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ABSTRACT 

The dissertation presents the investigation and development of novel adaptive 

computational techniques that provide a high level of performance when searching 

complex high-dimensional design spaces characterised by heavy non-linear constraint 

requirements. The objective is to develop a set of adaptive search engines that will allow 

the successful negotiation of such spaces to provide the design engineer with feasible high 

performance solutions. 

Constraint optimisation currently presents a major problem to the engineering designer and 

many attempts to utilise adaptive search techniques whilst overcoming these problems are 

in evidence. The most widely used method (which is also the most general) is to 

incorporate the constraints in the objective function and then use methods for 

unconstrained search. The engineer must develop and adjust an appropriate penalty 

function. There is no general solution to this problem neither in classical numerical 

optimisation nor in evolutionary computation. Some recent theoretical evidence suggests 

that the problem can only be solved by incorporating a priori knowledge into the search 

engine. 

Therefore, it becomes obvious that there is a need to classify constrained optimisation 

problems according to the degree of available or utilised knowledge and to develop search 

techniques applicable at each stage~ The contribution of this thesis is to provide such a 

view of constrained optimisation, starting from problems that handle the constraints on the 

representation level, going through problems that have explicitly defined constraints (i.e., 

an easily computed closed form like a solvable equation), and ending with heavily 

constrained problems with implicitly defined constraints (incorporated into a single 

simulation model). At each stage we develop applicable adaptive search techniques that 

optimally exploit the degree of available a priori knowledge thus providing excellent 

quality of results and high performance. The proposed techniques are tested using both well 

known test beds and real world engineering design problems provided by industry. 
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CHAPTER 1 

Introduction 

1.1 Engineering Design and Optimality Issues 

Engineering design does not seem to have a universally accepted definition. To some its 

important aspect is a broad planning function in which the general outline and form of a 

project are decided. To others it has an inventive connotation, describing the process of 

devising or selecting a solution to an engineering problem. The goal of the design process 

may range from providing a practical solution to a problem where none is previously 

known to improving on or replacing an existing design . 

Design is usually referred to as the process of constructing a description of an artifact that 

satisfies a (possibly informal) functional specification, meets certain perfonnance criteria 

and resource limitations, is realisable in a given target technology, and satisfies criteria 

such as simplicity, testability, manufacturability, reusability, etc. 

Design is a complex human activity and different models of design have been proposed by 

various researchers. Fig. 1.1 illustrates the main features of a process based design model 

described by Gero [Gero, 92]. In this model, design is considered to consist of a number of 

distinct activities that are carried out between different design states. In many cases design 



Design States 

F = Set of design functions 
Be = Set of expected behaviours 
Bs =Set of predicted behaviours 
D = Design description 
S = Design structure 

Design Activities 

F 
__.. 

Be 
s __.. 

Bs 
Be __.. s 
Bs __.. Be 
s __.. Be 
s __.. D 

F 

Formulation 

Formulation 
Analysis 
Synthesis 
Evaluation 
Reformulation 
Production 

Synthesis 
reform ulation 

Evaluation 

Production 

s ---- - ... D 

Analysis 

Fig. 1.1. Activities in design 
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can be viewed as a process of successive refinements where initially a design consists of a 

set of design functions (F) and a related set of expected behaviours (Be). As the process of 

design progresses, the design structure becomes more clearly defined until finally a 

satisfactory structure is obtained (S). At the initial design stage, it is likely that the expected 

behaviour (Be) and predicted behaviour (B.) will be quite different, however as a design 

progresses predicted behaviour should approach expected behaviour. 

In many design problems there are several possible alternative design concepts: for 

example, a girder for a highway bridge can be concrete or steel, and once the material is 

chosen, several approaches to using it are possible. Within these design concepts, there are 

variables which specify the dimensions, proportions, and other details of the item. 

Throughout this dissertation, we will adopt the point of view that a range of designs exist 

within a preselected design concept (usually implemented as a simulation model), and we 

will develop methods of choosing values to the quantities which prescribe the design. The 

optimum design aspect arises because we assume that these values are to be chosen in such 

a way that the design will be the one that satisfies all the limitations and restrictions (i.e., 

constraints) placed on it and is best in some sense. Our approach also considers those cases 

in which the major problem is to find any acceptable design in the presence of restrictions 

so severe or complicated that it is not clear how to proceed. 

In other words, we will assume throughout the text that the engineering design problem has 

already been idealised, i.e., that a design concept has already been selected and that the 

design has been idealised into a mathematical (or computer simulation) model. While it 

may be said that this approach side-steps some of the most important questions in 

engineering, it should be emphasised that the main objective and contribution of this 
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dissertation is the development of a core of adaptive search design tools for decision 

support and not the design itself. 

It should also be emphasised at this point that "a design" is simply a set of values for the 

design variables. Even if the design is patently absurd (e.g., negative areas) or inadequate 

in terms of function, it can still be called design. Clearly some designs are useful solutions 

to the design problem and others are not. If a design meets all the requirements placed on 

it, it will be called a feasible design or an acceptable design; the complement of the set of 

feasible designs will be called infeasible or unacceptable designs. 

The design restrictions that must be satisfied in order to produce an acceptable design are 

collectively called constraints. The notion of constraint is central to design. Indeed, design 

has been often conceived as a process of expressing and exploring constraints. This 

certainly derives from the nature of design problems: something new must be created; 

human imagination is able to generate various possibilities; but this capacity and the 

alternatives it proposes must be managed by consideration of what is feasible. Constraints 

serve this purpose. They express relations among properties or variables of the proposed 

artifact and its environment or context [Maher, 89]. "Constraints are the rules, 

requirements, relations, conventions, and principles that define the context of designing" 

[Gross et. al., 87]. 

We can identify two categories or kinds of constraints in engineering problems: side 

constraints and behaviour constraints. These categories are not necessarily definitive, as it 

may not always be easy to classify constraints in this way. However, since the 

classifications are mainly for convenience of communication, this is not a serious 

difficulty. A constraint that restricts the range of design variables for reasons other than the 
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direct consideration of performance is called a side constraint. A constraint that derives 

from behaviour requirements that are explicitly considered will be called a behaviour 

constraint. Another type of constraint which arises in some engineering problems is that of 

the discrete-valued design variable. In such cases the design variable is not to be selected 

from a continuous range of values but is permitted to take on only one of a discrete set of 

values. Such constraints can be very troublesome and it is usually the advantage of 

evolutionary population based search strategies that they can handle them quite efficiently. 

Although the above classification of constraints is well established, it is difficult to classify 

problems according to it, since many real world problems include both side and behaviour 

constraints and discrete variables. Therefore, in this dissertation we will classify 

constrained problems by the way constraints are defined and expressed (sect. 1.5). The 

main reason behind this choice of taxonomy is that it greatly determines the choice of an 

appropriate optimisation tool as will be seen throughout the text. 

Sometimes it is possible to incorporate all the restrictions imposed on the design into a 

single well-defined mathematical function (model). Each point from the domain of the 

function is a feasible design, leaving the main concern of searching for a "better" feasible 

solution. In other problems, restrictions are formulated explicitly and it is now up to the 

optimiser to combine them (possibly incorporating a priori preference information, i.e., 

degrees of "softness" and "hardness" of the constraints) in order to avoid infeasible 

designs. In many other engineering problems it is not even possible or practical to write 

explicit expressions for the constraints in terms of the design variables. For example, in a 

problem in which the stress is the final result of a finite difference computation or matrix 

inversion, the constraint cannot in general be put in an explicit form. More will be said 

later about this question. It suffices for now to state that the function which is limited by 
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the constraint must be a computable function of the design variables. This is not to say that 

the existence of explicit expressions for the behaviour functions is immaterial. On the 

contrary, this consideration often dictates the choice of optimisation method. 

Of all feasible designs, some are "better" than others. If this is true, then there must be 

some quality that the better designs have more of than the less desirable ones do. If this 

quality can be expressed as a computable function of the design variables, we can consider 

optimising to obtain a "best" design. The function with respect to which the design is 

optimised is called the objective (also cost or fitness) function. The selection of an 

objective function can be one of the most important decisions in the whole optimum design 

process. In some situations an obvious objective function exists. Clearly good airplanes are 

not only light, but also have high payloads, long range, are economical to operate, 

inexpensive to buy, use reasonable runway length, etc. Care must be taken to optimise with 

respect to the objective function which most nearly reflects the true goals of the design 

problem. But experience shows that it is not always easy to decide whether a design 

characteristic should be associated with the objective function or with constraints. Let's 

consider the design of a disc brake, for which we assume the criterion is minimum stopping 

time. If we confront a vehicle project engineer with the problem he may well consider the 

stopping time for the vehicle as an acceptable design as long as it meets certain 

specifications. However, if we insist that the project engineer really think about how the 

performance characteristics affect the overall vehicle values, then he may begin to question 

the rigidity of the specifications. He may then decide that they all should be really in the 

objective function. Therefore, we say that we are in an area of intersection between the 

specification decision problem and the optimisation decision problem. This presents a 

dilemma: should an arbitrary decision be made on "hard" specifications for a design, based 
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on judgement, or should it be incorporated into the optimisation function as "soft" 

specifications. 

1.2 On Reality and Models 

It has been acknowledged that the necessary knowledge to model practical engineering 

systems and thereby capturing the breadth and depth of an engineer's expertise will be 

orders of magnitude larger than today's qualitative physics [Falkenhainer and Forbus, 88]. 

Engineering researchers have stressed that the complexity associated with modelling makes 

this task very difficult and argue that practical modelling systems are still some time away 

[Zienkiewicz and Zhu, 91]. As an example consider the protein-folding problem (i.e., given 

a linear sequence of amino acids, into what three-dimensional configuration will the 

sequence fold?). It is often stated that the protein-folding problem is NP-complete. It is 

crucial, however, to note that there are four worlds that come into play (fig. 1.2). Above the 

horizontal line are two real worlds; the world of bio-chemical phenomena and the 

computer world, where simulations are performed. These are worlds of atoms and 

electrons. Below the horizontal line are two formal models; a mathematical model of the 

bio-chemical phenomenon and a model of computation. In the formal models, 

representations are in bits. The mathematical model is an abstraction of the natural world 

while the model of computation is an abstraction of the computer world. The statement 

"protein-folding is NP-complete" eo-mingles a real-world phenomenon with formal 

models. This is not an uncommon shortcut but if we are to make progress on a theory and 

practice of scientific and technological limits, it will be important to keep the distinction 

between reality and models clear. 
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Real-World 
Phenomena 

Mathematical 
Model 

Computer 
Simulation 

Model of 
Computation 

Fig. 1.2. Four worlds [Traub, 96]. 

s 

Fig. 1.3. Difference between the mathematical and computer simulated outputs 
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The mathematical problem to be solved is specified by the operator S (fig. I .3) that maps 

the mathematical input, lm. into the mathematical output Om. This is very general since one 

can think of all computation as mapping inputs into outputs. Usually the mathematical 

input is a real multivariate function. Such a function cannot be input to a digital computer. 

Thus the function has to be replaced by a finite set of numbers, say, evaluating the function 

at a finite number of points. The operator N maps the mathematical input, lm. into the 

computer input le. It is crucial that N is a many-to-one operator, i.e., knowing le does not 

give us lm. Indeed, there are typically an infinite number of indistinguishable mathematical 

inputs corresponding to a computer input. A computer algorithm maps the computer input, 

le, into the computer output Oe. Note that Oe'#Om. Since N is many-to-one, we can't know 

which mathematical problem we are solving and therefore can, at best, solve the problem 

only approximately. Mathematically stated, N composed with l/J does not commute with S. 

This problem has been widely recognised in the Plymouth Engineering Design Centre 

[Parmee, 95a] where a far broader view of optimal engineering design has been 

established. The main objective is to identify an optimal design direction rather than 

optimal design solutions, which follows directly from the iterative nature of the design 

process (fig. 1.4) and the uncertainties in the models during the preliminary stages of the 

design. The identification of optimal direction relies upon a highly interactive process 

involving computer-based search tools, the development of which is the main contribution 

of this dissertation, engineering heuristics and design team decision making. 
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1.3 The Role of Artificial Intelligence in Engineering Design 

The late 1950s and the 1960s saw the development of the search paradigm within the field 

of Artificial Intelligence. Books such as "Computers and Thought" [Feigenbaum et. al., 

63], which appeared in 1963, were full of descriptions of various weak methods whose 

power lay in being able to view the solving of a particular kind of problem as a search 

space. In the late 1960s, the notion of heuristic search was developed, to account for the 

need to search large spaces effectively. 

Nonetheless, most of the problems considered in those early days were what are now 

commonly called "toy problems". As the 1970s began, many practitioners in the field were 

concerned that the weak methods, though general, would never be powerful enough to 

solve real problems effectively; the search spaces would just be too large. Their main 

criticisms of the earlier work were that solving the toy examples required relatively little 

knowledge about the domain, and that the weak methods required knowledge to be used in 

very restrictive and often very weak ways. For example, in state space search, if knowledge 

about the domain is used, it must be expressed as either operators or evaluation functions, 

or else in the choice of the state space representation. The "weak method" critics took 

another approach, being primarily concerned with acquiring all the relevant knowledge 

into some usable form. Thus was born the "expert systems" paradigm. 

During the 1970s, at the same time as many researchers were swinging to the "power" end 

of the "generality-power" trade-off curve in their explorations, others were striking a 

middle ground [Dixon, 86]. Some researchers, realising the limitations of the weak 

methods, began enriching the set of general building blocks out of which search algorithms 

could be configured. 
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Currently, AI contributes the notion of the design process as a search through a space of 

alternative designs; the synthesis tools are used to help generate new points in this space; 

the analysis tools are used to evaluate the consistency, correctness and quality of these 

points; the idea of search is used to guarantee that systematic progress is made in the use 

and re-use of the tools to generate new designs or design versions. 

The price paid for search is efficiency, as the search space is generally quite large. 

Exhaustive search of the space is usually intractable; however, a search which focuses its 

attention on restricted but "promising" subspaces of the complete design space may trade 

away the guarantee of an optimal solution (provided by exhaustive search), in return for 

decrease in overall design time [Parmee and Denham, 94]. In this respect good control 

heuristics help. Control heuristics may either be domain-specific or domain-independent. 

"Spend much of the available design time optimising the component that is a bottleneck 

w.r.t. the most tightly restricted resource" is an example of a domain-independent heuristic, 

while "Spend much of the available design time optimising the datapath" is a domain

specific version of this heuristic that applies to certain situations in the microprocessor 

design domain. Designing appropriate control heuristics is a current state-of-the-art in 

optimal engineering design. 

It is also worth noting a common misunderstanding which frequently arises between AI 

researchers who develop experimental Computer-Aided Design (CAD) tools, and 

traditional CAD tool developers in a particular design area who specialise in developing 

new design tools that will be usable in production mode in the near-term future. The CAD 

tool developers accuse the AI researchers of being too general. On the other hand, the AI 

researchers criticise the traditional CAD tool researchers of creating overly brittle systems. 

Confusion arises because these two types of researchers do not share the same research 
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goals. Traditional CAD tool developers seek to reduce the effort in creating new designs. 

Most AI researchers aim at reducing the effort in developing new design tools. Both 

research domains are worthy enterprises. The former goal requires the design tools to be 

powerful. The latter requires the methodology for constructing the tool to be general, and 

thus sometimes requires the design tool itself to be an instance of a general form rather 

than a custom-built tool. 

In this dissertation we adopt an AI perspective of the engineering design process but most 

importantly we attempt to bring the gap between the two views closer by means of 

examples showing how to specialise generic adaptive search tools to particular engineering 

design applications. For this purpose a core of generic adaptive search engines is used in a 

variety of design contexts throughout the dissertation. 

1.4 Previous Research 

The optimisation problem is, in general, to find the optimum (maximum or minimum) 

value of a function in a given domain and to find the values of the variables where the 

optimum is reached in this domain. Global optimisation usually means to solve the 

optimisation problem in an unbounded area. Local optimisation means to solve the 

optimisation problem locally, that is, in the neighbourhood of a given point. Local 

oplimisation has been investigated in depth; it has rich theory and many excellent 

numerical methods and recipes are available [Gill et. al., 81][Press et. al., 92]. Global 

optimisation, on the other hand, is a recent area which has been only partially researched 

[Tom et. al., 88][Ratschek, 88]. Many theories have to be developed and many numerical 

experiments have to be performed before the area would be considered reasonably well 

developed. This research and development is, however, of the greatest importance since 

many real-world problems are global rather than local problems. Part of the contribution of 
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this dissertation is to also further enhance the development of adaptive global search 

methods and presents numerous experiments and real-world engineering design 

applications. 

In order to allow a generalisation of the solution techniques to be presented and provide a 

uniform framework for discussion we now consider a standard form of problem statement. 

After making the appropriate engineering judgements and defining all the necessary 

functions and limitations, we state an optimisation problem as follows. Find the design X 

such that 

F(X) --7 min, 

s.t. g/X) $ 0, 
( 1.1 ) 

}= l ,2, ... ,N. The problem is said to be stated in the design space. This form of problem is 

called a mathematical programming problem, or a mathematical program. 

It is evident that the minimum may be a point where the constraints have no influence, as 

pictured in fig. 1.5. If F has continuous derivatives, the minimum is characterised as in the 

unconstrained case as: 

VF=O, 

J = [J2 F I Jx;ax j ] positive definite. 
( 1.2) 

It is possible, however, for the situation depicted in fig 1.6 to exist in constrained problems. 

Here the minimum admissible design occurs at point P, where V F :t: 0 but where one of 
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the gj(X)=O. If both gj and Fare differentiable, it is geometrically reasonable that a 

necessary condition for a minimum in this case is: 

(1.3) 

where A. is some scalar. This requires that the contours ofF be tangent to the constraint and 

both F and gj increase in the same direction. This is not a sufficient condition as can be 

seen from fig 1.7 by examining point Q. Here V F and Vgi point in the same direction, but 

the contour bends away from the constraint. In this particular illustration the minimum may 

lie at points P or P'. 

Fig. 1.8 shows yet another possibility. Here there are relative minima that are due to the 

form of the constraints, while those in fig 1.7 are due to the objective function. These 

distinctions are rather weak and defy rigorous definition. 

We can sharpen the idea of necessary conditions for a relative minimum by stating an 

operational test which a proposed minimum must pass. This is called the Kuhn-Tucker 

condition [Fletcher, 87]. Roughly it consists of defining a cone expressed by the normals to 

all the active constraints at the point in question and then testing to see whether the 

gradient to the objective function is contained in the cone. However, the rigorous 

mathematical formulation of constrained optimisation relies on the assumption that the 

model is continuous and, moreover, doesn't take into consideration the uncertainties and 
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Fig. 1.5. Optimum defined by constrained optimisation. Scenario I: The minimum is a 
point where constraints have no influence. The shaded region is the feasible region. 

Fig 1.6. Optimum defined by constrained optirnisation. Scenario 2: Active constraint at 
point P. 
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Fig 1.7. Optimum defined by constrained optimisation. Scenario 3: The gradients of the 
cost and constraint functions point in the same direction, but the contour of the cost 
function bends away from the constraint at point Q. 

Fig 1.8. Optimum defined by constrained optimisation. Scenario 4: Intersection of 
constarints. 
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coarseness of the model itself. During the preliminary stages of the design process it is our 

major goal to find promising areas of the search space that will help to define an optimal 

design direction, rather than finding a solution that passes all known operational tests for 

optimality but w.r.t a very coarse and uncertain model [Parmee, 95a]. Therefore, at this 

stage the diversity of search is of paramount importance. Diverse adaptive sampling can be 

achieved by population based search methods and it is not a surprise that there have been 

numerous research efforts for application of evolutionary methods to real-world problems 

from a variety of domains: social systems, machine learning, operations research, ecology, 

engineering, immune systems, economics, management, etc. 

Evolutionary computation techniques constitute an interesting category of heuristic search. 

Currently, the best known techniques in the class of evolutionary computation methods are 

genetic algorithms [Holland, 75], evolution strategies [Rechenberg, 64], evolutionary 

programming [Fogel et. al., 66], and genetic programming [Koza, 92]. There are also many 

hybrid systems which incorporate various features of the above paradigms; however, the 

structure of any evolutionary computation algorithm is very much the same: 

procedure evolutionary algorithm 
begin 

end 

tf--0 
initialize P( t) I I P(t) is the tth population 
evaluate P( t) 
while (not termination-condition) do 
begin 

end 

tf-t+l 
select P(t) from P(t-1) 
alter P( t) 
evaluate P( t) 

There are numerous advantages of utilising evolutionary based search in the preliminary 

stages of the design process. If we use an evolutionary approach with penalty functions for 
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example, it is not essential for the penalty term to have any particular form, such as being 

unimodal or smooth, beyond having a fitness function that is easily evaluated. So it is not 

necessary to impose any continuity constraints on the penalty function, which is typically a 

very difficult task for the engineer in complex highly non-linear discontinuous parameter 

spaces. Moreover, the ill-conditioned problem usually associated with the numerical 

penalty function method does not exist for evolutionary based search because it uses 

ranking, i.e., it is easy to achieve total preference of the feasible over the infeasible 

solutions without changing the objective function [Powell and Skolnik, 93]. 

However, evolutionary algorithms have their own problems when used with penalty 

functions. In the context of highly constrained optimisation an infeasible solution with 

strong genotypic similarity to the optimal constrained solution is more useful in an 

intermediate population than a feasible solution with weaker genotypic affinity to the 

optimum. The problems that arise after introducing a penalty term can be summarised in 

the following way: an overzealous penalty rewards schema which quickly, but wastefully 

satisfy constraints. An over-tolerant penalty function will be unable to provide sufficient 

pressure to satisfy constraints and infeasible solutions will be highly fit. To a great extent 

these problems can be overcome by dynamic penalty functions. At the beginning the 

violated constraints are slightly penalised effectively warning the optimiser of the presence 

of boundaries while allowing their exploration. As the optimisation proceeds the violated 

constraints are severely penalised [Keane, 94]. The difficulties in the application of the 

dynamic penalty function is that the exact feasibility/infeasibility trade-off schedule cannot 

be effectively computed and is highly problem dependent [Richardson and Palmer, 89]. 

An attempt to overcome the above described difficulties is found in the behavioural 

memory approach [Schoenauer and Xanthakis, 93] where the constrained optimisation 
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problem is addressed by a multi-step process: (I) evolve an initial random population with 

some standard evolutionary search engine, the fitness function being related to the 

constraint satisfaction, and (2) take the final population resulting from this evolution and 

use it as an initial population of a secondary search with the objective function as fitness, 

which is overridden by zero fitness whenever the constraints are violated. 

1.5 Dissertation Outline 

The issues and contributions outlined in the previous sections are elaborated in the 

following chapters. Chapter 2 presents constraint handling at the representational level. Its 

purpose is to not only emphasise the crucial importance of the modelling phase, but to also 

develop and introduce through example applications the core adaptive search engines, 

namely the ant colony search model and the inductive search model. Themes of these 

adaptive search models will be present throughout the dissertation in various modifications 

at different levels of a priori knowledge utilisation. More specifically chapter 2 tackles the 

bin packing problem, showing how appropriate design of representation and search 

operators can avoid the difficulties associated with infeasible points. To achieve this, 

initially a distributed many-agent search model is developed. Next the basic ant colony 

search model is presented and extended to a hybrid search model and then applied to the 

bin packing problem. Handling constraints at the representation level is not only a virtue of 

combinatorial optimisation problems. Chapter 2 illustrates this by applying the technique 

for solving the protein-folding problem. Instead of utilising a grid based model of the free 

energy function of the protein at hand (which incurs problems of non-feasible points) it 

develops via geometric arguments a free energy model in which all points are feasible. This 

allows us to concentrate on the power of the adaptive search engine itself and chapter 2 

achieves this goal by developing and introducing a fast high performance search engine 

called inductive search. 
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Chapter 3 deals with explicitly defined constraints. One of the highly efficient methods for 

handling such constraints is to derive the feasible region and apply a search engine only to 

the feasible space. Chapter 3 shows this by solving a real world problem of generating 

codes for test and monitoring systems. Provided that the feasible region is already 

explicitly derived, all we are left to do is apply an appropriate search engine. In order to 

show that the inductive search methodology introduced in chapter 2 is not intrinsically 

suited only for problems defined on continuous domains, we integrate it with a genetic 

algorithm and apply it to the test code generation problem. 

Chapter 4 is a transition to problems with non-explicit (i.e., incorporated into a simulation 

model or black box) constraints. It treats increasingly complicated constraints where the 

feasible region can no longer be easily explicitly derived. In chapter 4 we extend the 

applicability of the ant colony search model to continuous spaces and show how to apply it 

to constraint optimisation problems. 

Chapter 5 tackles the task of feasibility search (i.e., finding feasible design regions) for 

problems with non-explicitly defined constraints. With regards to the objectives of the 

engineering designer, chapter 5 mainly develops techniques to identify the scope and 

boundaries of the feasible region. Once this is done the search space can be reduced and the 

method from chapter 4 can be applied. In order to construct reliable methods we make use 

of recent theoretical developments on low discrepancy sequences and on analogies from 

immunology. Of particular attention is the minimisation of the number of calls to the cost 

function since in realistic problems this could be computationally very expensive. 
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CHAPTER 2 

Evolutionary Search Methods that Model the Constraints in the 
Problem Representation 

2.1. Distributed Many-Agent Search Model for Combinatorial 

Optimisation Problems (COPs) 

2.1.1. Methodology 

In this section we present a distributed many-agent search model which incorporates all the 

restrictions and constraints imposed on the problem by selecting an appropriate problem 

representation. In order to be able to do this the methodology requires a clear definition of 

the problems we wish to solve. Exact definitions of engineering problems are rarely 

encountered in practice with the exception of the well defined combinatorial optimisation 

problems (COPs). The exact formulation of COPs facilitates the problem representation 

constraint handling technique, thus concentrating all the attention towards the development 

of the adaptive search engine. The approach we will follow, often known as the complex 

systems dynamics approach [Weisbuch, 91], is to simplify as much as possible the 

components of the system, so as to take into account their large number. 
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We utilise the complex systems dynamics approach to tackle an ordering problem -

loading of objects into minimal number of bins. A salient feature of the proposed search 

model is that the system is brought into an initial state corresponding to particular 

instance(s) of the problem to be solved and then it is allowed to evolve according to its 

own dynamics. The final state of this evolution is taken as a solution of the problem. The 

computation to be performed is contained in the dynamics of the systems which are 

determined by the nature of the local interactions between many simple elements. When 

designing the dynamical system care must be taken to ensure that all the states from the 

state space represent feasible solutions and that the motion operators preserve feasibility. 

2.1.2. A Case Study: the Bin Packing Problem (BPP) 

Falkenauer [Falkenauer, 94] describes the bin packing problem in the following way: 

"The bin packing problem (BPP) is defined as follows: given a finite set 0 of numbers (the 

object sizes) and two constants C (the bin's capacity) and N (the number of bins), is it 

possible to pack all the objects into N bins, i.e., does there exist a partition of 0 into Nor 

fewer subsets, such that the sum of the elements in any of the subsets doesn't exceed C? 

This NP-complete decision problem gives rise to the associated NP-hard optimisation 

problem [Garey and Johnson, 79]: what is the best packing, i.e., what is the minimum 

number of subsets in the above mentioned partition? 

Being NP-hard, there is no known optimal algorithm for BPP running in polynomial time. 

However, Garey and Johnson cite simple heuristics which can be shown to be no worse 

(but also no better) than a rather small multiplying factor above the optimal number of 
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bins. The idea is straightforward: starting with one empty bin, take the objects one by one 

and for each of them first search the bins used so far for space large enough to 

accommodate it. If such a bin can be found, put the object there, if not, request a new bin. 

Putting the object into the first available bin found yields the First Fit (FF) heuristic. 

Searching for the most filled bin still having enough space to accommodate the object 

yields the Best Fit (BF), a seemingly better heuristic, which can, however, be shown to 

perform as well (as bad) as the FF, while being slower." 

Other possible approaches for tackling the BPP are described in [Martello and Toth, 

90],[Falkenauer, 94] and [Zulawinski, 95]. 

2.1.3. The Many-Agent Search Model 

The many-agent (MA) search model consists of simple "agents" possessing only limited 

knowledge of how to interact with other agents. Each agent has several attributes: capacity, 

strength, number of successive interaction failures, and a list of contained objects. The 

loading problem considered here is one dimensional and has only one constraint - bins' 

capacity. The representation of each agent faithfully corresponds to a partially filled bin 

from a bin packing solution, and therefore, does not contain objects that violate the 

constraint (i.e., exceed the bins' capacity). The representation also takes care that none of 

the objects are shared between the agents and that each object belongs to a unique agent, 

thus ensuring that each state of the MA system (i.e., a vector consisting of the states of all 

individual agents) is a valid bin packing solution. The objects to be packed are 

characterised by one attribute, called weight. Input to the algorithm is a set of objects to be 

loaded and bin's capacity. The MA algorithm is defined as follows: 

1. Load each object into an empty bin. Initialize the strength attribute of 
each box to be equal to its empty space, i.e., capacity - object's 
weight. It can be easily verified that the initial state is feasible (i.e., is 
a valid bin packing solution). 
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2. Select randomly two bins and initiate an inter bin operation (IBO). 
IBO is a feasibility preserving exchange of objects between two bins 
(see below) . 

.!!.l If IBO is successful (i.e., at least one object exchange has 
occurred) then update strength and the list of contained objects of 
both bins. If one of the bins is empty, then delete it from the set 
of agents. Otherwise, reset the successive interaction failures 
attribute of the stronger bin (i.e., the box with larger strength 
attribute) to zero. 

!!} If IBO fails (i.e., no objects exchange has occurred), then 
increment the successive interaction failures attribute of the 
stronger bin. If it exceeds an interaction failure threshold 't (an 
integer usually between I and 5), then decrement the strength 
attribute of the stronger bin by a predefined constant£ (usually 2-
5% from the bin's capacity). 

3. If termination criteria are not satisfied, then goto 2. Otherwise exit 
with the current state as the final solution. The feasibility preserving of 
the IBO guarantees that the final state of the MA is a valid bin packing 
solution. 

The inter bin operation (ffiO) is a local interaction between two agents. It is used to 

implement the competitive drive in the evolution of the system and to maintain the 

feasibility of the problem representation (i.e., local exchanges of objects that violate the 

constraints are not allowed). During an mo one of the agents is referred to as strong, and 

the other is referred to as weak (determined by the value of the strength attribute). The mo 

algorithm works as follows: 

1. Generate all k -tuples of objects in each bin, for some k= I to C 
(complexity constant) as shown in fig. 2.1. 

2. Add the empty space of the weak box to its k-tuples as shown in fig. 
2.2., where the empty space is determined by: 

empty_ space = capacity- I, weight, 
i 

3. If the two bins can exchange objects then find the best substitution 
(gain), i.e., an exchange of two k-tuples after which the empty space of 
the strong box increases at most (see fig. 2.3.) and the bin's capacity 
constraint is not violated. 
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The computational complexity of IBO is: a( ( ~) J. where K=max(m,n), m=number of 

objects in the first bin, and n=number of objects in the second bin. In the course of its 

evolution the MA search model reduces the number of agents (i.e., bins in the bin packing 

solution). The possibility that the strength attribute may differ from the empty space (step 

2b of the main algorithm) is introduced as a mechanism for escaping local optima. Thus a 

strong agent which cannot complete a successful IBO (i.e., cannot gain empty space) 

becomes weaker and eventually other agents try to fill it in. If the strength attribute was 

always equal to the empty space then a bin which is emptier than most of the other bins, 

but containing a relatively "large" objects, would be more unlikely to find sufficient empty 

space and exchange it during an IBO in the course of evolution. 

2.1.4. Experiments 

In order to test our approach we use a distribution of objects which has been proved to be 

the worst case for the well known first fit in decreasing order (FFD) algorithm (a heuristic 

which sorts the objects in decreasing order and applies the FF algorithm). FFD has been 

shown to produce results better or equal to ~ OPT(0)+3, where OPT(O) is the number of 

bins in the optimal solution [Baker, 85]. The distribution is defined as follows: 

m=1,2,3, ... ,t:=0.01; weight(obj;)=t+t: (for l:5;i:5;6m), weight(obj;)=f+2t: (for 

6m :5; i :5; l2m ), weight (obj;) = t+ e (for l2m :5; i :5; l8m ), weight (obj;) = t- 2e (for 

l8m :5; i :5; 30m ). 

Since our main objective in this chapter is to introduce the main search techniques that we 

have developed, our experiments do not aim at improving the best known techniques for 

solving the BPP, but to experimentally show the viability of our algorithms. Experiments 

are done for values of m from I to 5, i.e., for problem sizes ranging from 30 to 150 
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Problem Size 30 60 90 120 

optimal solution 9 18 27 36 
FFD 11 22 33 44 
MA 9.1 18 . 4 27 . 6 36.3 

Table 2.1. Experiments with FFD worst case distribution . 
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objects. Empirical results, as summarised in table 2.1, show that the MA search model is 

complementary to the FFD heuristic and significantly outperforms it for the tested 

distribution. This complementarity is an important characteristic when designing hybrid 

search methods that employ different search strategies. This fact is used in the next section, 

where a hybrid ant colony search model will be introduced and developed. Fig 2.4. shows 

the number of local interactions as a function of the problem size. Results are averaged 

over ten independent runs. 

To summarise, in this section we have developed a dynamical computational system for the 

bin packing problem. In our search model all the constraints associated with the BPP are 

handled by the problem representation; each point from the state space of the many-agent 

system is a valid bin packing solution. No global control and synchronisation is necessary 

since only local interaction rules are used to optimise the number of bins. 

2.2. Ant Colony Search Model for COPs 

Problems like the travelling salesman problem (TSP) and the bin packing problem (BPP) 

can be represented as a sequence of n items (n cities to be visited or n objects to be 

packed), where the actual order of the sequence uniquely determines a particular solution 

to the problem. Thus, in general, the feasible search space consists of all n! permutations. 

