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Sommario

I dispositivi FPGA con memoria di configurazione SRAM sono sempre più rilevan-
ti in un grande numero di campi applicativi, dal contesto automobilistico a quello
aerospaziale. Questi campi applicativi sono caratterizzati dalla presenza di radiazioni
capaci di causare Single Event Upsets (SEUs) in dispositivi digitali. Tali guasti hanno
effetti particolarmente dannosi sui sistemi implementati in tecnologia SRAM-based
FPGA, in quanto sono in grado non solo di danneggiare temporaneamente il com-
portamento del sistema, cambiando il contenuto di flip-flop e memorie, ma anche di
cambiare permanentemente la funzionalità implementata dal sistema stesso, cam-
biando il contenuto della memoria di configurazione. Il design di applicazioni safety-
critical richiede l’utilizzo, prima possibile durante il flusso di progetto del sistema, di
metodologie accurate per la valutazione della sensitività ai SEU del sistema stesso.
Inoltre è necessario essere in grado di rilevare l’occorrenza di SEU durante il fun-
zionamento del sistema. A questo scopo è necessario generare test patterns durante
il progetto del sistema ed è poi necessario applicare tali test patterns agli input del
sistema durante il suo funzionamento.

In questa tesi descriviamo il progetto e l’implementazione di strumenti software
utili al progettista di applicazioni safety-critical basati su tecnologia SRAM-based FP-
GA per la valutazione della sensitività ai SEU del sistema e per la generazione di
test pattern utili al rilevamento di SEU nella memoria di configurazione durante la vita
del sistema. La caratteristica principale di questi strumenti è l’implementazione di un
modello di SEU nei bit di configurazione che controllano le risorse logiche e di rout-
ing di un dispositivo FPGA che risulta essere molto più accurato rispetto ai classici
modelli stuck-at ed open/short che sono in genere considerati nell’analisi di circuiti
digitali. In tal modo gli strumenti proposti risultano essere molto più accurati rispetto a
strumenti simili, sia accademici che commerciali, attualmente disponibili per l’analisi
dei guasti in dispositivi digitali ma non specificamente sviluppati per dispositivi FPGA.

In particolare tre strumenti sono stati progettati ed implementati: (i) ASSESS: Ac-
curate Simulator of SEuS affecting the configuration memory of SRAM-based FPGAs,
un simulatore di SEU nella memoria di configurazione di sistemi implementati in tec-



nologia SRAM-based FPGA, finalizzato a valutare la sensitività del sistema ai SEU
prima possibile nel processo di sviluppo del sistema; (ii) UA2TPG: Untestability An-
alyzer and Automatic Test Pattern Generator for SEUs Affecting the Configuration
Memory of SRAM-based FPGAs, uno strumento di analisi statica per l’identificazione
dei SEU non testabili e per la generazione automatica di test patterns per il rilevamen-
to del 100% dei SEU testabili; e (iii) GABES: Genetic Algorithm Based Environment
for SEU Testing in SRAM-FPGAs, un ambiente basato su un algoritmo genetico per la
generazione ed ottimizzazione di test patterns per il rilevamento di SEU nella memoria
di configurazione del sistema.

Gli strumenti proposti sono stati applicati ad alcuni circuiti del benchmark ITC’99.
I risultati ottenuti da questi esperimenti sono stati confrontati con i risultati ottenuti da
esperimenti simili, in cui abbiamo considerato quasti stuck-at anzichè il modello accu-
rato di guasti SEU. Dal confronto fra questi esperimenti abbiamo potuto verificare che
gli strumenti software proposti sono effettivamente più accurati rispetto a strumenti
simili oggi disponibili. In particolare, il confronto fra i risultati ottenuti usando ASSESS
e quelli ottenuti attraverso la fault injection ha riportato che il simulatore di guasti pro-
posto ha un errore medio dello 0.1% ed un errore massimo dello 0.5%, mentre usando
un simulatore di guasti basato sul modello stuck-at l’errore medio ottenuto rispetto alla
fault injection è del 15.1% e l’errore massimo è del 56.2%. Analogamente il confronto
fra i risultati ottenuti usando UA2TPG per il modello accurato di SEU, con i risultati
ottenuti per i guasti stuck-at ha rivelato una differenza media di untestability del 7.9%

ed una massima del 37.4%. Infine il confronto fra i valori di fault coverage ottenuti dai
test patterns generati per il modello accurato di SEU e le fault coverage ottenute dai
test patterns generati per guasti stuck-at ha mostrato che mentre i primi coprono il
100% dei guasti testabili, i secondi coprono in media il 78.9% dei guasti testabili, con
una copertura minima del 54% ed una copertura massima del 93.16%.
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Abstract

SRAM-based FPGAs are increasingly relevant in a growing number of safety-critical
application fields, ranging from automotive to aerospace. These application fields are
characterized by a harsh radiation environment that can cause the occurrence of Sin-
gle Event Upsets (SEUs) in digital devices. These faults have particularly adverse
effects on SRAM-based FPGA systems because not only can they temporarily affect
the behaviour of the system by changing the contents of flip-flops or memories, but
they can also permanently change the functionality implemented by the system itself,
by changing the content of the configuration memory. Designing safety-critical appli-
cations requires accurate methodologies to evaluate the system’s sensitivity to SEUs
as early as possible during the design process. Moreover it is necessary to detect the
occurrence of SEUs during the system life-time. To this purpose test patterns should
be generated during the design process, and then applied to the inputs of the system
during its operation.

In this thesis we propose a set of software tools that could be used by designers of
SRAM-based FPGA safety-critical applications to assess the sensitivity to SEUs of the
system and to generate test patterns for in-service testing. The main feature of these
tools is that they implement a model of SEUs affecting the configuration bits controlling
the logic and routing resources of an FPGA device that has been demonstrated to
be much more accurate than the classical stuck-at and open/short models, that are
commonly used in the analysis of faults in digital devices. By keeping this accurate
fault model into account, the proposed tools are more accurate than similar academic
and commercial tools today available for the analysis of faults in digital circuits, that
do not take into account the features of the FPGA technology..

In particular three tools have been designed and developed: (i) ASSESS: Accurate
Simulator of SEuS affecting the configuration memory of SRAM-based FPGAs, a sim-
ulator of SEUs affecting the configuration memory of an SRAM-based FPGA system
for the early assessment of the sensitivity to SEUs; (ii) UA2TPG: Untestability Analyzer
and Automatic Test Pattern Generator for SEUs Affecting the Configuration Memory
of SRAM-based FPGAs, a static analysis tool for the identification of the untestable



SEUs and for the automatic generation of test patterns for in-service testing of the
100% of the testable SEUs; and (iii) GABES: Genetic Algorithm Based Environment
for SEU Testing in SRAM-FPGAs, a Genetic Algorithm-based Environment for the
generation of an optimized set of test patterns for in-service testing of SEUs.

