8 research outputs found

    A Graph Traversal Based Framework for Sequential Logic Implication with an Application to C-Cycle Redundancy Identification

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratorySemiconductor Research Corporation / SRC 96-DP-109 and SRC 97-DS-482DARPA / DABT63-95-C-0069Hewlett-Packar

    UA2TPG: An untestability analyzer and test pattern generator for SEUs in the configuration memory of SRAM-based FPGAs

    Get PDF
    This paper presents UA2TPG, a static analysis tool for the untestability proof and automatic test pattern generation for SEUs in the configuration memory of SRAM-based FPGA systems. The tool is based on the model-checking verification technique. An accurate fault model for both logic components and routing structures is adopted. Experimental results show that many circuits have a significant number of untestable faults, and their detection enables more efficient test pattern generation and on-line testing. The tool is mainly intended to support on-line testing of critical components in FPGA fault-tolerant systems

    Analysis and Test of the Effects of Single Event Upsets Affecting the Configuration Memory of SRAM-based FPGAs

    Get PDF
    SRAM-based FPGAs are increasingly relevant in a growing number of safety-critical application fields, ranging from automotive to aerospace. These application fields are characterized by a harsh radiation environment that can cause the occurrence of Single Event Upsets (SEUs) in digital devices. These faults have particularly adverse effects on SRAM-based FPGA systems because not only can they temporarily affect the behaviour of the system by changing the contents of flip-flops or memories, but they can also permanently change the functionality implemented by the system itself, by changing the content of the configuration memory. Designing safety-critical applications requires accurate methodologies to evaluate the system’s sensitivity to SEUs as early as possible during the design process. Moreover it is necessary to detect the occurrence of SEUs during the system life-time. To this purpose test patterns should be generated during the design process, and then applied to the inputs of the system during its operation. In this thesis we propose a set of software tools that could be used by designers of SRAM-based FPGA safety-critical applications to assess the sensitivity to SEUs of the system and to generate test patterns for in-service testing. The main feature of these tools is that they implement a model of SEUs affecting the configuration bits controlling the logic and routing resources of an FPGA device that has been demonstrated to be much more accurate than the classical stuck-at and open/short models, that are commonly used in the analysis of faults in digital devices. By keeping this accurate fault model into account, the proposed tools are more accurate than similar academic and commercial tools today available for the analysis of faults in digital circuits, that do not take into account the features of the FPGA technology.. In particular three tools have been designed and developed: (i) ASSESS: Accurate Simulator of SEuS affecting the configuration memory of SRAM-based FPGAs, a simulator of SEUs affecting the configuration memory of an SRAM-based FPGA system for the early assessment of the sensitivity to SEUs; (ii) UA2TPG: Untestability Analyzer and Automatic Test Pattern Generator for SEUs Affecting the Configuration Memory of SRAM-based FPGAs, a static analysis tool for the identification of the untestable SEUs and for the automatic generation of test patterns for in-service testing of the 100% of the testable SEUs; and (iii) GABES: Genetic Algorithm Based Environment for SEU Testing in SRAM-FPGAs, a Genetic Algorithm-based Environment for the generation of an optimized set of test patterns for in-service testing of SEUs. The proposed tools have been applied to some circuits from the ITC’99 benchmark. The results obtained from these experiments have been compared with results obtained by similar experiments in which we considered the stuck-at fault model, instead of the more accurate model for SEUs. From the comparison of these experiments we have been able to verify that the proposed software tools are actually more accurate than similar tools today available. In particular the comparison between results obtained using ASSESS with those obtained by fault injection has shown that the proposed fault simulator has an average error of 0:1% and a maximum error of 0:5%, while using a stuck-at fault simulator the average error with respect of the fault injection experiment has been 15:1% with a maximum error of 56:2%. Similarly the comparison between the results obtained using UA2TPG for the accurate SEU model, with the results obtained for stuck-at faults has shown an average difference of untestability of 7:9% with a maximum of 37:4%. Finally the comparison between fault coverages obtained by test patterns generated for the accurate model of SEUs and the fault coverages obtained by test pattern designed for stuck-at faults, shows that the former detect the 100% of the testable faults, while the latter reach an average fault coverage of 78:9%, with a minimum of 54% and a maximum of 93:16%

    Improving rewiring scheme and its applications on various circuit design problems.