In this section we introduce the ant cycle (AC) algorithm [Colomi et. al., 91]. It is defined 

as follows: The problem is represented as a connected graph the nodes of which are the n 

items. The edges are connections from one node to another and represent a data structure 

that stores the connectivity information in terms of the trail 'r;j left by the ants in the course 

of the algorithm's execution. Initially m ants are allowed to make a random cycle (a cycle 

is a permutation of n items). Then the cost function of the problem is evaluated for each 
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cycle and the graph connectivity information is updated by changing of the trail value (fig. 

2.5a, 2.6a). The trail is defined by: 

(2.1) 

where pis an evaporation constant (O<p <1), t is the time at the beginning of a cycle, and 

t+n is the time at the beginning of the next cycle. fl-r il (t,t + n) is defined as follows: 

m 

1::.-r il (t , t+n) = L,t::.-r ~ (t,t+n) (2.2) 
k=l 

where m is the number of ants, ttrt (r ,t +n) = G(f~: ) if edge(iJ) is in the cycle of ant k, and is 

zero otherwise. In general the reward G(fi) is proportional to the fitnessfk of ant k. 

Then the ants are allowed to make their next cycle but this time utilising the following 

procedure: select the first item randomly and then proceed to the next item by making a 

probabilistic decision defined in terms of the graph connectivity information (i.e., the trail 

value) . The probability to visit itemj when being at item i is: 

! 
[-ri/.Ct)t · [11 u(t)] P 

Pil (t) = L['r;k (t)]a · [1J ;* (t)] P 
keallow~d 

0 

if j E allowed 
(2.3) 

otherwise 

where allowed is the set of items not visited for that particular cycle and 17ij is a local 

heuristic. a and ~ define a trade-off between the local heuristics and the ant colony search. 

Maintaining the tabu list allowed is of crucial importance to preserve feasibility of the 

solutions (i .e., an item is guaranteed to be visited at most once during each cycle). Next the 
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a) c) 

Fig: 2.5. Evolution of the connectivity pattern during different stages of 
the ant colony run: a) is the initial (random) pattern and d) is the pattern 
when the ant colony has converged. b) and c) represent intennediate 
patterns. 

a) b) 

Fig. 2.6. Trail left by the ants: a) initial (random) trail at the beginning of the run; 
b) trail at the end of the run (i.e. when the ants' search has converged). 
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solutions are compared and trail is laid on the edges comprising the cycles proportionally 

to the ants' fitness. This alters the Pij values so that on the next cycle the probability of 

repeating (part of) previous good cycles increases (fig. 2.5b,c,d, fig. 2.6b). This is quite 

reminiscent of schemata propagation in genetic algorithms where building blocks of high 

fitness pass from one agent to its offspring. 

2.2.1. Extensions of the Ant Colony Metaphor 

We begin this subsection with some initial definitions of distributed co-operative search 

[Clearwater et. al., 92]. Co-operative search methods are based on modifying individual 

search strategies. A useful distinction is whether a method is complete or incomplete. 

Complete methods systematically examine states and are guaranteed to either eventually 

find a solution or terminate when no solution exists. By contrast, incomplete methods 

explore more opportunistically and may miss some states in the search space, hence they 

can never guarantee a solution does not exist. For parallel searches, a further issue is 

whether to split the search space among the agents. In the simplest case, each agent 

examines the entire search space. However this can mean a single state is examined by 

more than one agent during the search. This can be avoided by partitioning the search 

space into disjoint parts and assigning one to each agent. In this partitioned search, agents 

only examine states in their assigned part of the space thus avoiding unnecessary duplicate 

examination of states. Restricting each agent to examine a state at most once, as well as 

partitioning the search space so that a state is not examined by more than one agent, may 

improve performance somewhat, but far less than the enhancement achieved by co

operation [Ciearwater et. al., 92][Bilchev and Parmee, 95a][Bilchev, 96]. 

Next we generalise the ant colony search model to include search agents with different 

strategies. The completeness of the overall search depends in general on the completeness 

and complementarity of the individual strategies. The search space is not explicitly split 
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among the agents. However, the individual strategies are implicitly competing for a 

common resource- CPU time. The fitness measure of the competition is the success rate 

of each strategy measured from the beginning of the evolution. The overall evolution 

process resembles parallel competitive hypothesis testing from an evolving statistical 

sample (the current population). The hypotheses are the prior assumptions within which 

each individual search strategy has been designed to be effective. For example, consider 

two search strategies: a 1 and a2 designed to be effective when applied to distributions of 

problem instances h1 and h2 respectively. When applying the ant colony to an instance of 

distribution h (for which we can assume that h may be either close to h1 or h2) then the 

generated search process could be viewed as hypothesis testing. The assumption is that if 

the current problem instance is generated from h1 then a 1 will take control over a2 (note 

that a 1 was initially designed to be effective on h,). This process is somewhat analogous to 

the self-adaptation notion in evolutionary programming [Fogel et. al., 95] and genetic 

algorithms [Back, 92]. 

For the BPP the extended ant colony (EAC) works as follows: Two new types of search 

ants are allowed- m agents using the MA strategy (section 2.1) and k agents utilising a 

genetic algorithm (GA) strategy [Bilchev, 96] (the paper is included in the Appendix). At 

each generation of the GA trail is laid on the tours of the k best solutions. To keep the 

grouping effect of the bin packing solutions trail is laid on all the edges connecting each of 

the objects from a particular bin. Then m ants are allowed to make a cycle and the MA 

search is applied on each cycle. Trail is laid (and superimposed) proportionally to the 

fitness of each cycle. In the current implementation of the extended ant colony search 

model both the GA and the MA strategy compete against each other by changing the ants' 

behaviour through the trail value. The feasibility of the solutions is guaranteed by a chain 

of feasibility preserving interfaces between the different search strategies, i.e., all 
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individual strategies use problem specific representation and feasibility preserving motion 

operators to search through the space of the feasible solutions. When one method passes a 

valid bin packing solution to another method the solution is "translated" into the 

representation language of the second search method. 

2.2.2. Experiments 

In order to test the ant colony search we make experiments with two distributions: the FFD 

worst case distribution and uniformly random distribution. 

2.2.2.1 FFD Worst Case Distribution of Objects 

The distribution is defined as in section 2.1.4. Experiments are done for values of m from 

I to 5, i.e., for problem sizes ranging from 30 to 150 objects. Empirical results are 

summarised in table 2.2, where results are averaged over ten independent runs and show 

that the extended ant colony search further improves on the performance of the many-agent 

system for this particular distribution of objects. The hypothesis which potentially explains 

this improvement is based on the assumption of complex adaptive interactions between 

several search strategies. In order to further test this hypothesis we do more experiments 

with uniform distribution of objects. 

2.2.2.2. Uniform Distribution of Objects 

Next we generate uniformly random sets of objects using the following parameters: min. 

value: 0.05, max. value: 0.65, resolution: 300, and problem size: 50. This time four 

algorithms are empirically compared: FFD, MA, GA, and EAC. Results are averaged over 

10 independent runs for each technique and shown in fig. 2.7. In fig. 2.7 each graph is 

divided by vertical lines into sections. Each section corresponds to a particular number of 
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Problem Size 30 60 90 120 150 

optimal solution 9 18 27 36 45 
FFD 11 22 33 44 55 
MA 9.1 18.4 27.6 36.3 45.3 
EAC 9 18 27 36 45 

Table 2.2. Experiments with FFD worst case distribution . For this particular 
distribution of object weights all our approaches outperform the FFD heuristic. 

a) 20 bins 19 bins 

GA 
EtC l 

T T T varF.s 
FFD MA (40%) MA (60%) 

b) 23 bins 22 bins 

GA 

l 
T T T T varES 

FFD MA EAC (40%) EAC (60%) 

c) -25bins 24 bins 23bins-

GA 
EtC l 

T T T var£s 
MA (30%) FFD MA (70%) 

d) +---- 20 bins 19 bins 

GA EAC (40%) EAC (60%) 

FFD MA (40%) MA (60%) 

Fig. 2.7. Experiments with uniform distribution of objects. The extended ant colony 
search model (EAC) outperforms the quality of results of any of its comprising 
individual search strategies (FFD, GA, and MA). However, this is achieved by 
increasing the number of function calls from 2,500 for the MA and GA to 4000 for 
the EAC. 
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bins in the proposed solution. Better solutions are placed to the right of the graph. Within 

each section solutions are ranked in increasing order of the variance of their empty space. 

When a method produces results with different number of bins it is shown in more than 

one section of the graph. 

The extended ant colony search model (EAC) generally outperforms any of its component 

individual search strategies at the expense of increased run time. Therefore, their 

performance diversity is very important for the overall performance of the hybrid model. 

2.3 Inductive Search 

2.3.1. The Protein-folding Problem 

Handling constraints by appropriate selection of problem representation (i.e., model) is by 

no means limited to combinatorial optimisation problems. In this section we show how to 

utilise the approach for the prediction of the folded state of proteins, usually regarded as 

the proteinjolding problem. Protein-folding phenomena present a daunting group of 

scientific challenges. Perhaps this is inevitable, since only a complex and diverse family of 

molecules could fulfil proteins' assigned roles in basic biological processes. The large and 

still rapidly growing literature on the subject of protein folding [Creighton, 84][Gierasch 

and King, 90][Nall and Dill, 91] chronicles many remarkable advances in both experiment 

and theory, yet this remains an open problem. Given an arbitrary but fully specified 

sequence of amino acids, we cannot yet predict the folding pathway of the corresponding 

polypeptide, the conformation of the final state, nor even verify in all cases whether the 

final state is one of lowest free energy or simply a metastable "trap" in the kinetic folding 

pathway. 
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One of the approaches to predict the protein-folding state is to model all the constraining 

forces imposed by the biochemical reactions among the residues. The resulting free energy 

model defines an energy landscape the global minima of which are believed to faithfully 

correspond to the folded state. However, it is also possible, due to external forces from the 

environment, for local minima to represent feasible metastable states. Abstracting away 

from the biochemical details of the problem, we will emphasise at this point that a set of 

(near global) minima from the energy landscape defines the feasible region of the search 

space. This requires the development and utilisation of a powerful adaptive search engine 

that is able to find the set of feasible states. 

2.3.2. The Energy Landscape Model 

The model which we have utilised is defined by Stilliger [Stillinger et. al., 93] as follows: 

"[The] model incorporates only two "amino acid" types, to be denoted by A and B, in place 

of the 20 that occur naturally. They will be linked together by rigid unit-length bonds to 

form linear unoriented polymers that reside in two dimensions. As fig. 2.8 illustrates, the 

configuration of any n-mer is specified by the n-2 angles of bend {h, ... ,en.1 at each of the 

nonterminal residues. We adhere to the conventions that -rr:::;; e < rr, that fJ; =0 

corresponds to linearity of successive bonds, and that positive angles indicate 

counterclockwise rotation. 

We postulate that two kinds of interactions compose the intramolecular potential energy 

for each molecule: backbone bond potentials (V,) and nonbonded interactions (V2). The 

former will be independent of the A, B sequence, while the latter will vary with that 

sequence and will receive a contribution from each pair of residues not directly attached by 

a backbone bond. 
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Residue species along the backbone can be conveniently encoded by a set of binary 

variables ~1 , .... ~n· If~;= 1, the ith residue is A; if ~;=-1, it is B. The intramolecular potential-

energy function <I> thus can be expressed as follows for any n-mer: 

n- 1 n-2 n 

<I>= I~ (8;) +I I V2('ij•~i'~j) (2.4) 
i=2 i=l j =i+2 

The distances rij can be written as functions of the intervening angles (recall that backbone 

bonds have unit length): 

(2.5) 

Our model assigns a simple trigonometric form to V1: 

I 
~ (8;) = 

4 
(1- cos8;) (2.6) 

The nonbonded interactions V2 have a species-dependent Lennard-Jones 12,6 form 

[Creighton, 84] : 

(2.7) 

(2.8) 
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If only V1 mattered, successive bonds would tend toward linearity (8; =0). The coefficient 

C(~;.~j) is +I for an AA pair, +t for a BB pair, and -t for an AB pair. Consequently the 

first of these pairs may be regarded as strongly interacting, the second as weakly 

interacting, and the third as weakly repelling. This diversity mimics in a simple way that of 

real amino-acid residues, which vary in size, polarity, and degree of hydrophobicity. In 

fact, it can be assumed that A and B behave respectively as hydrophobic and hydrophilic 

residues. The interplay between the backbone bend interaction that tends to produce linear 

structures, and the various combinations of attractive and repulsive nonbonded pair 

interactions, generates a wide range of ground-state geometries. It is in this respect that our 

model remains faithful to the character of real proteins." A C-code implementation of the 

model is included in the Appendix. 

2.3.3. The Inductive Search Engine 

2.3.3.1. Introduction 

In this section we develop a novel powerful search engine. Our research is strongly 

motivated from the fact that currently evolutionary optimisers display rather slow 

convergence rates and poorer quality of solutions as compared to their numerical local 

optimisation counterparts searching in the correct neighbourhood. This research 

commenced from our beliefs that the fundamental principles of genetic algorithms are 

quite relevant to the problem of optimisation of real-valued functions if properly utilised. 

Our algorithm is based on the assumption that an approximation of the desired solution can 

be effectively constructed from a limited sample of the search space. The idea is generally 

borrowed from genetic algorithms and the corresponding building block hypothesis 

[Goldberg, 89], but is utilised in a more direct way. We also view the global optimisation 

problem as an existence of short (inductive) rules that can effectively build the solution 
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from a limited sample. If for a particular problem instance such rules do not exist, the 

global optimisation task is not tractable. On the other hand, if such rules exist, the current 

state of the art is how to find them. 

2.3.3.2. The Framework and the Rationales Behind its Design 

A novel feature in our search algorithm is that we do not constrain the sampling procedure 

to work only in the original search space, but rather divide the problem into a sequence of 

subproblems and allow sampling in each of the newly defined subspaces. In order to do 

that our approach requires a computational model of the cost function, which is usually 

available. 

Currently, it is widely accepted that dimensionality is an important characteristic which 

determines to a great extent the tractability of the search problem. Therefore, many test 

beds include scaleable functions which are defined for any dimension N: 

(2.9) 

Each new dimension is derived from the previous by adding a new variable and defining its 

interactions with the other variables. Therefore, it is natural to make the a priori 

assumption that in our computer models the set of local optima of the "next dimension" 

can be derived from the set of local optima of the current dimension (fig. 2.9). The above 

assumption justifies the following general search framework: 
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Fig 2.8. A schematic diagram of a generic 7-mer, with serially numbered residues, and 
backbone bend angles. 

xf' 

... _J\ ··" x2!:/ ... \~ · 

Fig. 2.9. At each ~ horizontal) level the graph is read as follows: The lower index shows the 
current dimension. The upper index is a pair, the first number of which shows the parent 
from the previous dimension (i.e., upper level) and the second number enumerates the set 
of local minima L~f the current level. Assumption: the set of local optima of dimension N 
can be derived from the set of local optima of dimension N- 1. The forest structure also 
shows how the ··curse of dimensionality" phenomenon emerges. 
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1. Find the set of local minima of the 1-dimensional 
version of the cost function. 

2.Initialize D=1. D is the current dimension. 

3 .Get the best M minima and form a population of M D
dimensional points. Increase the current dimension by 
one: D=D+1 

4. For each member of the population form a D
dimensional version of the cost function where the 
first D-1 variables are fixed equal to those from the 
selected member (ref. figs. 2.10, 2.11). Use 1-
dimensional global optimization method to find a set 
of new local minima. For the best solutions apply a 
hill climber to locally improve on the results and 
place them in a pool of offspring. The members from 
the pool will be points from a D-dimensional space. 

5.If D=N exit, otherwise goto 3 

2.3.3.3. Implementation Details 

There are many efficient (under certain assumptions) one dimensional search algorithms 

which can be utilised. Examples include algorithms based on the Wiener process, 

statistical-informational methods, interval methods, etc. [Tom and Zilinskas, 88][Ratschek 

and Rokne, 88]. In this section we have implemented a simple but efficient (under certain 

smoothness assumptions) one dimensional search algorithm. It utilises Brent's quadratic 

approximation method [Press et. al., 92] and works as follows: 

Step 1 

Step 2 

Step 3 

Step 4 

Initialize a population of search intervals, i.e. I={ [a,b]}. 

For the largest interval E I make a quadratic approximation, i.e., 
c=brent(a,(a+b )/2,b ). 

The selected interval from step 2 is divided into three subintervals 
determined by the two inside points: c and (a+b)/2 and the subintervals are 
inserted into I. 

If the stopping criterion is satisfied then exit; otherwise goto 2. 

Various stopping criteria are possible. Examples include size of the largest interval, 

number of quadratic approximation calls, value to reach. The implemented criterion is 
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number of quadratic approximation calls. The choice to explore the largest interval in step 

2 is well justified by the desire to minimise the maximum risk of missing a solution. 

The local hill climber is implemented as a local search algorithm using only values of the 

cost function. In our experiments we have implemented the hill climbing aspects of 

dynamic hill climbing (DHC) [Yuret, 94]. 

2.3.3.4. Experiments 

In order to better explain the behaviour of our algorithm we first run through its basic steps 

using the following test function (Langerman's test function): 

m=5 (2.1 0) 

Initially, the global optimisation method is used to find the set of local minima of the 1-

dimensional version of the test function (fig. 2.1 0): 

x/ = 2.197, 

X~= 6.628, 

X~ = 8.184, 

X~= 9.450, 

f(x/) = -0.908 

f(x~) = -1.276 

f(x~) = -2.709 

f(x~) = -2579 

Then if we fix X~ = xr we can find the set of local minima of h (x~' Xz) (fig. 2.11): 

xi= 0.489, 

xi= 6.746, 

xi= 7.237, 

xi = 8.995, 

f(x~, xi)= -0.396 

f(x~, xi)= -0.432 

f(x~,xi)=-0.425 
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0 

-I 

-2 

0 

- I 

x' I 

5 

Fig. 2.10. Langerman's function forD= I. 

5 

10 

Fig. 2.11. One dimensional version of Langerman' s function for D=2, 

where x~ = X~ (fig. 2.1 0). 
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Fig. 2.12. Langerman ' s function for D=2. 

Fig. 2.13. One dimensional version of Langerman's function for D=3, 
* 3 . • 4 . 

where x 1 = x 1 (fi g. 2. 1 0) and x 2 = x 2 (fig. 2.11 ). 

45 



Next, by using a hill climber starting from f(x;, x;), where x; =xi, we can update the 

values of x~ and x; to 8.047 and 8.985 respectively. An overview of /2 (x 1• x 2 ) is given 

in fig. 2.1 2. The new values are used in the next iteration, where we seek for the set of 

local optima of f (x;, x;, x3 ) (fig. 2. 13). The process is further iterated. 

The proposed inductive search algorithm was awarded the first prize at the First 

International Contest on evolutionary optimisation held during the 1996 IEEE conference 

on Evolutionary Computation. The proposed test bed for the competition consists of the 

following functions which are to be minimised for various dimensions: 

TEST FUNCTION RANGE N 

The sghere model: 
N X; E (-5, 5) 5 

/ 1(x) = I(x;- 1)
2 

10 
i=l 

Griewank 's function: 
N N X; E(-600, 600) 5 

fa(X) = ~I(x; - 100)
2

- rr co~x'100)+ I 10 
i=l i=l 

Shekel's foxho les: 
m ) 

m =30 X; E ( 0, 10) 5 
fs(x) = -2: ' 

i=l llx- AU)II
2 
+ c; 

10 

Michalewicz's function : 

f M (X)=-±sin(X;) · Sin 2m c·~')• m = lO X; E ( 0 ,1t') 5 
10 

i= l 

Langerman's function: 

m ( ~x-AUl[' 2 ) 
X; E ( 0, 10) 5 

fL(x)=-t.c; e" ·cos{lt'· llx-A(i)ll) • m=5 10 

The results achieved by the inductive search are summarised in table 2.3 . Compared with 

the other participating algorithms our inductive search exhibits an extremely small number 

of cost function calls needed to construct the global minimum of the proposed test 

functions. Our explanation of these results is that the inductive search succeeds in utilising 

domain specific knowledge. 
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FUNCTION 

The sphere 
model 

Griewank' s 
function 
Shekel 's 
foxholes 

Michalewicz's 
function 

Langennan' s 
function 

Dimension Cost function calls Best value 
N=5 20 3.88e-15 

··········N"····;;····iif······· ······························4·5·························· ····· · ····7··~ ··ia·e·.::.··is········ · 

N=5 41 7.99e-6 
··········N"····;;····i·a······· .............................. 7.~3" · ············ · ······ · · ·· · ······· ···1··~·3·1·e·.::.··6········· ···· 

N = 5 74 -10 . 327 
··········N"····;;····i·a······· ···························i2·a·························· ···.::.·i·a··~ ··ia·i·············· ···· ·· 

N = 5 120 -4.6876 
··········N"····;;····ia········ ···························s·a·i························· ······:·9··~··6· 6·a·cf···· ··········· 

N = 5 176 -1.499 
··········r:.a: ····;;····i ·a······· ··························3·7·2·························· ······:·1··:·:i9·9···················· 

Table 2.3: Perfonnance indexes. 
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Now we proceed with the application of the inductive search approach to the protein

folding problem. For any number n of residues, and for any given sequence of those n 

residues specified by ~1>---·~"' the potential-energy function If> is precisely defined, and in 

principle can be minimised with respect to the conformational angles {h, ... ,0,.1• In practice 

this is easy for small n (i.e., 3,4, and 5), but becomes increasingly tedious and demanding 

as n increases. In previous research [Stillinger et. al., 93] an exhaustive search is used to 

generate a database of ground states for small n. The database is shown in table 2.4. The 

simple case of trimers (n=3) provides an introductory illustration. The six distinct 

molecules are AAA, AAB, ABA, ABB, BAB, and BBB. Each has only a single bend degree of 

freedom (h. Furthermore, the potential energy as defined by our model, depends only on 

the species of the terminal residues, and not on that of the central residue. Consequently 

there are just three distinct cases to consider: AXA, AXB, and BXB. 

AXB and BXB trimers are linear in their ground states. That is certainly expected for AXB, 

where the terminal residues repel each other at all separations. Even though modest 

terminal residue attraction exists for BXB, the bend potential energy is sufficiently costly 

that the possibility of an absolutely stable bent shape is eliminated. Only when both 

terminals are A is the nonbonded interaction sufficiently attractive to generate a bent 

ground state; (h. is approximately ±111.4° in this nonlinear structure. However, the AXA 

molecules retain the linear form as a metastable (relative) If> minimum; this is the first 

appearance of multiple minimum problem that magnifies dramatically in severity as the 

molecules increase in residue number. 

Before applying our algorithm we have selected the following parameters: at each 

dimension only the best three solutions from the population are accepted and for each of 

them only five calls to Brent's approximation routine are made. This choice of parameters 
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significantly reduces the overall number of cost function calls while at the same time 

preserves the quality of solution. The inductive search is capable of finding all but one 

ground state. Results are shown in table 2.5. The case in which the inductive search fails is 

ABBBA, where a metastable ground state is predicted (i.e., the linear structure). It is 

interesting to note why the inductive search fails in this case. All subsequences that 

compose ABBBA have their global minima in their linear structure (i.e., ABB, BBB, ABBB). 

That is to say that the one dimensional (ABB) and two dimensional (ABBB) versions of the 

cost function do not provide the necessary information to find the global optimum of the 

three dimensional (ABBBA) version. The information they provide is only local and 

therefore, the inductive search finds a local optimum. 

Although the inductive search is capable of efficiently optimizing our free energy protein

folding model, it is by no means the best algorithm for the problem. As pointed out by 

Prof. Keane, the problem can be even more efficiently solved by a combination of dynamic 

hill climbing followed by a local climber such as the method of Hooke and Jeves. For 

example, such a combination is capable of solving the ABBBA instance of the protein

folding problem in 543+202 number of cost function calls. 
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Molecule 4» (hi 1C (hi'IC ()4/ 1C 

AAA -0.65821 0.61866 

AAB 0.03223 0.00000 

ABA -0.65821 0.61866 

ABB 0.03223 0.00000 
BAB -0.03027 0.00000 
BBB -0.03027 0.00000 

AAAA -1.67633 0.61839 0.33920 

AAAB -0.58527 0.61759 -0.05130 
AABA -1.45098 0.33270 0.62180 
AABB 0. 06720 0.00000 0.00000 
ABAB -0.64938 0.61767 -0.06670 
ABBA -0.03617 0.47690 0.47690 
ABBB 0.00470 0.00000 0.00000 
BAAB 0.06172 0.00000 0.00000 
BABB -0.00078 0.00000 0.00000 
BBBB -0.13974 0.55828 0.35180 

AAAAA -2.84828 0.33597 0.62022 0.04543 
AAAAB -1.58944 0.61898 0.33748 -0.06894 
AAA BA -2.44493 0.29723 0.33306 0.62176 
AAABB -0.54688 0.61756 -0.05373 -0.00168 
AABAA -2.53170 0.32943 0.62354 0.04551 
AABAB -1.34774 0.33269 0. 62133 -0.54574 
AABBA -0.92662 0.16722 0.48228 0.47327 
AABBB 0.04017 0.00000 0.00000 0.00000 
ABAAB -1.37647 0.62222 0.33110 -0.06303 
ABABA -2.22020 0.61900 0.04739 0.61900 
ABABB -0.61680 0.61765 -0.07104 -0.00224 
ABBAB -0.00565 0.47880 0.47341 -0.14184 
ABBBA -0.39804 0.24576 0.55551 0.24576 
ABBBB -0.06596 0.05489 -0.34237 -0.56178 
BAAAB -0.52108 0.03924 -0.61671 0.03924 
BAABB 0.09621 0.00000 0.00000 0.00000 
BABAB -0.64803 0.05328 -0.61682 0.05328 
BABBB -0.18266 0.56920 0.33574 0.26659 
BBABB -0.24020 0.31773 0.57642 0.09738 
BBBBB -0.45266 0.34345 0.56501 0.09318 

Table 2.4. Ground-state properties of toy-model polypeptides. Angles £J; are measured in 
radians. Molecules are listed in alphabetical order for each number of residues, and, in case 
of sequences differing only by reversal, only the first in alphabetical order appears. 
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Molecule <I> Cost function calls 
AAA -0.65821 636 
AAB 0.03223 688 
ABA -0.65821 636 
ABB 0.03223 688 
BAB -0.03027 660 
BBB -0.03027 660 

AAAA -1.67633 1937 
AAAB -0.58527 1617 
AABA -1.45098 2391 
AABB 0. 06720 1498 
ABAB -0.64938 1913 
ABBA -0.03617 1700 
ABBB 0.00470 2127 
BAAB 0.06172 1476 
BABB -0.00078 1618 
BBBB -0.13974 1949 

AAAAA -2.84828 3660 
AAAAB -1.58944 4197 
AAA BA -2.44493 3715 
AAA BB -0.54688 2511 
AABAA -2.53170 5068 
AABAB -1.34774 5362 
AABBA -0.92662 3189 
AABBB 0.04017 3069 
ABAAB -1.37647 3359 
ABABA -2.22020 3719 
ABABB -0.61680 2797 
ABBAB -0.00565 3584 
ABBBA• 0.03870 2860 
ABBBB -0.06596 4187 
BAAAB -0.52108 4004 
BAABB 0.09621 2220 
BABAB -0.64803 3798 
BABBB -0.18266 3504 
BBABB -0.24020 3356 
BBBBB -0.45266 4236 

Table 2.5. Ground-states found by the inductive search. The predictions of our algorithm 
differ only for ABBBA. 
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CHAPTER 3 

Evolutionary Constraints Handling for Problems with Explicitly 
Defined Constraints 

3.1. Handling Additional Constraints in Combinatorial Optimisation 
Problems 

Many real world problems can be cast as modifications of well known NP-complete 

problems where some additional constraints are explicitly defined to reflect the physical 

nature of the problem. In this section we deal with one such problem: the fault coverage 

test code generation problem, an instance of which is provided by Rolls Royce and 

Associates Ltd. 

The lack of a uniform methodology for handling infeasible points [Michalewicz, 95] 

largely predetermines the current best practice - the investigation of some problem-specific 

operators which search within the feasibility boundary in an efficient way [Michalewicz, 

96]. The idea is based on the seemingly reasonable assumption that in real world problems 

the constraints and the objective functions are conflicting and therefore, the constraint 

global solution lies on the boundary of the feasible region. We utilise this approach for the 

fault coverage test code generation problem and show how to derive the feasible region and 

design feasibility preserving operators that map the feasibility region onto itself. 

52 



3.1.1. The Test Pattern Generation Problem 

We will be interested in generating tests for combinational circuits, which have no 

feedback loops or memory elements. Fig. 3.1. shows a simple combinational circuit. A test 

pattern for a potentially defective circuit is a set of inputs for the circuit that will cause the 

circuit outputs to be different if the circuit is defective than if it is defect-free. To derive the 

input set, we must have some model for possible defects (faults) in the circuit. One of the 

most popular models within the existing testing systems is the single stuck-at model. In this 

model, a defective circuit is assumed to behave as if it were defect-free, with the exception 

of one wire that is tied to either a logic 0 or a logic 1 (instead of correctly varying as a 

function of the circuit inputs). Logically equivalent inputs may fail independently. For 

example, in fig. 3.2. A1 can be stuck-at 1 while A2 takes on the value 0. 

To generate a test pattern for a circuit with a wire stuck at 1, we must ensure that the wire 

in question would take on the logic value 0 in a correctly functioning circuit. If this is not 

the case, the circuit outputs will be the same whether or not the circuit is malfunctioning 

because the faulty and the good circuit would carry the same values. In fig. 3.1. line D is 

labelled with 011 to denote that lineD is the site of a fault such that D will carry the value 

0 if the circuit is functioning correctly and will carry the value 1 if the circuit is defected 

(i.e., faulted). When a line has a different value in the faulted and unfaulted circuits, it is 

said to have a discrepancy. Fig. 3.3. shows a test pattern that detects D stuck-at 1 and fig. 

3.4. shows a test pattern that does not detect D stuck-at 1. We say that the test pattern of 

fig. 3.3. covers D stuck-at 1 and the test pattern of fig. 3.4. fails to cover D stuck-at 1. The 

test pattern generation problem is known to be NP-complete [Fuiwara and Toida, 82]. This 

fact can be easily demonstrated by showing that 3SAT (i.e., an instance of the satisfiability 

problem where each clause is allowed to have only three variables) [Cook, 71] is 

polynomial-time reducible to test pattern generation. First, we take a 3CNF (conjunctive 
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Fig. 3.1. Combinational circuit with D stuck at 1. 
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Fig. 3.2. Line A 1 can fail independently from line A2. 
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Fig. 3.3. Test pattern covering D stuck-at 1. 
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Fig. 3.4. Test pattern not covering D stuck-at 1. 
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normal form) formula (also known as a product of sums formula where each sum has at 

most three literals) and naively build the circuit corresponding to it. We can do this by 

creating one OR gate for each clause and feed the outputs of all the OR gates into one 

AND gate. In fig. 3.5. we show a circuit corresponding to the 3CNF formula 

(A+ B +C)· (A+ B +C) . Next, we generate a test pattern for the output of the circuit stuck 

at 0. If it were possible to generate the test pattern in polynomial time, it would be possible 

to satisfy a 3CNF formula in polynomial time. 

It would be possible to generate a test pattern in linear time if it were not for reconvergent 

fanout [lbarra and Sahni, 75]. In a combinational circuit, reconvergent fanout occurs 

whenever there is more that one path of logic elements between any two lines in the circuit. 

For example, in fig. 3.5., there is more than one path between line A and line X. The 

presence of reconvergent fanout introduces potentially unsatisfiable dependencies into the 

problem of test pattern generation. 

The gate-level Automatic Test Pattern Generation (ATPG) problem has been approached 

in two major ways: algebraic techniques based on Boolean Differences, literal proposition, 

etc., and path sensitisation techniques that operate on the circuit topology like the D

algorithm [Roth, 66] and POD EM [Goel, 81 ]. In the first set of approaches, the circuit under 

test is typically represented by some form of a switching function like a truth table, sum-of

products expressions and Kamaugh maps. Test pattern generation is carried out by the 

manipulation of these representations. Until recently, algebraic techniques have not found 

favour because these techniques did not scale well with the size of the circuit under test. 

The main problems were those of generating the representations from circuit netlists and 

their manipulation when there were a large number of input variables and internal nodes. 

These problems have been alleviated to a great extent with the renewed interest in the use 
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Fig. 3.5. Circuit corresponding to the formula (A+ B +c) 0 (A+ B +c) 0 
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TAMS 

Fig. 3.6. Overview of test and monitoring system (T AMS) 
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of Ordered Binary Decision Diagrams (OBDDs) for the representation and manipulation of 

combinational logic. Some of the more significant work done in this area of ATPG 

includes CATAPULT [Gaede et. al., 86], WAVE [Ross and Mercer, 90], and TSUNAMI 

[Stanion and Bhattacharya, 9 I]. 

Path sensitisation based ATPG algorithms operate on the circuit topology. ATPG is the 

problem of assigning values to inputs such that the circuit output(s) contain different values 

for the fault-free and faulty cases. The path sensitisation algorithms implicitly or explicitly 

search the entire space of input vectors to find a test. The current problems with this 

approach is that faults which are hard-to-detect for one algorithm may not be so difficult 

for another. This situation occurs because it is the specific decisions an algorithm makes 

and not the function the circuit implements that make it difficult for the algorithm to find a 

test for some fault. Popular algorithms that utilise the path sensitisation approach include 

D-algorithm [Roth, 66], PODEM [Goel, 81], FAN [Fujiwara and Shimono, 83], and 

SOCRATES [Schulz et. al., 88]. 

3.1.2. The Test and Monitoring System and the Fault Coverage Code Generation 

Problem 

After defining the test pattern generation problem we can now proceed with the definition 

of the fault coverage test code generation problem. Test codes (a set of input test vectors 

and a set of expected output vectors) are an integral part of the Test and Monitoring 

Systems (T AMS). T AMS are widely used for real-time testing of the functionality of 

electronic circuits (fig. 3.6). Basically they operate by regularly initiating a test cycle on the 

circuit and monitoring the fault status. For reliability reasons new circuits cannot be used 

until the fault coverage test code is updated with a new set of comprehensive test vectors 

(fig. 3.7). 