The proposed tools have been applied to some circuits from the ITC’99 bench-
mark. The results obtained from these experiments have been compared with results
obtained by similar experiments in which we considered the stuck-at fault model, in-
stead of the more accurate model for SEUs. From the comparison of these experi-
ments we have been able to verify that the proposed software tools are actually more
accurate than similar tools today available. In particular the comparison between re-
sults obtained using ASSESS with those obtained by fault injection has shown that
the proposed fault simulator has an average error of 0.1% and a maximum error
of 0.5%, while using a stuck-at fault simulator the average error with respect of the
fault injection experiment has been 15.1% with a maximum error of 56.2%. Similarly
the comparison between the results obtained using UA2TPG for the accurate SEU
model, with the results obtained for stuck-at faults has shown an average difference
of untestability of 7.9% with a maximum of 37.4%. Finally the comparison between
fault coverages obtained by test patterns generated for the accurate model of SEUs
and the fault coverages obtained by test pattern designed for stuck-at faults, shows
that the former detect the 100% of the testable faults, while the latter reach an average
fault coverage of 78.9%, with a minimum of 54% and a maximum of 93.16%.
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1

Introduction

1.1 Motivation

Since the first FPGA device, the XC2064 [195], was developed by Xilinx in 1985 the
FPGA technology has enormously grown in terms of flexibility, reliability and computa-
tional power. Although it is still not comparable with the Application Specific Integrated
Circuit (ASIC) technology either in terms of computational power or of silicon area oc-
cupation [114], the FPGA technology has imposed itself both in safety critical and in
non safety critical application fields thanks to very good performance, low non recur-
rent design cost and very short time to market.

In the last years SRAM-based FPGAs have increasingly been employed in safety-
related applications such as railway signaling [40], nuclear power plant I&C [173],
radar systems for automotive applications [190], aerospace [99, 110], and avion-
ics [116].

Given their relevance, and the severity of the occurring of accidents, the design
of both hardware and software safety critical systems is regulated by application field
specific standards, such as the ISO 26262-5 [106] and the ISO 26262-6 [107] for au-
tomotive applications, the CENELEC 50128 [69] and the CENELEC 50129 [70] for
railway applications, the IAEA-NS-G-1.1 [104] and the IAEA NS-G-1.3 [105] for soft-
ware and hardware control systems for nuclear power plants, the Q-ST-60-02C [77]
for aerospace applications, the DO-178B [75] and the DO-254 [76] for avionic applica-
tions. These standards state which activities are mandatory, which ones are recom-
mended, and which ones are optional and which techniques, methods and tools have
to be used for each phase of the design cycle.

Nowadays an official regulation specific for the FPGA design in safety-critical sys-
tems only exists in the aerospace application field [77]. Other guidelines and stan-
dards for the design and verification of programmable devices have been developed
internally to companies [1, 73, 95, 175]. In any other safety-critical application fields
regulations exist for the development of software and hardware (ASICs, boards, mi-
crocontrollers), but a regulation that keeps in consideration all those features specific
of the FPGA technology does not exist. Thus the existing verification and validation
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approaches only partially satisfy the requirements for the verification and validation of
safety-critical FPGA-based systems.

In [45] the necessity of adopting verification and validation methodologies keeping
into account the peculiarities of the FPGA technology is strongly endorsed because
often ASIC-specific methodologies, procedures and tools are not adequate to the
design of FPGA-based systems. Habinc et al. in [73] and [95], as well as Gibbons and
Ames in [82], discuss how many problems and failures in space applications involving
FPGA devices are the result of applying inadequate development, verification and
validation methodologies.

The early assessment of the sensitivity to run-time faults of the system and the
detection of run-time faults during the system life-time are aspects considered as
critical by both design standards, such as [70, 105, 106], and industrial technical re-
ports [73, 95].

A significant source of run-time faults in SRAM-based FPGA system are radia-
tions. Radiations in the atmosphere are responsible for introducing a number of dis-
ruptive effects in digital devices [27]. Among the various effects induced by radiations,
Single Event Upsets (SEUs) have particularly adverse effects on FPGAs using SRAM
technology since they are able not only to cause transient faults by changing the
content of flip-flops, but they may also permanently corrupt a bit in the configuration
memory (correctable only with a reconfiguration of the device) [89]. Such faults are
not transient in FPGAs because the configuration memory is usually not written again
after the first configuration. SEUs in the configuration memory bits disrupt the routing
architecture of the implemented circuit by modifying the interconnections among com-
ponents of the netlist and change the behaviour of the functional units by modifying
the implemented functionalities.

For the assessment of the sensitivity to SEUs of an SRAM-based FPGA system
four families of techniques exist: Radiation testing, fault injection, static analysis and
fault simulation. Among the techniques for the evaluation of the effects of faults in
digital circuits, fault simulation, such as [41, 43, 94, 161, 172], represents an interest-
ing solution because it allows to assess the sensitivity to faults of the system under
analysis early during the design process, before hardware prototypes are available.
Thus fault simulation can represent the first and early analysis in a multi-step assess-
ment of the sensitivity to faults of a systems, that should be concluded by prototype-
based experiments, such as radiation testing and fault injection. Unfortunately no fault
simulators that specifically take into account the effects of SEUs in the configuration
memory of SRAM-based FPGAs today exist.

Many works addressing the problem of automatic test pattern generation (ATPG)
for digital circuits have been published [4, 142], but very few of these works specifically
address FPGAs. Test methods devised for ASIC circuits could be effective when used
for testing structural defects in the FPGA chip, but they are not satisfactory when used
for testing SEUs in the configuration memory of FPGAs [156]. In particular, it has been
demonstrated that test pattern generation methods based on the stuck-at fault model
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for ASIC circuits obtain too optimistic results when applied to SRAM-FPGAs. The
stuck-at fault model considers permanent faults at the input and output terminals of
the logical components. More accurate fault models, keeping into account faults in the
configuration bits of the FPGA chip, should be considered [155].

The existing testing techniques for FPGA circuits can be classified in two main
families: application-independent and application-dependent. Application-independent
methods [102, 157, 179] aim at detecting structural defects due to the manufacturing
process of the FPGA chip and they are performed by the chip manufacturer. These
methods are called application-independent because they target every possible fault
in the device without any consideration of which parts of the chip are actually used
by the given design and which parts are not. Since these techniques generally use
multiple re-configurations of the device, they cannot be employed for testing SEUs in
the configuration memory. Conversely, application-dependent methods [30, 163, 180]
address only the resources of the FPGA chip actually used by the implemented sys-
tem. Given this, application-dependent methods can be used for in-service testing of
both structural defects and SEUs. As with fault simulation, also in the field of fault
testing no techniques exist that keep into account SEUs in the configuration memory
of SRAM-based FPGAs, apart from the one proposed in [30].

Automatic test pattern generation (ATPG) for integrated circuits is a very hard
task, since in modern Very Large Scale of Integration (VLSI) systems the total num-
ber of faults that need to be detected may be very large. This is particularly true for
FPGA-based systems because not only faults in user resources, but also faults in
the configuration memory of the device have to be detected. However a number of
these faults may be demonstrated to be untestable, thus reducing the effort required
of ATPG tools. Moreover, demonstrating the untestability of faults in a VLSI design
offers the designer an evaluation of the degree of testability of the system. Like what
we have previously discussed about test pattern generation, also for the untestabil-
ity analysis problem it is true that while the stuck-at fault model could be considered
when hardware defects in the FPGA device are addressed, this fault model is not
accurate when SEUs in the configuration memory of an FPGA-based system have
to be analysed. Works addressing the problem of demonstrating the untestability of
stuck-at faults in digital circuits can be found in the literature [153, 151, 152, 182, 125],
but no one specifically addresses the analysis of the testability of SEUs affecting the
configuration memory of FPGA-based systems, apart from the ones presented by the
author of the present dissertation in [33, 36], where the analysis of the excitability of
SEUs is addressed.