    Get PDF
    Lo Wing Hang.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 60-61).Abstracts in English and Chinese.Abstract --- p.iChapter 1 --- Introduction --- p.1Chapter 2 --- Preliminaries --- p.5Chapter 2.1 --- Backgrounds and Definitions --- p.5Chapter 2.1.1 --- Boolean Network --- p.5Chapter 2.1.2 --- Transitive Fanin and Fanout Cone --- p.6Chapter 2.1.3 --- Controlling and Sensitizing Values --- p.6Chapter 2.1.4 --- Stuck-at Faults and Test Generation --- p.6Chapter 2.1.5 --- Mandatory Assignments --- p.8Chapter 2.2 --- Review of ATPG-based Rewiring --- p.9Chapter 3 --- Improved Single-Pass Rewiring Scheme Using Inconsistent Assignments --- p.14Chapter 3.1 --- Introduction --- p.14Chapter 3.2 --- Overview of FIRE --- p.15Chapter 3.3 --- Alternative Wire Identification Method --- p.17Chapter 3.3.1 --- Identifying Candidate Wires --- p.17Chapter 3.3.2 --- Redundancy Test on Candidate Wire --- p.18Chapter 3.4 --- Redundancy Identification Using Inconsistent Assignments --- p.21Chapter 3.5 --- Experimental Results --- p.26Chapter 3.6 --- Conclusions --- p.28Chapter 4 --- Improving Circuit Partitioning With Rewiring Techniques --- p.29Chapter 4.1 --- Introduction --- p.29Chapter 4.2 --- Implementation of Rewiring Schemes --- p.31Chapter 4.3 --- Coupling Partitioning Algorithm With Rewiring Techniques --- p.33Chapter 4.4 --- Experimental Results --- p.37Chapter 4.5 --- Conclusions --- p.43Chapter 5 --- Circuit Logic Level Reduction by Rewiring for FPGA Mapping --- p.45Chapter 5.1 --- Introduction --- p.45Chapter 5.2 --- Overview of the Technology Mapping Problem --- p.47Chapter 5.2.1 --- Problem Formulation --- p.47Chapter 5.2.2 --- FlowMap Algorithm Outline --- p.49Chapter 5.3 --- Logic Level Reduction by Rewiring Transformations --- p.51Chapter 5.4 --- Experimental Results --- p.54Chapter 5.5 --- Conclusions --- p.57Chapter 6 --- Conclusions and Future Works --- p.58Bibliography --- p.6

    Hardware Trojan Detection in Third Party Digital IP Cores

    Get PDF
    Due to Globalization outsourcing of SoC designs either for verification, testing and fabrication has become inevitable. Modern System on chip (SoC) is complex process. Modern SoC‟s can be designed time effectively and cost effectively with the help of third party Intellectual Property (IP) core vendors. Various processors cores (like ARM, Power PC), communication controllers (CAN, Zigbee) and control cores (PWM, Analog comparator) will get incorporated into SoC‟s, which are supplied by different vendors. The original SoC manufacturers are IP integrators, targeting a particular application. In this process, various issues like IP protection, IP rights and problem of malicious IP‟s will arise. Recent addition in this list is Hardware Trojans (HT). HT‟s can be included by rogue designer in design house or at overseas fabrication factories. The objective of these HT‟s includes manipulating the functionality of the chip, leaking confidential information and destroying the system. HT‟s included in the design phase must be weeded out during verification phase. Still now, there is no concrete method or golden rule in the existing verification framework to detect the HT‟s. Various verification metrics like code coverage, functional coverage and verification methodologies like OVM or UVM will be helpful in detecting HT‟s. Formal verification is also useful. A comprehensive framework using all verification metrics is very much required to detect HT‟s. We will address this issue in our thesis. Secondly, static timing analysis (STA) and power analysis (PA) can be used to detect HT‟s included at both design phase and also in fabrication. In our proposed framework, we will incorporate verification metrics, formal verification, STA and PA to detect HT‟s. In this report, we apply DFT techniques and standard verification metrics to detect the hardware Trojans. The microprocessors and cryptographic designs are most vulnerable for hardware Trojan attacks. The Advanced Encryption Standard (AES) and RSA Trojan benchmarks from Trust Hub are used to verify the existing test principles like stuck at fault (SAF), path delay faults (PDF) are capable of detecting Trojans in Benchmarks. Results and analysis is presented in this report. Also Novel Trojan Benchmarks designs were proposed to eliminate the existing weaknesses in AES Benchmarks

    Efficient alternative wiring techniques and applications.