58 



The update is achieved with the help of a fault analysis process used to detennine the fault 

detection coverage of a particular design. The fault analysis process for a design involves 

the optimisation of the input stimulus to fully exercise all components to increase the 

testability. Usually the fault analysis process fits within the product development cycle 

after the initial functional verification of the design and before the physical hardware 

testing of the product. However, due to other design considerations, here we face the 

problem of maximising the fault coverage for an already specified circuit. The amount of 

fault coverage within a design depends on the following two factors: (I) 

comprehensiveness of the test code, and (2) inherent testability of the logic design. In this 

section we concentrate on the first factor and fonnulate the problem of finding an effective 

set of input test vectors as a search problem: 

Given a set of patterns of the fonn * 1 * * 10 * * 0, where * is a don't care symbol, 

find a set of N binary vectors that maximises the coverage of the given patterns. 

Coverage is defined in tenns of Boolean matching. 

3.1.3. Constraint Handling: Deriving the Generators of the Feasible Region and 

Designing Feasibility Preserving Operators 

Usually there are various constraints imposed on the test codes. For example, the size of 

the test code may be constrained by hardware requirements of the test and monitoring 

system. There may also be a number of constraints concerning the possible combinations 

of input signals. The task is to automate the process of finding the most comprehensive test 

code, i.e., the code maximising the fault coverage (fig. 3.7). 
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Fig. 3.7. The process of fi nding the most efficient fau lt coverage test code: The circuit is 
modelled and faults are simulated. Using information from the fault analysis the task is to 
design the most comprehensive test vectors (the white arrow). 
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Fig. 3.8. A set of legal test codes is defined by the legal states of a number of logical 
channels. 

60 



The requirement that the number of test vectors must be exactly N is represented directly 

by the coding scheme of the problem. A sample from the associated fitness landscape of 

the search problem would consist of N vectors each of length m bits. 

The second type of constraints impose strict requirements on the possible combinations of 

values within each individual test vector. The designers of the circuit define the set of legal 

combinations in terms of the legal states of a number of channels (fig. 3.8). Each channel is 

a logical grouping of input bits (for example, bits No. 2, 5, and 7 could form logical 

channel I). Collectively the legal states of all channels define a set of legal (supporting) 

templates of the form: 

1*0**1011*** 

where * is a don't care symbol. Each ·template could be viewed as a generator of a 

particular fraction (subspace) of the original search space. Therefore, the set of all legal 

templates defines the feasible region. The existence of a such closed form description of 

the feasible region greatly influences the selection of a constraint handling technique. In 

our case, it seems appropriate to maintain a population of legal samples by designing 

feasibility preserving search operators. 

When applied to a feasible point(s), a feasibility preserving operator always produces 

another feasible point(s). For the test code generation problem we have designed two 

versions of mutation and one of crossover which comply with the selected constraint 

handling technique. 

mutation 1: (i) find the supporting template of the parent chromosome, and (ii) apply 

uniform mutation to the values of the don't care bits. 

100101011011 
1*0**1011*** 
110111011001 

parent chromosome 
parent's supporting template 
offspring 
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mutation 2: (i) find the supporting template of the parent chromosome, (ii) change it by 

randomly selecting another supporting template while keeping the values 

of the don't care symbols. 

parent chromosome 100101011011 
1*0**1011*** 
0*1**0011*** 
001100011011 

parent's supporting template 
new supporting template 
offspring 

crossover: (i) find the supporting template of both parents and (ii) apply uniform 

crossover to the don't care bits. 

parents 
templates 
offspring 

100101011011 
1*0**1011*** 
110111011001 

3.1.4. Utilisation of the Inductive Search Approach 

011010011001 
0*1**0011*** 
001000011011 

In general the inductive approach generates a solution step by step, beginning from the so 

called base of the induction and at each step following an induction rule to update (i.e., 

induce) the solution. In mathematics induction is a rigorous proof technique while in the 

context of adaptive search it is used to approximately induce a solution to a particular 

problem. Previous research [Bilchev and Pannee, 96d][Bilchev and Parmee, 96e] well 

justifies the potential power of the inductive approach in the context of search. 

Applying the inductive approach to the fault coverage code generation problem requires a 

slight reformulation of the problem. The original problem is: 

Given a number N (the maximum number of fault coverage 
test vectors) find a sequence of N test vectors that 
maximizes the fault coverage. 

It can be easily reformulated as: 
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For each k = 1 to N find a sequence of k test vectors 
that maximizes the fault coverage. 

While being the same problem the inductive formulation also gives meaning to 

intermediate solutions. Suppose for example that for some k, I <k<N, we know a sequence 

of test vectors which gives satisfactory fault coverage. The term satisfactory means that 

with k test vectors we couldn't expect to cover many more faults than those already 

discovered by the sequence. This is a relative judgement regarding the particular circuit and 

can serve as an efficient stopping condition instead of the usual maximum number of 

generations (ref. to step 6 of the algorithm). Now if for k test vectors we have already 

achieved a satisfactory level of fault coverage, the task is to find a satisfactory fault 

coverage level for k+ 1 test vectors. The main power in the inductive approach is the 

assumption that the satisfactory fault coverage level fork+ I test vectors could be derived 

from the satisfactory level of the k test vectors. If this assumption is true then it produces 

an efficient search engine with computational complexity determined only by the 

computational complexity of the inductive step. 

The Inductive Genetic Algorithm (IGA) combines the evolutionary search engine with an 

inductive fitness function. The overall structure of the IGA is as follows: 

1. Initialize a partial solution for N = 1 (i.e., a 
sequence of one test vector only) 

100101011011 

2. Fork= 2 toN do (search for the best kth vector that 
complements the already existing partial solution) 

3. Initialize a population of test vectors 

011001001110 010010111010 

4. Add each test vector to the partial solution, evaluate 
it and assign fitness 
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100101011011 
011001001110 

100101011011 
010010111010 

5. Reproduce according to the fitness obtained in 4. 
Typical operators include versions of mutation and 
crossover. Update the population . 

6. If not end of generations, goto 4 

7. Update the partial solution, increment k, goto 2 

Steps 3, 4, 5, and 6 constitute a genetic algorithm. Steps I, 2 and 7 implement the inductive 

approach. The overall algorithm could also be viewed as a genetic algorithm with dynamic 

fitness function, i.e., the fitness function changes at each generation. 

3.1.5. Experiments 

In order to develop and tune our search strategy we have designed an efficient simple 

model of the fault population of a virtual circuit. As the search engine should be generic 

enough to run on a variety of circuits such a circuit abstraction is well justified. In our 

model each fault population consists of a number of faults with associated fault identifying 

patterns (we can assume that the identifying patterns are produced by an A TPG system as 

described in section 3.1.1. for a particular circuit). For the experiments, faults are not 

allowed to have illegal identifying patterns (otherwise they are " intrinsically" untestable). 

A simple fau lt population with five faults may look like: 

*01*0******* 
101*******10 
0*0*1101:1*** 
**1*1101**** 
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where "*" is a don't care symbol. The task of the fault coverage problem is to find a 

"generalist" population of test vectors covering as many faults as possible. For example, 

the following two test vectors cover 80 percent of the fault population: 

10110100 
000111011001 

The associated fitness function with our model is 

n f =-·lOO% 
N (3. I) 

where n is the number of covered faults and N is the number of aJI faults in the fault 

population. 

Fig. 3.9. shows the performance of the Inductive Genetic Algorithm (IGA) on a fault 

coverage problem consisting of 200 possible faults (Appendix E). The number of input test 

vectors is 24. The search effort at each inductive step controls the trade-off between the 

computational complexity and the expected quality of results. The family of aJI possible 

trade-off points define the peiformance trade-of! front. It is a measure of the expected gain 

of the quality of results as a function of the computational expense. 

Fig. 3. 10. compares the IGA approach with a simple genetic algorithm (i.e., the induction 

step is turned off and each chromosome has fixed length of 24 vectors each 12 bits long) 

applied to the whole sequence of test vectors. The same test problem as in the previous 

experiment is used. From fig. 3.10. it can be clearly seen that the IGA outperforms the 

simple genetic algorithm. One possible explanation is that the IGA considerably reduces 

65 



the search space by dividing it into disjoint inductive search subspaces, whereas the simple 

GA works on the huge original search space (approx. 2 24
x

12 
). 

Fig. 3. I I. shows the performance of the IGA as a function of the number of input test 

vectors. The same fault population of 200 faults as in the previous experiments is used. 

The IGA is able to find a set of 67 input test vectors that cover I 00% of the fault 

population. If the hardware requirements allow the T AMS to use 67 test vectors then I 00% 

fault coverage could be achieved. However, in real world problems there are hard 

constraints imposed on the design task. For example, in our particular T AMS test code 

generation problem the number of input test vectors must be 24. Therefore, our objective is 

to design maximally comprehensive set of 24 test vectors (the design of the logic of the 

circuit is already fixed, so we regard the test coverage code generation problem as a search 

problem and do not address the inherent testability properties of the logic design). 

Fig. 3.12. shows the effect of the constraints on the performance of the search engine. 

There are two graphs, each corresponding to a particular set of constraints. Each set of 

constraints is determined by a table of legal states. Legal table 2 is derived from legal table 

I by reducing the number of legal states in channel I. Therefore, legal table 2 corresponds 

to a more constrained instance of the fault coverage test code generation problem. 

Imposing constraints on the problem is somewhat equivalent to introducing inherent 

untestability in the circuit design. Certain legal identifying fault patterns can no longer be 

allowed and therefore, the corresponding faults they cover cannot be detected. As can be 

seen from fig. 3.I2 this fact significantly influences the fault coverage. 

In this section we used a real world problem to demonstrate a very efficient and well 

known constraint handling technique. It consists of defining the feasible region in terms of 
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the independent variables and designing feasibility preserving operators (i.e., operators that 

map the feasible region onto itself). The existence of such a closed form description of the 

feasible space leads to a minimal redundancy problem representation [Radcliffe, 91] and 

could significantly reduce the search space. Currently the feasibility preserving constraint 

handling technique is being applied successfully to the optimisation of real valued 

functions and linear constraints [Michalewicz, 92]. and for combinatorial problems 

(chapter 2). In this section we have shown that the approach is quite generic and applied it 

to the fault coverage test code generation problem [Bilchev and Parmee, 96] with 

additional explicitly defined constraint requirements imposed by the designers of the 

circuit's logic. 

We consider the reduction of a search space to be one of the most efficient approaches for 

solving any search problem. This idea has been fundamental for many of the existing 

search methodologies, including branch-and-bound, clustering, etc. In this section we also 

proposed to integrate the search space reduction approach (implemented as an inductively 

defined fitness function) with an evolutionary search engine. The idea has already produced 

successful results when applied to optimisation of real valued continuous functions 

(chapter 2). 
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Fig. 3.9. Runs of the Inductive Genetic Algorithm for eight different control parameter 
settings (number of generations per inductive step). The family of all possible control 
parameter settings define the perfomwnce trade-off front, which is a measure of the 
trade-off between computational complexity and quality of results. The number of 
input test vectors is fixed to 24. 
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Fig. 3.10. Comparison between the Inductive Genetic Algorithm (IGA) and the 
simple genetic algorithm (i.e., no induction). 
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fault population is approximately 10,000 and required 67 input test vectors. 
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Fig. 3.12. Effects of constraints on the performance trade-off front of the IGA. The effect of 
imposing constraints on the fault coverage problem (Legal Table 2) is equivalent to 
introducing inherent untestability in the circuit. 
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CHAPTER 4 

Evolutionary Constraint Handling for Problems with Implicitly 
Defined Constraints 

4.1. The Ant Colony Search Model for Functions of Continuous 

Variables 

In this chapter we extend the ant colony search model introduced in chapter 2 to deal with 

constrained optimisation of functions of continuous variables and present a number of 

empirical results. 

It is a well established belief that if no a priori knowledge about the problem at hand/ is 

incorporated into the search algorithm, the problem scales exponentially with its dimension 

[Kowalik, 68]. This phenomenon, known in optirnisation as the "curse of dimensionality" 

[Fletcher, 87], led to the abandonment of direct search methods in favour of those using 

some a priori knowledge (assumptions) aboutf 

In this section we extend the ant colony search model introduced in chapter 2 to deal with 

continuous domains. The assumptions that we will make are that (I) new samples off 

should most often be obtained in the vicinity of previous, high-performance samples, (2) 

the number of new samples in the vicinity of a previous sample must depend on the 

observed value off at that sample, and (3) the breadth of the sampling distribution around 
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the previous samplings should decrease as the global optimum is approached. The 

applicability of the ant colony search model to engineering design problems is our major 

concern. This typically involves applications to highly-dimensional and multi-modal 

problems with various kinds of constraints that are imposed in order to satisfy a priori 

defined performance criteria or behaviour. 

The ant cycle algorithm (chapter 2) is not appropriate for continuous space searches. 

Keeping analogy with the foraging strategies of ant colonies we suggest an ant colony 

model applicable to continuous spaces. The main difficulty is how to model a continuous 

neighbourhood with a discrete structure. The strategy we have adopted is to represent a 

finite number of directions as vectors starting from a base point, called the nest. As 

potentially all of the continuous search space has to be covered, these vectors are evolving 

in time according the ants' fitness (fig.4.1.). 

The structure of the ant colony algorithm is shown in fig. 4.2. Before the algorithm begins 

we have to initialise the nest structure by generating uniformly random starting directions 

as shown in fig. 4.3. Next we define a search radius R, which determines the maximum 

extent of the subspace to be considered in each generation (cycle). Then initialize 

A ( t) sends ants in various directions at a radius not greater than R (see fig. 4.3); 

evaluate A ( t) is a call to the objective function for all ants; add_ trail A ( t) is 

proportionally (to the ants' fitness) adding trail quantity to the particular directions the ants 

have selected, send_ants A ( t) sends ants by selecting directions using a roulette 

wheel selection on the trail quantity and making a random step from the location of the 

best previous ant that had selected the same direction, evaporate A ( t) decrements 

the trail. The random step is implemented as: 
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Fig. 4.1. A vector representing the direction towards the end of the actual path between the 
nest and the "food source" after four steps. 

procedure Ant Colony Algorithm 
begin 

t t- 0 
initialize A(t) 
evaluate A ( t) 
while (not end_cond) do 
begin 

tt-t+l 
. add_trail 
send_ants 
evaluate 
evaporate 

Fig. 4.2. The structure of the Ant Colony Algorithm. A ( t) is a data structure 
representing the nest and its neighbourhood. 
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Fig. 4.3. Two dimensional Nest neighbourhood model with twelve search directions. Each 
direction evolves in time according to the fitness of the ants that have selected it. 

Fig. 4.4. Various directions are represented in a two dimensional search space.The 
bold lines show directions with high trail value. The dashed lines show unsuccessful 
sampling (i.e., samples that result in lower cost function value). 
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b 
l\(t,R) = R · (1- r[l-t/T] ) (4.1) 

where R is the search radius, r is a random number from [0 .. 1 ], T is the maximal generation 

number, and b is a system parameter determining the degree of non-uniformity. Ll(t,R) 

returns a value in the range [O .. R] such that the probability of Ll(t,R) being close to 0 

increases as t increases. R is determined by the extent of the search subspace we want to 

cover during the run and corresponds to scaling of the ant colony model. During the run if 

certain directions do not result in improvement, they do not participate in the trail adding 

process and the reverse (evaporation) process diverts attention away from them. 

The proposed ant colony model comprises three levels of abstraction. The lowest level is 

that of the individual search agent. It describes the employed individual search strategy, 

e.g., stochastic hill climbing, steepest descent, line search, etc. The middle level defines eo-

operation among agents which generally consists of a joint search effort in a certain 

direction. The highest level is the meta level which defines some high order a priori 

assumptions about the nature of the fitness landscape. At this stage it is important to notice 

the difference between direction and path in our model. The direction simply implies a 

physical location like north-east, etc. Due to self-organisation certain directions turn into 

paths as more and more trail is accumulated onto them (i.e., more and more ants are 

attracted). When no further improvement can be made along a particular path, no more trail 

is laid onto the path and the evaporation process turns it back to a direction. Stated in other 

words a path is a direction with high trail value. 

Individual Search Level 

The current utilised individual search strategy is purposely kept simple enough in order to 

reveal the power of co-operation. It consists of stochastically selecting a search direction 
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and making a step with size calculated by D.(t,R). During the next generation (cycle) only 

the best new samples will be considered in the trail adding process. The overall individual 

search strategy can be viewed as stochastic hill-climbing. 

Co-operation Level 

The ants select randomly a direction to search with probability: 

(4.2) 

where r; is the trail on direction i. If the ants return with a higher fitness value they add trail 

on the selected direction. The added trail is proportional to the fitness value and it changes 

P;(t). Thus some directions become more attractive than others. A highly attractive 

direction eventually turns into a path as more and more agents follow it (fig. 4.4.). All of 

the agents from a particular path contribute to the joint search effort on that particular 

direction. 

An evolution of the ant colony dynamics in time is shown in fig. 4.5. The experiment uses 

one hundred ants, b=2 and R=O.I. The selected fitness function is: 

-2(1n 2 l( !.=!)2 
• 

F2(x)=e ·' sm 6 (51l'x) (4.3) 

The number of ants attracted to each of the peaks at each generation depends on the peak's 

fitness. Better peaks (maxirnisation) attract more ants at the beginning of the evolution and 

less ants at the end. The dynamics of the ant colony search model are sensitive to the 
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evaporation parameter (i.e., how quickly the trail added by other ants is evaporated). This 

makes the ant colony a promising metaphor for fitness functions, fostering both eo-

operation and selfishness; however, this can make the tuning of the parameters more 

difficult. 

Meta Level 

The meta level can be defined as the mutual interaction between paths or some other kind 

of heuristics. For example, the intersection of trail diffused from two paths can be 

considered to form a new path which attracts agents. In this respect the effect of trail 

diffusion in the ant colony model is analogous to arithmetic crossover in GAs (fig. 4.6.). At 

present the meta level is not well understood and efficient meta rules are difficult to define. 

Current practice includes functions with relatively little variable interaction where 

exchanging variables from several partial solutions could potentially pay off. An example 

of how to define non-trivial meta rules using problem specific knowledge is shown at the 

end of section 4.3. 

4.2. Handling Constraints in the Ant Colony Search Model 

The classical treatment of constrained optimisation defines the problem as: 

rnin F(X) 
X (4.4) 

s.t. gi(X)~O 

where J= l, ... ,N. The constraint functions gj are assumed to be defined explicitly in terms of 

the (design) variables X. The utilisation of the ant colony model for constrained 

optimisation is mainly concerned with the representation of the constraints. We propose a 

very simple model: the constraint violation determines the acceptability of a point from the 
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search space, i.e., a point wi th high constraint violation is not accepted as a "food source .. 

regardless of the value of the objective function. As the ant colony evolves the constraints 

are tightened and previously acceptable food sources vanish from the view of the anr 

agents. The acceptable constraint violation is implemented as a linear function T depending 

on (an estimate of) the ratio of the feasible region to the overall search space. The smaller 

the ratio, the greater the slope. To summarise, the modifications made to the ant colony 

algori thm (fig. 4.2.) consist of a new rule for laying trail : if a point X is feasible or violates 

the constraints less than a threshold T then add trail according to the value of the cost 

function, otherwise add trai I according to the constraint violation (smaller constrainr 

violation is attributed higher fitness); always attribute higher trail to feasible points by 

ranking. 

4.3. Experiments and Comparisons with Existing Evolutionary Constraint Handling 

Techniques 

The ant colony search model for constrained optimisat ion is tested on the following test 

cases proposed by in [Michalewicz, 95]: 

4 13 

testcase#l: F(X) = 5x1 +5x 2 +5x3 +5x4 -SL: x?- LX; 
subject to: 

2x1 +2x2 +x10 +x 11 ~ 10 , 

2x1 +2x3 + x 10 +x12 ~ 10 , 

2x2 + 2x3 + x 11 + x12 ~ 10 , 

- 8x1 +x10 ~ 0 , 

-8x2 + X 11 ~ 0 , 

-8x3 + x12 ~ 0 , 

- 2x6 -x1 +x11 ~ 0 . 

-2x4 - x5 +x10 ~ 0 , 

0 ~X;~ l, i = 1, . .. ,9,13, 

0 ~X;~ IOO, i = 10,11 ,12. 

i=l i=5 
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The problem has 9 linear constraints; the cost function is quadratic with global minimum at 

X=(1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1), where F(X)=-15. 

test case #2: F(X) = x1 + x2 + x3 

subject to: 

1- 0.0025(x4 + x6 ) ~ 0, 

I- 0.0025(x5 + x1 - x4 ) ~ 0, 

I-O.OI(x8 -x5)~0, 
x1x 6 - 833.33252x4 - 1 00x1 + 83333.333 ~ 0, 

x2 x1 -l250000-x3x5 +2500x5 ~0. 

100 ~ x1 ~ 10000 , 
1000 ~ X; ~ 10000, i = 2,3, 

10 ~X;~ l OOO,i = 4, ... ,8. 

The problem has 3 linear and 3 non-linear constraints; the cost function is linear and has its 

global minimum at X=(579.3167, 1359.943, 5110.071, 182.0174, 

295.5985, 217.9799, 286.4162, 395. 5979) where F(X)=7049. 330923. 

test case #3: 

subject to: 

127 - 2x1
2

- 3x;- x3 - 4x;- 5x5 ~ 0 , 

282- 7 X 1 - 3x2 - lOx; - X4 + X5 ~ 0 , 

192 - 23x1 - xi - 6x~ +8x7 ~ 0, 

-4x1
2

- xi+ 3x1x2 - 2x;- 5x6 + ll x1 ~ 0, 

- 10.0 ~X;~ 10.0,i = 1, ... ,7 . 

The problem has 4 non-linear constraints; the cost function is non-linear and has its global 

minimumatX=(2.330499, 1.951372, -0.4775414, 4.365726, 

-0 .6244870, 1.038131, 1.594227) where 

F(X)=680. 6300573. 
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subject to: 

2 2 2 2 2 10 x1 + x 2 + x3 + x4 + x 5 = , 

x2x3 - 5x4x5 = 0 , 
J 3 I x 1 +x2 =- , 

-203:::; X ; :::; 203,i = 1,2, 

-3.2:::; X; :::; 3o2,i = 3,4,5 o 

The problem has 3 non-linear constraints; the cost function has its global minimum at X= 

(-1 . 7 1 7143 I 1 . 5957091 1. 827247 I -0 . 76364 1 3 I -0 . 76364 5 0) where 

F(X)=O . 0 5394984780 

test case #5: 

F(X) = x1
2 +xi +x1x2 - 14x1 - 16x2 +(x3 - 10)2 +4(x4 -5)2 +(x5 -3)2 

+2(x6 - 1)2 + 5xi + 7(x8 - 11) 2 + 2(x9 - 10)2 + (x10 -7) 2 + 45 

subject to: 

105 - 4x1 -5x2 +3x7 -9x8 ;::: o , 

- IOx, + 8x2 + 17x7 -2x8 ;::: o , 

8x1 - 2x2 - 5x9 + 2x10 + 12;:::: 0 , 

- 3(x1 -2) 2 -4(x2 -3)2 -2x; +7x4 +120 ;::::0, 

- 5x1
2 - 8x2 - (x3 - 6)2 +2x4 +40 ;:::: 0 , 

- x 1
2

- 2(x2 - 2) 2 + 2x1x2 - l4x5 + 6x6 ;:::: 0 , 

-005(x1 - 8) 2
- 2(x2 - 4)2

- 3x; + x6 + 30 ;:::: 0 , 

3x, - 6x2 - l2(x9 -8)2 + 7x10 ;::: o , 

- 1000 :::; X;:::; IOoO,i = 1, .. 0,10 0 

The problem has 3 linear and 5 non-linear constraints; the cost function has its minimum at 

X=(2 .1719961 2.3638831 8.7739261 5 . 0959841 0 . 99065481 

1.4305741 1.3216441 9.8287261 8.2800921 81 375927) where 

F(X)=24. 30620910 
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The ant colony search model gives better minima at the same level of constraint violation 

as compared to other existing state-of-the-art evolutionary constrained handling techniques 

[Michalewicz, 95 a]. Results are summarised in Table 4. I. For example, the best results 

described in [Michalewicz, 95 a] are -I 5.00, 8206. 15, 681. I I, 0.064 and 26.9 for test cases 

from I to 5 respectively. 

Compared to other evolutionary methods for constrained optimisation the ant colony 

model shows excellent performance and quality of solution especially for the problems 

with non-linear constraints. A remarkable feature of the ant colony model is that the 

standard deviation of the solutions (averaged over 10 independent runs) is considerably 

less that the standard deviation produced by other evolutionary methods for constrained 

optimisation [Michalewicz, 95a]. 

The performance of the ant colony search model can be significantly increased if the 

individual search strategy is appropriately selected. For example, if the ant colony utilises a 

Sequential Quadratic Programming method [Lawrence et. al., 96], instead of the simple 

stochastic hill-climbing, the performance on the five test cases could be dramatically 

increased. Results are shown in table 4.2. In this case the performance is so significantly 

increased because the test cases prove to be easy for the individual search strategy alone 

and no co-operation is necessary (actually, here co-operation slows down the program 

execution on a sequential machine as many of the agents will reach the same solution in 

parallel). 
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runs test I test 2 test 3 test 4 test 5 
opt. -15.00 7049 680.6 0.054 24.30 
I. -14.39 7293 680.8 0.053 26.53 
2. -14.46 7624 680.8 0.054 25.83 
3. -14.76 7486 680.9 0.055 25.81 
4. -14.45 7674 680.8 0.066 26.04 
5. -13.93 8009 680.8 0.056 26.12 
6. -14.59 7343 681 0.055 25.78 
7. -14.46 7774 681 0.057 26.78 
8. -14.53 7650 680.8 0.055 25.72 
9. -14.33 8082 680.9 0.054 26.29 
10. -14.64 7704 681 0.056 25.72 
aver. - 14.45 7663 680.9 0.056 26.06 

Table 4.1. Results of running the Ant Colony model on the five test cases proposed in 
[Michalewicz, 95]. The assumed constraint violation accuracy is 0.01 for each constraint. 
The maximum number of fitness function calls is 50,000. Each fitness function call 
includes one call to the cost function and one call to the constraint function. 

no. of cost function no. of constraint found value 
calls function calls 

test 1 50 0(*) -15 
test 2 58 381 7049.25 
test 3 165 483 680.63 
test 4 1186 5978 0.05394 
test 5 37 383 24.306 

Table 4.2. Results from applying an Ant Colony model utilising sequential quadratic 
programming as individual search strategy on the five test cases proposed by Michalewicz 
[Michaiewicz, 95]. (*) Zero number of constraint function calls is possible in this case 
because the constraints are linear and they are eliminated analytically before the 
optimization begins. 
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Unfortunately, the selection of individual search strategy cannot always guarantee such an 

increased perfonnance. It is potentially possible that much CPU time is allocated to the 

individual search (i.e., local exploitation) and little remains for the global exploration thus 

resulting in decreased overall perfonnance. Such a scenario is quite plausible for highly 

multi-modal fitness landscapes. In this case other approaches, such as the definition of 

appropriate meta-control rules, seem very promising. An example of how to define 

effective meta-control rules is presented in the following paragraphs using the bump 

problem proposed by Professor A. Keane [Keane, 94]. The bumpy equation simulates a 

multi-peak optimisation problem. The objective function is defined as follows: 

(4.5) 

where the x;, i= I , ... ,m are the variables (expressed in radians) and m is the number of 

dimensions. This function produces a series of peaks that get smaller with distance from 

the origin and which are nearly symmetrical about x;=xj. i,j= l, ... ,m. The optimisation 

problem is then defined as find x; for O<x,<!O, i=l , ... ,m to maximise the function subject to 

m m rr X; > 0. 7 5 and 2, X; < 300 . A contour plot of the fitness function for the 2D bump 
i=l i=l 

problem is shown on fig. 4.7. 

There are some interesting features about the bump problem which can be used as a basis 

for the definition of efficient meta-control rules. For example, the observation that the 

fitness function can always be improved by sorting the co-ordinates of a search point in 

decreasing order is implemented as a heuristic in the ant colony search model (i.e., at each 

generation the heuristic is applied to the best solution). It greatly increases the perfonnance 
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of the search algorithm and empirically proves the fact that algorithms that use as much as 

possible relevant infonnation about the problem at hand achieve better results (fig. 4.8.). 

This section presented the ant colony metaphor as a high level description language for 

distributed searches. Current research identifies three levels of abstraction: the individual, 

the group, and the environment (landscape). Although easy to describe, such models are 

often mathematically intractable to analyse due to the non-linear coupling between the 

three levels. 

We also empirically showed that incorporating prior knowledge into the search process 

significantly improves the perfonnance. The ant colony metaphor proves quite useful when 

applied to engineering design problems as it enables the engineer to fully take advantage of 

the adaptive search paradigm and to easily implement constrained search as will be seen in 

chapter 6. 
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Fig. 4.7. A contour plot of the fitness landscape of a 2D bump problem. 
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CHAPTER 5 

Feasibility Search for Problems with Implicitly Defined 
Constraints 

In this chapter we assume that the constraints are implicitly defined (i.e., "black box" 

representation) or that they are so complex that the feasible region cannot be readily 

derived explicitly as in chapter 3. The main objective will be to "outline" the feasible 

region by a population of samples. The developed framework should work in convex as 

well as non-convex feasible regions. Once the various feasible subregions are found they 

can be passed to the engineering designer for evaluation. 

5.1. Low Discrepancy Sequences 

If we want to guarantee a uniform sampling of the search space we can use a grid 

sampling. The trouble with the grid sampling is that one has to decide in advance how fine 

it should be. One is then committed to completing all the points. With a grid it is not 

convenient to sample until some convergence or termination criterion is met. One might 

ask if there is not some intermediate scheme, i.e., some way to pick sample points "at 

random", yet spread out in some self-avoiding way, avoiding the chance clustering than 

occurs with uniformly random points. So the question is: Is there any way to sample better 

than uncorrelated, random samples? 
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The answer to the above question is "yes". Sequences of n-tuples that fill n-space more 

uniformly than uncorrelated random points are called quasi-random or low-discrepancy 

sequences. A conceptually simple example is the Halton sequence [Halton, 60]. In one 

dimension the jth number Hj in the sequence is obtained by the following steps: (a) Write j 

as a number in base b, where b is some prime. (For example, j= 17 in base b=3 is 122.) (b) 

Reverse the digits and put a radix point (i.e., a decimal point base b) in front of the 

sequence. (In the example we get 0.221 base 3.) The result is Hj. To get a sequence of n

tuples in n-space, we make each component a Halton sequence with a different prime base 

b. Typically, the first n primes are used. 

It is not hard to see how Halton's sequence works: Every time the number of digits of j 

increases by one place,j's digit-reversed fraction becomes a factor of b finer-meshed. Thus 

the process is one of filling in all the points on a sequence of finer and finer Cartesian grids 

and in a kind of maximally spread-out order on each grid (since, e.g., the most rapidly 

changing digit inj controls the most significant digit of the fraction). 

Other ways of generating low-discrepancy sequences have been suggested by Sobol 

[Sobol, 67], Niederreiter [Niederreiter et. al., 94], and others. Bratley and Fox [Bratley et. 

al., 88] provide a good review and references. In our work we will adopt a particularly 

efficient variant of Sobol's sequence proposed by Antonov and Saleev [Antonov et .. al., 

79]. 

The Sobol's sequence generates numbers between zero and one directly as binary fractions 

of length w bits, from a set of w special binary fractions, V;, i=l,2, ... ,w, called direction 

numbers [Press et.al., 92]. In Sobol's original method, the jth number Xj is generated by 

XORing (bitwise exclusive OR) together the set of V;'s satisfying the criterion on i, "the ith 
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bit of j is nonzero." Asj increments, in other words, different ones of the V;'s flash in and 

out of Xi on different time scales. V1 alternates between being present and absent most 

quickly, while Vk goes from present to absent (or vice versa) only every 2k-l steps. 

Antonov and Saleev's contribution was to show that instead of using the bits of the integer 

j to select direction numbers, one could just as well use the bits of the Gray code of j, GU). 

Now G(j) and G(j+ I) differ in exactly one bit position, namely in the position of the 

rightmost zero bit in the binary representation of j (adding a leading zero to j if necessary). 

A consequence is that the j+ I st Sobol-Antonov-Saleev number can be obtained from the 

jth by XORing it with a single V;, namely with i the position of the rightmost zero bit in j. 

Figure 5.1. plots a two dimensional Sobol sequence. One sees that successive points do 

"know" about the gaps left previously, and keep filling them in, hierarchically. 

We have deferred to this point a discussion of how the direction numbers V; are generated. 

Each different Sobol sequence (or component of an n-dimensional sequence) is based on a 

different primitive polynomial over the integers modulo 2, that is, a polynomial whose 

coefficients are either 0 or I, and which cannot be factored (using modulo 2 integer 

arithmetic) into polynomial of lower order. Suppose Pis such a polynomial of degree q: 

(5.1) 

Define a sequence of integers M; by the q-term recurrence relation: 
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Fig 5.1. "Walk" of a two dimensional Sobol sequence of length 8 and 16, respectively 
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Fig 5.1. ( contitnued) A two dimensional Sobol sequence of length 128, 512 and 1024, 
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Here bitwise XOR is denoted by ffi. The starting values for this recurrence are that 

M~o ... ,Mq can be arbitrary odd integers less than 2, ... ,2q respectively. Then the direction 

numbers V; are given by: 

M. 
V;= 

2
;' , i=l, ... ,w. (5.3) 

5.2. Population-based Identification of the Feasible Region 

5.2.1. Implementation Details 

In this section we are interested in finding the feasible region using a finite population 

based search. A straightforward way to outline the feasible region is by uniformly sampling 

the search space. Although this is an accurate method it is highly computationally 

expensive. One way to reduce the computational expense but still preserving the guarantee 

of not missing a feasible "corner" is by utilising a low-discrepancy sequence. Fig. 5.2. 

shows the feasible region of three arbitrary* 2-dimensional test functions outlined by a 

Sobol sequence of length 500,000. A C-code implementation of the test functions is 

included in the Appendix. 