1.2 Contribution of the Thesis

Very much work has been done in the field of radiation testing and fault injection for
the analysis of the effects of SEUs. Similarly many works about the generation of
test configurations for post-production detection of defects in FPGA devices can be
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found in the literature. Nevertheless, the state of the art in the field of fault testing
and analysis for SRAM-based FPGA systems lacks accurate software tools for the
analysis of the effects of SEUs in the configuration memory of the device and for the
generation of test patterns for in-service testing of such faults.

In this dissertation we present a framework of software tools for the analysis and
test of SEUs affecting the configuration memory of SRAM-based FPGA systems dur-
ing the life-time of the system. The framework is composed of a simulator of SEUs
(ASSESS) for the assessment of the sensitivity to SEUs and of the failure probability
due to SEUs, an untestability analyzer and test pattern generator (UA2TPG) and a
genetic algorithm-based environment (GABES) for the generation and optimization of
test patterns for on-line testing.

ASSESS is an accurate simulator of SEUs affecting the configuration memory of
SRAM-based FPGA systems. The simulator relies on a general model of FPGA cir-
cuits considered at the netlist level. The model is based on the formalism of Stochastic
Activity Networks (SAN) [170] and it has been developed with the Möbius tool [49].
The simulator is able to emulate the effects of SEUs affecting any of the configuration
bits actually used by a given design. In particular the simulator is able to accurately re-
produce the modification of the functionalities implemented by LUTS induced by SEUs
in configuration bits controlling logic components and the changes of the connections
among components of the netlist induced by SEUs in configuration bits controlling
routing components. ASSESS can be used for an early assessment of the sensitivity
to SEUs of the system under design and for an estimation of the failure probability of
the system. Moreover the SEU simulator can be used to assess the fault coverage of
pre-generated test patterns.

UA2TPG is an untestability prover and automatic test pattern generator for SEUs
in the configuration memory of SRAM-based FPGA systems. The tool statically de-
termines which SEUs in the configuration bits actually used by a given system are
not testable. Moreover, at the end of the untestability analysis, the tool generates a
set of test patterns able to detect 100% of the testable SEUs. The proposed tool ad-
dresses only the configuration bits actually used by the system under analysis, thus
the generated test patterns may be used for application-dependent in-service testing.
Moreover, if we look at the analysis performed by the tool from the fault tolerance
point of view instead of the testing point of view, we can say that the tool assesses the
sensitivity to SEUs of SRAM-based FPGA systems and generates input patterns that
can be used to stimulate the system during fault injection or radiation testing experi-
ments. The proposed tool relies on the SAL [29] description language to describe the
structure of the netlist under analysis and to specify untestability theorems through
LTL formulas [162]. The SAL-SMC model checker is used to prove the untestability of
faults and to express the counter-examples that are used to generate the test patterns
for the testable faults.

GABES is a genetic algorithm-based environment for SEU testing: A tool for au-
tomatic test pattern generation based on a genetic algorithm (GA) for application-
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dependent in-service testing of SEUs in SRAM-FPGAs, that takes into account SEUs
in configuration bits of the FPGA. The proposed GA uses ASSESS to calculate the
fault coverage obtained by each generated test pattern. The main goal of GABES is
producing efficient sets of test patterns for in-service testing, that can be optimized
with respect either to fault coverage or to test speed, according to the specific ap-
plication requirements. Another goal is optimizing the test pattern generation itself:
even if the off-service process of test pattern generation is not subject to the stringent
constraints of in-service testing, excessive computation times can make the method
impractical.

All the discussed tools implement the fault model for SEUs affecting the config-
uration bits controlling logic resources proposed in [155] and the model for SEUs in
configuration bits controlling routing resources proposed in [186]. These fault mod-
els have been demonstrated to be much more accurate than the classical stuck-at
model (for logic resources) and the open/short model (for routing resources) when
the analysis and test of SEUs in the configuration memory of SRAM-based FPGAs is
addressed.

All the tools work in conjunction with an EDIF parser [109] and the E2STAR
tool [37]. The parser is able to translate the EDIF description of the netlist into an
intermediate description of the topology of the netlist in terms of connections among
logic components and functionalities performed by components. Moreover the parser
is able to produce a list of the effects of SEUs occurring in configuration bits asso-
ciated with the logic resources used by the system under analysis. These faults are
represented in terms of the induced modification of the truth table of the affected
LUT. E2STAR is a static analyzer of the configuration memory of the SRAM-based
FPGA device developed at the Politecnico di Torino. Given an FPGA device and a
placed-and-routed design, E2STAR is able to determine which are the configuration
bits actually used by the design and which are the logical effects of SEUs occurring
in the configuration bits controlling routing resources according to the fault model pre-
viously presented. For each configuration bit associated with a routing component
E2STAR reports the number of propagation points of an SEU occurring in the con-
figuration bit, and for each propagation point E2STAR reports the logical effect, the
affected component(s) and the pins of the affected component(s) to which the fault
propagates. Thanks to these two tools the proposed environment is fully integrated in
the standard design process of FPGA-based systems since the input of the parser is
the EDIF file produced by the synthesis tool and since the E2STAR works directly on
the post place-and-route netlist description file.

The main contribution of this thesis is to present the first simulator, untestability
analyzer and automatic test pattern generator specifically intended to address SEUs
affecting the configuration memory of SRAM-based FPGA systems. All the tools are
intended to support designers in the assessment of the sensitivity to SEUs and in the
generation of test patterns as early as possible during the design process and without
requiring hardware prototypes of the system.
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We point out that we do not propose these software tools as an alternative to
radiation testing or fault injection, that should anyway be performed at the end of the
design process on the final prototype of the system. We rather believe that such tools
could be incorporated into the standard design process of FPGA-based systems, in
order to allow designers to perform an early evaluation of the weaknesses of the
system. In this way designers could get to the final fault injection or radiation test
campaigns with a prototype of the system that has already been well studied and
hardened and that because of this has great chance to successfully pass these tests,
thus saving time and money.

