from further
consideration to achieve a more balanced dataset with active/inactive ratio of approximately
40/60 for each endpoint. Following the filtering detailed above, of the 490 compounds in the
HLAED, up to 210 were used for each endpoint. The curated version of the dataset can be
found in Supplemental Table 1.

Chemical Descriptors
Two software packages were used to compute chemical descriptors. The MolConnZ
software (eduSoft LC, Ashland, VA) was used to compute a wide range of topological
indices of molecular structures (14–17). Overall, MolConnZ (eduSoft LC, Ashland, VA)
produces over 400 different descriptors. Those with zero value or zero variance were
removed. The remaining descriptors were range-scaled. In addition, molecular descriptors
were computed using Dragon (v.5.4, Talete SRL, Milano, Italy) software. DRAGON
descriptors are classified into 0D, 1D, 2D, and 3D descriptors. The version 5.4 of the
Dragon software (Talete srl, Milan, Italy) afforded 1664 descriptors total, covering a wide
variety of types. For example, its 0D descriptors contain constitutional descriptors (18); 1D
descriptors include functional group counts and atom-centered fragments (19); 2D
descriptors include topological descriptors, connectivity indices, information indices and
eigenvalue-based indices (20). It should be pointed out that there are many novel descriptor
families among 3D descriptors, such as RDF descriptors (21), 3D-MoRSE descriptors (22),
WHIM and GETAWAY descriptors (23) and geometrical descriptors (24). All descriptors
were cleaned up by eliminating the constant variables and near-constant variables using the
built-in function of Dragon. The pairwise correlations for all descriptors were examined and
one of the two descriptors with the correlation coefficient R2 of 0.95 of higher was excluded.

Our modelling work (see below) showed that MolconnZ descriptors produced poor models
for the dataset considered herein (data not shown); therefore, all models reported in this
paper were developed using Dragon descriptors.
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QSAR Modeling
To ensure the development of statistically significant and externally predictive QSAR
models we have relied on the model development and validation workflow (reviewed in
(25)). The workflow is described schematically in Figure 1; and the individual components
of the workflow are described below.

Dataset division into training, test, and external validation sets—Since it is
critical to demonstrate that QSAR models have high prediction accuracy for external
validation datasets as opposed to commonly used cross-validation, a subset of the
compounds in the original set was excluded randomly (once for each endpoint) and used as
the external validation set. The remaining compounds were employed as a modeling set,
which was subdivided into chemically diverse multiple training/test sets using the Sphere
Exclusion program as detailed previously (26). For the latter training/test sets, the number of
compounds included in the test set was gradually increased to obtain the largest possible test
set for which accurate predictions could be obtained from models developed for the
corresponding smallest possible training set. The Sphere Exclusion algorithm can maximize
the diversity of the training/test sets in the descriptor space used for modeling. Due to
stochastic nature of the algorithm, the composition of training and test sets is different for
different original dataset divisions.

Modeling algorithm—The variable selection k nearest neighbor (kNN) QSAR method
(27;28) was used for model development. Briefly, the kNN-QSAR algorithm generates both
an optimum k value and an optimal nvar subset of descriptors that afford a QSAR model
with the highest training set model accuracy as estimated by the q2 value. The variable
selection procedure employs stochastic sampling of the original descriptor space to arrive at
models with the highest q2 value; therefore multiple models are developed to increase the
efficiency of sampling the descriptor space.