In engineering design, however, it is quite usual to be limited to a certain number of cost 

function calls (e.g .. 10,000) depending on the computational cost of the simulation model. 

• For the purpose of our investigations the exact definition of the test functions is not so relevant as the 
"shape" of the feasible region. 

93 



••.-------~--------.-------~--------. 

-~ .. .. ........................ ... . 

-· 

... L__ ______ __,_ ________ _,__ ______ ___._ ______ _____j 

-te - 5 lt 

••.-------~--------.--------.--------. 

········ -~ ·· ········· ··········· · ······~·-················· · ·····-~ ... 

-· 

-10 L__ ______ __,_ ________ _,__ ______ __,_ ______ ____J ... -· .. 

••.--------.--------.-------~--------, 

, ......... ,.,. .......... , .................. . 

-· 

-lt_L
11
--------_-'-

5 
---------'-----------'-----------.J

10 

Fig. 5.2. The feasible regions of three test functions as outlined by a two dimensional 
Sobol sequence of length 500,000. The first test function has a non-convex connected 
feasible region and the last two test functions have disconnected feasible regions. 
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Therefore, we need a much faster method for outlining the feasible region, though at the 

sacrifice of accuracy and guarantee of not missing a feasible region. In this section we 

develop an adaptive search population based method for identifying the feasible region 

using a small number of cost function calls. The idea is to modify the dynamic hill 

climbing to include a low-discrepancy sequence for generating the staring points. Using 

this approach it is no longer necessary to maintain a database of point neighbourhoods 

which have already been sampled, since the low-discrepancy sequence "remembers" the 

regions it has already visited: 

(Algorithm 1) 

l.Initialize a population of N quasi-random (i.e., from a 

Sobol sequence) samples. 

2. For each of the elements in the population apply a hill

climber for M steps. The cost function is the constraint 

violation. 

3 .Repeat step 2 until all individuals are 1n the feasible 

region or stuck at local optima. 

The above algorithm allows an equal number of hill-climbing steps for each point at each 

iteration. It is quite possible, however, that the slope of the constraint violation function is 

different at various points and therefore, the above described population does not converge 

unifonnly on the feasible region (i.e., some points will satisfy the constraint violation 

better than others). This is not a fundamental deficiency of the proposed algorithm as far as 

the goals of finding the feasible region is concerned, but will play a significant role when 

trying to introduce heuristics that reduce the number of cost function calls (i.e., at each 

iteration it makes more sense to compare points with similar degree of constraint 

satisfaction). To achieve unifonnity of constraint satisfaction during each iteration we 

modify the above algorithm in the following way: 
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(Algorithm 2) 

l.Initialize a population of N quasi-random (i.e., from a 

Sobol sequence) samples. 

2.Set a constraint violation threshold 0 and relax the 

constraints in the constraint violation cost function by 

0%. 

3. For each of the elements in the population apply a hill

climber until the modified constraint violation function 

is satisfied or a local optima is reached (in which case 

that individual is removed from the population). 

4.Tighten the constraint relaxation threshold by a 

predetermined .1, i.e. , the allowed constrained violation 

becomes 0=0-.1%. 

5 .Goto step 3 until 0-.1 becomes zero, in which case the 

constraints correspond to their original values. 

5.2.2. Experiments 

The above described algorithm modifies the cost function at each iteration. This approach 

is quite reminiscent of the inductive search approach described in chapter 2. Fig. 5.3 shows 

the found feasible region of the test functions from fig. 5.2. The number of cost function 

calls is 15456, 17336 and 16741, respectively. It turns out that adaptation is capable of 

reducing the number of calls to the cost function while at the same time presenting an 

acceptable description of the feasible region. Of course, this cannot be always guaranteed, 

especially for cost functions with a huge number of local peaks. 

Usually, we do not know in advance the exact number of peaks. It is a good idea to start 

our search with a large population size (i.e., comprehensive exploration of the search 

space) and then to concentrate the search only to the most promising areas (i.e., 

exploitation). This approach is only valid if the number of peaks is significantly less than 
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Fig. 5.3. The feasible region of the three test functions from fig. 5.2 outlined by the 
modified dynamic hill climbing. The number of calls to the cost function is 15456, 17336, 
and 16741 respectively. 
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the population size. If the number of peaks is greater than the population size, then it is 

obvious that such a heuristic reduction of exploration would result in missing feasible 

regions. Although such a heuristic does not give us a guarantee of not missing a feasible 

"corner" of the search space, in engineering design practice it may turn that due to 

sensitivity issues we are more interested in relatively large feasible areas and do not care 

too much if our heuristic search algorithm filters out some peaky narrow feasible "islands". 

In order to implement the above described goals we first borrow some ideas from 

immunology. 

5.3. An Immunity-based System for Finding the Feasible Region 

5.3.1. Ideas from Immunology 

The practice of vaccination significantly predates some understanding of the immune 

system. More than a century has passed since Pasteur developed his rabies vaccine, which 

prevents the otherwise fatal disease. In the nineteen-fifties, about a century after Darwin's 

"Origin of Species", MacFarlane Burnett proposed the "clonal selection" theory of B-cell 

response. (B-cells are an important part of the immune system response.) B-cell clones 

expand through a proliferation of those cells whose surface immunoglobulins bind to the 

invading antigen (fig. 5.4). The information content of the genome is not large enough to 

be able to mount an "instructive", genetically pre-programmed immune response. The 

number of possible antigens is simply too large and unpredictable, and the pathogens 

evolve much faster then their host species and therefore, can generate ever novel 

"molecular surprises" for their hosts. The immune system is thus self-organising. 
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Paratope 

Antibody -{ 

Antibody 

Fig. 5.4. Basic elements of the immune system model. The paratope binds to the surface 
of invading antigens. The degree of matching that surface corresponds to the degree of 
recognition. 
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The mechanism of generating self-defining molecular identity implies that the immune 

system has to "learn" to distinguish "self' from "non-self'. There are different hypothesis 

attempting to describe the process of self-identification. MacFarlane Bumett assumes that 

self-identification is accomplished by a process of clonal deletion, during neonatal 

development, of all those B-cells and T-cells that are self-reactive. The clonal selection 

theory has a counter part: The idiotypic network theory of Jeme (who, like Burnett, won a 

Nobel prize). According to this theory, antibodies themselves become antigens by carrying 

epitopes that are antigenic, and which therefore stimulate other B-cell clones, which in turn 

carry epitopes, which stimulate other clones, and so on. The result is an "idiotypic 

network" of B-cells and antibodies that bind to each other and which stimulate and inhibit 

each other. 

5.3.2. Implementation Details. 

In this section we utilise the idea of idiotypic interactions and apply it to the population of 

our search algorithm (section 5.2, Algorithm 2). The goal is to adaptively reduce the 

number of similar samples. The employed heuristic is that samples which are close to each 

other (in an Euclidean distance measure) most probably will lead to the same feasible 

region or peak and therefore, we can delete all similar samples from the population but 

one. For other applications of immunity-based systems to search and optimisation the 

reader is referred to [Smith et. al., 93] and [Forrest et. al., 93]. 

More formally, the idea is as follows. At each iteration of the algorithm described in 

section 5.2 we calculate the Euclidean distance between all pairs of samples. Then for all 

pairs that are closer than a given threshold we randomly delete one of the samples from the 

population. In terms of our immunity-based metaphor, the distance between two samples is 

analogous to the degree of recognition between two antibodies. The resulting algorithm can 
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also be viewed as a stochastic clustering technique, in which we are only interested in the 

center of the clusters. 

Under the assumption that similar samples eventually lead to the same feasible region or 

peak, the above described heuristic reduces the overall number of cost function calls 

without sacrificing quality of obtained results. The modified algorithm is as follows: 

{Algorithm 3) 

1. Initialize a population of N quasi-random (i.e., from a 

Sobol sequence) samples. 

2.Set a constraint violation threshold 0 and relax the 

constraints in the constraint violation cost function by 

0%. 

3. For each of the elements in the population apply a hill

climber until the modified constraint violation function 

is satisfied or a local optima is reached (in which case 

that individual is removed from the population) . 

4. For all pairs of samples that are closer to each other 

than a given threshold T delete randomly one of them with 

probability p, O~p~l. (We have used p=l.) 

5.Reduce the constraint relaxation threshold by a 

predetermined .1. 

6. Goto step 3 until 0-.1 becomes zero. 

5.3.3. Experiments. 

Fig 5.5. shows the results of the immunity-based population search starting with the same 

number of initial samples as in the previous experiment (fig. 5.3) on the three test functions 

from fig. 5.2. The number of cost function calls is reduced considerably to 8108, 9113 and 

9009 respectively. The qualitative nature of the feasible region is not sacrificed which is 

due to the validity of the assumption for the particular tested functions. 
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Fig. 5.5. The feasible region of the three test functions from fig. 5.2. outlined by the 
immunity-based search. The number of calls to the cost functiuons is 8108, 9113, and 
9009 respectively. 
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CHAPTER 6 

Feasibility Search for Heavily Constrained Problems 

6.1. Heavily Constrained Engineering Design Problems 

In this chapter we deal with a heavily constrained optimisation problem from the aircraft 

design domain. The chosen design problem is realistically complex; its globally optimum 

solution is not known or readily determined due to the large size of the search space and 

noise. Most of the desired performance criteria are defined as constraints which are 

implicitly implemented into a simulation model. Their values can only be accessed after 

the simulation has completed. 

6.1.1. Preliminary Aircraft Design 

The application of AI and advanced software techniques to engineering design is resulting 

in the development of new software tools for the design of aircraft [Dixon, 86]. The 

research in this chapter further contributes to this field and aims at integrating the adaptive 

search technology for feasibility search. 

The first step in constructing methods for aircraft design is to consider the general nature of 

the problem of engineering design [Bouchard et. al., 88]. Fundamentally, engineering 

design is the translation of some set of functional desires into a set of instructions that can 

be used to "construct" an object that satisfies those desires. In practice, the design process 
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typically generates a largely geometrical description, known as configuration. In this less 

complete but more common view of design, the configuration represents an implicit set of 

instructions for constructing the object. 

Parametric design is a subtask of design. The design concept, which is the general type and 

arrangement of the object being designed is the starting point of parametric design. In 

addition, the desires to be satisfied form a set of constraint or objective requirements. The 

design for an aircraft, for example, requires specifying details: Does the aircraft have 

wings? If so, what type are they, how big are they, and where are they located? When 

parametric design starts, many of these decisions have already been made; the results are 

expressed in the design concept (usually implemented as a simulation model). This concept 

might specify that the aircraft has wings made of aluminium and a jet engine buried in the 

fuselage. The object of parametric design is to produce a specific design from the family of 

designs implied from the design concept. This entails answering questions like: How big 

should the wing and engine be for a minimum-weight aircraft that meets the range 

requirement? 

A configuration can be specified by a set of symbolic and numerical characteristics that 

define the objects and relations which comprise the configuration. Selecting characteristics 

that can be specified independently produces a set of design variables. In parametric 

design, the design variables define an instance of the design concept being examined. 

Examples of aircraft design variables are tail area, tail location, engine size, etc. These 

variables provide the means by which the design can be optimised subject to the design 

requirements. 
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Because paramteric design starts from a design concept, it avoids much of the synthesis, 

reasoning by analogy, and common sense reasoning which are required in other types of 

design activities. This makes it a highly suitable candidate for automation and is one of the 

reasons that the emerging design tools have concentrated on this area of design. 

6.1.2. The "Hotol" Project by British Aerospace Plc. 

The design domain of the Hotol aircraft involves the preliminary parametric airframe 

design and definition of a flight trajectory for an air-launched winged rocket that will 

achieve orbit before returning to atmosphere for a conventional landing. The trajectory 

consists of a pull-up from air launch at 9000m altitude and Mach 0.8 at a constant 

incidence, followed by a zero incidence ascent. The main engine cut-off (MECO) window to 

aim for is 90km altitude, approximately 7500m/s and a small climb angle to put it into an 

approximately 50x300 mile elliptic transfer orbit. 

The fuselage is a cylinder with spherical cap. The wing is straight tapered. The mass of the 

fin is accounted for, but no aerodynamics are modelled. Due to the geometry of tanks, 

allowance for wing carry-through structure, payload bay, guidance and systems, the 

volume of fuselage available for fuel is less than might be expected (which is accounted 

for in the simulation model). The fuselage mass is assumed to be composed of two 

approximately equal components, one proportional to the surface area, one to volume. The 

wing is calculated to a NASA formula, assuming a maximum load factor of 1.5 at full load 

(i.e., in the pull-up), with a reserve factor of 1.4. The fin is based on shuttle data. The 

engine uses current knowledge of T/W as a function of scale. The payload is specifiable: 

the vehicle on which our simulation model is based is designed to a 7000kg payload. 
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Lift is calculated by the proprietary DATCOM formula, with Clmax conservatively 

assumed to be 1.0. No Mach effects are represented as lift is only significant in the pull-up. 

Drag is made up of fuselage, wing, base and lift-dependent components. The fuselage and 

wing have skin friction components calculated by the empirical Prandtl-Schlichting 

formula. Wing wave drag (supersonic) is based on the ESDU method derived by British 

Aerospace at Warton. Fuselage wave drag is crude, assuming ram drag (i.e., flow brought 

to a dead stop) on the nose cap. This is pessimistic below Mach 5, but realistic at 

hypersonic speeds. Base drag applies to the area not covered by engine nozzle, and uses 

empirical data. 

The engines are fitted into the base area such that the nozzles do not protrude beyond the 

fuselage cross-section (i.e., no shroud). As the engine throat area is proportional to scale 

factor, the expansion ratio (nozzle area/throat area) follows from this criterion. Up to 7 

engines may be fitted; beyond that the geometric packing becomes complicated. Thrust is 

calculated directly from specific impulse and fuel flow, which is proportional to engine 

scale. 

The design concept as modelled by the simulation code is schematically shown in fig. 6.1. 

The independent variables of the design concept include: 

ALPHA: 

GAMMA: 

Incidence during pull-up (in degrees) 

Climb angle at the end of pull-up (in degrees). The trajectory and conditions 

at MECO (Main Engine Cut-Oft) are very sensitive to ALPHA and GAMMA. 
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ALPHA 

GAMMA 

SW ____.. 

ESF ____.. 

FR--. 

NENG --. 

FL--. 

HMECO--. 

Simulation Program 

~ 

DVMECO 

V LAND 

WPL 

VMAX 

DGMECO 

WE 

Fig. 6.1. A schematic representation of the Hotol parametric design concept. 

108 



SW: 

ESF: 

FR: 

NENG: 

FL: 

HMECO: 

Gross wing area. This means the area of the wing considered projected to 

the vehicle centreline. 

Engine scale factor. This is relative to a lOOOkN engine. 

Fuselage fineness ratio (length/diameter). 

Number of engines. 

Fuselage length. 

Height at MECO. This relates to the required orbit. 

There are several constraints which are to be met: 

DVMECO: 

VLAND: 

WPL: 

VMAX: 

DGMECO: 

Speed excess at main engine cut-off (m/s). This is the excess over that 

required to achieve the specified orbit. This should be obviously zero. 

Landing speed (m/s). This should be about 77 m/s. 

Achieved payload weight. Nominal value of 7000 kg. 

Maximum speed in ascent (m/s). This is a measure of the kinetic heating 

during ascent, and also affects the loading on the structure. A typical 

compromise limit may be 260 m/s but this may not be possible to achieve 

without modulating thrust. 

Excess in climb angle over the required for orbit at MECO. This should be 

obviously zero. 

Initially a tolerance of I o/o on the nominal values is accepted as satisfactory. This would 

give margins of about ±70, ±1, ±70, ±2, ±0.01 respectively. 

The overall objective of the design is to minimise the empty weight of the vehicle (WE), 

based on the specified geometry. 
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6.1.3. Current Solution Procedure Provided by British Aerospace Plc. 

Using current experience and deep knowledge of the simulation model British Aerospace 

provided a manual procedure for designing a Hotol airframe. At first, the problem is 

divided into two subproblems: (I) definition of the vehicle and (2) achieving the required 

orbit. The reason behind this division is that trajectory optimisation is a difficult, but well 

understood problem. The design procedure is as follows: 

I. Guess the fuselage length (FL): 40m is at least sufficient. 

2. Adjust the fineness ration (FR): For aerodynamic drag considerations this value 

should be high. At the same time, for structural efficiency considerations, this 

value should be I. A good compromise is somewhere between (i.e., 5). 

3. Taking into consideration takeoff mass and landing speed guess the gross wing 

area (SW). 

4. Guess number of engines (NENG). No heuristic is provided at this stage. 

5. Adjust the engine scale factor (ESF) to give T/W- 1.5. 

6. HMECO has to be in the orbit i.e., between apogee and perigee and below major 

semiaxis of ellipse. 

7. Play with ALPHA and GAMMA to meet trajectory constraints. 

The first five steps from the above design procedure define the vehicle and the last two 

steps optimise on the trajectory. It will be shown later in this chapter that such subdivision 

of the problem is not efficient since the definition of the vehicle, to a great extent, 

predetermines the success of the trajectory optimisation procedure. It is well justified, 

therefore, to consider both stages in parallel. 
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Using the above defined design procedure British Aerospace have designed the following 

airframe: 

ALPHA: 19.0 

GAMMA: 44.58 

SW: 322 

ESF: 1.20 

FR: 4.55 

NENG: 4 

FL: 40.10 

HMECO: 90000.00 

which has the following simulation results: 

DVMECO: 

VLAND: 

WPL: 

VMAX: 

DGMECO: 

WE: 

-78.6001 

65.3845 

20050.1 

229.535 

-0.57893 

28104.0 

A quick look at the simulation results reveals that the constraints (as initially defined) are 

not satisfied. Two major questions arise: (I) Can we find a solution that satisfies the 

defined constraints, and (2) What is the effect of constraint relaxation on the difficulty of 

the search problem? The answer to the first question is largely unknown a priori and it is 

suggested that the relaxation of the constraints will make the search for a feasible region 

easier as the feasible region itself will become relatively larger. 
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6.2. Constraint Satisfaction in Heavily Constrained Problems 

The problem provided by British Aerospace Plc. is a constrained optimisation problem 

with an extremely difficult feasibility part (i.e., finding a feasible point). It has seven real 

and one discrete design variables and five real valued non-linear non-explicit (i.e., 

integrated into a simulation code) constraints. The problem is of non-convex nature as the 

simulation code often results in errors for which the simulation outcome is not defined. 

The problem is also noisy due to the numerical simulation. 

Problems with a difficult feasibility part are often referred to as heavily constrained 

problems. For such problems if the feasible region is disconnected (as will prove to be the 

case with the Hotol problem) the constrained optimisation part reduces to finding the set of 

feasible regions. 

6.2.1. Definition of a Constraint Violation Function 

It is well known that an appropriate definition of a constraint violation function is of 

paramount importance to the success/failure of any search algorithm. We have found the 

following definition very useful [Bilchev and Parmee, 95b]: 

l
±,cnstr _viol; (x) 2 

F(x) = i=l 

c 

if normal simulation termination 

otherwise 
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C;(X)-U; 

U; -f; 

l; -c;(x) 
cnstr _viol; (x) = 

U; -[; 

0 

if C; > U; 

if C; < {; (6.2) 

otherwise 

where C is a large constant which penalises errors in the simulation program, and l; and u; 

are lower and upper bounds of the feasible region as defined by the problem. 

The constraint violation function thus defined assumes (I) equal importance of all 

constraints, and (2) equal difficulty in satisfying them. If this is to be changed and we want 

to attribute different weights to the various constraints, we can change the constraint 

violation function to: 

1
± w; · cnstr _viol; (x) 2 

F(x) = i=l 

c 

if normal simulation termination (6.3) 

otherwise 

where W; represent our knowledge of constraint satisfaction difficulty and/or our constraint 

satisfaction preference. More difficult constraints should have higher weights as well as the 

more important to satisfy (from an engineering design point of view) constraints. 

Constraint relaxation can be controlled by the lower and upper bounds of the feasible 

region (l; and tt;) and reflects the notion of softness/hardness in the constraint definitions. 
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6.2.2. Experiments with Various Optimisers 

6.2.2.1. Application of Direct Pattern Search of Hooke and Jeeves 

The direct pattern search of Hooke and Jeeves [Hooke and Jeeves, 61 ], originally devised 

as an automatic experimental strategy, is nowadays much more widely used as a numerical 

parameter optimisation procedure. The method is characterised by two types of move. At 

each iteration there is an exploratory move, which represents a simplified Gauss-Seidel 

variation with one discrete step per co-ordinate direction. No line searches are made. On 

the assumption that the line joining the first and the last points of the exploratory move 

represents an especially favourable direction, an extrapolation is made along it (pattern 

move) before the variables are varied again individually. The extrapolations do not 

necessarily lead to an improvement in the objective function. The success of the iteration is 

only checked after the following exploratory move. The length of the pattern step is 

thereby increased each time, while the optimal search direction only changes gradually. 

This pays off to most advantage where there are narrow valleys, provided they are not 

sharply bent. The extrapolation step s follows, in an approximate way, the gradient 

trajectory. However, the limitation of the trial steps to co-ordinate directions can also lead 

to premature termination. 

A proof of convergence of the direct search of Hooke and Jeeves has been derived by Cea 

[Cea, 71 ]; it is valid under the condition that the objective function is strictly convex and 

continuously differentiable. 

However, the design space S of the Hotol problem is of non-convex nature. The objective 

function is often not well defined over the simple search boundaries l; and u; . This is due 

to the fact that the simulation often results in an error return code where the constraints do 

not have a meaningful value to be used as gradient information. Moreover, the objective 
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function is noisy (due to numerical integration procedures in the simulation code) and has a 

finite number of discontinuities. Therefore, the proof of convergence of the direct search 

method of Hooke and Jeeves (as well as the proof of any other method assuming convex, 

continuously differentiable functions) is not valid. 

However, in a close proximity to local optima it is most likely that the objective function is 

convex and continuously differentiable. Therefore, it is worth trying the direct search 

method of Hooke and Jeeves around such local optima. 

The algorithm of Hooke and Jeeves with improvements due to Bell and Pike [Bell and 

Pike, 69], and Smith [Smith, 69] is described in Appendix C. We apply it to the Hotol 

design problem starting from the solution provided by BAe. The constraint satisfaction 

regions are slightly relaxed from the original formulation and express the notion of 

acceptable designs: 

DVMECO: E [-20, 500) 

VLAND: E [0, 77) 

WPL: E [7000, 3000) 

VMAX: E [0, 300) 

DGMECO: E [-0.01, 0.01) 

The cost function used is the constraint violation with equal weights. The initial step sizes 

for the algorithm are defined as follows: 

HALPHA: 1.0 

lfc,AMMA: 1.0 

Hsw: 10.0 

HEsF: 1.0 

HFR: 1.0 

liS 



HNENG: 

HFL: 

HHMECO: 

NIA (Number of engines is kept fixed to 4) 

1.0 

100.0 

where the number of engines is fixed equal to the number of engines of the starting point. 

After 467 cost function evaluations the algorithm converges to: 

ALPHA: 

GAMMA: 

SW: 

ESF: 

FR: 

NENG: 

FL: 

HMECO: 

where: 

DVMECO: 

VLAND: 

WPL: 

VMAX: 

DGMECO: 

WE: 

19.0 

44.58 

322 

1.20 

4.55 

4 

40.10 

91528.38 

3118.59 

65.3845 

-11471.5 

229.535 

-0.0099 

59625.65 

It can be seen from the simulation result that three of the constraints are satisfied (namely, 

VLAND, VMAX, and DGMECO). This allows us to increase the weights of the constraint 

violation of the other two constraints in order to attempt to drive the search process into 

satisfying them as well. We start again from the same initial point, but this time with the 

following weights: 
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WoVMEco: 10 

WVLAND: 

WwPL: 10 

WVMAX: 

WooMEco: 

After 452 cost function evaluations the following the algorithm converges at: 

ALPHA: 

GAMMA: 

SW: 

ESF: 

FR: 

NENG: 

FL: 

HMECO: 

where: 

DVMECO: 

VLAND: 

WPL: 

VMAX: 

DGMECO: 

WE: 

19.0 

44.58 

322 

1.20 

4.55 

4 

40.10 

90164.24 

499.9 

65.3845 

12568.1 

229.535 

-0.54731 

35586 

In conclusion, the algorithm of Hooke and Jeeves is capable of slightly improving on the 

results when started at a near optimum point, but it is the nature of the problem that does 

not allow a local hill climber to find a feasible solution. It seems that the vehicle itself is 

not appropriately defined to allow a feasible trajectory performance when tuning only the 

trajectory parameters. Therefore, the problem requires a simultaneous design (search) 

along both the vehicle definition and trajectory optimisation. Genetic algorithms are quite 
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suitable for such application as they are capable of evolving a population of potential 

candidate designs each of which can encode both vehicle and orbit parameters. 

6.2.2.2. Application of the Genetic Algorithm 

Designed to search irregular, poorly understood spaces, genetic algorithms (GAs) are 

general purpose algorithms developed by Holland [Holland, 75] with precursors suggested 

by Bledsoe [Bledsoe, 61] and others. Holland's hopes were to develop powerful, broadly 

applicable techniques, to provide a means to attack problems resistant to other known 

methods. Inspired by the example of population genetics, genetic search is population 

based, and proceeds over a number of generations. The criterion of "survival of the fittest" 

provides evolutionary pressure for populations to develop increasingly fit individuals. 

Although there are many variants, the basic mechanism of a GA consists of: 

I. Evaluation of individual fitness and formation of gene pool. 

2. Recombination and mutation. 

Individuals resulting from these operations form the members of the next generation, and 

the process is iterated until the system ceases to improve. 

The most obvious factors that affect the performance are the parameter settings for 

population size, crossover rate, and mutation rate. The most influential factor, however, is 

the choice of an encoding scheme or representation. The reason is that a proper choice of 

representation can significantly help the GA to converge to the global optima. 

For optimisation of functions over continuous domains it is sometimes more convenient to 

select a floating-point representation because it is the natural base for expressing real 
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valued parameters and it facilitates interfacing with other algorithms (e.g. standard 

numerical analysis algorithms, regression analysis, etc.). If there are mixed discrete and 

real design variables, we can mix the representation as well, i.e., the discrete variables will 

have a binary representation and the real variables will have a floating-point representation. 

To apply the GA to the Hotol problem, we use a mixed representation and a population 

size of I 00 chromosomes. The main operator is a dynamic mutation which reduces the 

perturbation effect on the offspring chromosome as the generation number increases. This 

guarantees higher precision search at the end of the evolution. Crossover plays a secondary 

role for floating point representations, since it is only limited to cross at the boundary of a 

design variable. Each generation produces I 00 new chromosomes which are placed in a 

genetic pool with their parents. A roulette wheel selection is used to select the best 100 

which will be the parents of the next generation. 

Special attention is devoted to the design of the fitness function. We utilise the constraint 

violation function as a fitness function in order to drive evolution towards a feasible 

solution. At this stage it seems that a proper a priori selection of the weights W; can 

successfully guide the search towards a feasible region. However, the problem here is that 

we do not have that a priori knowledge. One way to overcome this problem is to adopt an 

adaptive fitness function, implemented by adaptive weights. If a particular constraint is 

relatively harder to satisfy, then its weight is increased and vice versa. At the beginning of 

the evolution we set all weights to be I 's. 

The results of the application of the GA to the Hotol problem (averaged over 10 

independent runs) are shown in fig. 6.2. The shown fitness function is w.r.t. all weights 

being equal to I. Some of the best found solutions look like: 
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Fig. 6.2. Result from running a GA with the constraint violation calculated as the 
Euclidean distance from the feasible region. 
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Design #I: 

ALPHA: 

GAMMA: 

SW: 

ESF: 

FR: 

NENG: 

FL: 

HMECO: 

where: 

DVMECO: 

VLAND: 

WPL: 

VMAX: 

DGMECO: 

WE: 

Design #2: 

ALPHA: 

GAMMA: 

SW: 

ESF: 

FR: 

NENG: 

FL: 

HMECO: 

16.3336 

51.2857 

397.597 

0.94375 

9.73702 

6 

58.4827 

74007.89 

104.02 

57.732 

6826.8 

238.86 

0.4102 

39530.4 

22.659 

44.249 

168.77 

1.6825 

5.4751 

2 

43.469 

75154.5 
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where: 

DVMECO: 

VLAND: 

WPL: 

VMAX: 

DGMECO: 

WE: 

1240.05 

83.202 

7107.04 

251.604 

-0.2622 

33762.8 

It is obvious that a significant improvement over the manual design procedure and the 

classical Hooke and Jeeves algorithm has been achieved by the GA. However, in terms of 

satisfying the design goals, it still remains to find a feasible solution. In the next section we 

use the idea of interfacing the population evolved by the GA with our ant colony search 

model in the hope of finding a feasible solution. 

6.2.2.3. Application of the Ant Colony Search Model 

In this section we define a hybrid search framework that consists of a GA utilised as a pre

processor for allocating promising feasibility areas of the search space followed by an ant 

colony search starting from the points found by the GA. The overall structure of the hybrid 

search is shown in fig. 6.3. 

Parmee [Parmee et.al., 94][Parmee and Denham, 94][Parmee, 95b] has shown that a GA 

with modified selection mechanism and variable mutation is capable of allocating various 

good design clusters. The implicit cluster information can then be passed to the 

Engineering Designer (EO) who according to his expertise selects points for further 

refinement by the ant colony. The EO can either be a human designer or alternatively can 

be implemented as a filter that passes all designs that are close to feasibility. The ant 
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Fig. 6.4. Result from running the ant colony search starting from the best points found by a 
GA. 
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colony search is selected because it is a robust multi-modal search technique relying on 

multi-agent co-operation in order to distribute search in the most promising areas as has 

been seen in chapter 4. Apart from locally tuned solutions the ant colony can also return an 

estimate of the sensitivity of a design solution (sect. 6.3). 

The proposed hybrid search framework is capable of finding numerous acceptable 

solutions as shown in fig. 6.4. The GA is run for about 5,000 fitness function evaluations 

followed by an ant colony search of 1,000 ants for 30 cycles. This makes a total of 35,000 

fitness function evaluations which takes approximately 10 hours on a SPARC 10 station. 

The increased computational cost pays off as several feasible solutions can now be 

successfully identified. Some of the best solutions are: 

Design #I: 

ALPHA: 16.20186 

GAMMA: 52.20023 

SW: 287.6505 

ESF: 1.943317 

FR: 9.749463 

NENG: 

FL: 55.07114 

HMECO: 85094.05 

where: 

DVMECO: 445.6 

VLAND: 57.6 

WPL: 7600 

VMAX: 238.3 

DGMECO: -0.001 

124 



' 

I 
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:WE: 25819 

.fNsiiii' #2: 

ALP HAt 24'34185: 

GAMMA: 5,1.05346r 

SW: 231.7679· 

·ESF: .1.721016 

FR:' 8;089187 

.NENG:: 2 

FL: .58.04511: 

HMECO: 9M03:591 

where: 

·DVMECOt 80.2 

V LAND: 75.3: 

' 
rWEL: ,22025 

' I 

VMAX: 235:5 

•IDGME~0: 0.001 

WEt 239.65 

Jn order to accept a feasible solution ·ras: .a potential! :design it i!!, cruci~tl rto 'CalCulate rthe 

:constraint sensitivity.In•the next section.we:define•the constrai11t· sensitivity :In .a :Worst~case 

•deterministic)setting andi an, average setting:and modify.the antlc.cilonysearch rriodell fm 
1

the 

calculation ofthe sensiiivity information. 
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6.3. Constraint Sensitivity Issues in Heavily Constrained Problems 

A sensitivity measure is defined in terms of maximum and average risk of achieving a 

degraded real design when deviating from the numerically represented design solution. 

That risk is unavoidable because of the physical impossibility of achieving the exact values 

of the design variables and the uncertainties in the simulation model itself. It may happen 

that even when using numerically stable algorithms the found optimal design solution lies 

within a very sensitive region and a small perturbation in the design variables can lead to 

an enormous change in the overall design solution [Parmee and Denham, 94]. This is a 

property of the problem itself and does not depend on the actual optimisation algorithm. So 

when making decisions the engineering designer, among others, should take into 

consideration the sensitivity of a given solution. 

In this section we present definitions of worst-case and average-case sensitivity and 

develop a method for calculating it which is applicable to problems with non-explicit 

objective and constraint functions. The proposed sensitivity measure is also capable of 

representing design variable interaction. 

6.3.1. Definition of Constraint Sensitivity 

We are interested in two sensitivity measures reflecting the maximal (worst case) and the 

average degradation that can be achieved. The degradation is locally defined w.r.t. a 

particular design point P and should be a function of the distance o from P (fig. 6.5). (6.4) 

The worst case degradation is defined as: 

(6.4) 
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It is a vector with direction pointing to the worst case degradation at a distance 8 from P 

and of absolute value equal to the degradation of the cost function. The projection of Smax 

along the design variables co-ordinates is a measure of the contribution of each variable 

towards the degradation and can be used to estimate the relative sensitivity of the design 

w.r.t. the individual independent design variables. The calculation of SITlliJ< requires a search 

at each hypersurface 

( 
p P' )2 ( p P' )2 s:-2 

X1 - X1 + ... + Xn - Xn = u (6.5) 

in order to find the maximal design degradation. 

Analogously, the average degradation is defined as: 

S•ver (8) = aver f(P)- f(P) 
<:ci -.rr }2+ ... +(.r: -.r:· >~ =62 

(6.6) 

It is a scalar with value representing the average achieved design degradation at distance 8 

from P. The calculation of s.ver is obvious and involves stochastic sampling at each 

hypersurface. 

6.3.2. An Ant Colony Search for Sensitivity Calculation 

We now apply the ant colony search to the sensitivity calculation problem. The only care 

that must be taken is to design an appropriate fitness assigning model. The algorithm 
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works as follows: At each generation ants are constrained to search only on the 

hypersurface: 

( p p )2 ( p p )2 ~2 x 1 -x1 + ... +x.-x. =u, (6.7) 

where o, is the search radius at generation t. At the next generation the search radius is 

incremented by Li. The best solutions found at radius o are propagated into the initial 

population of the o+Li search (fig. 6.6). This heuristic is well justified by some a priori 

continuity assumptions. 