1.3 Thesis Organization

This dissertation is organized as follows:

• Chapter 2 introduces the basic concepts of the FPGA technology, it describes the
generic architecture of an FPGA device in terms of logic, routing and I/O structure,
it discusses pros and cons of the three FPGA programming technologies and
finally it presents examples of applications of FPGA devices in various application
domains;

• Chapter 3 briefly introduces the natural radiation environment, and then it dis-
cusses the effects of radiation on digital devices with particular emphasis on
SRAM-based FPGA devices and on the effects of SEUs occurring in the con-
figuration memory of such systems;

• Chapter 4 discusses the state of the art in the field of SEU sensitivity analy-
sis; then it briefly presents the SAN formalism and Möbius environment that have
been used to implement the presented SEU simulator and finally it presents the
structure of the simulator, the SAN models the compose it, the main configurable
parameters of the simulator and the steps that have to be performed to run it;

• Chapter 5 first discusses the state of the art in the field of SEU untestability anal-
ysis and it then presents the SAL modeling environment and language and the
LTL logic, and finally discusses the UA2TPG SEU untestability analyzer and auto-
matic test pattern generator, showing how to use the SAL specification language
to model FPGA netlists and the LTL logic to specify untestability theorems, and
then presenting the structure and the usage of the tool;

• Chapter 6 first presents the state of the art in the field of automatic test pattern
generation for digital circuits in general and for FPGA-based systems in particular,
then it briefly introduces the basic concepts of genetic algorithms, and finally it
presents the GABES environment for the generation of test patterns, showing its
structure and presenting its parameters and usage;

• Chapter 7 discusses the analysis environment in which all the presented tools
work, showing the steps required by the execution of the tools, presenting the EDIF
parser and the E2STAR tool and the information that these two tools exchange
with the SEU analysis and test environment;
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• Chapter 8 first presents the circuits used for the evaluation of the proposed tools
and then reports results from their application;

• Chapter 9 concludes the thesis.
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2

The FPGA Technology

Field Programmable Gate Arrays (FPGAs) are pre-fabricated, electrically programmable,
silicon devices, composed of programmable logic blocks, a programmable routing
structure and programmable Input/Output pads. Since the birth of the integrated cir-
cuit technology in 1960s, many attempts have been done to achieve programmable
devices in order to give hardware architects the chance of exploiting hardware perfor-
mance and software flexibility at the same time.

The first FPGA was introduced by Xilinx in 1984 with the XC2064 logic cell array;
since then the FPGA technology has grown in terms of scale of integration and per-
formance. The ability of being programmed (and most of the times re-programmed)
provides many advantages over other hardware technologies. Micro Controllers (µCs)
and General Purpose Processors offer greater flexibility thanks to their programma-
bility, but generally have much lower performance in terms of computation time and
power consumption. In [183] and [184] Underwood et al. analysed performance dif-
ferences between a general purpose CPU and an ad-hoc programmed FPGA in cal-
culating vector dot product, matrix by vector multiplication and floating point addition,
multiplication and division. In particular the number of MFLOPS that each technology
is able to perform was considered as a quality factor. In these papers a trend analysis
was also done, considering the growth rate of the integration scale in CMOS tech-
nology, and thus the growth rate of the number of common logic blocks in an FPGA
and of the number of transistors in a CPU. The analysis was made between 1997 and
2009 and shows how the FPGA technology is generally able to reach 106 MFLOPS
while CPUs still remain around 105 MFLOPS and in some cases, like floating point
division, even at 103 MFLOPS while FPGAs already reach 105 MFLOPS.

Application Specific Integrated Circuits (ASICs) offer better performance than
FPGA devices in terms of computational time, area requirements and power con-
sumption. In [114] Kuon and Rose analysed performance gaps between ASIC and
FPGA technologies. In their experiments 90nm CMOS SRAM FPGA and 90nm CMOS
standard cell technology are considered. In that paper, area, delay and power gaps
were estimated.
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Area gap: For the ASIC technology the area occupation was considered to be the
final silicon area used by the place&route process. For the FPGA technology only
the area of the actually used logic blocks was considered. The analysis showed
that FPGAs using only soft logic blocks are 35 times larger than ASICs on aver-
age; if also hard logic blocks are used, the average gap decreases to 18.

Time gap: For timing analysis the critical path of both ASIC and FPGA designs was
considered. The analysis showed that FPGAs using only soft logic blocks are 3.4
times slower than ASICs on average; if the FPGAs included hard logic blocks the
gap is 3 on average.

Dynamic Power Consumption gap: both for ASICs and FPGAs dynamic power con-
sumption was calculated operating the device at the highest possible speed. The
result was that FPGAs with only soft logic blocks have a dynamic dissipation 14
times higher than ASICs, while the gap decreases to 7,1 if hard logic blocks are
used in FPGA architectures.

Kuon and Rose experimentally demonstrated how FPGA performance is still lower
than ASIC performance; additionally they showed that the intensive use of hard logic
blocks into FPGA architectures can significantly reduce the gap between the two tech-
nologies.

On the other hand ASICs require a much longer time to market and bigger eco-
nomic effort: a full custom ASIC design needs a very long time and a high cost to be
completed since state-of-the-art tools for synthesis, placement-and-routing, extrac-
tion, simulation, timing and power analysis, great engineering effort and very expen-
sive foundry masks are needed. An FPGA design needs only between a few dollars
and a few thousand dollars per unit, much less engineering effort and much shorter
time to be designed and configured, and often an FPGA device can be reconfigured
if a mistake was made during the design cycle.

Given this, only large scale productions can afford a full custom ASIC design,
while small and medium scale productions prefer saving money and time by the use
of FPGAs devices. For this kind of productions FPGAs represent nowadays the best
trade-off between performance on one hand and cost and time to market on the other
hand. Nowadays FPGAs have become the dominant programmable logic technology,
no longer being used merely as glue logic or as prototyping devices and starting
to be used to implement sub-systems or complete systems (what is called System-
on-Chip). Leaders of the market of FPGAs are Xilinx, Altera, Microsemi, Atmel and
Lattice.

2.1 FPGA Architecture

An FPGA is a prefabricated array of programmable blocks, interconnected by a
programmable routing architecture and surrounded by programmable input/output
blocks [115]. Figure 2.1 shows the basic architecture of an FPGA chip.
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FPGA programming consists in defining the hardware structure of the system by
producing a programming code, called a bitstream, that, after being downloaded into
the configuration memory of the device itself, specifies the functionality implemented
by LUTs and enables or disables a connections between wires to connect or discon-
nect two logic blocks or a logic block and an I/O pad.

Figure 2.1. Basic FPGA structure [115].

Programmable blocks may be simple combinatorial logic (these blocks are called
Soft Logic Blocks) or memories, multiplexers, ALUs and other kinds of prefabricated
circuitry (these blocks are called Hard Logic Blocks).

Blocks may be programmed to implement a certain functionality, routing archi-
tectures may be programmed to interconnect various blocks and I/O pads may be
programmed to provide off-chip connections.

In the remainder of this section we will first discuss common logic block features;
we will analyse general features of the routing architectures and finally we will briefly
discuss general characteristics of the I/O structure.

2.1.1 Logic Block Architecture

As said previously, an FPGA is an array of programmable soft blocks (simple pro-
grammable combinatorial logic) and hard blocks (memories, multiplexers, ALUs and
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other prefabricated circuitry). The purpose of these blocks is to provide the basic com-
putational and storage elements for the construction of the global logic system. The
simplest logic block may be made of just one transistor; on the other hand some FP-
GAs have an entire processor as a basic logic block. The fine grain approach offers
the maximum flexibility and programmability to the designer at the cost of a great area
inefficiency due to the need of a large amount of programmable interconnections, low
performance, because each routing “hop” is slow, and high power consumption. The
coarse grain CPU-based approach offers a low level of flexibility to the chip designer
and suffers of great inefficiency in implementing low level logic functions.