Because the datasets were unbalanced, the statistical significance of models was
characterized with correct classification rate (CCR) defined as CCR = 0.5(TP / P + TN / N ) ,
where P and N are the number of active and inactive compounds in the dataset, TP and TN
are the number of known active compounds predicted to be active (true positives) and the
number of inactive compounds predicted to be inactive (true negatives), respectively (29).
CCR for the training set was calculated using cross-validation (CCRCV), and CCRtest was
estimated for the test sets as defined by the formula above for CCR. Models were considered
acceptable if both CCRCV and CCRtest were larger than the arbitrary cutoff values (0.65 was
used as a default cutoff in this study). Models that did not meet these cutoff criteria were
discarded. This approach enables the development of an ensemble of models that satisfies
both training and test set accuracy criteria; in our practice the use of such ensemble ensures
the highest prediction accuracy for the external dataset, as demonstrated in our recent studies
(30). Additional details of this approach are described elsewhere (26). We shall stress that in
our approach we do not seek to develop the best QSAR model since our experience suggests
that models with the highest training set accuracy do not afford the highest predictive
accuracy of the test sets (26). Instead, we rely on the consensus of all models whose
training/test set accuracies exceed predefined accuracy thresholds for both training and test
sets.

Model applicability domain—Since all QSAR models in kNN QSAR procedure were
developed by interpolating activities of the nearest neighbor compounds only in the relevant
training sets, a special applicability domain (i.e., similarity threshold) was introduced to
avoid making predictions for compounds that differ substantially from the training set
molecules (25). Formally, a QSAR model can predict the target property for any compound
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for which chemical descriptors can be calculated. However, since the training set models are
developed in kNN QSAR modeling by interpolating activities of the nearest neighbor
compounds, a special applicability domain (31) should be introduced to avoid making
predictions for compounds that differ substantially from the training set molecules (32).

In order to measure similarity, each compound could be represented by a point in the M-
dimensional descriptor space (where M is the total number of descriptors in the descriptor
pharmacophore) with the coordinates Xi1, Xi2, ..., XiM, where Xis are the values of individual
descriptors. The molecular similarity between any two molecules is characterized by the
Euclidean distance between their representative points. The Euclidean distance di,j between
two points i and j (which correspond to compounds i and j) in M-dimensional space can be
calculated as follows:

[1]

Compounds with the smallest distance between them have the highest similarity. The
distribution of distances (pairwise similarities) of compounds in our training set is computed
to produce an applicability domain threshold, DT, calculated as follows:

[2]

Here, ȳ is the average Euclidean distance of the k nearest neighbors of each compound
within the training set, σ is the standard deviation of these Euclidean distances, and Z is an
arbitrary parameter to control the significance level. Based on previous studies, we set the
default value of this parameter as 0.5, which formally places the boundary for which
compounds will be predicted at one-half of the standard deviation (assuming a Boltzmann
distribution of distances between each compound and its k nearest neighbors in the training
set). Thus, if the distance of the external compound from at least one of its nearest neighbors
in the training set exceeds this threshold, the prediction is considered unreliable. The
additional details of this approach are described elsewhere (25;33).

Internal validation—Y-randomization (randomization of response) is a widely used
approach to establish the model robustness (34). It consists of rebuilding the models using
randomized activities of the modeling set and subsequent assessment of the model statistics.
It is expected that models obtained for the modeling set with randomized activities should
have significantly lower predictivity for the external validation set than the models built
using modeling set with real activities, or the total number of acceptable models based on
the randomized modeling set satisfying the same cutoff criterion (CCRCV and CCRtest) is
much less than that based on real modeling set.

To evaluate the statistical significance of QSAR models quantitatively, we have employed a
standard hypothesis testing approach (35). Specifically, the robustness of the QSAR models
is examined by comparing these models to those derived from datasets with randomized

activity using Z score statistics. Z score is calculated as follows: .
In this equation,  is the mean CCRCV value of the datasets with randomized activity
values,  is the CCRCV of the original dataset with actual (not shuffled) activity
values, and σ is the standard deviation from  of the distribution of CCRCV values of
the random models. The Z score serves as a measure of the uniqueness of models built with
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actual (original) data as opposed to those generated with the randomized activity data.
Models with Z scores exceeding 3 are regarded as statistically significant. This test was
applied to all data divisions considered in this study.