We calculate the constraint sensitivity information at the two designs discovered by the 

hybrid search model (section 6.2.2.3). Results are shown in fig 6.7. It can be easily seen 

that design #2 is more robust w.r.t. constraint sensitivity than design #1. A slight variation 

of design #I can easily make it significantly infeasible. 
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Fig. 6.5. Definition of local design sensitivity at a radius 8 around a proposed solution 
point P. 

Fig. 6.6. An ant colony search is used to find the maximum degradation of the design 
found on a hypersphere with radius 8. Then the best solutions are propagated into the 

initial population of the next (8t-L1) search problem. 
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CHAPTER 7 

Discussion and Conclusions 

7.1 Discussion 

In this dissertation we have investigated the use of constraints to explicate design questions 

and circumscribe feasible regions. We have examined the process of search and scrutiny 

within a region. We have viewed constraints as the rules, requirements and relations that 

are defined within the context of designing. 

Constraints are imposed by nature, culture, convention and marketplace. Some are imposed 

externally, while others are imposed by the designer. Some are the result of higher-level 

design decisions; some are universal (e.g. gravity, molecular forces, etc.). In this view, to 

design is to describe constraints and to specify an object that satisfies all these constraints. 

This was the goal of study of the dissertation, i.e., developing novel adaptive search 

(extrema finding) methods for specifying objects that satisfy the constraints already defined 

by a simulation model (i.e., a design concept). 

Search in design is quite different from extremal problem solving (i.e., optimization) in 

mathematical programming. The difference mainly stems from the nature of the design 

problem itself. Design problems are atypical problems in that they have many solutions. 

The objective is not to find the solution to a set of design specifications; we find several 
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solutions out of many alternatives. Stated in other words, in engineering design the goal is 

not to find the solution to a problem, but to find an acceptable solution to the problem. 

Another difference is that in the mathematical formulation of extremal problem solving 

there is no formal difference between easily solvable, explicitly or implicitly defined 

constraints. In engineering design, however, when we deal with highly complex real world 

domains, the utilization of a priori knowledge or engineering expertise and exploitation of 

constraint information proves practically to make a great difference in method efficiencies. 

Therefore, the work presented in this dissertation describes constrained optimization in 

engineering design viewed as a hierarchy of gradually increasing in complexity problems. 

Problems in which the constraints can be naturally integrated into the model are generally 

considered easier to solve than problems where one simulation run returns a set of values 

which can be combined into a constrained function in many arbitrary ways. 

Current results show that the formulation (i.e., the model or the design concept) of the 

constrained optimization problem greatly effects its difficulty. If it is possible to account 

for all feasible regions and group them together in one cost function then the search engine 

views the problem as essentially unconstrained. However, there is no general methodology 

of handling constraints through the model representation, and therefore, it is natural to 

expect models in which there are large "holes" of infeasibility. 

Quite often the task of the engineering optimizer is hindered by an ill-defined simulation 

model or model which lacks systematic description of the feasible region thus allowing 

feasible solutions to be randomly scattered around the search space. As far as engineering 

design is concerned, it is expected that a closer coupling between the modeling and 

optimization can significantly improve the achieved results. 
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Such future research will also have to address more closely the question of reality and 

models. It is well known from theoretical computer science that the way an object is 

described determines the set of easy and the set of intractable questions. Therefore, the 

problem will be how to make such a model which facilitates the search for an answer. 

7 .2. Summary of Results 

One of our main contributions is the development of the ant colony search model as a 

hybrid optimization framework of co-operating search agents. We showed how to apply it 

to both discrete (chapter 2) and continuous (chapter 4) problems as well as real world 

engineering design problems (chapter 6). Experimental results proved that the approach is 

viable and if it is enhanced with some problem specific knowledge it is also very 

competitive as compared to existing global optimization techniques. 

We have also developed an inductive search approach applicable to both continuous 

(chapter 2) and discrete (chapter 3) problems. The inductive search has also been 

successfully integrated into the genetic algorithm model by adding a new layer of 

dynamically changing fitness function (chapter 3). 

In chapter 5 we have extended the dynamic hill climbing paradigm by incorporating a low

discrepancy sequence to generate the starting points and employed analogies from the 

immune networks to achieve dynamic clustering of the search population. The resulting 

algorithm maintains the qualitative nature of the feasible region while reducing the number 

of necessary cost function calls. 
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7.3. Conclusions 

Recent technological advances in computing hardware are offering new ways to extend our 

problem-solving capabilities. A 200 MHz Pentium, for example, running overnight is 

nowadays considered as a viable option for many engineering design problems. The 

availability of cheap computer resources predetermines the need of automated search tools 

that can explore a huge design space in some (self) organized fashion. This dissertation has 

investigated the development and application of such search tools. 

We have designed two core adaptive search engines, namely the ant colony and the 

inductive search. A major design criterion was that these search engines must be 

applicable to a variety of diverse problems ranging from well defined combinatorial 

optimization problems in chapter 2 to heavily constrained engineering design problems in 

chapter 6. Thus the definition of the core search tools was purposely kept quite generic. 

Depending on the degree of a priori knowledge and complexity of the problem at hand 

some approaches turn out to be more efficient than others. For example, chapter 2 has 

investigated problems for which the search space can be readily made feasible through an 

appropriate selection of problem representation and operators. Whenever applicable, this 

approach has the advantage of concentrating search power into optimizing the main criteria 

rather than looking for feasible solutions. We have shown that for combinatorial 

optimization problems (COPs) the approach is readily applicable (sections 2.1 and 2.2). 

We have also shown that handling constraints by appropriate selection of problem 

representation is by no means only limited to COPs. There are many problems for which 

the feasible solutions can be mapped to locaUglobal extrema of some related auxiliary cost 

function. This function can be viewed as a new problem representation. Section 2.3 has 
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shown how such an auxiliary cost function can be design for the protein-folding problem. 

The assumption is that the global minima of the energy landscape function are the 

admissible protein-folding configurations. 

Handling constraints at the problem representation level utilizes a high degree of a priori 

knowledge and thus the design of search engines exploiting this approach is quite problem 

specific. Therefore, in chapter 3 we have shown how to explicitly derive the feasible region 

for a particular real world problem. Again, the advantage is that the feasible region can be 

effectively found before the search process begins. Results have clearly indicated that this 

approach significantly decreases the overall search time because most of the computational 

efforts are in optimizaing the main criterion. 

However, it is not always possible to derive the feasible region in advance. Such problems 

need a search tool that uses both the constraint and the objective functions to guide the 

search process (chapter 4). This approach is less problem specific, but is less efficient, 

because it has to allocate computational resources for dealing with non-feasible solutions. 

This research area is relatively well developed mostly from a mathematical-programming 

point of view. Therefore, our main research efforts have been to view the ant colony search 

engine as a metaphor for combining existing techniques into coherent hybrid adaptive 

search systems. Results clearly indicated that when the "building blocks" are carefully 

chosen the implemented hybrid system is capable of efficiently achieving highly fit 

solutions. 

In engineering design there are many problems (especially in the early design stages) for 

which the main goal is to find the feasible region. Chapter 5 has developed techniques to 

achieve this goal. Results have shown that the number of the cost function calls can be 
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significantly reduced while maintaining high quality of the results. Our approach has 

utilized some recent developments in numerical analysis and employed a natural analogy 

from the immune system. 

When dealing with real world problems we often have to both outline the feasible region 

and optimize certain criteria. This becomes increasingly difficult, especially when the 

feasible region itself is hard to find. Chapter 6 has dealt with such a problem. It has shown 

how to combine various search approaches in order to find the most viable. Achieved 

results significantly outperformed the manual design procedure proving that the developed 

search techniques are an excellent decision support tool in the early stages of the design 

process. 

In conclusion, the search tools developed in this dissertation proved to be efficient, robust 

and applicable to a diverse variety of design problems. They effectively utilize the available 

computing resources offered by advances in technology. Achieved results have shown that 

the search tools are capable of finding good solutions, many of which are novel to the 

engineering designer. As such, the developed tools are highly recommended to aid the 

decision support techniques in the preliminary stages of the engineering design process. 
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Appendix A 

The Ant Colony Search Model 

The main program looks like: 

const float ACCURACY 
int FE = 0 ; 

0.001; 

#include "AntsLib.h" 

main() { 

Ant NEST[ANTS_PATHS); 
int i; 

11 Initialize NEST 

for (i=O; i<ANTS_PATHS; i++) ( 
for (int j=O; j<ARITY; j++) 

I I MAIN LOOP 

NEST[i) .x [ j ) = frandom(LOW[j], HIGH [ j]); 
NEST [ i ) .raw_f = f(NEST[i) , O); 
for (j=O; j<CNSTR; j++ ) 

NEST [ i) .cnstr[j) = constraint(NEST[i) .x, j); 
NEST[i) .df = 0; 
NEST[i) .use_dir = 0; 
NEST[i) .age = 0; 
NEST[i). id = i; 
NEST[i) .trail= MIN_TRAIL; 

for (int t=O; t<ANTS_GENERATIONS; t++) { 

qsort(NEST, ANTS_PATHS, sizeof(Ant), Ant _cmp_f); 

add_trail_f(NEST , ANTS_PATHS); 

diffuse_ants(NEST, ANTS_PATHS, t); 

random_ walk(NEST, ANTS_ PATHS - DIFFUSION, t); 

qsort(NEST , ANTS_PATHS, sizeof(Ant), Ant_cmp_tr); 

for (i=O; i<ANTS_NUMBER - DIFFUSION - RANDOM_WALK; i++) 
int index = wheel_selection(NEST, ANTS_ PATHS); 
go(NEST , index, t); 

evaporate(NEST, ANTS_ PATHS); 

I I END MAIN LOOP 
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The search operators are located in the file AntsLib.h: 

#include "Ants.h• 

const 
const 
const 
const 
const 
cons t 
const 

const 
const 
const 

int 
int 
int 
float 
floa t 
int 
int 

int 
float 
int 

ANTS_GENERATIONS = 100; 
ANTS_PATHS = 500; 
ANTS_NUMBER = 100; 
ANTS_NEIGHBOURHOOD = 0.02; 
ANTS_ N_EPS = 0 . 0000001; 
DI FFUSION = 1; 
RANDOM_ WALK = 80; 

DEATH_F = 37; 
TRAIL_INC_F 
TRAI L_LEN_F 

15 . 6448; 
19; 

const float TRAIL_EVAPORATE = 100; 

unsigned long seed = tirne(NULL); 
ACG generator(seed, 98); 

#include "burnp.cc" // Include the function to be solved here 

float frandom (f l oat 1, float h ) 
float eps = 0 . 0000001; 
Uniform rnd (l-eps, h+eps, &generator); 
return rnd(); 

int irandom (int 1, int h) { 
DiscreteUniform rnd(l, h, &generator); 
return (int)rnd(); 

int irandom (int 1, int h, int prev) { 
DiscreteUniforrn rnd(l, h, &generator); 
int rand= (int)rnd( ); 
while ( rand== prev ) { rand= (int)rnd( ) ; 
return rand; 

void display (const Ant *NEST, int N, ostrearn &out) { 
for (int i=O; i<N; i++) 

out << NEST[i ) << endl; 

float boundary (int t, int index) { 
float scale= HIGH[index) - LOW[index); 
if (t > DEATH_F) return (scale* ANTS_ N_EPS); 
return (scale* {((ANTS_N_EPS- ANTS_ NEIGHBOURHOOD) I 

DEATH_F) * t + ANTS_NEIGHBOURHOOD)) ; 

float new_ value (float val , int t, char dir, int index ) 
if (dir == 0) { 

float low= val- boundary(t, index); 
if (low< LOW[index)) low= LOW[index); 
float f = frandorn(low, val); 
return f; 

else { 
float high = val + boundary(t, index); 
if (high> HIGH[index)) high= HIGH[index); 
float f = frandorn(val, high); 
return f; 

void go (Ant *NEST, int index, int t) { 
if ( (index > ANTS_PATHS) I I (index < 0) ) { 

cerr << •go: range violation\n"; exit( 1 ) ; 
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Ant new_ant; 
int new_dir[ARITY]; 

for (int i=O; i<ARITY; i++) ( 
if (NEST[index] . use_dir != 0) new_dir[i] = NEST[index] .dir [ i ) ; 
else new_dir[i) = irandom(O, 1); 
new_ant.x[i) = new_value(NEST[index) .x[i) , 

NEST[index ) . age, new_dir[i), i); 

float new_f = f(new_ant, t); 

float cv[CNSTR ] ; 
for (int p=O; p<CNSTR; p++) ( 

cv[p] = constraint(new_ant . x, p); 

if (new_ant . raw_f < NEST[index) . raw_f) ( 
for (i=O; i<ARITY; i++) ( 

NEST [ index] .x[i ) = new_ ant.x[i]; 
NEST[index) .di r [ i] new_dir [ i]; 

NEST[index] .f = new_ant.f; 
NEST[index) .raw_f = new_ant.raw_f; 
for (int k=O; k<CNSTR; k++) 

NEST[index] .cnstr[k) = cv[k); 
NEST[in dex) .us e_dir = 1 ; 
NEST[index) .age = 0; 

else ( 
NEST[index) .df = 0; 
NEST[index] . age++; 
NEST[index] .use_dir 0;; 

int wheel_sel ecti on (const Ant *NEST, int N) ( 
float sum = 0; 
for (int i=O; i<N; i++) sum+= NEST[i] .trail; 

float rand= frandom(O, sum); 
float tmp = NEST[O] .trail; 
for (i=1 ; i<=N; tmp+=NEST[i] .trail, i++) 

if (tmp >=rand) return (i-1); 
return (i-2); 

void add_ trai l _ f (Ant* NEST, int N) ( 
float s = TRAIL_INC_F * TRAIL_LEN_F; 

int i=O, tr=O; 
while ( (tr < TRAIL_LEN_F) && (i < N) ) ( 

if (NEST[i] . age < DEATH_ F) 
NEST[i] .trail += s; 
s -= TRAIL_INC_F; 
tr++; 

else 
NEST[i ) . trail 0; 

i++; 

void evaporate (Ant* NEST, int N) 
for (int i=O; i<N; i++) ( 

if (NEST[i] .trail > MIN_TRAIL) ( 
NEST [i] .trail -= TRAIL_EVAPORATE; 
if ( NEST[i ] .trail < MIN_TRAIL) NEST[i) .trail 

int Ant_ cmp_f(const void* i, const void* j) { 
float eps = 0.0000000001; 
if ( (*{Ant*)i).f < {*(Ant*)j).f) return 1; 
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if ( (*(Ant*)i).f > (*(Ant*)j).f) return -1; 
float tmp ( (*(Ant*)i) . raw_f- (*(Ant*)j) .raw_f ); 
if ( (tmp < eps) && (tmp > -eps) ) return 0; 
else 

if (tmp > eps) return 1; 
else return -1; 

int Ant_cmp_tr (const void* i, const void* j) { 
float eps 0.000001; 
float tmp ( (*(Ant*)i) . trail- (*(Ant*)j).trail ); 
if ( (tmp < eps) && (tmp > -eps) ) return 0; 
else 

if (tmp > eps) return - 1; 
else return 1 ; 

float calc_new_trail(Ant *NEST , int N, float raw_f, float feasibility) { 
float new_trail = MIN_TRAIL; 

for (int i=O; i<N; i++) 
if ( (NEST[i] .raw_f > raw_f) && (NEST[i] .f 

if (new_trail < NEST(i] .trail ) 
new_trail = NEST[i] .trail ; 

return new_trail; 

void diffuse_ ants(Ant *NEST, int N, int t) { 

f o r ( int ant=1; ant <= DIFFUSION; ant++) 
Ant new_ant; 

for (int i=O; i<ARITY; i++) { 
int a1 = irandom(O, TRAIL_LEN_F); 
int a2 = irandom(O, TRAIL_LEN_F); 
while (a1 == a2) { 

a2 = irandom(O, TRAIL_LEN_F); 

int alt = irandom(O, 2); 
switch (alt) ( 

feasibility) ) 

case 0: new_ant . x[i] = NEST[al] .x[i]; break; 
case 1: new_ant .x [i] = NEST[a2] .x[i]; break; 
case 2: float b = frandom(O.l , 0.9); 

NEST[N-ant] . age = 0.; 
NEST[N- ant] .use_dir 0; 
NEST[N-ant] .df = 0; 

new_ant .x [i] = (NEST[a1] .x [ i] * b + 
NEST[a2].x[i] * (1-b)); 

NEST[N-ant] .raw_f = f(new_ant,t);; 
NEST[N-ant] .f = new_ant.f; 
NEST[N-ant] .trail = calc_new_trail(NEST, N, 

NEST[N-ant] .raw_f, NEST[N-ant] .f); 
for(i=O; i<ARITY; i++) 

NEST[N-ant] .x[i ] new_ant.x [ i ] ; 
for (i=O; i<CNSTR; i++) 

NEST[N-ant] .cnstr[i]=constraint(NEST[N-ant] .x,i); 
NEST[N- ant] .id = - NEST[N- ant] .id; 

float delta(float rel_time, float range, float r) { 
int b = 10; 
const float eps = 0.00001; 
if (rel_time >= 1 - eps) return eps; 
else return ( range * ( 1 - pow( r, 

pow( (double) (1- re l _time) , (long )b)))); 
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float dynamic_mutation (float f, float low, float high, int t) { 
float range; 
float r = frandom(O,l); 
if (irandom(O,l) == 1) { 

range = high - f; 
float val = f + delta(t/(double)ANTS_GENERATIONS,range, r); 
return val; 

else { 
range = f - low; 
float val = f- delta(t/(double)ANTS_GENERATIONS, range, r) ; 
return val; 

void random_walk(Ant *NEST, int N, int t) { 
for (int ant = 1; ant <= RANDOM_WALK; ant++) { 

Ant new_ant; 

for (int i=O; i<ARITY; i++ ) { 
int a = irandom (0, TRAIL_LEN_F); 
if (irandom(O, 1) == 1) 

new_ant.x[i) = dynamic_mutation(NEST[a) . x[i), 

else 
new_ant.x [i] NEST[a) .x[i]; 

NEST[N-ant) .raw_f =f(new_ant, t);; 

NEST[N-ant) . age = 0; 

NEST[N-ant) .use_dir 0; 
NEST(N-ant) .df = 0; 

NEST[N-ant) .f = new_ant.f; 
NEST[N-ant) .trail= calc_new_trail(NEST, N, 

LOW[i), HIGH[i), t); 

NEST[N-ant) .raw_f , NEST[N-ant) .f); 
f or (i=O; i<ARITY; i++) 

NEST[N-ant) .x[i] new_ant.x[i); 
for (i=O; i<CNSTR; i++) 

NEST[N-ant] .cnstr[i ) = constraint(NEST[N-ant) .x , i); 

The basic data structures are defined in Ants.h: 

#include <ACG. h> 
#include <Uniform.h> 
#include <DiscUnif.h> 
#include <Normal . h > 
#include <sys/ time.h> 
#include <iostream.h> 
#include <iomanip.h> 
#include <fstream .h> 
#include <stdlib.h> 

const float MIN_TRAIL = 1; 
const int MAX_ARITY = 250; 
const int MAX_CNSTR = 50; 

struct Ant { 

11 State o£ the Search 

float x[MAX_ARITY); 
float cnstr[MAX_CNSTR]; 
float f; 
float raw_f; 
float df; 
int dir [MAX_ARITY] ; 
int use_dir ; 
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11 State of the Path 

f l oat trail; 
int age; 
int id; 

11 Construc tor 

Ant () {trail = MIN_TRAIL ; age=O; df=O; use_dir=O; id= -1 ; f=O; 
for (int i=O; i<MAX_ARITY; i++) { x[i ] = 0; dir[i] 

} ; 

ostream& operator << (ostream& out, const Ant& a) { 
out 

<< "id: " << setw (4 ) <<a.id 
<< • age : • << setw(S) << a .age 
<< • tr: " << setw(S) << a . trai l 
<< " $$$ r : • << setw (10 ) << setprecision(8) << a.raw f 
<< " *** f: " << setw(12) << setprecision(lO) << a . f 
<< setprecision(S) 
<< " I " << a.cnstr [OJ 
<< " • << a.cnstr[1]; 

return out; 

The problem to be solved is included in the following fonnat: 

const int ~-~ITY = 13 ; 
const float LOW [ARITY] = ( O,O,O,O,O,O,O , O,O, 0, 0, 0, 0}; 
const float HIGH[ARITY] = {1,1,1,1,1 ,1, 1,1, 1 , 1 00, 100 , lOO., 1}; 
const int CNSTR = 9; 

float cons traint (float *x, int i ) 
float e ps = 0.00000000001; 
switch (i) ( 

case 0 : return -2*x [ 0 ]-2*x [l]-x (9] - x [10 ]+10; 
case 1 : return -2*x[0 ]-2*x[2 ]-x(9]-x[11]+10; 
case 2: return - 2*x[1 J -2*x[2J-x[ 1 0 ] -x[11]+10; 
case 3: 
case 4: 
case 5: 
case 6: 
case 7: 
case 8: 
default: 

fl oat tc (float *x) { 
float tmp = 0; 
float tmp2 = 0; 

return 8*x[O]-x[9 ] ; 
return 8*x [1]-x[10]; 
return 8*x[ 2]-x[ll]; 
return 2*x [3]+x[5]-x[9] ; 
return 2*x[5 ] +x[6]-x[10]; 
return 2*x[7 ] +x[8]-x[11 ] ; 
cerr << "Unknown constraint 

for ( int i=O; i<4; i++) t mp += x(i]*x[i ] ; 
for (i=4; i<ARITY; i++) tmp2 += x[i]; 

number\n"; 

return 5*x [0]+5*x[ 1]+5*x [2]+5*x [3]-5*tmp-tmp2; 

float DROP ~ - 1 000000; 
float Z = 0.7; 
float HIGH_OPTIMISM = ACCURACY; 
float LOW_OPTIMISM = ACCURACY; 
float STOP_REWARDING_OPTIMISM Z * ANTS_GENERATIONS; 

float OPTXMXSM( int t) { 
if (t > STOP_ REWARDING_OPTIMISM) return LOW_OPTIMISM; 
return ((LOW_OPTIMISM- HIGH_OPTIMISM) I 

exit (1); 

STOP_REWARDING_OPTIMISM ) * t + HIGH_ OPTIMISM; 
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float f( float *x, int t) { 
FE++; 
float cv = 0; 
float tmp; 
for (int i=O; i<CNSTR; i++) { 

tmp = constraint(x,i); 
if ( tmp < 0) cv += fabs(tmp); 

if (cv <= OPTIMISM(t)) return DROP+ tc(x); 

return cv; 
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Appendix B 

The Inductive Search Model 

The main program looks as follows: 

#include <Normal.h> 
#include <Uniform . h > 
#include <DiscUnif . h > 
#include <ACG.h> 
#include <sysltime . h > 
#include <iostream.h> 
#include <fstream . h > 
#include <stdio.h> 
#include <stdlib . h> 
#include <LEDAi sortseq . h > 
#include <LEDAi stream.h> 
#include <math.h> 
#include < i omanip.h> 
#include "main.h " 

I* 
** Include a test case here: 
** 
*I 

#include "tl . c " 

fl oat func(fl oat y ) 

I * 
** 
** 
*I 

Auxiliary 1-D function 

iter_count++; 

x[DIM-1] = y; 
fl oat res = f( x, DIM); 
return res; 

float func_ learning(float *y) 

I * 
** 
** Auxiliary DIM-dimensional function 
* I 

iter_c ount++ ; 
float res= f(y , DIM); 
return res ; 

vo i d oracle(int dim) 

I* 
** 
** 
*I 

One possible deter.ministic implementation 
or the non-deter.ministic ORACLE function 

float r,bren,xmin ; 

float ax 
float ex 
float bx 

LOW; 
HIGH; 
(ax+cx) l 2; 
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DIM = dim; 

sortseq<float,Interval> Population; 
seq_item S; 
Interval I; 
I.low = ax; 
I.high = ex; 
Populat i on .insert (cx-ax,I); 

int STOP = 0; 
int count = 0; 
float FMIN = 1e30, XMIN; 

while (STOP == 0) ( 

S = Population . max(); 
Population.del_item(S); 
I= Population.inf(S); 

ax I.low; 
ex I . high; 
bx (ax+cx)/2; 

bren = brent(ax,bx,cx , func , TOL,&xmin); 

if (bren < FMIN) ( FMIN bren; XMIN 

if (bx < xmin) 

xmin; 

I. low= ax; I.high = bx; Population.insert(I.high-I .low, I); 
I.low = bx; I.high = xmin; 

count++; 

Population.insert(I.high-I.low, I); 
I.low = xmin; I . high = ex; 
Population.insert(I.high-I.low, I); 

else ( 
I.low = ax; I.high = xmin; 
Population.insert(I.high-I .low, I); 
I . low = xmin; I.high = bx; 
Population.insert(I.high-I.low, I); 
I . low = bx; I.high =ex; Population.insert(I.hi gh-I .low, I); 

if (count > DELTA_N) break; 
} 

11 Local learning 

main() 
( 

x[DIM-1] = XMIN; 

if (LEARNING) && (DIM > 1) ) ( 
l ocal_learn(func_learning, x, DIM) ; 

for(DELTA_N=STOP_CRIT; DELTA_N<=STOP_CRIT; DELTA_N++) ( 
iter_count = 0; 
for (int i=O; i<NDIM; i++) 

oracle(i+1); 
cout << " 
cout << • 
cout << endl; 

dim : • << setw(3) << i+1; 
f: " << setw (7) << f(x,i+ l ); 
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The help routines are located in main.h: 

extern "C" float brent (float ax, f l oat bx, f l oat ex, 
float (*f) (float), float tol, float *xrnin); 

#define TOL 1.0e-4 

unsigned long seed = time (NULL); 
ACG generator(seed, 1000); 

#include •rand.c" 

#define NDIM 10 

float x [NDIM) ; 
int DIM=O; 
int DELTA_N; 

static int iter_count 0; 

#include "dhc.c" 11 Local bill climber 

struct Interval { 
float low,high; 

} ; 

void Print ( Interval &I, ostream& out) { 
out << I.low << • • << I.high; 

void Read (Interval &I, istream& in) { 
in >> I.low >> I.high; 

void print (sortseq<float ,Interval>& S) 
{ seq_i tern it; 

forall_items(it,S) cout << S.key(it) << " ==> • << S . inf(it) .low 
<< " • << S.inf(it) .high<< endl; 

newline; 

The problem to be solved is given in ythe following format: 

#define STOP_CRIT 0 
#define LEARNING 0 

#define LOW -5.0 
#define HIGH 5.0 

float f(float *x ,int n) 
{ 

register int i; 
float Sum; 

for (Sum 0 .0 , i = 0; i < n; i++) { 
Sum+= x[i)*x[i); 

return (Sum) ; 
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Appendix C 

Method of Hooke and J eeves 

The algorithm of Hooke and Jeeves with improvements due to Bell and Pike [Bell and 

Pike, 1969], and Smith [Smith, 1969] is defined as follows: 

Step 0: 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

(Initialization) 

Choose a starting point x<O.o>, an accuracy bound e > 0, and initial step lengths 

s/0
> :t 0 for all i = 1 ton (e.g. s/0

> = 1 if no more plausible values are at hand). 

Set k = 0 and i = 1. 

(Exploratory move) 

Construct x' = x<k. ; -I) + s?> e; 

If F(x') < F(x<k. ; -I>), go to step 2 

otherwise replace x' ~ x' - 2 s/k> e; 

If F(x') < F(ik· ; - I)), go to step 2 

otherwise replace x ' f- x' + s?> e; 

(discrete step in positive direction); 

(successful first trial); 

(discrete step in negative direction) ; 

(success); 

(back to original situation). 

(Retension and switch to next coordinate) 
Set x<k. i) = x'. 

If i < n, increase i f- i + 1 and go to step 1. 

(Test for total failure in all directions) 
If F(x<k. i)) ~ F(x<k. O> ), set x<k + I. O) = x<k. O) and go to step 9. 

(Pattern move) 
Set x<k + I. O> = 2 x<k. 11>- x<k-1. n> (extrapolation); 

and s? +I)= s?> sign(x/k· ll)- x?- 1• n)) (this may change the sequence of 

positive and negative directions in 

the next exploratory move); 

Increase k f- k + 1 and set i = 1. 

(Exploration after extrapolation) 

Construct x' = x<k. ; -o + s?> e; 

If F(x') < F(x(k.; - I)), go to step 6; 

otherwise replace x' f- x' - 2 s?> e; 

If F(x' ) < F(x<k. i-l>), go to step 6; 

otherwise replace x' ~ x' + s?> e; 
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Step 6: 

Step 7: 

Step 8: 

Step 9: 

Step 10: 

(Inner loop over coordinates) 
Set ik. i) = x'. 

If i < n, increase if- i + 1 and go to step 5. 

(Testfor fzalure of pattern move) 
If F(ik· n) ) ;;::: F(x(k -I, n)) 

Set 
(k +1, 0) _ (k-l.n) .<k+l) _ sW 

X -X 's, - I 

for all i = 1 to n, and go to step 10. 

(back to position before pattern 

move); 

(After successful pattem move, retension and first termination test) 

If ~I s,.<k> I ;;::: I x/k. n>- x,.<k- I, n> I for all i = 1 ton, 

set x<k + I , O) = x(k-1. n> and go to step 9; 

otherwise go to step 4 for another pattern move. 

(Step size reduction and termination test) 

If£~ I s,.<k> I for all i = 1 ton end the search with result x<k. 0>; 

otherwise sets? +I)=~ s,.<k> for all i = I ton. 

(Iteration loop) 

Increase k f- k + 1, set i = l, and go to step 1. 
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Appendix D 

Protein-folding Free Energy Model: 

iinclude <stdio.h> 
iinclude <stdlib.h> 
#include <iostream.h> 
#include <math.h> 

#define NDIM 3 

int P[NDIM+2); 

static double x[NDIMI; 

double C(int a1 1 int a2) { 
return 0.125*(1+a1+a2+5*a1*a2); 

double V1(double x) { 
return 0.25*(1-cos(x)); 

double V2(double rl int a11 int a2) 
double r12 = pow(r ~ -12); 
double r6 = pow(r~-6); 
return 4*(rl2-C(al l a2)*r6); 

double r(int i1 int jl double *x) { 
double cos_sum=O; 
double sin_sum=O; 
double y[NDIM+l); y [OI=O; 
for (int z=O; z<NDIM ; z ++l y[z+11 

for (int k=i; k<=j-1; k++l 
double sum = 0; 
for (int l =i; l<=k; l++) 

sum += y[ll; 

cos_sum += cos (sum); 
sin_sum += sin(sum); 

x[zl; 

return sqrt(cos_sum*cos_sum + sin_sum*sin_sum); 

double f(double *x~ int n) { 
n = n+2; 
double suml = 0; 
int i; 
for ( i=O; i<n-2; i++) { 

suml += Vl(x[i)); 

double sum2 = 0; 
for (i=O; i<n-2; i++l 

for(int j=i+2; j<=n-l;j++l { 
sum2 += V2 ( r ( i I j 1 x l 1 P [ i I 1 P [ j I ) ; 

return suml + sum2; 
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Appendix E 

The Fault Population Used in Chapter 3. 

Each entry represents a possible fault and lists the pattern that discovers it: 

** 1*00*1***1 
*1***1010010 
1*01 ***00**0 
1***0***1*** 
*01 *11 ****00 
*010*0*0*10* 
1*0*0*110*** 
110*1111 *0** 
10*11101 ***0 
**0**** I *011 
*0**0*1***** 
000*00*** I** 
I* I*** 11 *I *0 
1****1*0*111 
**1*1*11 **00 
I **00*0* 1101 
0*000010001 * 
**01 *11101** 
11 ****0110** 
11 ** I* I 0*0 I* 
0010100*1*0* 
**0* I** 10*** 
0***00*111*1 
1*1******1*0 
*****00*0101 
0**1*** 1*010 
11 *0*0** I *01 
0*011 **0*010 
11 *11***001 * 
0*****1**01 * 
*011 0**0**01 
00* 1100****0 
**0**01 *1**0 
11 **01 **1*** 
***1*010110* 
*1*010** 1** 1 
1*010*1*100* 
*0** 101 ** 10* 
*0***0001 **1 
******00*0** 
*0*11 **01 *** 
00***10****1 
*0110**1**11 
1*1**0****1* 
*0**0* 101 *I* 
11 ** 1*1***** 
*0*11 ***0*1* 
0**00***01 *0 
**0**00***11 
***10110**** 
10***0**1*11 
*****01100*0 
*** lOO**** I* 
00001 *****10 
0*01 ***10*0* 
110** 111111 * 
0**1*0*0**01 
**1***010*01 
*I** 1 0*0*010 
*01 *0*0*01** 
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***1**0*1**0 
*1*1010*1*01 
I** 10*0**** I 
00**0* I *0**0 
*01 **1**1*** 
I* 1000**0** I 
1*100**0*1** 
1** 1*00010*0 
00** 11 **101* 
0**1 *011 *0** 
***0000** 1** 
*I* I **00**00 
1****00*0*1* 
**01 ***01 *** 
10010**0***0 
Ill I ****0**0 
*11 ***0**010 
*01 **1*01101 
1011 *010*0** 
10*** I *000** 
Ill *0****000 
1000*0*0*10* 
****01 **0011 
10*00***1*** 
*00**0** 11 ** 
I * I **0 I * I 0 I 0 
1110** 1110** 
1010*0**10*1 
*0*1*01***** 
1*0**0*1* 1*1 
11 *0** 101 ** 1 
****0*1***1* 
** 11 0*0****0 
11*00*1*1*** 
*01 *0** 100** 
1** 110***010 
00*0***0*0*1 
001 *01 *1*0*0 
**00***01 0* 1 
10***1****0* 
*01***010*** 
**0*00** 1100 
** 1011101100 
10**11011 *10 
1*0*1*0** 11 * 
1*1*01111 *** 
*0*01 *1**0*0 
* 11 10*0 I 0 I I 0 
1 1 o•oo•o 1 o•o 
11 **001 *1011 
I I 00*0* I * I 0* 
*1**0*0*011 0 
*Oil* 10***** 
I *000*000 11 * 
1****0*00** 1 
*1*010*10** 1 
10****00*** I 
** 10** 11*1*0 
00****** 1*10 
***1*0****** 
1***0 11 *000* 
1*0**00100** 
*01 *1*0** 100 
10***** 1**0* 
*00***10**1* 
** 11 **0***00 
***01*0*1*** 
1*10*0*0*1** 
*0*1*0**101* 
**01 *1*01000 
** 11 **110101 
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*****101**** 
*0111 **1 *01 * 
0* I I *0 I* I 10* 
0* 11 ****00* I 
1*0**00**0*1 
0*0**001 1000 
* I ***000* I** 
00* 10*0* I 10* 
****00**1*** 
***001 *11 ** 1 
00*1**0****1 
** 11 **1*0*11 
***00**1 *0*0 
1**1******01 
10*0**001 *01 
*01 *0***1010 
0001 *****00* 
1110*1****** 
00*0**00**** 
***00***1010 
***010*0* 11 * 
1***10*1**10 
00*0* I Oil **0 
00011 **101 ** 
0******00*01 
***0*0*0**10 
****0****100 
** 1000010*1* 
1*******00*0 
*** 11 ** 1*** 1 
100** 1*01 *11 
11 ****0*010* 
*101**0**0** 
*0** 1****000 
1*0*11*****0 
1*0**01 *001* 
0****01 10*0* 
***** 1***00* 
*** 110*000** 
*01*111** 101 
*11 *1*1*0*0* 
***** 1*0*1** 
110* Ill ****0 
11**** 11 **0* 
*0**01011 **0 
0**00*** 1*** 
I***** 10110* 
** 10* I *0**00 
*11 01 *011 *0* 
11 100**01 *1* 
*000* I 010*** 
I **0** 10**0* 
*0010*001 *I* 
1010**0001*0 
****01 ***1*0 
*01000****00 
0**0*11 10*1* 
11 **1*0*011 * 
1*11 **001** 1 
** 10*0****** 
1** 1*010*10* 
*0101 * 11 **** 
*1*11*1** 1*0 
00***0* I 0 I *0 
1** 101101011 
I *00*0110011 
*01 *1***** 10 
0***0**0**** 
** 1001 *0*11* 
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Appendix F 

Test Cases used in Chapter 5. 