Usually, the basic programmable blocks of an FPGA are lookup tables (LUTs).
A LUT can be represented as a small n-input memory, whose contents, stored in
configuration bits, and specified by the bitstream, represent the output of the LUT
itself. An n-input LUT can be used to implement any n-argument logic function. The
logic structure of a 2-input LUT implementing the OR function is shown in Figure 2.2
(note that this is just a didactic example, while modern FPGA devices are equipped
with larger 4-, 5- and 6-input LUTs), while the physical structure of the same 2-input
LUT using SRAM a configuration memory is shown in Figure 2.3 (where the four boxes
on the left-side of the figure represent the four configuration bits associated with the
LUT).

Figure 2.2. Logic structure of a 2-input LUT implementing the OR function.

Figure 2.3. Physical structure of a 2-input LUT with static memory cells [115].
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More complex configurable logic blocks (CLBs) may have many more input and
output signals, more than one lookup table, some flip-flops and many multiplexers to
select which input signals should drive the output. Figure 2.4 shows the structure of
the basic logic block of a Xilinx 4000, that was produced in 1994, and of a Xilinx 6200,
produced in 1996, as examples of commercial FPGA devices.

Figure 2.4. Basic logic block structure of a Xilinx 4000 and of a Xilinx 6200 [115].

A Xilinx 4000 basic logic block has 12 inputs (C1 to C4, G1 to G4 and F1 to F4)
and 4 outputs (Y, YQ, X and XQ), three lookup tables, eight multiplexers and two flip-
flops. The Xilinx 4000 basic logic block can implement any two logical functions of four
inputs (using the two 4-input lookup tables independently) or some logical functions
of up to nine inputs (using all three lookup tables).

The basic logic block of a Xilinx 6200 has three input signals and only one output
signal. It has two 4-input multiplexers, three 2-input multiplexers and a D-flip-flop. The
output multiplexer is used to decide whether the output of the flip-flop drives the output
of the logic block. Any basic logic blocks in a Xilinx 6200 can implement any two-input
function and some three-input functions.

2.1.2 Programmable Routing Architecture

The programmable routing architecture in an FPGA provides connections among logic
blocks and I/O blocks to compose a complete user-designed circuit. It consists of wires
and switchboxes. According to [186], wires in an FPGA can be classified as follows:

• segments: connections between two switchboxes.
• tracks: sequences of one or more segments connecting two logic components.

13
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(a) Pass transistor. (b) Multiplexer.

Figure 2.5. Structure of PIPs.

• channels: groups of parallel tracks.

Switchboxes are routing components that are configured to connect different
wires. Switchboxes are programmed through Programmable Interconnect Points (PIPs),
that are configured by one of the programming technologies described in Section 2.2,
that form the desired connections. The basic structure of a PIP is composed of a
pass-transistor (see Figure 2.5(a)) or a multiplexer (see Figure 2.5(b)), that connects
or disconnects two routing segments depending on the value of one or more configu-
ration bits.

In order to give a high degree of flexibility and programmability to the designer,
programmable routing architectures must offer fast and short wires to connect neigh-
boring blocks, but also slower intermediate and long wires to connect more distant
blocks. Another important issue is finding the right number of PIPs to grant a good
degree of programmability without using too much silicon area and introducing too
long delays. Two common switchbox architectures are currently employed in FPGAs
(shown in Figure 2.6):

Disjoint [121], where wires connected to the four sides of the switchbox are grouped
in four groups. In each group, each wire is univocally identified by an ID. Each
wire can only be connected with wires belonging to different groups and having
the same ID. This architecture imposes strict limitations to the programmability of
the routing architecture, but it has a very low overhead in terms of silicon area
employed for configuration bits associated with the routing structure.

Wilton [189], that removes the Disjoint switchbox restriction, allowing to a wire to
be connected with wires with different IDs belonging to different groups. This ar-
chitecture offers designers the highest flexibility at a high cost in terms of silicon
area.
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Figure 2.6. Disjoint and Wilton Switchboxes examples.

Two different programmable routing architectures for FPGA devices have been
proposed in the literature, hierarchical and island-style. In the remainder of this sub-
section we describe these two routing architectures and discuss the respective ad-
vantages and drawbacks.

Island-Style Programmable Routing Architecture

In Island-style FPGAs, logic blocks are arranged in a two-dimensional mesh with rout-
ing resources evenly distributed throughout the mesh. An island-style routing archi-
tecture typically has routing channels on all four sides of the logic blocks. Logic blocks
are grouped in tiles. A tile is defined as a number of CLBs connected together. Island-
style routing architectures generally employ wire segments of different lengths in each
channel in an attempt to provide the most appropriate length for each given connec-
tion.

This routing structure offers a number of advantages. Since routing wires of dif-
ferent lengths are in close physical proximity to logic blocks, a logic block can be
efficiently connected to other logic blocks at different distances. As a result of this
regularity, the minimum feasible routing delay between logic blocks can quickly be
estimated. Figure 2.7 shows the common structure of an island-style programmable
routing architecture.

It must be emphasized that the greater the number of programmable switches
built in the FPGA, the greater is the area occupation and the lower the performance of
the device. A great number of switches in fact gives a higher degree of flexibility and
programmability to the designer, but produces a great consumption of silicon area and
worse performance. Finding the best trade-off among these factors represents a still
unsolved challenge for FPGA research.

The general structure of an island-style routing architecture can be divided in four
levels, as discussed in [186], starting from a tile and arriving at the whole FPGA
device:

• Tile routing (see Figure 2.8): composed of the hard-wired interconnection re-
sources that connect the CLBs inside the tile.
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Figure 2.7. Island-style programmable routing architecture [115].

Figure 2.8. Tile routing [186].

• Local routing (see Figure 2.9): composed of wires that connect neighboring tiles.
The interconnections between these wires are configured through programmable
switchboxes.

• Multiple-tile routing (see Figure 2.10): composed of long wires with low resistance
that can be traversed by signals in both the directions. These long wires are used
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Figure 2.9. Local routing [186].

to connect distant tiles. These wires are connected through programmable switch-
boxes.

Figure 2.10. Multiple tile routing [186].

• Context routing: composed of the I/O pads that allow the system to be connected
with the external environment.
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Hierarchical Programmable Routing Architecture

A hierarchical programmable routing architecture consists of different buses cross-
ing each other, interconnected through switchboxes positioned at the crossing points.
In a hierarchical routing architecture logic blocks are separated into distinct groups.
Connections between logic blocks within a group can be made using wire segments
at the lowest level of the routing hierarchy. Connections between logic blocks in hier-
archically distant groups require the traversal of one or more levels of the hierarchy
of routing segments and so the traversal of one or more programmable switchboxes.
Figure 2.11 shows the structure of a hierarchical programmable routing architecture.

Figure 2.11. Hierarchical programmable routing architecture [115].

The only advantage of using hierarchical programmable routing architectures is
that there is a quite predictable inter-block delay due to the regularity of the structure.
Drawbacks are that jumping from a hierarchical level to another imposes a great delay,
even if two logic blocks are physically close. In addition, even if, as a first approxima-
tion, intra level delays may appear constant, physical distances and differences in
capacitance and resistance may produce a wide variation in inter-block delay.
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For these reasons, commercial FPGAs do not use this type of global routing archi-
tecture and, instead, use only one level of hierarchy to create a flat, island-style global
routing architecture.