    Get PDF
    Sze, Chin Ngai.Thesis (M.Phil.)--Chinese University of Hong Kong, 2001.Includes bibliographical references (leaves 80-84) and index.Abstracts in English and Chinese.Abstract --- p.iAcknowledgments --- p.iiiCurriculum Vitae --- p.ivList of Figures --- p.ixList of Tables --- p.xiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Motivation and Aims --- p.1Chapter 1.2 --- Contribution --- p.8Chapter 1.3 --- Organization of Dissertation --- p.10Chapter 2 --- Definitions and Notations --- p.11Chapter 3 --- Literature Review --- p.15Chapter 3.1 --- Logic Reconstruction --- p.15Chapter 3.1.1 --- SIS: A System for Sequential and Combinational Logic Synthesis --- p.16Chapter 3.2 --- ATPG-based Alternative Wiring --- p.17Chapter 3.2.1 --- Redundancy Addition and Removal for Logic Optimization --- p.18Chapter 3.2.2 --- Perturb and Simplify Logic Optimization --- p.18Chapter 3.2.3 --- REWIRE --- p.21Chapter 3.2.4 --- Implication-tree Based Alternative Wiring Logic Trans- formation --- p.22Chapter 3.3 --- Graph-based Alternative Wiring --- p.24Chapter 4 --- Implication Based Alternative Wiring Logic Transformation --- p.25Chapter 4.1 --- Source Node Implication --- p.25Chapter 4.1.1 --- Introduction --- p.25Chapter 4.1.2 --- Implication Relationship and Implication-tree --- p.25Chapter 4.1.3 --- Selection of Alternative Wire Based on Implication-tree --- p.29Chapter 4.1.4 --- Implication-tree Based Logic Transformation --- p.32Chapter 4.2 --- Destination Node Implication --- p.35Chapter 4.2.1 --- Introduction --- p.35Chapter 4.2.2 --- Destination Node Relationship --- p.35Chapter 4.2.3 --- Destination Node Implication-tree --- p.39Chapter 4.2.4 --- Selection of Alternative Wire --- p.41Chapter 4.3 --- The Algorithm --- p.43Chapter 4.3.1 --- IB AW Implementation --- p.43Chapter 4.3.2 --- Experimental Results --- p.43Chapter 4.4 --- Conclusion --- p.45Chapter 5 --- Graph Based Alternative Wiring Logic Transformation --- p.47Chapter 5.1 --- Introduction --- p.47Chapter 5.2 --- Notations and Definitions --- p.48Chapter 5.3 --- Alternative Wire Patterns --- p.50Chapter 5.4 --- Construction of Minimal Patterns --- p.54Chapter 5.4.1 --- Minimality of Patterns --- p.54Chapter 5.4.2 --- Minimal Pattern Formation --- p.56Chapter 5.4.3 --- Pattern Extraction --- p.61Chapter 5.5 --- Experimental Results --- p.63Chapter 5.6 --- Conclusion --- p.63Chapter 6 --- Logic Optimization by GBAW --- p.66Chapter 6.1 --- Introduction --- p.66Chapter 6.2 --- Logic Simplification --- p.67Chapter 6.2.1 --- Single-Addition-Multiple-Removal by Pattern Feature . . --- p.67Chapter 6.2.2 --- Single-Addition-Multiple-Removal by Combination of Pat- terns --- p.68Chapter 6.2.3 --- Single-Addition-Single-Removal --- p.70Chapter 6.3 --- Incremental Perturbation Heuristic --- p.71Chapter 6.4 --- GBAW Optimization Algorithm --- p.73Chapter 6.5 --- Experimental Results --- p.73Chapter 6.6 --- Conclusion --- p.76Chapter 7 --- Conclusion --- p.78Bibliography --- p.80Chapter A --- VLSI Design Cycle --- p.85Chapter B --- Alternative Wire Patterns in [WLFOO] --- p.87Chapter B.1 --- 0-local Pattern --- p.87Chapter B.2 --- 1-local Pattern --- p.88Chapter B.3 --- 2-local Pattern --- p.89Chapter B.4 --- Fanout-reconvergent Pattern --- p.90Chapter C --- New Alternative Wire Patterns --- p.91Chapter C.1 --- Pattern Cluster C1 --- p.91Chapter C.1.1 --- NAND-NAND-AND/NAND;AND/NAND --- p.91Chapter C.1.2 --- NOR-NOR-OR/NOR;AND/NAND --- p.92Chapter C.1.3 --- AND-NOR-OR/NOR;OR/NOR --- p.95Chapter C.1.4 --- OR-NAND-AND/NAND;AND/NAND --- p.95Chapter C.2 --- Pattern Cluster C2 --- p.98Chapter C.3 --- Pattern Cluster C3 --- p.99Chapter C.4 --- Pattern Cluster C4 --- p.104Chapter C.5 --- Pattern Cluster C5 --- p.105Glossary --- p.106Index --- p.10