1/ Used by all testbeds 
double f_base(double x, double y, double a, double b, double c, double d) 
( 

return exp(-(a*x-b)*(a*x-b)-(c*y-d)*(c*y-d)); 
) 

1/ 

//****************** 
//Testbed Non-convex 
//****************** 

double fl(double x, double y) 
( 

return f_base(x,y,0.4,0,0.4,-0.5)+f_base(x,y,0.4,-1.5,0.4,-0.5); 

double f2(double x, double y) 
( 

return f_base(x,y,0.4,0,0.4,0.5)+f_base(x,y,0.4,-2.5,0.4,0.5); 

double f(double x, double y) 
( 

double fll=f1(x,y), f22=f2(x,y); 
double cv1=0, cv2=0; 
if (f11 < 0.41) cv1 0.41 - f11; 
if (f22 < 0.41) cv2 = 0.41 - f22; 
return cv1+cv2; 

//************************************************** 
//Testbed 2: Equal sizes of the feasible subregions; 
//************************************************** 

double f1(double x, double y) 
( 

return 
f_base(x,y,0.4,2.5,0.4,0.5)+f_base(x,y,0.4,0,0.4,0.5)+f_base(x,y,0.4,-
2.5,0.4,0.5); 
) 

double f2(double x, double y) 
( 

return f_base(x,y, 0. 4, 2. s,·o. 4,-0. 5) +f_base(x, y, 0. 4, 0, 0. 4,-
0.5)+f_base(x,y,0.4,-2.5,0.4,-0.5); 
) 

double f(double x, double y) 
( 

double fl1=fl (x, y), f22=f2 (x, y); 
double cv1=0, cv2=0; 
if (f11 < 0.7) cv1 
if (f22 < 0.7) cv2 

return cvl+cv2; 

0.7 - fll; 
0.7 - f22; 

//****************************************************** 
//Testbed 3: Different sizes of the feasible subregions; 
//****************************************************** 

double f1(double x, double y) 
( 

return 
f_base(x,y,0.4,2.7,0.4,0.4)+f_base(x,y,0.4,0,0.4,0.S)+f_base(x,y,0.4,-
2.5,0.4,0.5); 
) 
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double f2(double x, double y) 
( 

return f_base(x,y,0.4,1.5,0.4,-0.5)+f_base(x,y,0.4,0,0.4,-
0.5)+f_base(x,y,0.4,-1.5,0.4,-0.5); 
} 
double f(double x, double y) 
( 

double fll=fl(x,y), f22=f2(x,y); 
double cvl=O, cv2=0; 
if (fll < 0.56) cvl 0.56 - fll; 
if (f22 < 0.56) cv2 = 0.56 - f22; 
return cvl+cv2; 
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Abstract 

ll1is paper describes a fonn of dynamical computational system---the ant colony--and 
presents an ant colony model for continuous space optimisation problems. llte ant colon. 
metaphor is applied to a real world heavily constrained engineering design problem. It is 
capable of accelerating the search process and fmding acceptable solutions which otherwise 
could not be discovered by a GA. By integrating the Pareto optimality concept within the 
selection mechanism in GAs and Ant Colony it is possible to treat both hard and soft 
constramts. Hard constraints participate in a penalty tenn while soft constraints become part 
of a multi-criteria fonnulation of the problem. 

Keywords: artificial ant colony, co-operative searches. dynamical computati onal systems. 
evolutionary computing, geneti c algoriUm1s 

l. Introduction 
A great majority of natural and artificial systems are of complex nature. and 
scientists choose more often than not to work on systems simplified to a minimum 
number of components in order to observe "pure" effects. An alternative approach. 
often known as the complex .~ystems dynamics approach [G.Weisbuch], is to 
simpl if)' as much as possible the components of the system. so as to take into 
accmmt their large number. This idea has emerged from a recent trend in research 
known as the physics of disordered systems. 

Complex dynamic systems in general show interesting and desirable behaviour as 
flexibility (in vision or speech understanding tasks the brain is able to cope with 
incorrect. an1b iguous or distorted information, or even to deal with unforeseen or 
new situations without showing abntpt performance breakdown), robustness (keep 
functioning even when some parts are locally damaged), and they operate in a 
massive~v pam/lel fash ion. Systems of this kind abound in nature. A vivid example 
is provided by the behaviour of a society of tenrutes [P.J.Courtois] . 

While individual termites are only able to perform very simple tasks such 
as transporting and dropping small quantities of earth in a quasi random 
fashion. an entire society of these insects is capable of building large nests 
with a sophisticated structure. Complex and organised behaviour thus 
emerges out of Ute massively paral lel interactions between U1e many simple 



members of the society Moreo\'er. th is behav iour a lso shows fl exib il it~ and 
robustness. Flexibility. because the society is able to operate under very 
different c ircumstm1 ces. depending on the environment a11d on the s tnJcture 
of the subsoil. Robustness. because we CaJ1 easily remove a number of 
tennites without touching tl1e society·s nest building capabi lities. 

Complex dynamical systems show emer~ent properties. This mem1s tl1at the 
behaviour of tl1 e system as a whole can no longer be viewed as a s imple 
superposition of tl1e individual behaviours of its e lements. but rather as a side effect 
of their collective behaviour. Contained in this notion is ilie idea tl1a t properties are 
not a priori predictable from tl1e structure of tl1e local interactions and that they are 
of functional s ignificance. 

Complex dynamical systems used for computation are called dynamical 
computation systems. l11e computation to be perfonned is contained in tl1e dynamics 
of the system. which is determined by the nature of the local interactions between 
tl1e many elements. 

Many of the dynamical computation systems tl1at have been developed today fi nd 
their equivalent in nature. Examples include genetic algoritl1ms [J.H.Holland] . spin 
g lass models [W.Kinzel), connectionis t architectures ro .E.Rumelhart] . reaction
diffusion systems [L. Steels] and simulated aJlnealing [S.Kirk1Jatrick] . 

An imponant notion in dynan1ical computational systems is that of inleraction. We 
concentrate on a particu lar kind of interaction: iliat of co-operation. Co-operation 
involves a collection of agents tha t interact by commw1icating information, or hints 
(usually concerning regions to avo id or likely to contain solutions) to each other 
while solving a problem. l11e infom1ation exchanged may be incorrect a t times and 
should alter the behaviour of the agents receiving it. An example of co-operative 
problem solving is tl1e use of tl1e genetic algorithm to fmd s tates of high fi tness in 
some space. In a genetic algorithm members of a population of sta tes exchange 
pieces of themselves or mutate to create a new population. often containing states of 
higher fi tness. Anotl1er example is neura( networks, where tl1e output of one neuron 
affects the behaviour of the neuron receiving it. 

In this paper we concentrate on a particular type of computational task. tl1at of 
search, which arises for problems witl1 no known algoritlunic method for direct 
so lution construction. 

Co-operative search metl10ds are based on modify ing indiv idual search methods. A 
useful distinction is whether a method is complete or incomplele. Complete 
metl10ds systematically examine states a11d are gua ranteed to eitlter eventually fmd a 
solution or terminate when no solution exists. By contrast, incomplete metl1ods 
e>.-plore more opportunistically and may miss some states in tl1e search space, hence 
they CaJ1 never guarantee a so lution does not exist. For parallel searches, a furilier 



issue is whether to spli t U1e search space among the agents. In the simplest case. 
each agent examines the entire search space. However this can mean a single state is 
examined by more than one agent during the search. This can be avoided by 
partitioning the search space into disjoint parts and assigning one to each agent. In 
this partitioned search, agents only examine states in their assigned part of the space 
thus avoiding wmecessary duplicate examination of states. Restricting each agent to 
examine a state at most once, as well as partitioning the search space so that a state 
is not examined by more than one agent, may improve performance somewhat, but 
far less than the enhancement achieved by co-operation [S.H.Ciearwater) . 

This paper describes a particular kind of dynamical computational system---that of 
the ant colony. We review results on modelling ant colonies for order based 
problems and then propose a model for continuous space optimisation. 

2. The Ant Cycle Algorithm for order based problems 
Problems like the Travelling Salesman Problem (TSP) attd Bin-packing Call be 
represented as a sequence of n items (n cities to be visited or n objects to be 
packed), where the actual order of U1e sequence determines a particular solution to 
the problem. Thus in general the search space consists of all n! permutations. For 
such order based representations it is natural to apply the atlt colony metaphor. In 
the following paragraphs the TSP [A. Colorni) will be considered, because of its 
default interpretation of tile items as cities, e.g. locations on a 2D map. Extensions 
to U1e Bin-packing problem atld other order based representations will also be given. 

For TSP wi th n cities the objective function is: 
n- 1 

j(1t) = L d(c~(i),cx(i•l)) + d(c~<nl•c~<Jl) 
i=l 

where d(c,,cj ) is the distance between cities i and}, and 1t(i) fori = J,n defmes a 
permutation. Let m be the number of ants. Then 

where bfJ) is the number of ants in ci ty i at timet. 

There is also a global structure that represents the nest neighbourhood. In terms of 
the TSP it represents tile distance between each pair of cities and tile trail T.ij left by 
tile ants in the course of the algorithm execution. The trail is defmed by: 

T.ij (l + n) = p ·T.ij(t) + !lT. ij (l , t +n) 

where p is at1 evaporation constant, t is the beginning of a tom, and t+n is the 
beginning of tile next tour. 



{
0 I LA 

t.-r'(t . / + 11 ) = -
y 0 

if (i. j) is in the tour of an t k 

otherw ise 

In general QIL A is proportional to the success (fitness) of ant k. where Q is a constant 
and LA is the tour length of the k-th ant. 

Then during the next (l+n) tour tJ1e probability to ,·isit city j when being at cit~ 1 is . 

{ 

l• u(r )t · l11 uU)JP 

pij (f) = 2)< •A (f)t . [11 iA (r)l 11 

J.: eollow~d 

0 

if j E allowed 

otherwise 

where allowed is a set of cities not visi ted for tJ1at particular tour. 11ii is local 
heuris tics. For the TSP 11u may be tJ1e greedy choice. e.g. 

mind(i.j) 
J 

Now the extension for t11e Bin-packing problem seems easy Onl) UJC objecti\ e 
fUJ1 ction is different. representi ng the nature of the problem. A good objective 
fw1ction is: 

f(n ) = B +a I var,'"~'~ · '""'' 

where 8 is tJ1e number of boxes in the solution. var.," 1y_spa.·• is L11e variance of ilie 
empty space of each box. and ex. is an appropriate coeffi c ient representing a trade-off 
between the two criteria: var,"f'/)'_'Pac• and B. In practice ex. gives total preference to B 
and var,""1y_spacr is used only to differentiate between two solutions wiili equal 8 's. 

If the local heuristics llij C3J111ot be defined, ilien 111; can be assumed to be equal to I 
for all ij . 

The algorithm rw1s as follows: First Pij ' s are randomly initialised for some small 
values and m ants are allowed to make a tour. Then ilie solutions are compared and 
trail is laid proportionally to the ants' fitness. This alters ilie Pij values so iliat on the 
next tour the probability of repeating (part of) previous good tours increases. TI1is is 
reminiscent of schemata propagation in Genetic AlgoritJ1ms where building blocks 
of high fitness pass from one agent to its offspring. 



3. The Ant Colony Metaphor for Continuous Spaces 
When tlte search space is continuous t11e ant cycle algorithm cannot be applied 
unless some kind of an order based representation is invented. Majntaining analogy 
with the foraging strategies of ant colonies we suggest a model appl icable to 
continuous spaces. The main difficulty is how to model a continuous nest 
neighbourhood with a discrete structure. We have achieved this by representing a 
finite number of directions CIS vectors starting from a base point (nest). As we 
potentiCilly have to cover all of tlte continuous space neighbourhood, these vectors 
are evolving in time according the ants ' fitness (Fig. l ). 

The actual path from the nest to the " food source" 

Fig. I : 1\ \'ector representing the actual path between Lhe nest and the " food source·· after 
live st.:ps . 

procedure An t Co lony Algori thm 
begin 

t ~ 0 
initialize A( t) 
evaluate A ( t ) 

while (not terminatio n c ond i tio n ) do 
begin 

t ~ t + 1 

add t r ail A(t) 
send a n ts A ( t) 

evaluate A ( t) 

evapo ra te A ( t) 

Fig. 2: TI1e stmcture of Lhe Ant Colony Algoritlun . A ( t l is a data structure representing 
the nest a nd its neighbourhood. 



T he Ant Colony Algorithm 
l11e structure of the Ant Colony Algorithm is shown in Fig. 2. Before the algorithm 
begins we have to detennine the location of the nest. It should be a point in the 
search space which seems promising for fme local search exploitation. We suggest 
fmding it by utilising a niching GA or a related strategy. Next we defme a search 
radius R, which detemtines the extent of the subspace to be considered in each 
generation (cycle). Then initialize A ( t) sends ants in various directions at a 

radius not greater than R (see Fig.J ); evaluate A ( t) is a call of the objective 
function for all ants; add_trail A ( t) is proportionally (to the ants ' fitness) 
adding trail quanti ty to the particular directions the ants have selected, 
send_ants A ( t) sends ants by selecting directions using a Roulette wheel 
selection on tJ1e trai l quantity and making a random step from the location of the 
best previous ant that have selected the same direction (see Fig.4), evaporate 
A ( t) is decrementing the trail. The random step is implemented as 

l:l(t ,R) = R · (1- r (l - t1T)b) 

where R is the search radius. r is a random number from [0 .. 1]. T is the maximal 
generation number. and b is a system parameter determining the degree of non
Wlifonn ity . t.(t,R) returns a value in the range IO .. R] such that the probabi lity of 
t.(t,R) being close to 0 increases as t increases. R is detennined by the extent of the 
search subspace we want to cover during the run. 

lf certain directions do not result in improvement. th ey do not participate in the trai l 
adding process and tJ1e reverse (evaporation) process diverts attention away from 
them. This can be tJwught of as an analogy of a food source exhausting. 

e Nest Location 

/ Search Direction 

Fig. 3: Two dimensional Nest neighbourhood model with twelve search directions. Each 
direction evolves in time accordin g to the fi tness of the ants that have selected it. Typical 
direction evolution is show11 in fig . 4. 



! .......... _ 

a) different basins of attraction for the two directions 

b) the same basin of attraction for the two directions 

Fig 4: Evo lution of directions. TI1e shaded region shows the search radius Rat each s tep. 

To make t11e model more accurate a random walk and trail diffusion can be added. 
TI1e basic trail diffusion idea is shown on fig. 5. It is important to notice t11e analogy 
between trail diffusion in ilie Ant Colony and ariilimetic crossover in GAs. In 
aritlunetic crossover the new chromosome is constructed from its parents by a linear 
combination of ilie individual parameters: o.;X/ +(1-o.Jx/. TI1e distribution of o.; can 
be assumed normal witll mean value equal to O.S(x/ + x/ ) and ilie probability of 
generating new offspring wiili particular parameter values can be represented as 
contour plot in ilie form of concentrat~ hyperspheres, i.e., closer to ilie centre, 
greater ilie probability (fig. Sa). Jn tile Ant Colony ilie intersection of ilie diffused 
trail from two different pailis form a virtual paili wiili a location probability 
determined by ilie superposition of ilie diffused trail strength (fig. Sb). 

An obvious limitation of ilie current algoriilim is ilie lack of a model for ilie 
exhausting of ilie food source. Thus it is possible for search agents to repeat already 
tracked and assumed exhausted pailis. 

4. Experimental Results 
The Ant Colony model is used in a real world heavily constrained engineering 
design problem. TI1e domain involves preliminary air-frame design and ilie 
definition of a flight trajectory for an air-launched winged rocket tl1at will achieve 



orbi t before returning to atmosphere for a conventional lru1ding. TI1e problem is 
e:-; tremely sensitive to five non-explic it (embodied in a simula tion program) non
linear constraints relating to air-speed and climb angle. Constraints a lso affect U1e 
physical parameters describing the a ir-frame and engine configuration. The problem 
is to minimise U1e empty weight of the vehicle through a space of seven continuous 
ru1d one discrete design variables. subject to these five non-linear constraints. Initial 
discussion revealed a degree of doubt as to whether a feasible solution to ilic 
problem actually exists and preliminary ex-perimentation using a GA wiili U1e 
constraim violation as a fitness fuJJction could only achieve solution exhibiting 
minimum constraint vio lation. 

2 b)~ a) x, 

Fig. 5: {a) Contour plot of th<! probabi lit y for generating new offspring from two parents (I 
and 2) by ariUunetic crossover in GAs. (b) Superposition of trail diffusion (U1e 
concentrated circles) fo m1s a kind of virtual path (tllc grey vector). ll1e graph is 
superimposed over the contour plot of the fitness function to show U1e expected effect 
of trail diffusion. 

A GA wiU1 floating point representation is used because it offers ( 1) a s ignificant 
reduction in the length of tlle chromosome, (2) an ability to express and operate on 
parameters in ilieir natural base I 0 encoding. and (3) ease in interfacing to oilier 
a lgo ritllms (e.g. standard numerical optimisation techniques, regression analysis. 
etc.). A rank based selection scheme with linear nom1alisation is utilised. 

It is evident tllat a secondary search process is required. As tlle fitness landscape is 
still very complex and detailed even when considering small neighbourhoods 
(0.0 I% of U1e parameters range) we crumot use a hill climber search as it will get 
stuck in local optima. TI1e Ant Colony was initially designed for fine locaJ search 
applied after Ule GA has found promising clusters for future ex11loration, although 
some preliminary results show it can also search well in larger spaces. 

A particular run of Ule GA is shown in Fig. 6 . Fig. 7 shows the result obtained when 
applying Ule Ant Colony from U1e point found by U1e GA in Fig. 6 . 
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Fig. 6: A particular run of a GA for I 00 generations. ll1e graph shows lhe distanc.: from the 
constmint values defmed as the sum of the squares of lhe difference herween each current 
value of the panicular constrained variable and its constrained value. 
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Fig. 7: The Ant Colony Algorillun applied on Ute point found by lhe GA from fig . 6. ll1e 
evolution of the distance from the constrained values of five directions is shown. 

Current work at the Plymouth Engineering Design Centre [G. Bilchev, and l.C. 
Pannee] involves the integration of the Pareto optimality concept into the selection 
mechanism of GAs and Ant Colony. The maill motivation is that sLandard non-lmear 
programming methods canno t Lreat both soft and hard constramts. Previous work 
within the Centre has addressed tJ1e representation of soft constraints as multi-



objectives by utilising a modified VEGA approach [I.C. Parmee. and G. Purchase!. 
A Pareto approach will also allow soft constraints to be incorporated as multi 
cri teria whi le hard constraints can be treated in the usual way in penalty tenns. 

5. Sensitivity Analysis 
A sensitivity measure is defmed in tenns of maximum and average risk to achieve 
degraded real design when deviating from the numerically represented design 
solution. That risk is unavo idable because of t11e physical incapability to achieve tlle 
exact va lues of tlle design variables. It may happen t11at even when using 
numerical ly stable algorithms tlle found optimal design solution lies witllin a very 
sensitive region and a small perturbation in t11e design variab les can lead to an 
enonnous change in tlle overall design solution fi. C. Parmee and M.J Denhamj. 
This is a property of tlle problem itself and does not depend on the actual 
optirnisation algorithm. So when making decisions t11e engineering designer, among 
others. should take into consideration tlle sensitivity of a given solution. 

A generic method for calculating tlle sensitivity is presented, which is applicable to 
problems witJ1 non-explicit obj ectjve and constraint fwctions. The proposed 
sensitivity measure is also capable of representing design variab les interaction. The 
price prud for that is increase in tlle number of tlle objective function calls. A 
metllod for incorporating sensitivity analysis wi t11 tlle search process and tllus 
essentially reducing t11e number of t11e obj ective function calls is proposed. 

5. 1 Definition 

Let 's denote our objective ftmction by F:~W ~ 91 or F(x~o x2 . ... . x,) . Then F 

can be considered a scalar fi eld and t11e gradient is defined by : 

where ~ , ... , rn are tlle unit vectors of an orthogonal co-ordinate system. The 

gradient at each point has a length and direction tllat is independent of the particular 
choice of Cartesian co-ardi.nates. If at a point P tlle gradjent of F is not t11e zero 
vector, it has tlle direction of tl1e maximum increase ofF at P. 

The directional derivative is defmed as: 

D F = ~ = lim F(P') - F(P) 
• d!!. 6 -+0 6. 

D. 
p P' 
----~ ... ...---

a 

p = (X~o ... ,Xn) 

P' = (x1 +tlx1 ..... Xn +D.Xn) 

and is effectively calculated by: 



I 
D. F= p a • grad F= lgrad Fl·cosa 

,a! 

where a is the ;mgle between a and grdd Fat a pm1icular point. 

Using finite differences the djrectional derivative can be approximated by: 

D F = ~ :::: F(P') - F(P) 
• d6 6 

for some small positive real value !:!.. 

[f lhe gradient has lhe direction of the maximum increase ofF at P lhen: 

Now a nei~hbourhood sensitivitv can be defined as: 

::: ::: P' - P) 
S .(o) = G(:< , ... ,xp) = ~~~-
m~, n )P' p I - ~~ 

max 
"p· <: r ·-·1?. -?, l'=li' 

I) F(P) 

6 

IF(P')- F(P)j 

S is an estimation of the maximum degradation that can be achjeved in the real 
design. [n a similar manner an estimation of the average degradation is defined: 

The neighbourhood sensitivity is a vector such that its magnitude represents lhe 
difference of the fitness function calculated at two points (P' and P) while its 
djrection giYes information about lhe actual design variables influence on that 
fitness function change. 

5.2 Calculating Sensi tivity 

The defmitions of Sm .. , and Smean imply t..he algorithms for their calculation. 

Finding S is a search process on lhe surface of a hypersphere defined by 
n\d,.'( 



(:< - x~ ) 2 +·· ·+CX: -<)' = ~ ~ while finding Sm••" is sampl ing t11at hypcrsphere 

;md calculating Lh e average lf(P")- F(P)I. 

T he Ant Colony algorithm is adopted to find .~rrw. because it is a robus t multi-modal 

search technique tl1at will gi,·c information about various risky directions of 
degrada tion. Moreover tl1e intention is to later avo id a separate search for 
calcu lating Lhe sensitivi ty by integrating it wilh Lhe second phase of tl1e overall 
design solution search process. This can be implemented by keeping track of all 
model evaluations during Lhat second phase Ant Colony search and Lhen aft er a 
solution is accepted Lhe sensitivity can be calculated by referencing tl1e previous 
model call results . It may happen tllat in certain directions Lhe hyp ersphere is not 
well sampled which will require some extra model calls. It is recommended Lhat Lhe 
sensitivity is now ca lculated tluough a hypersphere layer defined by: 

where E defines tl1e Lhickness of tlle layer. ll1e graph now will be more like a 
histogram. 

5.3 Experimental Results 
The sensitiv ity is calculated at two points fo und by Lhe search procedure described 
in section 4 . Considering Lhat botl1 points seem to be promising design solutions 
according to Lhe constraint and/or multi-criteria satisfaction t11e sensitivity can be 
used as an additional decision criterion. Fig. 8 clearly shows tl1at Lhe solution at 
points I is less sensitive tl1an tJ1 e solution a t point 2 . 1l1e engineering designer may 
a lso want to take into consideration Lhe degree to which each design variable 
contributes to tl1e sensitivi ty Table I shows Lhat info m1ation for po int I . 

8% llo. l::ly ... llht.CECO 
0.000 1 - 0.51527 0 . 50107 . . . - 0.15359 

0.0002 -0.48958 0 . 47331 ... -0.0 1 903 

0.0003 0.56719 -0 . 41718 ... -0.02065 

. . . . . . 
. . . . . . 

. . 
0.0099 -0.38798 0 . 33810 ... - 0 . 06375 

0.0100 -0 . 28638 0.25271 . . . -0 . 07806 

Table I : Direction infonnation of the maximwn sensitivity for point I (fig. 8). 1l1e numbers 
in the lab le define a direction of a unit radius vector in a hyperspace. 
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The Ant Colony dynamics provide a control for the trade-off between e>.-ploration 
and e:-.-ploitation during a search process. In the present paper we have used it with a 
simple hill climbing a lgorithm in order to show the power of co-<Jperation, but it can 
be integrated in a similar way with many search teclmiques. We have found several 
advantages in the Ant Colony Metaphor used for find ing good feasib le solutions: 



• The scope of the feasib le region cru1 be outlined as the population represents the 
best individuals in \·arious directions. (Sometimes it is possible for some of tJ1e 
initia l direction infonnation to be lost due to migra tion of agents from one 
direction to another (see Fig. -lb ). bu t this can be conlrolled by parameters of tJ1e 
Ant Colony dynamics.) 

• Many search directions are considered in parallel 
• Easy to integrate with man~· search techniques (hill climbers. GA ' s, etc.) 
• Better U1an local search if ll1e search space contains numerous basins of 

atlraction. (We also belie\·e it is beller tJ1an local search for long paU1 problems 
[J.Hom . D.Goldberg j.) 

We have become more com·inced that ratller tllan spending all the effon in 
developing a monolithic program or perfect heuristic. it may be better to have a set 
of relatively simple co-operating processes working concurrently on the problem 
while commw1icaring U1eir partia l results. 
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ABSTRACT 
This paper describes a multi -stage evolutionary methodology for searching heavi ly 

constrained design spaces. It util ises the Genetic Algori thm (GA) as a pre-processor for 
al locating promising solution clusters fo llowed by an Ant Colony (AC) model to provide fine
grained localised search. The methodology is currently refined to deal with both soft and hard 
constraints by integrating the concept of Pareto optimality within the selection mechanism of the 
evolutionary system. The first stage of the search is controlled by an automated D ecision Maker 
(DM) that incorporates the prior constra int satisfaction preferences. In the final stage of the 
search process the Engineering Designer (ED) is actively included, thus exploiting his implicit 
expertise. The methodology is successfully applied on a real world heavily constrained 
eng ineering des ign problem provided by British Aerospace plc., UK. 

1. INTRODUCTION 
Standard non-linear programming methods do not possess the characteristics of Adaptive 

Search techniques in that they fa il to make use of o r learn from information generated at 
previous stages in the search [I J. This is very different from the iterative, manual design 
performed by an engineer who is constantly gathering and updating information throughout the 
process. Virtually all successful algorithms make use of gradient information to guide the search 
and as such they tend to be trapped by local optima. 

Where the search is hampered by hig h dimensionality or non-linearity more "global" 
search techniques, such as the GA, have proven useful. A primary characteristic of GA search is 
the algori thm's ability to sample widely varying areas of highly d imensional spaces (2]. In many 
cases this characteristic has the potential to offer the engineering designer a high level of 
decision support by providing a number of diverse, high performance solutions to any design 
problem . This allows the exploration of regions that may offer innovative yet practical design 
solutions. Such solutions may otherwise be inaccessible within an engi neer ' s design time and 
budget constraints [3]. However, this approach will not be appropriate in all cases. In many 
situations decisions concerning certain design aspects will already be in place. For instance, the 
use of a s pecific material may be desirable to satisfy financial and manufacturing criteria. This 
upstream choice may limit the search process to specific regions of the overall design space and 
the bounds of these regions may be largely unknown. Therefore, a technique that will direct the 
search to specific points w ithin a des ign space is required and the integration of such a method 
with the GA search eng ine shows significant potential. This suggests that some modifications 
should be made to the GA framework in order to be accepted as a primary and versatile tool in 
engineering design. 

2. CONSTRAINTS AND GENETIC ALGORITHMS 
The Genetic approaches to constrained optimisation mainly fall into three categories: (a) 

modification of representation and genetic operators, (b) penalty functions, and (c) direct Pare to 
techniques. 

T he modification of representation and genetic operators concentrates on using special 
representation decoders which guarantee (or at least increase the probability of) the generation of 
a feasib le solution and on the appl ication of special repair algorithms to "correct" any infeasi ble 
solution so generated. However, decoders are frequently computationally intensive to run, not all 
constrain ts can be easily implemented this way, and the chances of building a general genetic 
algorithm to handle different types of constraints based on this principle seem to be slim. The 
GENOCOP approach [4) is based on an elimination of the equalities present in the set of 
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constraints and the careful design of special "genetic" operators which guarantee to keep all 
"chromosomes" within the constrained solution space. The approach is appl icable to linear 
constraints only and cannot be generalized for non-convex search spaces. These approaches are 
not appropriate for heavily constrained problems where the work involved in finding an initial 
population of feasible solutions is considerable. It seems clear that some sort of relaxation of the 
constraints may be necessary in order to allow the genetic search to proceed at a reasonab le pace. 
One solution of the problem is by using penalty functions . 

A constrained problem is transfonned to an unconstrained problem by associating a 
penalty with all constrai nt violations and the penalties are included in the function evaluation. If 
the penalties are used within a genetic approach it is not essential for the penalty term to have 
any particular form, such as being unimodal or smooth, beyond having a fitness function that is 
easil y evaluated [5]. The difficulty of using penalties within GAs stems from the fact that in the 
context of highly constrained optimisation an infeasible solution with strong genotypic similarity 
to the optimal constrained solution is more useful in an intermediate population than is a feasib le 
solution with weaker genotypic affinity to the optimum. For instance, an overzealous penalty 
may reward schemata which quickly, but wastefully satisfy constraints. An over-tolerant penalty 
function wi ll be unable to provide sufficient pressure to satisfy constraints and non-feasible 
solutions will be highly fit. To some extent this trade-off problem can be overcome by using 
dynamic penalty functions , but the difficulties in the application of the dynamic penalty function 
method are that the exact feasibi lity/infeasibility trade-off schedule cannot be effectively 
computed and to the best of the authors knowledge existing solutions are highly problem 
dependent and can hardly be generalised [6] . An attempt to overcome these difficulties can be 
found in the Behavioral Memory paradigm [7] where the general problem of genetic constrained 
optimisation is addressed by a multi-step process: (1) evolve an initial random population with 
some standard GA, the fitness function being related to the constrained satisfaction, and (2) take 
the final population resul ti ng from this evolution and use it as an initial population for a GA with 
the obj ective cost function as fitness function This is overridden by ass igning zero fitness 
whenever the constraints are not satisfied. Some obvious drawbacks of the Behavioral Memory 
method are the assumption that the feasible region is large and that the constraints are linearly 
ordered. For a detai led overview of existing constraint handling techniques in Evolutionary 
Computation the reader is refered to [8]. 

For severely constrained problems, where it is extremely difficult to fi nd a feasible 
solution, the GA approach with penalty functions is not applicable. There are two alternative 
approaches in solving this problem: (l) developing a hybrid search framework capable of 
finding feasible regions and (2) treating the constraints as multi-criteria, i.e. utilising direct 
Pareto techniques. 

3. A HYBRID SEARCH FRAMEWORK 
In this section we develop a hybrid search framework and test it on a real world severely 

constrained design problem invo lving preliminary air-frame design and defini tion of a flight 
trajectory for an air-launched winged rocket that wi ll achieve orbit before returning to 
atmosphere for a conventional landing. The problem is extremely sensitive to five non-explicit 
non-linear constraints relating to air-speed, climb angle, and physical parameters describing the 
air-frame and engine configuration. The task is to minimise the empty weight of the vehicle 
through a space of seven continuous variables and one discrete variable subject to the five 
constraints. Initial discussion revealed a degree of doubt as to whether a feasible solution to the 
problem actually exists. Thus the constraints were relaxed and an acceptability notion was 
defined. Preliminary experimentation using a GA with the constraint violation as a fitness 
function could only achieve a solution exhibiting minimum constraint violation (fig. 1). 