2.1.3 Input/Output Architecture

As previously described, an FPGA device communicates with external components
thruogh an input/output architecture composed of I/O pads disposed all around the
FPGA’s structure.

I/O pads influence both the rate at which the device will communicate with other
devices and the total silicon area occupied, since they consume a significant part of
the FPGA silicon area.

A crucial aspect of the FPGA architecture is the selection of which and how many
interface standards the device might support through its I/O pads since, while a basic
logic block is designed to implement almost any logic function, I/O pads are generally
designed to implement only a small number of protocols (or even only one) protocol.
Giving the designer the chance to choose which protocol should be implemented by
each I/O cell would lead to a significant increase of silicon area occupation. On the
other hand, giving this chance to the designer would increase the flexibility of the
architecture.

An other challenge in input/output architecture design is the great diversity in in-
put/output standards. For example, different standards may require different input volt-
age thresholds and output voltage levels. To support these differences, different I/O
supply voltages are often needed for each standard.

2.2 Programming Technologies

Different technologies are used to store the programming code in an FPGA device.
In the following we focus primarily on static memory programming technology, and
then on the other two commonly used technologies: non-volatile memory (Flash and
EEPROM) and anti-fuse.

2.2.1 Static Memory Programming Technology

In an SRAM-based FPGA, static memory cells, whose structure is shown in Fig-
ure 2.12, are distributed throughout the device to provide configurability. Static mem-
ory cells have two usages: store the functionality implemented by LUTs, and store
PIP configurations in order to set interconnections among logic components.

Static memory has become the dominant FPGA programming technology thanks
to two primary advantages: (i) reprogrammability, which means that a SRAM-based
FPGA can be reprogrammed an indefinite number of times, and (ii) the use of standard
CMOS process technology, which means that static memory FPGAs can benefit from
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Figure 2.12. Static Memory Cell structure [115].

the higher speed and the lower dynamic power consumption of new CMOS processes
with smaller minimum geometries.

Static memory programming technology has however the following drawbacks:
(i) Large size, because static memory programming needs a 1-bit memory cell for
each programmable gate and connection; (ii) volatility, because static memory needs
a power supply to store data, so it needs a non-volatile memory technology to store
configuration data when the device is powered down and from which the device reads
it during start up, so increasing the total silicon area occupied by the device, and (iii)
lower security because, since configuration information must be loaded from the non-
volatile memory to the static memory at power up, there is the possibility that this
information could be intercepted and stolen for use in competing systems.

Static memory cells are used as basic storage units in the Xilinx Virtex [198, 199,
200], and Spartan [197] device families, in the Altera Stratix [10, 9, 12, 13, 16, 17,
22], Arria [18, 19] and Cyclone [14, 11, 15, 20, 21] device families and in the Lattice
ECP3 [119] and ECP2 [118] devices.

2.2.2 Flash/EEPROM Programming Technology

An alternative to static memory is the use of Flash Memory and EEPROM. The great-
est advantage of these technologies for FPGA programming is non volatility: using
this kind of memories it is no longer necessary to have an external resource to store
and load configuration data when the device is powered down. Additionally, a flash or
EEPROM based device can be used immediately after power-up, since configuration
data are stored in the configuration memory itself.

Drawbacks of the use of these technologies for FPGA configuration are primarily
that Flash and EEPROM memory do not use the standard CMOS process technol-
ogy, so they are generally quite slower and larger than static memory, and that they
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cannot be reprogrammed an indefinite number of times, like static memory: gener-
ally a Flash or EEPROM chip can be reprogrammed up to 500 times, which however
may be sufficient for most of the uses of FPGAs. It has to be noticed that also using
Flash/EEPROM as an FPGA programming technology, a 1-bit memory cell is required
for each programmable gate or connection, so also Flash/EEPROM based program-
ming approach suffers from great silicon area occupation.

Flash Memory or EEPROM are used as basic storage units in the Microsemi ProA-
SIC3 [136, 137, 138, 141] and Igloo [135] device families, in the Lattice XP [117]
device family and in the Atmel AT40K [25] family.

2.2.3 Anti-Fuse Programming Technology

An anti-fuse device is a structure that exhibits very high resistance (like an open cir-
cuit) under normal circumstances and can be programmed by applying a high voltage
to the gate creating a low resistance link that becomes a connection.

The structure of an anti-fuse device is shown in Figure 2.13.

Figure 2.13. Anti-fuse structure [98].

Two anti-fuse technologies exist; the first, called Dielectric anti-fuse, uses an
oxide-nitride-oxide dielectric between the channel and the gate; by applying a high
voltage the dielectric breaks down and forms a conductive link. This approach has
been largely replaced by the metal-to-metal-based anti-fuse technology: this ap-
proach uses an insulating material, such as amorphous silicon or silicon oxide, to
insulate two metal layers; when applying a high voltage to the gate, the insulating
layer breaks down and leaves an interconnection between the two metal layers.

The great advantage of using anti-fuse as an FPGA programming technology is
that, as the anti-fuse is inside the transistor itself, no more silicon area is required
for programming than the area needed by the logic structure. Other advantages are
non-volatility and low resistance, and thus, low power consumption.

Drawbacks of using anti-fuse for FPGA programming are that anti-fuse devices
need a non standard CMOS process technology and that an anti-fuse device can be
programmed only once, so anti-fuse based FPGAs need a more accurate phase of
simulation before programming, since bug corrections during the test phase need the
use of a new, blank chip.
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Anti-fuse is used as basic storage units in the Microsemi RTAX [140, 139], SX-
A [134], eX [132] and MX [133] device families.

2.3 FPGA Application Fields

When FPGAs were first introduced they were primarily considered to be just another
form of gate array. Although they had lower speed and capacity, and had a higher unit
cost, they did not have the large startup costs and long design times necessary for
gate array programmable devices. Thus, they usually were used for implementing ran-
dom logic and glue logic in low volume systems with limited speed and computational
power demands. If the computational power of a single FPGA was not enough to han-
dle the desired computation, multiple FPGAs could be included on the same board,
distributing the computation among these chips. However FPGAs are more than just
slow and small gate array devices.

The distinguishing feature of (SRAM-based) FPGAs is their in-circuit reprogramma-
bility. Since their programming can be changed quickly, without any rewiring or refab-
rication, they can be used in a much more flexible manner than standard gate arrays.
An example of this is multi-mode hardware: hardware systems in which two functions
have to be performed in a mutually exclusive manner; using ASICs, two different chips
are needed, while using the FPGA technology the same device, with two ROM chips
with the configurations implementing the different functions is sufficient; when the de-
vice has to stop performing a function and start performing the other, it has just to
read the new configuration from the right ROM chip and reconfigure itself.

Nowadays FPGA performance, although not comparable with ASIC performance
neither in terms of computational power nor in terms of silicon area occupation, allows
the FPGA technology to be deployed in almost any application field, both safety criti-
cal and not safety critical, also because while the ASIC design and production costs
and time to market have grown dramatically, FPGA devices are undoubtedly cheap
and have a quite short time to market. In fact the FPGA technology is nowadays the
leading technology for all those applications that need good performance and that
have strong time to market requirements or that require a small scale production.