    Resilience of an embedded architecture using hardware redundancy

    Get PDF
    In the last decade the dominance of the general computing systems market has being replaced by embedded systems with billions of units manufactured every year. Embedded systems appear in contexts where continuous operation is of utmost importance and failure can be profound. Nowadays, radiation poses a serious threat to the reliable operation of safety-critical systems. Fault avoidance techniques, such as radiation hardening, have been commonly used in space applications. However, these components are expensive, lag behind commercial components with regards to performance and do not provide 100% fault elimination. Without fault tolerant mechanisms, many of these faults can become errors at the application or system level, which in turn, can result in catastrophic failures. In this work we study the concepts of fault tolerance and dependability and extend these concepts providing our own definition of resilience. We analyse the physics of radiation-induced faults, the damage mechanisms of particles and the process that leads to computing failures. We provide extensive taxonomies of 1) existing fault tolerant techniques and of 2) the effects of radiation in state-of-the-art electronics, analysing and comparing their characteristics. We propose a detailed model of faults and provide a classification of the different types of faults at various levels. We introduce an algorithm of fault tolerance and define the system states and actions necessary to implement it. We introduce novel hardware and system software techniques that provide a more efficient combination of reliability, performance and power consumption than existing techniques. We propose a new element of the system called syndrome that is the core of a resilient architecture whose software and hardware can adapt to reliable and unreliable environments. We implement a software simulator and disassembler and introduce a testing framework in combination with ERA’s assembler and commercial hardware simulators

    Adaptive Search and Constraint Optimisation in Engineering Design

    Get PDF
    The dissertation presents the investigation and development of novel adaptive computational techniques that provide a high level of performance when searching complex high-dimensional design spaces characterised by heavy non-linear constraint requirements. The objective is to develop a set of adaptive search engines that will allow the successful negotiation of such spaces to provide the design engineer with feasible high performance solutions. Constraint optimisation currently presents a major problem to the engineering designer and many attempts to utilise adaptive search techniques whilst overcoming these problems are in evidence. The most widely used method (which is also the most general) is to incorporate the constraints in the objective function and then use methods for unconstrained search. The engineer must develop and adjust an appropriate penalty function. There is no general solution to this problem neither in classical numerical optimisation nor in evolutionary computation. Some recent theoretical evidence suggests that the problem can only be solved by incorporating a priori knowledge into the search engine. Therefore, it becomes obvious that there is a need to classify constrained optimisation problems according to the degree of available or utilised knowledge and to develop search techniques applicable at each stage. The contribution of this thesis is to provide such a view of constrained optimisation, starting from problems that handle the constraints on the representation level, going through problems that have explicitly defined constraints (i.e., an easily computed closed form like a solvable equation), and ending with heavily constrained problems with implicitly defined constraints (incorporated into a single simulation model). At each stage we develop applicable adaptive search techniques that optimally exploit the degree of available a priori knowledge thus providing excellent quality of results and high performance. The proposed techniques are tested using both well known test beds and real world engineering design problems provided by industry.British Aerospace, Rolls Royce and Associate
    corecore