Results
QSAR modeling of the FDA Human Liver Adverse Events Database

HLAED contains 490 pharmaceuticals, which are classified at each of the liver toxicity
endpoints as active, marginal, inactive, or not available. In order to maximize the number of
the compounds accessible for modeling and to correct the uneven distribution bias, we used
only three endpoints (ALT, AST and composite) with the highest number of actives, and
applied a chemical similarity search method to remove inactive compounds that were
structurally dissimilar to active (see Experimental Procedures for details). As a result (Table
1), 205 inactive compounds were excluded from the final composite dataset, leaving 76
active and 114 inactive compounds, which represents ca. 40%/60% ratio between actives
and inactives in the final database. Similarly, for the AST endpoint dataset, 84 active and
126 inactive compounds were included in the final dataset. For the ALT dataset, 75 active
and 113 inactive compounds were included in the final dataset. The rationale for eliminating
structurally dissimilar inactives, rather than randomly removing inactive compounds, is that
models are expected to be more robust since it is more difficult to differentiate between
structurally similar active and inactive compounds.

Predictive accuracy of QSAR models shall be confirmed with external data not used for
model development (25;36); thus, external validation sets were randomly selected from each
modeling dataset: 37 compounds from the Composite dataset (19 active and 18 inactive
compounds), 42 compounds from the AST dataset (16 active and 26 inactive), and 36
compounds from the ALT dataset (9 active and 27 inactive). The remaining compounds
(153 for Composite, 168 for AST, and 152 for ALT endpoint) were used for modeling, with
multiple training and test sets generated from each. Average number of compounds in
training/test sets was 123/60, 145/57 and 112/58 for Composite, AST and ALT endpoint
models, respectively (see Supplemental Table 1 for compound assignments in each model).
Variable selection kNN QSAR models were developed for each training set, and the
corresponding test set was used to assess the predictive power of each model generated. As
discussed in the Methods section, our variable selection kNN QSAR approach results in
multiple training set models but not every model is expected to be externally predictive.
Cutoff values for leave-one-out (LOO) cross validation CCR (CCRCV) and CCR of test set
(CCRtest) were both 0.65. Statistical significance of model predictions was assessed as
detailed in Experimental Procedures/QSAR Modeling section.

The total number of models that passed these criteria for each endpoint was 1431 (out of
5980 total), 1977 (5460), and 121 (5980) for Composite, AST and ALT endpoints,
respectively. Average CCRCV values were 0.83, 0.84 and 0.79 for Composite, AST and
ALT endpoint models, respectively. Average test set accuracy CCRtest values were 0.65,
0.66, and 0.73 for Composite, AST and ALT endpoint models, respectively.

Previous studies have shown that the most accurate external dataset predictions are obtained
using a consensus approach, i.e., when predictions for each external compound from
individual models are averaged (31). Consensus predictions for the external datasets for each
endpoint are shown in Table 2. While the sensitivity, specificity and CCR of the consensus
predictions were high for the Composite and AST endpoint models, similar metrics for the
ALT endpoint were less impressive.
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In order to ensure the accuracy of external dataset predictions, applicability domains of each
model were calculated. The applicability domain decreases the number of compounds for
which predictions are made, but increases the overall reliability of the predictions by
eliminating compounds outside of the applicability domain; the accuracy of the external
prediction is typically increased as well. No compounds in the external datasets for
Composite, AST or ALT models were found to be outside of the applicability domain.

A y-randomization test was performed for each model wherein activities of training set
models were randomized. The Z-scores for ALT, AST, and Composite models were 4.14,
5.86 and 3.65, respectively, indicating the high statistical significance of models built with
actual data. Thus, these models may be reliably applied to the external databases of drugs
and chemicals, taking the applicability domain into account. Since the modeling approach
based on Composite endpoint featured high sensitivity and specificity and we reasoned that
it may be reflecting liver AEDs as a consensus, rather than a specific serum enzyme that
may not be exclusive for liver injury, it was used for further analysis and in silico screening
of large external drug databases. This part of the study, while not intended to represent the
“external validation” of the model, is necessary to better understand the utility of the model
for screening large chemical sets whereby the predictions, if obtained, may be independently
verified either through the focused literature search or, ultimately, in the experimental
studies.