2.3.1 Hardware Prototyping

Prototyping and emulation of hardware devices of other, more expensive, technolo-
gies, has been one of the first uses of FPGAs. The basic idea is that the designers of
a custom ASIC or general purpose processor need to make sure that the circuit they
designed correctly implements the desired computation. Software simulation can per-
form these checks, but does it quite slowly. In logic emulation, the circuit to be tested
is instead mapped onto an FPGA or a multi-FPGA system, yielding results several
orders of magnitude faster than software simulations.
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Examples of processor prototyping using FPGA devices are: [192] where a Xil-
inx Virtex II is used to implement a fully programmable prototype of an Intel Itanium
processor; [92] where a Xilinx XC4000 is used to prototype a MIPS RISC processor;
[154] where a Xilinx XCV2000E is used to implement a prototype of a 4-way su-
perscalar speculative out-of-order processor executing a bubble sort on 100 random
integers.

2.3.2 Aerospace and Defense

A field where FPGAs find many applications is Aerospace and Defense due to the
enormous number of tasks performed by digital devices, historically mainly ASICs.

FPGA devices are designed for Firing Control and Aiming Control, Hyperspectral
Vision, Sonar, Radar and Radio Systems, Missile Launching Platform Control, Flight
Control and Crew Assisted Operations, System Fault Tolerance, Control of Unmanned
Aerial Vehicles (UAV ), Unmanned Ground Vehicles (UGV ) and Autonomous Under-
water Vehicles (AUV ).

Examples of Aerospace and Defense FPGA applications are: [38] where a Xilinx
Spartan 3 device, together with two AMD Geode NX1500, is used to implement a
Fuzzy Logic based Autonomous Motorcycle Platform; in [90] a Xilinx XC4000XL de-
vice is used instead of a Digital Signal Processor to implement a Sonar system; [120]
where Xilinx XC2S100 devices are used to implement motes in a sensor network used
to detect the direction from which a sniper is shooting in an urban battlefield; in [62]
four ad hoc designed FPGAs, together with two Digital Signal Processors, two Dig-
ital to Analog Converters, two Analog to Digital Converters, and an on-board RAM,
are used to implement the ASPECT board which is a general-purpose computing
platform suited for communications-related signal processing, used to implement a
robust, high-speed frequency-hopped battlefield radio; in [88] Peterson and Drager
discuss how the adoption of FPGA devices could improve and accelerate military ap-
plications such as hyperspectral imaging or chemical reactions simulations; in [48] an
ad hoc designed Flash memory based FPGA, together with a Digital Signal Processor
and an FSC20 CMOS image sensor, is used to design and implement an autonomous
flight control system for the GTMax Research Unmanned helicopter and for the He-
liSpy 11-inch ducted fan UAV; in [42] three Xilinx Spartan 3 are used to implement
a PC/104-Plus, which is the base board for a Urban/Indoor Network-Assisted GPS-
based Navigation System.

2.3.3 Automotive

FPGAs are also widely employed in automotive applications. FPGA devices are used
in a great number of tasks, among which: Rear Seat Entertainment, Driver Assis-
tance Systems, Adaptive Cruise Control, Lane Departure Warning, Park Assistance,
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Back Guide Monitor, Drowsy Driver Detection, Head-up Display, Night Vision, Win-
dow Wiper Control, GPS, Diagnostics, Engine Management, Steering and Braking
Assistance.

In [103] a survey of possible FPGA applications in the automotive field is done;
in [97] an Altera Cyclone II is used to implement a car radar system while in [129] the
same device is used to design a rear seat entertainment system.

Many details about FPGA usage in the automotive application field can also be
found in commercial brochures by Xilinx ([113] and [194]), Altera [58] and Lattice [59].

2.3.4 Cryptography and Network Security

As FPGAs represent a very good technology base for those applications that are
simply performed in hardware, that do not need high performance and cannot afford
large ASIC design and production costs, a great number of cryptographic tasks can
be performed by FPGA based systems or even by a single ad hoc designed FPGA
device. There is a great number of examples of cryptographic algorithms implemented
in an FPGA: in [150] a Xilinx Virtex XCV1000BG560-4 FPGA is used to implement
and evaluate the AES algorithm; in [68] the same authors use the same device to
implement and evaluate the Serpent block cipher; in [91] Grembowski et al. uses the
same FPGA to implement and comparatively analyse the SHA-1 and SHA-512 hash
functions; in [166] Runje and Kovac develop an ad hoc FPGA architecture called UNI-
CORN to implement the IDEA algorithm; in [124] an Altera Flex 10KE device is used
to implement the BlowFish encryption algorithm; in [67] Kaps and Paar implement
the DES encryption algorithm in a Xilinx low power device and then compare the
obtained performance with those obtained by an ASIC implementation of the same
algorithm; in [128] Mazzeo et al. implement the RSA public key encryption algorithm
in a Xilinx Virtex-E 2000-8 and then compare the obtained performance with a pre-
vious implementation in a Xilinx XC40250XV-09; in [64] a Virtex V1000FG680-6 is
used to implement the md5 hash function; in [87] Gosset, Standaert and Quisquater
implement the SQUASH hash function in a Xilinx Virtex 4 LX FPGA; in [158] a Xil-
inx XC40200XV-9-BG560 device is used to implement the RC-6 and the CAST-256
encryption algorithms; finally in [126] a Xilinx Virtex II Pro is used to implement the
IPSec Internet security protocol.

2.3.5 Railways

The FPGA technology is emerging also in the railway application field, both for safety
critical and non safety critical functions, for example in [65] Dobias and Kubatova de-
scribe the design of a railways interlocking system based on the FPGA technology
while in [167] De Ruvo et al. describe an FPGA based design of an automatic hexag-
onal bolts detection system for the railway maintenance developed in an Altera Stratix
device.
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2.3.6 Digital Signal Processing, Industrial and Nuclear Power Plant Control
and Medical Applications

Another field where FPGAs have started being deployed thanks to their ever increas-
ing computational power is Digital Signal Processing in substitution of classical Digital
Signal Processors, which are custom, high-performance, high-cost devices.

FPGAs are used for instance for Fourier and Fast Fourier Transform as in [96]
where an Altera Apex is used or in [123] where an Altera Stratix is used, for Multiply
and Accumulate, for signal filtering as in [47] where an Altera Stratix is used to im-
plement a Kalman Filter or [86] where a Xilinx XC6200 is used to implement a Viterbi
decoder. FPGA devices are also commonly used for audio, image and speech pro-
cessing. A survey about FPGA usage in Digital Signal Processing is [181] by Tessier
and Burleson.

Closely related with Digital Signal Processing is the field of Industrial Control appli-
cations, where the FPGA technology is nowadays emerging. In [143] Monmasson and
Cirstea present a survey of possible FPGA applications in industrial control systems.