It is evident that further search is required. We define a hybrid search framework (fi g. 2) 
that consists of a floating point GA running for twenty generations followed by an Ant Colony 
(AC) model. Parmee [9] has shown that a GA with modified selection mechanism and variable 
mutation is capable of allocating various good design clusters. The cluster information can then 
be passed to the Engineering Designer (ED) who according to his expertise selects points for 
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further refinement by the AC. The AC is selected because it is a robust multi-modal search 
technique relying on multi-agent co-operation in order to distribute search in the most promising 
areas [10]. Apart from refined so lutions the AC also returns sensitivity information that 
eventually affects the ED final decision. 
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Fig. 1: Result from running a floating point GA wi th the constraint violation calculated as the Euclidean 
distance from the acceptable region. 
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Fig. 2: A hybrid search framework. 

The hybrid search framework is now capable of finding numerous acceptable solutions 
(fig. 3), but still no fully satisfactory solution could be found . A discussion with experts from 
British Aerospace revealed that the difficulty is in the formulation of the problem which makes it 
impossible to handle both soft and hard constraints. The only promising strategy for dealing with 
soft constraints seems to be the utilisation of the Direct Pareto techniques proposed in the 
following section. 

4. DIRECT PARETO TECHNIQUES 

4.1 Introduction 
Standard techniques for Pareto optimisation of a non-linear vector optimisation problem 

turn the original problem into a sequence of scalar optimisation problems, which can be solved 
numerically by applying adapted methods of non-linear programming. Thus, the increase of the 
computational effort involved in the numerical determination of Pareto optima may prove to be 
quite considerable, even with problems of moderate size. The Evolutionary systems, however, 
are readily modified to deal wi th multiple objectives by incorporating the concept of Pareto 
optimality into the selection operator and applying a niching pressure to spread the population 
along the Pareto optimal front. This is usually implemented by adding a Pareto domination 
tournament [I I]. 
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A similar approach for the handling of constraints is proposed in which we consider the 
constraints to represent individual criteria of a multi-objective formulation of the problem . We 
shall term this the Direct Pareto approach which has been utilised in previous research within the 
PEDC as described in section 4.2. In case of equality constraints the distance from the desired 
constraint values is to be minimised. Inequality constraints are handled by simply optimising the 
constrained parameter values. When a constraint is not active it turns off the related criteria from 
the problem formu lation Once feasibility is reached a standard method for constraint handling 
could be utilised for further search. If the ratio of the feasible region to the overall search space 
is large a penalty approach [5) would be helpful. However, in the case of a small ratio or 
numerous isolated feasible regions, analysis of the alternative preliminary solutions may be 
required. One possible way is to cluster the population and build an Optimal Hypercube (as 
described in 4.2) around each cluster. A GA with penalties could then be used for the final 
search with in selected hypercubes (fig . 4) . Another way is to utilise the Ant Colony algorithm 
[I 0) to search within selected clusters. 
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Fig. 3 : Result from running the Ant Colony starting at a point found by a GA . 
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Fig. 4: Search framework utilising the Optimal Hypercube technique 

4.2 The Optimal Bypercube (OB) Search Framework 
Utopian values within the feasible region are selected and the distance between the 

constraint and the utopian values [ 12) provide the fitness function for a modified VEGA search 
[ 13). Then a hypercube that best describes the extent of the feas ible region around each VEGA 
solution is established from a secondary GA search. The fitness of each GA generated 
hypercube relies upon the degree of constraint violation at particular points upon its surface. A 
search is then initiated within selected hypercubes to locate an optimal design solution (fig. 4). 
The whole process can be viewed as problem reduction where the engineering designer is 
actively involved by making a decision which of any alternative hypercubes should be further 
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explored by the final search . The Optimal Hypercube search framework is ana logous to the 
Behavioral Memory technique with the advantage of hand ling both soft and hard non-linearly 
ordered constraints . The soft constraints are incorporated as directed search cri teria, while the 
hard constraints participate as penalty terms in the fitness function. A limitation of the Optimal 
Hypercube is the assumption that there exist some sufficiently " large" feasible regions, requiring 
further search. 

5. CONCLUSIONS AND CURRENT RESEARCH 
All of the techniques mentioned so far incl uding the Direct Pareto approach, fai l to utilise 

the prior constraint satisfaction preferences. In real world applications, however, the constraint 
values often have a different degree of acceptability (fig. 5). Therefore, it is more appropriate to 
guide the search using optimal constraint satisfaction fronts, rather than Pareto optimal fronts . In 
an attempt to utilise prior constraint satisfaction preferences we conclude by proposing the 
following search framework (fig. 6) . 
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Fig 5: The first pair of graphs shows the degree of acceptability for two constraints. The second pair of 
graphs shows the constraint satisfaction fronts and the acceptability landscape for the two 
constraints. 

In the first phase of the search process the Decis ion Maker (DM) incorporates the a priori 
constraint knowledge in terms of an objective optimal constraint satisfaction fro nt. The GA and 
DM are tightl y coupled as the DM participa tes in the selection operator of the GA. The second 
phase of the search process represents a co-operation between the ED and the AC. The ED uses 
his expertise to select prelim inary solutions for further refinement by the AC and the AC returns 
sensitivity and performance trade-off information [ 1 0] that eventually influences the ED' s 
subsequent cho ices . 
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Fig. 6: Proposed structure of a design search process. 
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Abstract 

An ordering problem, loading objecrs into 
boxes. is used as a vehicle for comparing a 
many-agent search model (M A) , a genetic 
algorithm (GA), ami an ant colony search model 
(AC). Each of the search models is defined and 
applied to the bin packing problem (BPP). The 
AC metaphor is generalized to model hybrid 
distributed cooperative searches. Empirical 
comparisons reveaJ the potential power of the 
hybrid approach when tackling a well-defined 
search problem. 

1. Introduction 

I. I Problem Definition 

The bin packing problem (BPP) is defined as fo llows: 
given a finite set 0 of numbers (the object sizes) and two 
constanrs C (the bin's capacity) and N (the number of 
bins}, is it possible to pack all the objects into N bins , i.e., 
does there ex ist a partition of 0 into N or fewer subsets. 
such that the sum of the elements in any o f the subsers 
doesn ' t exceed C ? 

This NP-complete decision problem gives rise to the 
associated NP-hard optimization problem [I] : what is the 
best packing, i.e. what is the minimum number of subsets 
in the above mentioned partition? 

Being NP-hard , there is no known optimal algorithm 
for BPP running in polynomial time. However, Garey and 
Johnson [ 11 cite simple heuri stics which can be shown to 
be no worse (but also no better) than a rather small 
multipl ying factor above the optimal number o f bins. 1lte 
idea is stmightforward: starting with one empry bin, take 
the objects one by one and for each of them first search the 
bins used so far for space large enough to accommodate it. 
If such a bin can be found, put the object there, if not, 
request a new bin. Putting the object into the first available 
bin found yields the First Fit (FF) heuristic. Searching for 
t.he most fi lled bin still havi ng enough space to 
accommodate the object yields the Best. Fit (B F), a 
seemingly beuer heuristic, which can, however. be shown 

to perfomt as well (as bad) as the FF, while being slower. 
Other possible approaches for tackling the BBP are 
described in [21 a11d (3]. 

I. 2 Methodology Development 

A great majority of naturaJ and artificial systems are of 
complex nature and scientists quite often choose to work on 
systems simplified to a minimum number of components in 
order to observe "pure" effects. An alternative approach, 
often known as the complex systems dynamics approach 
[41, is to simplify as much as possible the components of 
the system. so as to take imo account their large nwnber. 

Complex dynamical systems in general show interesting 
and desirable behaviour: jlexibilitv, robustness. and 
massively parallel mode of operation. Systems of thjs kind 
abound in nature. Many of the dynamical systems used for 
computation find their equivalent in nature. Examples 
include genetic aJgorithms [5]. spin glass models [6 [. 
connection.ist architectures [7], reaction-diffusion systems 
[81, simulated annealing [9], and ant colony models [10] . 

An imponant notion in dynamical computational 
systems is that of interaction . T he interaction could be 
based on cooperation or competition. In cooperation a 
collection of agents interact by communicating information. 
or hints (usually concerning regions to avoid or likely to 
contain solutions) to each other while solving a problem. 
T he infom1ation exchanged may be incorrect at times and 
should alter the behaviour of Utc agents receiving it. An 
example of co-operative problem solving is the use of the 
genetic algorithm to find states of ltigh fitness in some 
space. In a genetic algorithm members of a population of 
states exchange pieces of themselves or mutate to create a 
new population, possibly containing states of higher fitness. 
Another example is the ant colony search model in which a 
trail laid by previous ants significantly changes tl1c 
behaviour of other ants. In competition agents arc 
"fighting•· for common resources. In gencraJ it is possible 
for natural alliances to emerge spontaneously within an 
overall competitive environment depending on the type 
and/or function of the individual agents. An example of a 
competitive search model is presented in section 2. 



L Load each object into an c:mpty box. Initialize the strength attribute o f c:ac h hox to he: c:q ual to its 
empty space , i.e., capacity - object's weight. 

f.:. Select randomly two boxes and initiate an inter box operation (180). 180 is an exchange of objects 
between two boxes (ref. fi g. 2) . 
ru If 180 is successful (i.e .. at least one object exchange has occurred) then update srreJigth and 

the list o f con rained objects of botl1 boxes. If one of the boxes is empty, tl1en delete it from t11e 
set o f agentS. Otherwise. reset tlle successive inreracrion failures attribute of the stronger hox 
(i.e. t11e box wit11 largc:r strength attribute) to zero. 

hl If IBO fai ls (i.e. , no objects exchange bas occurred), t11en incremem the successive interaction 
failures attribute of t11e stronger box. If it exceeds an interaction failure t11reshold . then 
decremem the strengrh amibute of the stronger hox by a prede fined cons tant c. 

;L, If tem1ina tion criteria are nm satisfied, then goto 2. Otherwise exit wit11 the current state of box 
agems as tlle final solution. 

Fig. I. The Many-agent Search Model. The implemented te rmination criterion is t11e number of IBO. t: is defined as 

percentage of t11e bin 's capacity . 

L Generate all k -tuples of objec ts in eacb box , for some k= I to C (fight complexity constant) as 
shown in fig . 3 

f.:. Add the empty space o f t11e weak box to its k-tuples as shown in fi g . 4 , where the empty space is 
detennined by: 

em pry_ space= capacity - L weight , 

;L, If tlle two boxes eau exchange objects then find t11e best substitution (gain), i.e. an exchange o f two 
k-tuples after which the empty space of the strong box increases at most (see fig. 5). 

Fig. 2. The ISO algoritlun 

lu this paper a dynamics approach is used to tackle an 
ordering problem - loading of objects imo min.imal 
nwnber of boxes. Three different algoritluus are used for 
solving t11e problem - a ruauy-agem search model (MA), 
a genetic algorithm (GA), and an ant colony search model 
(AC) . A common feature o f ti1e ti1ree algoritluns is that 
tlley are complex dynamical systems used to do 
computation. Initially the systems are brought into an 
ini tial state corresponding to particular instauce(s) o f t11e 
problem to be solved. Then they are allowed to evolve 
accordi ng to tbeir own dynan1ics. The final state of tl1is 
evolution is taken as a solution of the problem. The 
computation to be perfonned is contained in t11e dynamics 
of the systems which are detem1ined by the nature of tlle 
local imeractions between many simple elementS. Complex 
dynamical systems usuall y exhibit emergem properties and 
tlte behaviour of the system as a whole can no longer be 
viewed as a simple superpositiou of tbe individual 
behaviours of itS elementS, but ratller as a side effect of 
t11eir collecti ve behaviour. The emergent property of tl1e 
presemed systems is tlle optimization of the cost function 
of t11e loading problem. i.e . the number of bins in t11e 
solution. 

In ection 2, a many-agem search model based on 
competition is described and computational complex ity 
issues are discussed . In section 3. a genetic algorithm is 
presemed and the crucial issues of representation and 
appropriate operators are discussed in detail. In section 4 , 
the aut colony search model is defined and some 
generalizations are described. Experimental results are 
presented in section 5. 

2. Many-agent Search Model Based on 
Competition 

TI1e many-agent system consistS of simple agents 
possessing only lim.i ted knowledge of how to interact wit11 
other agentS. The agents in t11e system are called boxes and 
each box has several attributes: capacity, strength, nwnber 
of successive interaction failures, and a list of comained 
objects. The loading problem considered here is one 
dimensional and has only one constraint - box capacity. 

The inter box operation (IBO) is a local interaction 
between two boxes. It is used to implement the competitive 
drive in tl1e evolution of t11e system. One of the boxes is 
referred to as strong, and tlle other is referred to as weak 
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Fig. 5. Gain after an exchange of two k-tuplcs TI1e objects lO be packed arc characterized by one attribute. ca lled weight. Input 
to the algorilh.m is a set of objects to be loaded and box capacity. The MA algorithm is shown in fig I . 

(detenuined by the value of the strength attribute). The 
180 algoritluu is showu in fig. 2 

Tile complexity of 180 is: o((~))' where 

K = ma.x(m.n), 111 =number of objects in 1he fi rs1 box. and 
n =number of objec1s in 1he second box. In the course of its 
c:volurion 1he MA search model reduces the number of 
agems (bins). The possibility that the .Hrenglh attribute 
may differ from the empty space (ref. fi g. I , step 2b) is 
introduced as a mechanism for escaping local optima. TilUs 
a srrong box which could not complete a successful 180 
fi . t:. could not gain em pry space) becomes weaker and 
cvemually other boxes try 10 fill it in. 

3. Genetic Algorithm 

3. I Representation 

TIH: genetic aJgori tluu presented in tl1is section has fixed
length order-based representation coupled witll a First Fit 
(FF) decoder 11 I I (see fig . 6) . 

Let Objs = ( o1, ... , on ] be tl1e set of objects to be 
loaded. Each permutation of these objects is a valid 
chromosome. The number of different chromosomes (the 
rt:presemation space for tl1e problem) is n!. A very 
imporJaJH issue to be discussed here is tllat the proposed 
representation does not comply witl1 the minimal 
redundancy principle [ 12] (i.e. each member of tlJe 
solution space should be represemed by as few as possible 
disrincr chromosomes. in order to reduce the size of the 
aciUal search space). This is compensated by special 

operators which work on tl1e solution space rather than tlte 
representation space. 

A straight forward observation is tllat if the objects in 
tl1e chromosome are sorted in decreasing order of their 
weight , then after applying the FF mapping tlJe solution of 
tl1e FFD heuristic is obtained. TilUs tl1e FFD heuristic 
(which guarantees tl1at FFD(Ohjs) s .!f · OPT(Objs) + 3 11 31) 

can he easily integrated into tl1e initial population of the 
GA. 

A salient fea ture of the selected representation antl 
mapping is tl1e contexr sensitivity of tl1e genes in the 
chromosome, i.e. tl1e probability tlJat object o is in a 
particular bin depends on the objects to tlJe left of o in the 
chromosome and does not depend on the objects to tl1e 
right. TI1is observation could be useful in designing genetic 
operators. When tlle intention is to preserve certain 
schemata from a parent chromosome they should be placed 
at tl1e left side of tl1e child chromosome. 

3.2 Operators 

Theory [I 41 and evidence suggest tllat search algoritluns 
perfom1 better when augmented with domain-speci fie 
knowledge. This is the reason for designing problem
specific operators tllat work botl1 in the representation and 
solution spaces aud utilize knowledge of bow tlJe mapping 
process works. 

Uniform scramble sublist (USS): Randomly (witl1 
probability P, ) select objects from tlJe chromosome a11d 
pennULe them. P, controls tlle destructiveness of the 
operator. 
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Fi~ . 6: Problem representa tion. TI1e Firs! F11 decoder is defined as follows : starting wilh an empty bin, take objecls one by 

one fn1111 left Ill right and for each of !hem try to put it into the firs! available bin. If no such bin is found . request a new bin 

Reduced hypercube (RH): TI1e parent chromosome is 
randomly spli t; one child is constructed hy appending the 
left pan of the parem chromosome and a random 
pennutation of the right pan. Using the same split, other 
childn:n are consuucted in the same way. TI1e number of 
children is a parameter of the operator. The asSW11ption 
behind the design of tltis operator is that the first part of 
the parem cllromosome may be considered as a good partial 
solution wltich is preserved by the FF mapping with ltigb 
probability . Then by creating several children exploiting 
that panicular partial solution. we construct a hypercube 
around ic. 

Reduced hypercube 2 (RH2): Let S be tlte solution of 
the parelll chromosome. and s· be tile solutions sorted in 
ascending order of the bins' empty space. To fo m1 a child 
chromosome get tile objects from the first bin in S' and 
place t11em at the begi tming (left} of tile child chromosome. 
Then get the objects from the second bin in S' and append 
them to the end of the just fonned partial child 
chromosome. Repeat t11e process witl1 the rest of the bins. 
Now on tbe new child chromosome apply the reduced 
hypercube operator. Titis operator favours more filled bins 
and preserves them in the child chromosome wi tl1 above 
average probabili ty. 

3 3 Fitness Function 

As dte goal of the problem is to minimize the nW11 ber of 
bins it is quite natural for our fitness function to attribute 
more credit to solutions with fewer bins. We are· also 
looking for a fimess function that is able to differentiate 
between two solutions ilaving the same nW11ber of bins. 
One useful measure could be the variance of bins' empty 
spat:t: in a particular solution: greater the variauce--belter 
the solution. This measure is also justified in applications 
where only panial solutions are required at a time and the 
problem is iterated, i.e. new objects come on a continuous 
basis. Tite fitness function is defined as follows: 

a f = 11+--.--
vanance Es 

where n is the nwuber of bins in t11e solution. variance Es 

is the variance of the empty space in the solution, aud a is 
normally defined to give total preference to solu tions with 
less nW11ber of bins. 

3.4 Genetic Algorithm Implementation 

The following GA scheme is implememed: (a) Initialize a 
population of M chromosomes. (b) Evaluate each 
chromosome in tile population, (c) Create N new 
chromosomes using the defined genetic operators, (d) 
Evaluate the new chromosomes and place them in the 
population, (e) Select the M most fitted individuals and 
goto (c) until time is up. 

A population size of M = 70 is adopted. TI1e selection 
procedure uses roulette wheel selection and linear fitness 
scaling (nonnalization). TI1e probabilities of the operawrs 
are also implemented as a rouleue wheel selection. Tite 
operators weights are: USS-30. RH-15. and RH2-30. 

4. Ant Colony Search Model 

Problems like the travelling salesman problem (TSP) and 
bin packing can be represented as a sequence of 11 items (11 

cities to be visited or n objects to be packed). where the 
actual order of the sequence detennines a particular 
solution to the problem. Thus, in general, the search space 
consists of all n! permutations. 

TI1e ant cycle algorithm is first proposed in [ 15) and is 
defined as follows: The problem is represented as a 
connected graph the nodes of which arc the 11 items. The 
edges are connections from one item 10 another and 
represent a data structure that stores U1e connectivity 
informat ion in 1em1s of the trai l ry left by the ants in the 
course of I he Cllgorithm 's execution. The trail is defined by: 

where p is an evaporation constant (O<p < 1), t is the time at 
the beginning of a tour, and t+n is the time at the 
beginning of the next tour (a tour is a pennutation of the n 
items). /H" (t ,t + n ) is defined as follows: 
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Fi~: 7. I: volutiOn of the connectt v1ty pattcm during d11Tcrcnt stages of th.: ant colony mn: a) is the uutial (random) pattcm and d 1 

1s th.: pattcm when the ant colonY has ~:onvc:rgeJ b) and c) repres.:nt intcnn.:diat.: pattems. 

a) b) 

Fig. 8. Trail le ft by the ants: a) init.al (random) trail at the begi1ming of the mn; b) trai l at the end of the run (i e. when the <mts' 
search has converged). 

m 

tH (t t+n) = ~ D.r*(t . t +n) 
l) • ~ y 
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11here 111 1s the number of ants. 6<(1.F +n) = C1(jA.) 1f 

edge(IJ) IS in the tour of ant k. and is Lero othen,ise In 
general G(/i.) is proponionnl to the fi tness fi of ant k. The 
snme fitness as in the GA is adopted in this work. 

Then during the next tour the probabil ity to , ·isit item J 
when being at item 1 is: 

I 
[rlj(1)]" · [qlj( l )]P 

P.,U> = _2)r,.(IW ·l77,. Cl)JP 
k6DIIawtd 

0 

if 1 E allowed 

otherwise 

where allowed is the set of items not nsited for that 
particular tour and 'h' is a local heuristics u nnd P define a 
trade-ofT between the local heuristics and the ant colony 
search. If the local heuristics 17y could not be defined then 
17, =I is assumed for all ij. 

The algorithm runs as follows: lnllially P Y 's are 
randomly initialised for some small values (fig. 7a. fig. Sa) 
and 111 ants are allowed to make a tour. Then the solutions 
are compared and trail is laid on the edges comprising the 
tours proportionally to the ants ' fitness (fig. 7b.c.d. fig. 8b). 
This alters the P Y values so that on the next tour the 
probability of repeating (pan of) previous good tours 
increases. This is reminiscent of xchemata propagation in 

genetic algorithms where bui lding blocks of h.igh fitness 
pass from one agent to its offspring. 

4 I U nderlying Theory 

In order to theoretically investigme the ant colony search 
there is a need for an underlying theory. In tltis subsection 
we outline the similarit ies between ant colony search and 
epidemic processes. 

Epidemic processes are common in nature. Bes ides the 
spread of diseases they also characteri se such di,·ersc 
processes as fire spread, starfish outbreaks. invasions of 
exotic plants, etc. Epidemics can be characterised as 
invasion percolation [16]. Invasion percolation refers to 
flows that create their own channels through a medium. As 
11ith all percolation processes epidemics display critical 
behaviour. That is for some parameter v associated with 
the process, the process exhibi ts a ''phase change·· from 
non-spread to spread, at some critical value vc . In this 
respect epidemics resemble a large class of phenomena. 
ranging from collapsing sand hills to nuclear chain 
reactions [1 7]. For the an t colony search. the critical 
parameter is the trail propagation rate v which is the 
probability that one ant would influence its behaviour due 
to trai l sensing. When v < vc (i .e. the epidemic dies out 
naturally) the trail evaporates so quickly that P Y virtually 
does not depend on r'f" Therefore, the individual ants 
proceed the search selfishly wi th their own search 



Problem Size 30 6 0 90 120 150 

optimal solution 9 18 27 36 45 

FFD ll 22 33 44 55 
MA 9. 1 18.4 2 7. 6 36 . 3 45.3 
GA 9 18 27 36 45 
EAC 9 18 27 36 45 

Table 1. Experiments wi th FFD worst e<~sc distribution. For this part1cu!ar distnbution or object \\'c1ghts all our approaches 
outpcrli.mn the FFD heuristic. ll1.:retore. including the FFD sol ut ion 111 a hybrid model utilising (all ) our approaches is justified. 
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Fig. 9. Number of fitness evaluations as a function of the problem size 

stra tegies. When v > vc (i.e . the epidemic spreads 
indefi nite ly) the trai l accumulates indefinite ly and due to 
diffuston spreads uniformly on the entire neighbourhood. 
i.e. the trai l distribution exhibi ts maximum entropy and 
cou ld not sen ·e as a g1tide to the ants. In this case P u again 
fa,·ours the individual search strategies. (Please note that in 

both cases 'liJ = I would imply random search) . 

4.2 Extensions of the Ant Colony Metaphor 

We begin this subsec tion wit h some initial definitions of 
distributed co-operative search [I X]. Co-operative search 
methods are based on modi.f)'ing individua l search methods. 
A useful distinction is whetl1er a method is complete or 
incomplete. Complete methods systematically examine 
states and a re guaranteed to either eventually find a 
solution or terminate when no solution exists . By contrast. 
incomplete methods explore more opportunistically and 
may miss some states in the search space, hence they can 
never guarantee a solution does not ex ist. For parallel 
searches. a further issue is whether to split tlle search space 
among the agents. In the simplest case, each agent 
examines the entire search space. However this can mean a 
si ng le state is examined by more than one agent during the 
search. This can be a\·oided by partitioning tl1e search space 
into d isjoint parts and ass igning one to each agent. In this 
part itioned search, agents only examine sta tes in their 
assigned part of the space thus avoiding unnecessary 
duplica te exami nation of states. Restricting each agent to 

exami ne a state a t most once. as well as partitioning the 
search space so tha t a state is no t examined by more than 
one agent. may improve performance somewhat, but far less 
than the enhancement achieved by co-operation 
[1 81[ 19][20] . 

Now the ant colony sea rch model is generalized to 
include search agents with differen t strategies. The 
completeness of the overall search depends in general on 
the completeness and the complementarity of the individua l 
strategies. The search space is not explicitly split among the 
agents. However. the individual s trategies a re implicitly 
competing for a common resource - CPU time. The fitness 
measure of the competition is tl1e success rate of each 
strategy measured from the beg inning of the evolution. The 
overall evolution process resembles paralle l competi tive 
hypothesis testing from evolving statistical sample (the 
current popula tion). T he hypothesis are the prior 
assumptions witltin which each individual search strategy 
has been designed to be effect ive. For example. consider 
two search strategies: a 1 and a~ designed to be effective 
when applied to dislributions of problem instances h, and 
h2 respectively. When applying the ant colony to an 
instance of distribution h (for which we know that h may be 
either close to h1 or h2) then the generated search process 
could be v iewed as hypothesis testing. The assumption is 
tha t if tlle current problem instance is generated from h, 
then a1 will take control over a2 (please note that a 1 was 
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Fig. 10. Experiments with uniform distribution of objects. The hybrid search model (EAC) outperforms any of its comprising 

mdividual search strat<!gies (FFD, GA, and MA). TI1erefore, individual perfom1anc<! diverstty and complemenlarity are of cntcial 

stg.nilicance to Lh<! performance of the hybrid search model. 

initially designed to be effective on h1) . This is somewhat 
analogous to the self-adaptation notion in evolutionary 
programming 12 1) and genetic algorithms 122). 

For the BPP the extended ant colony (EAC) works as 
follows: Two new types of search ants are allowed - m 

agents using the MA strategy and k agents utilising the GA 
strategy. At each generation of the GA trail is laid on the 
tours of the k best solutions. (To keep the grouping effect of 
the Bin Packing solutions trail is laid on all the edges 
connecting each of the objects from a particular bin.) Then 
m ants are allowed to make a tour and the MA search is 
applied on each tour. Trail is laid (and superimposed) 
proportionally to the fitness of each tour. Therefore, in the 
current implementation of the EAC search model both the 

GA and the MA strategy compete against each other by 
changing the ants ' behavior through the trail value. 

5. Experiments 

Initially a distribution of object weights which has been 
proved to be the worst case for the FFD algorithm is used. 
Then experiments with randomly distributed object weights 
are considered. 

5. 1 FFD Worst Case Distribution of Object 
Weights 

The distribution 
m = 1,2.3, ... , &= 0.01 ; 

is defined as 
weight(obj;) = f+ & 

follows: 
(for 



1 s , s 6m ). we1ghF( o~t, ) = t + 2c (for 6m S 1 S 12m ). 

u·e1ghf (obt, ) = 1 + c (for 12m S 1 S 18m ). 

1t'e1ght (obj; ) = f - 2e (for 18m S i S JOm) 

Experiments are done for values of m ~rom I to ~· _ i . e . 
for problem sizes ranging from 30 to ISO ObJects. Empmcal 
results Me summarized in table I. Fig 9 shows the number 
of the required fitness evaluation e<~ lls as a function of the 
problem size. Results arc averaged over ten independent 
runs. 

Table I shows that all our algorithms (MA. GA. and 
EA ) outperform the FFD heuristic for this particular 
dtstnbution of object \\eights Empirical results also reveal 
that the performance of our techniques seems to be 
somewhat "complementary .. to FFD and therefore. a hybrid 
search model. (possibly) including all techniques. is 
JUStified. 

5.2 Uniform Distribution of Object Weights 

Four uniformly random sets of objects are generated using 
the following parameters: min. value: 0. 05, ma.x. value: 
0. 65, resolution: 300, and problem size: 50. Four 
algorithms arc empincally compared: FFD. MA. GA and 
EAC. Results are averaged over 10 independent runs and 
shown in fig . I 0. 

In fig. 10 each graph is divided by \'erlical lines into 
sections. Each section corresponds to a particular number of 
bins in the solution. Seller solutions are placed to the ri ght 
of the graph. Within each section soluti ons arc ranked 
accord ing to the \'anancc of the empty space. Agam better 
solut tous are placed to the right of the graph. When a 
method produces results \\ ith different number of bins 11 is 
shown more thau once in the corresponding sections of the 
graph. . . . 

In this experiment. the solution of the FFD heunst1c IS 

111cludcd in the initial population of the GA as showu in 
section 3.1. The 11\'brid search model (EAC) geuerally 
outperfomts any ~f its comprising individual search 
strategies. Therefore. their perfonnancc diversity is very 
important for the overall perfonnance of the hybrid model 
(fig. 10). 

6. Conclusions 

The objective of this paper was to develop. apply, and 
empirically compare usiug a well-knO\\ n NP-complcte 
problem. various evolutionary metaphors. An attempt is 
made to define in a unified framework (through the 
generalized ant colony search model) the hybrid approach. 
i.e. the mutual co-operation of well -defi ned heuristics 
solvi ng a problem together. Empirical results (fig. 10) 
confirm the potential power of such an approach. It is 
believed that the evolution and self-adaptation of a priori 
assumptious about the problem (iustance) at hand arc the 

only legitimate tools to overcome the practical tmplic:liions 
of the limitation theorems on search 123 1. 

Current research involves the generalized ant colony 
search model applied to continuous function optimiza tion 
120). Open questions for further research arc to address the 
stability issues when designing ··multi-species .. distributed 
co-operative searches. balance between co-operation and 
competition. and increasing the complexity of the problems. 
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Constr·aint Handling for the Fault Coverage Code 
Generation Problem: An Inductive Evolutionary 

Approach 

George Bilchev· and l<1n Pannee· 

·PI\lnolllh Enginet:nng Dt:s1gn Centre, University of Plymouth, PL4 8AA, VK 
l iHJichev(c/Jplymouth.m.:.uk 

Abstract. Real \\'Orld problems quite otlcn are constrained and the1r successful 
solution requirt:s tht: applicauon of an appropriate constraint handling teclmique. 
·n1c lack of a umfom1 m.:thodology for handling nonfeasible points large!~ 

predetermines the cum:nt best practice - the investigation of some problem
specJii c operators \\'hich search (wi thin) the feasibility boundary in an elficient 
wa •. In this paper \\e apply thi s approach to a real world problem provided by 
Rolls Royce and Assocwt.:s Ltd .. ru1d show how to design feasibility preserving 
op.:rators that map th.: tt!asJblllly region onto itself Some of our results provoke 
n.:w 1deas ofho'' to modit\ real-time test and monitoru1g systems so as to increase 
th.:1r rt!l iabilit~ 

I . Introduction 

Various constra in! handling techniques have recently emerged [ 11. However, there is 
still no uniform methodology for handling unfeasible points. Current best practice 
invoiYes the investigation of some problem-specific operators. which search the 
feasib ili ty boundary in an efficient way [21. This idea is based on the seemingly 
reasonable assumption that in real world problems U1e constraints and the objective 
functions are confl icting and therefore. the constraim global solution lies on the 
boundary of the feas ible region 

In this paper \\ e use a real world problem (section 2) to demonstrate a very 
efficient constraint handliug technique. It consists of defining the feas ible region in 
terms of the independent va ri<.~bles and des igning feasibility preserving operators (i.e. 
operators U1at map the feasible region onto itself) (section 3). The existence of such a 
closed form description of the feas ible space leads to a miuimal redundancy problem 
representation [3] and could significantly reduce the search space. Currently the 
feas ibility preserving constraint h<wdling technjque is being applied successfully to 
the optimization of real valued functions and linear constraints (4), and for 
combinatorial problems. In this paper we extend the applicability of the approach to 
include the faul t coverage test code generation problem [5) with additional constraint 
requirements imposed by the designers of the circuit 's logic. 

We consider the reduction of a search space to be one of the most efficient 
approaches for soh·ing any search problem. T his idea has been fundamental fo r 



many of the exis ting sea rch methodologies. including branch-and-bound. c lustering, 
etc. In this paper we a lso propose to integrate the sea rch space reduction approach 
with an e\·olutionary search eng ine (seclton -l ). The idea has already produced 
successful results when applied to optimm li iOn of real valued cominuous functions 

161171. 

2. The Fault Coverage Test Code Generation Problem 

Test and Monitoring Systems (T AMS) are widely used for real-time testing of t.he 
f1111ctional ity of electronic c ircui ts (fi g. 1). Basically they opera te by regularly 
initiating a test cycle on the c ircuit and monitoring the fault sta tus. An integral pan 
of the T AMS is a fault coverage test code consisting of a set of input test vectors and 
a set of expected output vectors. New circuits cannot be used until the fault coverage 
code is updated with a new set of comprehensive test vectors (fig . 2) . 

Test s1gnals 

TAMS 

Fig. 1. Overview of test and monitonng svstcm (T AMS) 

Fault analysis is the process used to c;ietem1ine the fault detection coverage of a 
parti cular design. The fault analysis process for a design involves the optimization of 
the input stimulus to fully exercise a ll components to increase the testability, while 
log ic simulation involves the optimization of the functionality of the design. These 
tasks a re Yery different processes. and both tasks are necessary within the design 
developmem process. T he fault analysis process fits within the product development 
cycle after the initial functional verification of the design and before the physical 
hardware testing of the product. 

The amount of fault coverage within a design depends on the following two 
factors: ( I) comprehensiveness of the test code. and (2) inherent tes tability of the 
logic design. In thi s paper we concentrllte on the first factor a nd fommlate the 
problem of fi nding an effective set of input test vectors as a search problem. 
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Fig.2. Tite process of finding the most dlicient fault coverage test code: Tite circuit is 
mo<kkd and faults are s imulah:d. Using infonnation tram the fault anal ysis the task is to 
design the most comprehensive test vectors (U1e white arrow). 

3. Handling Constraints 

Usually there are various constraints imposed on the test codes. For example. the size 
of the test code may be constrained by hardware requirements of the test and 
monitori ng system. There may also be a number of constraints concerning the 
possible combinations of input signals. The task is to automate the process of finding 
the most effective test code, i.e. the code maximizing the fault coverage (fig. 2). 