Application of QSAR HLAED Models to World Drug Index (WDI) Database
WDI is a database of over 50,000 chemical compounds which includes, among others, most
of the small molecule pharmaceuticals currently marketed worldwide. Most approved drugs
are presumed to have little or no liver toxicity; thus, it is expected that there should be a
relatively small number of compounds in WDI that may be potentially hepatotoxic. We
tested both the coverage (i.e., the fraction of the database within the model applicability
domain) and predictive ability of our QSAR HLAED models based on Composite endpoint
by screening WDI database (Figure 2A). Approximately 40,000 compounds in WDI were
outside of the applicability domain for our composite endpoint model, thus no reliable
predictions could be made for this subset. Of the remaining ~10,000 compounds, 9,000 were
predicted by the model as inactive, and 1,000 were predicted as potentially hepatotoxic.
Since WDI is poorly annotated and due to a large number of compounds, it was not possible
at this time to perform a literature search to determine whether model-based predictions of
liver AEDs can be substantiated. However, we did identify evidence of hepatotoxicity for
several compounds in this subset of WDI (see Discussion).

Application of QSAR HLAED Models to Prestwick Chemical Library (PCL) Database
PCL is a database of 900+ small molecule pharmaceuticals (Prestwick Chemical, Illkirch,
France; http://www.prestwickchemical.com/index.php?pa=26). All of the compounds in the
database are marketed drugs and it may be assumed that most of these agents have little to
no known adverse drug reactions in humans. We screened the PCL using the Composite
endpoint model (Figure 2B). Of the 878 organic compounds in PCL, 162 were found to be
overlapping with the modeling set and were removed (See Supplemental tables 2 and 3). Of
the remaining 716 agents, 354 were outside of the applicability domain. Of the remaining
362 compounds, 219 were predicted as inactive, and 143 were flagged to be potentially
hepatotoxic. Since we use a consensus model prediction approach, a final active/inactive
prediction for a compound is assigned based on a fraction of all models classifying it as
active or inactive (0.5 threshold, i.e., the annotation was based on that by the majority of
models). If different thresholds (e.g., 0.3, 0.5, and 0.7) for consensus predictions of
compounds as active are applied, 362 compounds can be further subdivided as shown in
Figure 2B. While about 62% of compounds predicted as inactive pass a relatively stringent
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threshold of <0.3 for consensus prediction, 44% of those predicted as active had a strong
consensus stringency of >0.7. These 63 compounds were used for web-based search of the
publicly available sources (PubMed, PubChem, drug inserts, etc.) for information related to
their potential liver AEDs. Through this effort we were able to confirm the existence of
reported liver AEDs for 21 out of 63 compounds predicted as active (33%), no data was
found on 33 agents, and 9 drugs had at least one report explicitly reporting no liver toxicity
(See Supplemental Table 2 for references). It should be noted, however, that model’s
predictions should be interpreted with caution since there is not enough information at this
time to unequivocally substantiate or refute the classification. Nevertheless, with this
cautionary note in mind, these results indicate that our models may be employed to flag
compounds that may result in an adverse event for more in-depth testing.

Application of QSAR HLAED Models to BiowisdomR Liver Intelligence Module Database
The BiowisdomR Liver Intelligence Module
[http://www.biowisdom.com/content/liver-intelligence-module] database consisted of 1,822
compounds at the time of analysis. The database contains literature-based (i.e., information
curated through text mining of more than 19 million data sources) associations between each
compound and up to 18 specific sub-categories of liver-related toxicity phenotypes both in
animals and humans. The data is expressed in the form of the number of reports linking a
compound and an endpoint. First, we removed 150 compounds, which were found to be
overlapping with our modeling set (See Supplemental Table 3). Next, we screened the
remaining 1,672 compounds using the Composite endpoint model and found that 1,112
compounds were outside of the applicability domain, 318 were predicted to be inactive, and
242 were predicted to be active (Figure 2C). Since this database contains data of potential
value for interpreting the mode of action for liver toxicity, we calculated the mean±SD
number of links for compounds predicted as active or inactive. Interestingly, the “apoptosis”
category of literature-based citations was significantly different between the two groups with
twice as many links reported for inactive, then active, compounds (data not shown, p<0.05
by Kruskall-Wallis test).

Application of QSAR HLAED Models to Structurally Similar Toxic/Non-Toxic Compounds
There are a number of pairs of structurally similar drugs that show a dramatic difference in
their ability to cause liver toxicity. To determine whether our models can differentiate
between very structurally similar compounds, a special external test set of 10 drugs (5 pairs)
was explored (Table 3). This specialized external dataset was screened using the Composite
endpoint model. The outcome of modeling for structurally similar compounds is equivocal
suggesting important limitations of our approach.

Discussion
Our work shows that even a limited database on drugs with reported incidence of human
liver AEDs can be used to produce highly predictive (sensitivity >73%, and specificity
>94% for the external dataset) QSAR models. This result underscores the importance of
mining data that may be available at the regulatory agencies for potential signatures that can
aid in predicting human toxicity. Since the predictive power of the currently available in
vitro and in vivo tests, including pre-marketing clinical trials in small human cohorts, is
limited, additional computational tools may provide added value to decision making for both
drug developers and the regulators.

While the data analyzed here contained six related clinical endpoints indicative of the
potential liver damage, only three (ALT, AST and Composite score) had relatively broad
coverage among 490 drugs in the database. This is not surprising since ALT and AST are

Rodgers et al. Page 8

Chem Res Toxicol. Author manuscript; available in PMC 2011 April 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.biowisdom.com/content/liver-intelligence-module


routine clinical chemistry biomarkers widely used to screen for drug toxicity. It is surprising,
however, that models built for ALT were not as sensitive or specific as those built for AST
or Composite endpoints. While ALT is known to show high sensitivity and is considered as
moderately specific biomarker of liver damage, ALT levels have been known to be elevated
due to other factors as well. AST activity is also known to fluctuate throughout the day and
increase with exercise. It has been suggested that a broad range of biomarkers should be
considered instead of a single biomarker (37). It is possible that the Composite liver
endpoint model is successful because the data is derived from several biomarkers.

A model predictive of human liver AEDs could be useful in early stage screening of
pharmaceutical compounds and could potentially reduce attrition rates, risk of adverse
health effects and overall costs of drug development. Thus, we tested our models on “real
life” databases of drugs and chemicals to assess the coverage (e.g., applicability domain),
performance, and the outcome. The most comprehensive one, World Drug Index, exposed
the limitation of our current models (i.e., limited coverage). Nearly 80% of the compounds
were outside of the applicability domain of our model and this limitation may be remedied
by adding more compounds to the model, a task that requires data release by the
pharmaceutical companies and/or the FDA. We predicted about 10% of the ~10,000
chemicals that could be modeled to be potentially hepatotoxic. While poor annotation of the
WDI and a large number of compounds predicted as active make it impractical to manually
confirm the predictions, there were several well known hepatotoxicants predicted correctly.
Isoniazid is known to cause cholestasis and hepatic necrosis (38) and it was predicted to be
active by both AST and Composite models. Lamotrigine is known to cause infrequent,
potentially immune related hepatotoxicity, and was also predicted to be active by the
Composite model. Mercaptopurine has been associated with idiosyncratic hepatitis and
cholestatic liver injury, and was predicted to be active by both AST and Composite models
(39).