The requ irement that the number of iest vectors must be exact ly N is represented 
directly by the coding scheme of the problem. A sample from the associated fitness 
landscape of the search problem would consist of N vectors each of length m bits. 

The second type of constraints impose strict requirements on the possible 
combi nations of values wi thin each individual test vector. The designers of tl1e 
circuit define the set of legal combinations in terms of the legal states of a number of 
channels (fig. 3). Each channel is a logical grouping of input bits (for example, bits 
No. 2. 5. and 7 could form logical channel l) . Collectively the legal states of all 
channels define a set of legal (supporting) templates of the fom1 : 

1*0** 10 11*** 



where * is a don ' t c<1 re symbol. Each template could be viewed as a generator of a 
particular fraction (subspace) of the original search space. Therefore, the set of all 
legal templates defines the feasib le region. The existence of a such closed form 
description of the feasib le region greiltly influences the selection of a constraint 
handling technique. In our case. it seems appropriate to maintain a population of 
legal samples by designing feasibility preserving search operators. 

Channel I: 

* * 0 * *;O * •:b * * * * 
* *'0 * * 1 *'1 * * * * 

~.. ~ ~ 

* * 1 * HQ * 0 * * * * 
* *'.1 * * o * ~f * * * * 
* * 1 * *·!I *re**** ., , . 

• 

Channel n: 

Fig. 3. A set of kgal tc::st codes is ddined bY the:: lc::gal states of a number of logical 
channd s. 

When applied to a feasible point(s). a feasibility preserving operator always 
produces another feasible point(s). For the test code generation problem we have 
designed two ,·ersions of mUiation and one of crossoyer which comply " ·ith the 
selected constraint handling technique. 

mutatio n 1 : (i) find the supporting template of the parent chromosome. and (ii) 

apply uniform mutation to the values of the don ' t care bits. 

1 0 0 1·0 1 0 11 0 11 
1* 0 **1011*** 
1 1 0Lll 01 1 0 01 

'• -~ 

parent chromosome 
parent 's supporting template 
offspring 

mutation 2 : (i) find the supporting template of the parent chromosome. (ii) 

change it randomly by another supporting template whi le keeping 
the Yalues of the don ' t care symbols. 

100101 0 11 011 
1*0**1011*** 
·e * 1 * *'0'0:1.1 * * * 
o 01 1 o~offil o 11 
~~. l~· ..... ~. 

parent chromosome 
parent 's supporting template 
new supporting template 
oJ{spring 



crossover : (1 ) find the suppon111g tcmpl<lte of both parents and (i i) apply uniform 
crossoYer to the don' t care bits. 

parents 
templates 
ojfspnng I 

1I OJI10 110fS1 
1* 0**1011*** 
1.1 0 1.1 1 0110 0 1 

5. The Inductive Genetic Algorithm 

011 1 01 0 0 11 0.0 1 
~ U • >eo 

0*1** 00 11* ** 
Oi l Ol 0 0 11 CJ l 

In genera l the inductive approach generates a solution step by step, beginning from 
the so called base of the induction and at each step following an induction rule to 
update (i.e. induce) the solution. In mat11ematics induction is a rigorous proof 
technique while in the context of adaptive search it is used to approximate ly induce a 
so lution to a panicular problem. Previous research 16J[7] well justifies the potential 
power of the inductive approach in the context of search. 

Applying the inductive approach to the fault coverage code generation problem 
requires a s light refonnuation of the problem. The orig inal problem is: 

Given a number N (the maximum number of faul t 
coverage test vect ors ) find a sequence of N t:es t 
vecto r s that ma ximizes t he fault coverage. 

lt can be easily refo rmulated as: 

For each k = 1 to N fi nd a sequence of k test 
vectors that ma~imizes t h e fault coverage. 

In this case the inducti \'e fo rmulation also gives meaning to intermediate 
solutions. Suppose fo r example tl1at for some k, I <k<N. we know a sequence of test 
vectors which gives satisjac10rv fa ult coverage. T he term satisfactory mean s that 
with k test vectors we couldn ' t expect to cover more faults than those already 
discovered by the sequence. T his is a relative judgement regarding the particular 
circuit and can serve as an effi cient stopping condition instead of the usual 
max imum number of generations (refer to step 6 of the algorithm). Now if for k test 
vectors we have already achieved a sati sfactory level of fault coverage the task is to 
find a satisfactory fault coverage level for k+ I test vectors. The main power in the 
inductive approach is tl1e assumption that the satisfactory fault coverage level fork+ 1 
test vecto rs could be derived from the satisfactory level of the k test vectors. If this 
assumption is true then it produces an efficient search engine with computational 
complexity determined only by the computational complexity of the inductive step. 

The Inductive Genetic Algorithm (IGA) combines the evolutionary search engine 
wi th an induc tive fitness function. The overall stmcture of the IGA is as follows: 



1. 

2 . 

Initialize a p a rtial solution for N 
sequenc e o f one test vecto r only) 

100101011011 

1 (i .e. a 

for k = 2 to N do 
that c omplements 
soluti o n ) 

(search for the best kth vector 
the already existing partial 

3 . Initialize a population of test vectors 

'f!·;~ ·;?{,"ft ii:~~¥~""~i ,.-· ::~; , ' - . 
:;------:-=-= -:;:---~-- ~- . ·- - - - ---- -

4 . Append each test vector to the partial soluti on , 
eva l uate it a nd assign fitness 

100101011 011 1 0 0 1 0 1 0 11·0 11 

s. Reproduce according to the fitness 
Typical operators include versions 
crossover . Updace the population. 

6 . If not end o f generati o n , goto 4 

obta i ned i n 4. 
o f mutation and 

7. Update the part i al s olution , increment k , goto 2 

Steps 3. -L 5 .. and 6 constitute a genetic algorithm. Steps 1.. 2 and 7 implement 
the inductive approach. The 0\·erall algorithm could also be viewed as a genetic 
algorithm with dynamic fitness function. i.e. the fitness function changes at each 
generation. 

6. Experiments 

The associated fitness function with our model is f = .!!........- I 00% . where n is the 
N 

number of covered faults and A' is the number of all faults in the fault population. 
Fig. 4 shows the performance of the Inductive Genetic Algorithm (IGA) on a 

fau lt coverage problem consisting of 200 possible faults. The number of input test 
vectors is 24. The search effon at each induct ive step controls the trade-off between 
the computmional complexity and the expected quality of results. The family of all 
possible trade-off poims define the peJ:fiJrmance trade-ojf front. It is a measure of the 
e:-;pected gai n oft he quality of results as a function of the computational expense. 



The fault coverage achieved for 9.000 fitness function calls is 7 1.5%. Previous 
experiments done at Rolls Royce and Associates Ltd. involved a classical genetic 
algon thm in which the chromosome coded all the 24 input test vectors each of length 
12 bits. The best produced fault coverage for 9,000 fitness function calls was 57%. 
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Fig -t. Runs of the Inductive Gendtc Algontlun for eight different control parameter sett ings 
(population stze , mutation rate, crossover rate, number of generations per inductive step). The 
t~unily of all possible control paramc!ler sett ings define the perfomwnce trade-off front, which 
IS a measure of the trade-<JIT between computational complexity and quality of results. TI1e 
number of input test vectors is 24 

Fig. 5 shows the performance of the IGA as a function of the number of input test 
vectors. The same fault population of 200 faults as in the previous experiments is 
used. The IGA is able to find a set of 67. input test vectors that cover 100% of the 
fault population. If the hardware requirements allow the T AMS to use 67 test vectors 
then 100% fault coverage is achieved. However, in real world problems there are 
hard constraints imposed on the design task. For example, in our particular T AMS 
test code generation problem the number of input test vectors must be 24. Therefore, 
our objective is to design maximally comprehensive set of 24 test vectors (the design 
of the logic of the circuit is already fixed, so we regard the test coverage code 
generation problem as a search problem and do not address the inherent testability 
properties of the logic design). However, the availability of an algoritlun that 
produces a population (of minimal size) covering lOO% fau lts could be used to 
implement a test and monitoring system which uses several sets of 24 test vectors 
and applies them during different discrete time steps (interleaving). 



Fig. 6 shows the effect of the coustrat uts ou the performance of the search engiue. 
There are t\\ O graphs. e<lCh correspouding to a particular set of constraints. Each set 
of constrat uts ts determined b~ a table of legal stntes as explained in section ..J . Legal 
table 2 is dcnvcd from legal tab le I by reducing the number of legal states in channel 
I. Therefore. legal table 2 corrcspouds to a more const rained instance of the fault 
coverage test code geueration problem. Imposing constraints on tlte problem is 
equivalent to int roducing tnherent llttlestability iu the circuit design. Legal 
identif·ying f<tult pattems could no longer be allowed and therefore, the 
corresponding faults would HeYer be detected. As can be seen from fig. 6 this fact 
significantly ittOuences the achieved fault covernge. 

Fig. 5. ·nlt! fau lt <:O\'t!ragt! us a 1\m..:llon uf the:! munbt! r of 111pu1 t.:st v.:ctors. 1l1ert! are 200 
limits in the:! fault population. An lnducti Vt! (l.:ndlc 1\lgoritlun IS used to tind the best set of 
lt!st vectors ·nit! mnnb.:r of litn.:ss func tion call s in order to cover I 00 p.:rcent of tl1e fault 
population 1s approximately I 0.000 and n.:quir.:d s1xty s.:vcn input t.:st vectors. 

7. Conclusions 

In this paper we hm e described the development aud application of an efficient 
constraint handling technique to a real world problem. As compared to previous 
experiments at Rolls Royce and Associates Ltd. our system has considerably 
improved the performance and the reliability of the test and monitoring system 
(T AMS). Also. some of our results suggest how to modify T AMS so as to increase 
real-time fau lt coverage. 

Currently. there is no general way to fi nd a closed form description of the feas ible 
region. Our experience shows that it m:1y prove to be worthy to spend some time 



a nal~ s ing the problem before resorting to the selection of the constraint handling 
technique Se,·eral existing e\·olullonary search systems already comply with the 
above conclusions 121141 and sho\\· impro\'ed performance as compared to previous 
constraint handling methods. Currently such systems are applicable only to 
particular classes of constraints (e.g. linear constraints) and future research may 
invoh·e the extension of these classes 
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1. Introduction 
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Recent growth of interest in algori thms inspired by natural processes has resulted in a number of 
real world app lications. Techniques like genetic algorithms [ 1]. evolutionary strategies [2]. 
immune networks [31(4] and ant colony search models [5](6] are now widely accepted as robust 
general purpose search engines. However. recent advances in search theory !7][8] show t11at the 
only possible way to tackle t11e search problem is by incorporating a priori knowledge. 
Therefore. currently the evolutionary search framework is well suited for t11e preliminary 
engineering design stage. where models are coarse. there is a great deal of uncertainty and t11e 
objective is to grasp a general over>·iew of tl1e search landscape [9]. 

In this paper we present a novel evolutionary search engine which we believe has a great 
potent ial. We also present results regarding L.he application of our approach to a real world 
eng ineering design problem. namely. tl1e design of efficient fault finding test code m Roll s 
Royce and Associates Ltd. 

2. Fault Analysis and Fault Coverage Code Generation 

Fault analysis is tlle process used to determine t11e fault detection coverage of a particular 
electronic circuit design. The fault analysis process for a design involves t11e optimization of tlle 
input stimulus to fully exercise all components to increase tlle testability, while logic simulation 
invo lves tl1e optimization of tlle functionality of tl1 e design. ll1ese tasks are very different 
processes, and both tasks are necessary within t11e design development process. ll1e fault 
analysis process fits witllin the product development cycle after t11e initial functional verification 
of tlle design and before the physical hardware testing of tlle product. 

A statistical fault simulator (i.e. Quick Grade Il [I 0]) is a tool tl1at assists tlle development of an 
effective set of input test vectors tllat are passed later to a detenninistic fault simulator (i.e. 
QuickFault 11 [10]) . The statistical fault simulator analyzes the statistics gatllered during a logic 
simulation of tl1 e circuit and ca lculates tlle probability of detection for each fault in the fau lt 
population. The simulator uses tlle fault detection probabilities in calculating tlle overall 
estimated fault coverage for t11e design. ll1e detenninistic fault simulation provides confidence 
in tlle comprehensiveness of t11e test stimulus. The extent to which a set of input vectors can 
detect real manufacturing faults is called fault coverage. If a set of test vectors provides 90 
percent fault co,·erage. t11e set can detect 90 percent of t11e fault s in t11at fault population. 



The amount of faull coverage within a design depends on the following two factors : (I) 
comprehensinness of t11e test code. and (2) inherent testability of t11e logic design. In t11is paper 
we concentrate on t11e first factor and fonnulate the problem of finding m1 effective set of input 
test vectors as a search problem. 

3. The Inductive Genetic Algorithm 

In general t11e inductive approach generates a solution step by step. beginning from L11e so called 
base of t11e induction and at each step following an induction rule to update (i .e. induce) the 
solution. In mat11ematics induction is a rigorous proof technique while in t11e context of adaptive 
search it is used to approximately induce a solution to a particular problem. Previous research 
111111 21 well justifies the potential power of the inductive approach in t11e context of search. 

Applying the inductive approach to the fault coverJge problem requires a slight reformuation of 
the problem. The original problem is: 

Given a number N (the maximum number of fault coverage test 
vectors) find a sequence of N test vectors that maximizes 
the fault coverage. 

It can be easily refomJUlated as: 

For each k = 1 to N find a sequence of test vectors that 
maximizes the fau lt coverage . 

While being the same problem the taller fomlUlation also gives meaning to intennediate 
solutions. Suppose for example L11at for some k, I <k<N. we know a sequence of test vectors 
which gives satis[ncto1y fault coverage. TI1e term satisfactory means that wit11 k test vectors we 
couldn ' t expect to cover much more faults L11an L11e already discovered by tl1e sequence. Now if 
for k test vectors we have already achieved a sati sfactory level of fault coverage the task is to 
find a sati sfactory faull coverage level for k+ I test vectors. 1l1e main power in the inductive 
approach is tl1e assumption L11at the sati sfactory faull coverage le\'el fork+ I test vectors could be 
derived from tJte satisfactory level of the k test ,·ectors. If this assumption is true then it 
produces an effi cient search engine wil11 computational complexity detennined only by the 
computational complexity of the inductive step. 

1l1e overall structure of Ute inductive se.1rch looks as follows: 

For k = 1 to N do { 
Find the maximal fault coverage achieved by k vectors 
in the context of the maximal fault coverage achieved 
by k - 1 vectors 

TI1e lnductive Genetic Algorithm (IGA) combines the evolutionary search engine with an 
inductive fitness function. The overall structure of L11e IGA looks as follows: 

1. I n itia l ize a partial sol ut ion for N = 1 (i . e . a sequence of 
one test vector o nly) 

100101011011 

2. Fork = 2 to N do 

3. Initialize a population of test vectors 



4. Append each test vector to the partial solution, e v aluate it 
and assign fit ness 

100101011011 100101011011 

5. Reproduce according to t he fitness obtained i n 4. Typical 
o perators i nclude versions o f mutation a nd c rossover . Update 
the population . 

6. If not end o f generation, goto 4 

7. Update the solution, increme nt k, goto 2 

Steps 3. 4, 5, and 6 constitute a genelic algorithm. Steps I. 2 and 7 implemelll t.he inductive 
approach. The overall algorithm could also be viewed as a genetic algoril.hm with dynamic 
fil.ness function. i.e. the fil.ness function changes at each generation. The mut.ation operator 
randomly selects bits and flips them: 

mutation: 

1f101£ 1 0 110~ 1 
lo J}j) 1 o 11otq1 

parent chromosome 

offspring 

The crossover operator random I) selects bits from two parents and swaps t.hem: 

c r ossover: 

parent I 

off.<;prinR I 

4. Experiments 

1JOJ.I1011 0I1 
1 101110 1 1001 

0110 l 001 1 001 

OII1 0I 0011 0I1 

parent 2 

o.ffspring 2 

In order to develop and tune our search strategy we have designed an efficiem simple model of 
the fault population of a virtual circuit. As the search engine should be generic enough to nm on 
a variety of circuits such a circuit abstraction comes well justified. In our model each fault 
population consists of a number of faults with associated fault identify ing patterns. A simple 
fault population with five faults may look like: 

*01********* 
*01*0******* 
101~·· ~ ***10 

0~0*11011·*** 

**1. *1101 *"*** 

where ''*" is a don 't care symbol. The task of the fault coverage problem is to find a "generalis!" 
population of test vectors covering as much faults as possible. For example, the following two 
test vectors cover 80 percent of the fault population: 

000111011001 



11 
The associated fit ness function with our model is I = - · I 00% where n is the number of 

.\" 
co,·ercd faults and .\ is the number of all fa ults in the fau lt population 
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Fig l : Rw1s of the Inductive Genetic Algorithm for eight different control parameter settings 
(popullltion size. muta tion rate. erossO\·er rate. number o f generations per inductive step). 
TI1e fa mily of all possible control parll meter settings define the performance trade-off 
ji-onr. which is a measure of the trade-off between computationll l complexity CUld quality 
of results. The number of input test vectors is twenty four. 
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Fig. 2: Comparison between tl1 e Inductive Geneti c Algoritlun (IGA) and the canonical genetic 
algorithm. 

Fig. I shows the perfonnance of the Inductive Genetic Algorithm (IGA) on a fault coverage 
problem cons isting of 200 possible faul ts. The number of input test vectors is twenty four. The 
search effort at each inductive step controls the trade-off between tl1e computational complexity 
<md tl1e e>..-pected quality of results. TI1e fami ly of a ll possible trade-off points define the 



pe1:(ormance trade-off front. It is a measure of lhe expected gain of the quality of results as a 
ftmction of lhe computational expense 

Fig. 2 compares the IGA approach Rilh a crumonical genetic a lgorithm [I ) applied to the whole 
sequence of test vectors (i.e. when each chromosome has fixed length of 24 vectors 12 bits each 
and lhe fiU1ess function is tl1e fault cm·erage found by the whole set of 24 test vectors) . The same 
test problem as in t11e previous experi ment is used. From fig. 5 it can be clearly seen that tlte 
IGA considerably outperfomts tltc classical genetic a lgoritlun. One possib le explanation is t11at 
tlte IGA considerably reduces lhe search space by dividing it into disjoint inductive search 

subspaces. whereas tl1e classical GA works on tl tc huge original search space (approx 2 ~4 - I~ ) . 

5. Conclusions 

In this paper we have developed a no\·el evolutionary search approach and applied it to a real 
world problem. We also discussed circuit abslract ion issues. It turns out that making a model of 
t11e fault coverage problem pro\·ides an efficient and less computationally ex-pensive 
development framework within which search engines can be developed and tested. This also 
facililates tl1e analysis of the search performance. We believe tl1at our approach will result in 
signifi cant savings of manpower dttring tlle test code updaling process. 

Further work may involve exploration of tlte salient features of the fault CO\'erage problem. For 
example, the evolution of "generalist" co-operative population of input test vectors may be 
tackled by immune networks or clustering genetic algorithms. 
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Absrracr- [n this paper we propose a novel global optimization 
technique inspired by the process of natural evolution. The 
employed analogy is that of searching from the simple to the 
complex, i.e., evolving solutions to problems with gradually 
increased complexity. The a lgorithm is applied to the test 
functions of the First International Contest on Evolutionary 
Optimization to _be he ld during the 1996 ffiEE Inte rnational 
Confere nce on Evolutionary Computa t ion, Nagoya, Japan. 

I. lNTRODUCTION 

Recent growth of interest in search algorithms and search 
theory ]1)12]13] has provoked much debate and controversy. 
Although one of the problems is tha t of comparing search 
algorithms. it is believed that a series of international 
contests on optimization will shed some light and hopefully 
answer many of the controversial issues. 

For the First International Contest on Evolutionary 
Optimization we propose a novel g lobal optimization 
technique inspired by the process of natura l evolution. The 
employed analogy is tha t of searching from the simple to the 
complex, i.e., evolving solutions to p roblems with gradually 
increased complexity. 

Increasing complexity is a salient feature of evolutio.n 
which we believe is crucial. To justify tltis idea recal l the 
opttmal universal search machine proposed by Levin I 4]. It 
essentia lly genera tes and evaluates a ll solution candidates 
(strings in a particular representation) in order of their 
Levin ' s complexity, until a solution is found. Simpler 
candidate solutions are generated first and then the search 
proceeds with increasing the complexity of the newly 
generated candidate solutions. In evolution, simpler 
organisms were created first and then the process continues 
with evolving more and more complex organisms. Utilising 
the same idea in a computer search context means to evolve 
a set of solutions to search problems with gradually 
increasing complexity. One natura l way to increase the 
complexity of a search problem is to increase its dimensions. 

Our algorithm is based on the assumption that an 
approximation of the desired solution can be effectively 
constructed from a limited sample of the search space. The 
idea is generally borrowed from genetic algorithms and the 

Ian Parmee 
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iparmee@ plymouth.ac.uk 

corresponding bu1lding block hypothesis [5], but is utilised 
in a more direct way. We also view the global optimization 
problem as an existence of short (inductive) rules that can 
effectively build the solution from a limited sample. If for a 
particular problem instance such rules do not exist. the 
global optimization task is not tractable. On the other hand. 
if such rules exist. the current state of the an i how to find 
them. In general this problem is not computable. In 
constrained discrete search spaces (as in our computer 
models) the problem scales exponentially with tl1e number of 
dimensions. Historically this phenomenon. known as the 
"curse of dimensionality", led to the abandonment of direct 
search methods in favour of ones using some a priori 
knowledge about the cost function[ 

A novel feature in our search algorithm is tl1at we do not 
constrain the san1pling procedure to work only in the 
original search space, but rather divide the problem into a 
sequence of subproblems and allow sampling in each of the 
newly defined subspaces. [n order to do tl1at our approach 
requires a computational model of the cost function, which is 
usually available. 

The paper is organized as follows : Section 2 describes the 
proposed evolutionary search algorithm and gives 
implementation details. Section 3 presents the rationaJes 
behind the design of our algorithm. Section 4 sho" -s the 
experimental results and performance indexes. Section 5 
gives conclusions. 

Il. PROPOSED ALGORITHM 

The overall structure of our approach is given in fig. I . 
For each of the input variables we ask an oracle what is the 
value for which a global optima is achieved. We begin the 
query from the first variable. Since at this stage the other 
variables are not yet defined, we consider that they do not 
exist. For the proposed test functions tl1is is easy to achieve 
even still treating them as black boxes, because the test 
functions are defined in terms of two parameters: the number 
of dimensions and a vector of the input variables: 



main () { 
for (int i=l; i<=NDIM; I++) 
---x[i- l]=oracle(i); 

Fig. I. The overall structure of the proposed approach. 

void oracle (int dim) 

sortseq<float , Interval> Population; 
Population.insert(HIGH-LOW, I); 

11 Global learning 

while (STOP CONDITION NOT FULFILLED ) 

I = Population .max() ; 
bren = brent (I . low, (I.low+I . high)/ 2 , I . high,func , TOL,&xmin) ; 
if (bren < FMIN) ( FMIN = bren; XMIN = xmin; ) 

if (bx < xmin) 
I.low ax; !.high 
I . low = bx; !.high 
I.low = xmin; !.high 
else { 

I.low ax; !.high = 
I. low xmin; !.high 
I .low bx; !.high = 

11 Local learning 

x[dim- 1) = XMIN; 

bx; Population.insert ( I.high- I.low, I); 
xmin; Populati on .insert(I . high-I.low, I); 
=ex; Population.insert (I .high-I.low, I); 

xmin; Population.insert (I.high-I .low, I); 
= bx; Population.insert ( I.high-I.low, I); 
ex ; Population.insert(I.high-I.low, I); 

if ( (LEARNING) && (dim > 1) 

~oca~_~earn (func_learning, x, dim); 

Fig. 2. One possible implementation of the oracle. LOW is the lower bound of the search space and HIGH is the upper bound. TOL is a 
tolerance for the Brent 's routine . which is set to lE- 4. 

At a later stage, i.e. , when solving f(i, ... . x;), the oracle 

can "update" a previous answer by changing the values of 
x 1 to x,_1 • This is necessary, because when the oracle 

solves f(i- I, .. .. xi-1) it has no knowledge of how this 

function will be upgraded to f(i , ... . x;_1, x;) . 

lf such an oracle was easy to find and implement, then 
the global optimization problem would have been trivial. 

However, it is usually hard to decide how to define the oracle 
procedure. In tllis paper, we have implemented a simple 
deterministic version of the oracle wllich proved to perform 
very well on tl1e proposed test functions. The basic algorithm 
is given in fig. 2. 

It uses two distinct steps. First it searches for good 
solutions of the current dimension in the context of the best 
solution(s) of the previous dimensions (global learning). 



Then it locally semches in all dimensions starting from the 
al ready discovered ··promising·• areas (localleamtnf!). 

In the proposed implementation, the global le.1rning is a 
series of ca lls to Brent ' s parabolic interpolation routine: 

float brent (float ax , f l oat bx , 
float ex , float (*f )(float), 
float tol , float *xminl ; 

where. given a function f , and given a bracketing triplet of 
abscissas ax, bx. ex (such that bx is between ax and ex, 
and f ( bx) is less than both f ( ax) and f (ex l ), this 
ruotine isolates the minimum to a fractiona l precision of 
about ta l using Brent's method. The abscissa of the 
minimum is returned as xmin. and the minimum function 
value is returned as bren t. the returned function value [6). 
In an anempt to minimize the maximal risk to miss a 
solution, the algorithm always applies the Brent 's routine to 
the largest interval in the population. 

The local learning is implemented as dynamic hill 
climbing: 

~ocal learn ( float (*f) (float*x), 
float x,int dim ) ; 

where. given a funct ion f. a starting point x. and number of 
dimensions dim. local_leaxn finds a local optima [7). 
Initial step size of 1 . 0 and threshold of 1 E- 4 are used. 

Various stopping conditions are possible. We have tested 
value to reach (i .e.. stop the global learning when the 
algorithm reaches a predeterntined value) and a maximal 
number of calls to Brent 's routine. 

ill. RA TIONALES 

It is a well established approach to employ analogies 
from nature for problem solving. Examples include 
simulated annealing, genetic algorithms, immune networks, 
etc. In the area of evolutionary computation the most widely 
used algorithms usually utilise the survival of the finest 
principle. It remains surprising how li ttle attention has been 
given to the fact that evolution goes from the simple to the 
complex. i.e., simpler organisms are created first and then 
they evolve and become more and more complex. This 
interpretation is quite close to the description of the optimal 
universal search machine originally proposed by Levin [4). 
Although it has been proven that the optimal universal 
search algorithm is not computable, it may be that evolution 
is one of its most fascinating implementations. 

To utilise the same idea in a computer search context we 
need to define a family of complexity classes for the 
particular problem at hand. One way to do it is by increasing 
the dimensionality of the problem. 

It is a we ll cstablised phenomenon that with the increase 
of the number of dimensions the search problem scales 
exponentially ("the curse of dimensionality"). This 
historically led to the abandonment of direct search methods 
in favour of those utilising some a prion knowledge about 
the cost function. Recently the No Free Lunch theorem [ 11 
argued that incorporating a priori knowledge into the search 
process is tl1e only legitimate way to overcome the 
fundanlental limj tations on search algorithms [2]. 

However. there is a strong counter argument against the 
NFL theorem line of reasoning. lt is that most of the cost 
functions do not have short descriptions. i.e., t11e only way to 
represent them is by a table of (x,y) pairs. wltich given tile 
size of the search space is practically impossible. Only a 
small fraction of all tile possib le cost functions have short 
descriptions and therefore, are able to be implemented as a 
computer model. It is true that these functions have various 
different properties. i.e .. multi-modality . smoot.hness, etc. 
However, they share the short description (i.e. , low 
algorithmic complexjty) property. It also seems qwte 
probable that all these functions share another property, 
namely short descriptions of the global optima. The short 
description of the global optima could be used as a kernel of 
a tractable search algorithm. lt is clear that the short 
description assumption is not too binding as far as practical 
computer models are concerned. so any search algorithm 
which makes such an a priori assumption remains of great 
practical importance. 

T he assumption made by our algorithm is that the global 
minimum of j(N,x 1, ... , xN) could be found by finiling the 

global minimum of f(N.x~ , ... ,x~_1 , xN ) in the context of 

tl1e global minimum of j(N - 1, x~ , ... , x~_ 1 ) and then 

learning the N variables that match the global optimum of 
f(N , x 1 , .. . , x N) . In ot11er words the assumption is that: 

n(x; , ... ,x:_1 , x~ ) = (x; , .. . ,x: ) 

where .0. IS a polynomial 

(x;, ... ,x~_ 1 ) is the 

-· . XN IS 

j(N,x; , .. .. x~_ 1 , xN ) , and 

optimumof f(N,x 1 , ... ,xN) . 

time leamng operator, 

global optimum of 

the global 

(x; , ... ,x~ ) 

optimum of 

is the global 

The class of functions for wluch the above assumption is 
true do not suffer from the "curse of dimensionality". 
Inducing a new ilimension is achieved by solving only one 
and the san1e (type of) one ilimensional global optimization 
problem followed by a polynomial time learning. Tltis 
assumption seems to be true for all of test beds proposed by 
the organizing committee of the First International Contest 



on E' olutionary Optimization. It has been also shown that 
for some of the most widely used test functions in the 
evolutionary computing community the scaling is even linear 
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IV. EXPERIMENTS 

In order to better explain our algorithm we first nm 
through its basic steps using the following test case 
(Langerman ' s test function) : 

In.it.ially. brent is used to find the set of local minima of the 
I-D version of the test function (fig. 3): 

x: = 2.197. 

X~ = 6.628. 

x; = 8.184. 

xt = 9.450. 

j(x.1 ) = -o.908 

j (x ;:. ) = -1.276 

f(x 1' ) = - 2.709 

f (x; ) = -2.579 

I 
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Fig. 3. Langennans fwlCIJOn for N= I. 

According to our assumption, we get x; = x( and use brent 

to find the set of local min.ima of / 2 (x ~ , x 2 ) (fig. 4): 

X~ = 0.489, 

xi = 6.746, 

X~ = 7237, 

X~ = 8.995, 

f(x; . x~) = - 0.396 

f(x; . x~) = -{).432 

f(x; . x~ ) = -o.425 

f(x; . x~) = -2.389 
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Fig. 4. One dimensional vers10n or Langenn<m's function for N=2, 
• 3 

where x1 = x1 (fig. 4). 

Next, local_ learn is used starting from f(x; , x;) . 

I • 4 I • • w tere x 2 = x ~ . I updates the values of x 1 and x 2 to 8.0-l7 

and 8.985 respect.ively. An overview of / 2 (x 1 , x2 ) is given 

in fig . 5. The new values are used in the next iterat.ion. 

where brent seeks the set of local optima of f(x; , x;. x3 ) . 

The process is further iterated. 

Fig. 5. Langennan's function for N=2 . 

The test problems used in the GlobaJ Optimization 
community can be characterized as essentially unconstrained 
problems with cheap to evaluate objective functions, having 
anal)1ical derivatives and a small number of minima with 
max, P; = p,. {p, ~ 0.2) in a low dimensional decision 

space (where p1 is the probability to sample the basin of 
attraction of the global optima). The importance of a given 
approach to optimization depends above all on the practical 



problems which may be effi ciently solved by the proposed 
algorithms. Therefore. it is advisable to use rea l world 
problems in val idating all the stages of developmem of 
algorithms, starting with the justification of main theoretical 
assumptions. However. it is difficult to use practical 
problems in investigating and testing algorithms because the 
practical objective functions a re usually expensive to 
evaluate and quite often practical problems cannot be freely 
distributed. Therefore. normally some a rtificial test functions 
are used to test the a lgorithms. 

The results on the proposed test functions for the first 
international contest on evolutionary optimization are shown 
in table I . The third column tells whether a local learning is 
employed. and the maximal number of calls to Brent ' s 
routine at each dimension is presented in column four. 

f dim L LW value No of calls 

Sp 5 no 1 0 20 

Sp 10 no 1 0 40 

Gr 5 no 1 0 2 10 

Gr 10 no 1 0 420 

Sh 5 yes 2 -10.404 388 

Sh 10 yes 2 -10 . 2079 796 

Mi 5 110 3 -4.688 386 

Mi 10 110 10 -9 . 660 1744 

La 5 yes 3 -1.5 558 

La 10 ves 3 -1.5 958 

Table 1: Results for the test problems: Sp: Sphere model , Gr: 
Griewank"s fw1ction , Sh: Shekel's foxJ10les. Mi: M.ichalc!\\icz·s 
t\mction. La: Langennan·s ftmction. 

When, instead of maximal number of calls to Brent 's 
routine we stop the global learning upon reaching a 
predetern1ined value (value to reach), the following results 
are obtained: 

I dim value No of calls 

Sp 5 3.88e- 15 20 

Sp 10 7.10e-15 40 

Gr 5 7.99e-6 41 

Gr 10 1.31e-6 79 

Sh 5 -10.327 74 

Sh 10 - 10.101 120 

Mi 5 - 4.688 120 

Mi 10 -9 . 660 501 

La 5 - 1.4 99 176 

La 10 - 1.499 372 

Table 2: Resul ts for U1e lest problems: Sp: Sphere model, Gr: 
Griewank's function, Sh: Shekel's foxholes, Mi: Michalewicz's 
limction, La: Langennan 's function. 

V. CONCLUSIONS 

In this paper we present a novel algorithm for global 
optimization inspired by natural e\·olution. It is based on the 
assumption of polynomial time induction of the ··ne:--1·' 
dimension. During the inductive step we have utilized a 
local hill climber which is well j ustified by the nature of the 
proposed test functions. However, it is easy to show that a 
local hill climber could not always induce the next 
dimension. This is especially true for functions which 
introduce new information in the subsequent dimensions. 
The new information could potentially " invalidate" the 
results obtained so far. The inval idation is relative to the 
employed learning algorithm. If the test function has a short 
description, so has the law for introducing the new 
information. An ability to identify this law in polynomial 
time will again lead to polynomially inducible new 
dimensions. Further research into this area is required. 
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