In the Prestwick Chemical Library dataset, as much as 33% of the 63 compounds were
predicted as active with high confidence. We have manually curated publicly available
biomedical literature and found that most of these have reports indicative of liver toxicity,
while only 9% had no reports of toxicity yet had at least one literature citation indicative of
the lack of hepatotoxicity. Even though this type of analysis is difficult to interpret with
certainty due to potentially varying quality of the studies reporting toxicity, or lack thereof
(e.g., differences in experimental design, randomization, use of appropriate controls,
potential for conflicts of interests in funding, etc.), it provides additional support to the
utility of QSAR models developed. In addition, we have determined that certain toxicity
mechanisms, as curated by BiowisdomR, are most frequently reported for the compounds
predicted as active. This dataset contains putative assertional meta-data from publicly
accessible information on >6,000 liver pathologies, physiological processes, or clinical
chemistry liver biomarkers. The “apoptosis” category was significantly under-represented in
compounds predicted as active by our models. It is possible that chemicals predicted as
hepatotoxic would exert their action by causing necrosis, not apoptosis.

To explore if simple chemical determinants, rather than complex QSAR models, could
discriminate “active” from “inactive” compounds, we have performed a chemical fragment-
based analysis. Specifically, we calculated 2D fragment descriptors, as detailed in (40), for
each compound and considered whether difference exists in the fragment distribution within
actives and inactive classes. This analysis showed that no single descriptor is predictive. For
example, if only one fragment descriptor was used to develop a model based on the same
modelling set mentioned above, the highest CCR of the prediction result of the same
external compounds is 0.28, as compared to CCR of 0.85 for the QSAR model developed in
this study.
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To attempt further mechanistic exploration of the modeling outcomes, we also mapped
structural descriptors onto compounds predicted to be active and observed that several
descriptors that were frequently used in statistically significant models are associated with
the metabolism and activation of the compounds (Figure 3). One of the most frequently used
descriptors in our models quantifies the number of hydroxyl groups attached to an aromatic
ring. One example of a compound predicted as active is methyldopa (Figure 3A).
Methyldopa has been found to cause hepatitis in humans, presumably via protein binding
and immune reaction (41). Immune reactions may be triggered by haptens formed by drug
molecules binding to liver proteins, or by redox imbalance (42). Methyldopa contains two
aromatic hydroxyl groups which have been shown to form methyldopa semiquinone and
methyldopa quinone (43). The metabolism of aromatic hydroxyl groups to semiquinones or
quinones is known to promote oxidative stress in hepatocytes (44), as well as result in
formation of reactive electrophile metabolites that may form covalent bonds with cellular
proteins (45). Interestingly, the formation of protein-bound cytotoxic quinone electrophiles
can also occur through cytochrome P450-mediated one-electron oxidation of the phenolic
hydroxyl group, yielding phenoxy radical which may be further converted to an unstable
hemiketal followed by spontaneous ring opening. This mechanism was shown to be of
relevance for a number of known toxicants, including aryl ethers (46), para-substituted
phenols (47), and thiazolidinediones (48).

Two other chemical descriptors were found to be frequently used in our models, one related
to pyrimidines, and the other related to aromatic amines. Trimethoprim, an antibacterial
drug, contains an aminopyrimidine moiety, which consists of a pyramidine and two aromatic
amines (Figure 3B). Trimethoprim was predicted to be active and is known to cause
hepatotoxicity. Trimethoprim may exert toxicity by the activation of the aminopyrimidine
moiety to an iminoquinone, which may cause oxidative stress in hepatocytes, or bind to
cellular proteins, possibly explaining hypersensitivity and resultant liver damage (49).

It should be noted, however, that the limited accuracy of our models in predicting relatively
structurally similar compounds is the challenge which suggests that in some cases chemical
mechanisms alone may not account for the toxic potential. For example, ibuprofen is a
commonly used over-the-counter analgesic drug generally considered safe with regards to
the liver. Ibufenac differs structurally from ibuprofen by a single methyl group, but is known
to cause hepatotoxicity in humans. It was suggested that current in silico methodologies may
be limited not only by their limited coverage of chemical space, but also due to lack of
understanding of the complexities of human risk factors and disease pathways (50). Perhaps
in these cases the differential toxicity may arise from metabolic transformations, or the
complex disease pathways or other risk factors dependent on the genetic polymorphisms or
environmental conditions. Thus, inclusion of the relevant toxicity pathway-based biological
data together with chemical descriptors may improve predictive ability and coverage of the
models, an approach that was shown to be successful (33) in predicting carcinogenicity.

In addition, we acknowledge the fact that spontaneous reporting of adverse drug events has
many important limitations, some of which have been addressed by the FDA during the
compilation of the HLAED. While it is difficult to estimate how many individuals are
exposed to a drug, the FDA has attempted to correct for this by using shipping units to
calculate the report index for the HLAED. It is also possible that the reports available may
be incomplete or inaccurate, and due to the voluntary nature of reporting, it can be assumed
that adverse events may be underreported. Another limitation of HLAED is that it contains
data from the United States only. Different countries fall under separate regulatory agencies,
and reporting procedures may vary from country to country, making it difficult to compare
or compile data between countries (51). Despite these limitations, HLAED does provide
important human liver AED data, information that enables research.
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In conclusion, this study shows that a limited database of human liver AED information can
be used to create QSAR models with high sensitivity and specificity for validation in
external datasets. This conclusion is in agreement with the recent reports on a much larger
version of the same database available to the FDA scientists (9). We applied these models to
in silico screening of several large databases of drugs and concluded that while the coverage
of our models is a limitation, the approach yields results that stand up to validation with
literature search. Furthermore, we conclude that our model may be predictive for
compounds which cause hepatotoxicity via an oxidative stress mechanism demonstrating
that chemical structure may be linked to a particular biological mechanism of toxicity.
QSAR models of human AEDs may serve as important tools that may augment in vitro and
in vivo drug testing methods which by themselves may not be adequate for prediction of
AEDs (4;5). Our models may be useful to prioritize compounds for pre-clinical screening
and may reduce attrition rates associated with clinical and post-marketing liver AEDs.
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Figure 1.
Predictive QSAR modeling workflow.
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Figure 2.
Results of screening compounds in World Drug Index (A), Prestwick Chemical Library (B),
and BiowisdomR Liver Intelligence Module (C) databases.
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Figure 3.
Chemical descriptors used frequently for prediction of compounds as active. (A) For
methyldopa, descriptors nArOH (yellow, number of aromatic hydroxyls) and nRCOOH
(green, number of aliphatic carboxylic acids) are shown. (B) For trimethoprim, descriptors
nPyrimidines (purple, number of pyrimidines) and nArNH2 (blue, number of aromatic
amines) are shown. Chemical moieties involved in toxicity are highlighted in red.
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Table 2

Accuracy of prediction of external test sets using kNN.

(A) Composite liver enzyme score
Consensus Prediction

Database Actives Database Inactives

Predicted Actives 14 5

Predicted Inactives 1 17

Sensitivity 73.7%

Specificity 94.4%

Overall Predictive Power* 84.1%

CCR** 0.85

(B) AST activity
Consensus Prediction

Database Actives Database Inactives

Predicted Actives 14 2

Predicted Inactives 1 25

Sensitivity 87.5%

Specificity 96.2%

Overall Predictive Power* 91.85%

CCR** 0.93

(C) ALT activity
Consensus Prediction

Database Actives Database Inactives

Predicted Actives 6 4

Predicted Inactives 3 23

Sensitivity 60%

Specificity 88.5%

Overall Predictive Power* 74.2%

CCR** 0.76

*
The average between sensitivity and specificity.

**
Correct Classification Rate (see Methods).
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