Another application field tied to Digital Signal Processing is the Medical one: FPGA
begin to be used for image diagnostics, as in [122] where Li et al. use a Xilinx Virtex
II Pro to implement a platform for real-time 3D cone-beam CT reconstruction or [50]
where a Xilinx Virtex 1000 is used to implement a parallel-beam backprojection sys-
tem, but also for surgical and laboratory high-tech tools, and cardiac devices. A sur-
vey on FPGA applications in the medical field is presented by Goddard and Trepanier
in [83].

As proved by recent papers as [23], [26] and [39], that discuss guidelines and
proposals for the design, verification and validation methodologies of FPGA based
instrumentation and control systems for nuclear power plants, the FPGA technology
is also gaining interest in the nuclear control application field. As an example we
cite [173], where the programmable digital comparator of the shutdown system no.1 of
the CANadian Deuterium and Uranium (CANDU) reactor is implemented in an FPGA
device.

2.3.7 Broadcast, Wired and Wireless Communication

A great number of communication protocols can be implemented using the FPGA
technology: Audio-Video Bridging (AVB), High Definition-Serial Digital Interface (HD-
SDI), Digital Video Broadcasting (DVB), MPEG and JPEG compressors, Code Di-
vision Multiple Access (CDMA), Orthogonal Frequency Division Multiple Access
(OFDMA), WiMax, WiFi, ATM, TCP, Ethernet and SONET are only some examples.

Many other details about FPGA usage in the communication field can be found in
commercial brochures by Xilinx ( [193] and [196] ) and Lattice ( [60] and [61]).
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Effects of Radiations on SRAM-based FPGAs

3.1 The Natural Space Radiation

The near-Earth natural radiations can be divided in two categories, the particles
trapped in the Van Allen belts and the transient radiation. The particles trapped in
the Van Allen belts are composed of protons, electrons, and heavy ions. The tran-
sient radiation consists of galactic cosmic ray particles and particles from solar events
(coronal mass ejections and flares). The cosmic rays include all ions of all elements in
the periodic table. The solar eruptions produce protons, alpha particles, heavy ions,
and electrons [145].

3.1.1 Trapped Protons and Electrons

The radiation belts consist principally of electrons and protons. These particles are
trapped in the Earth’s magnetic field. Their motions in the field consist of a gyration
about field lines, a bouncing motion between the magnetic mirrors found near the
Earth’s poles, and a drift motion around the Earth [71] (see Figure 3.1).

The trapped particles represent a significant threat for electronic systems. There
are large variations in the level of hazard depending on the orbit of spacecraft and
on the solar activity. Protons are especially problematic because of their high ener-
gies and penetrating power. Low energy electrons are the cause of electrostatic dis-
charging which can be a serious problem for spacecraft in higher altitude orbits (e.g.,
geostationary) where they are exposed to intense fluxes of electrons. Higher energy
electrons can penetrate into a spacecraft, collect in insulator materials, and discharge
causing damage to electronics [145].

3.1.2 Galactic Cosmic Ray Heavy Ions

Cosmic Rays originate outside the solar system. Fluxes of these particles are low
but, because they include heavy ions of elements such as iron, they cause intense
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(a) Earth radiation belts.

(b) Basic motion of trapped particles in the earth magnetic field.

Figure 3.1. Trapped Particle Belts [71].

ionisation as they pass through materials. It is difficult to shield against these type of
ions, and therefore they constitute a significant hazard [71].

Moreover, they have a high rate of energy deposition as measured by their linear
energy transfer (LET) rate. A particle’s LET is primarily dependent on the density of
the target material and, to a lesser degree, the density and thickness of the shielding
material [145].

3.1.3 Solar Particles

During solar events, large fluxes of protons are produced which reach Earth. Such
events are unpredictable in their time of occurrence, magnitude, duration or composi-
tion. The Earth’s magnetic field shields a region of near-Earth space from these par-
ticles (geomagnetic shielding) but they easily reach polar regions and high altitudes
such as the geostationary orbit [71] (see Figure 3.2).

The particles from solar events are a concern for spacecraft designers. For sys-
tems that must operate during a solar particle event, the effect that both the solar pro-
tons and the solar heavy-ions have on the system must be evaluated. It is especially
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Figure 3.2. Geomagnetic Shielding [146].

important to take the peak flux levels into consideration. When setting requirements
and operational guidelines for electronic devices, one must remember that peak solar
particle conditions exist for only a small part of the total mission time [145].

3.2 Radiation Effects on Digital Devices

The effects of the natural space radiation on digital devices may be divided into two
categories: long-term and short-term. An alternative classification is between ionizing
and non-ionizing effects. Short-term ionizing effects are single event effects (SEE).
The long-term ionizing effect is the total ionizing dose (TID). Finally the long-term non
ionizing effect is the displacement damage dose (DDD). TID and DDD effects consist
of cumulative performance degradation of the device, that are generally visible after
some time, and that almost uniformly affect the entire device. SEEs occur stochasti-
cally, at any time and they are generally visible after a very short time and only in the
small region of the device affected by the particle strike [112, 144, 188].

3.2.1 Total Ionizing Dose

TID is a long-term degradation of electronic components due to the cumulative charge
deposited in the silicon. Figure 3.3 shows the normal operation of a CMOS transistor
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and its faulty operation due to TID. In particular TID in CMOS devices is caused by
the cumulative charge trapped in the oxide layers of transistors. The effect of TID in
digital devices is a progressive shift of the threshold voltage. Thus a digital device
affected by TID has an increasing power consumption, due to an increasing leakage
current, and a decreasing timing performance due to the threshold voltage shift itself,
that makes the activation of a gate slower and slower. Finally, when the threshold
voltage shift is large enough TID causes a functional failure of the system due to the
impossibility of the activation of the gate. Significant sources of TID include trapped
electrons, trapped protons, and solar protons [112, 127, 144, 148, 188].

Figure 3.3. Normal (A) and post-irradiation (B) operation of a CMOS gate [148].

3.2.2 Displacement Damage Dose

DDD often has similar long-term degradation characteristics to TID, but it is a sep-
arate physical mechanism. DDD is essentially the cumulative degradation resulting
from the displacement of nuclei in a material from their lattice position. Over time, suf-
ficient displacement can occur and may change the device or material performance
properties. Sources of DDD include trapped protons, solar protons, neutrons, and to a
lesser extent for typical electronic systems, trapped electrons. It should be noted that
technologies that are tolerant to TID are not necessarily tolerant to DDD and vicev-
ersa. In particular CMOS devices are immune to DDD, while BJT-based devices are
deeply affected by DDD [144].

3.2.3 Single Event Effects

SEEs occur when a single ion strikes a material, depositing sufficient energy to cause
an effect in the device. SEEs may be caused either through the ion’s primary strike,

30



3.2. RADIATION EFFECTS ON DIGITAL DEVICES

called direct ionization (see Figure 3.4(a)), or by the ion’s secondary particles that
issue from the strike, called indirect ionization via protons (see Figure 3.4(b)). The
ionization induced by the particle strike induces a charge collection in the pn-junction
of the transistor. An SEE is triggered and its type is defined according to the localisa-
tion and amount of collected charge and on the type and technology of the affected
device [72]. The many types of SEE may be divided into two main categories: soft
errors, that cause temporary malfunctions of the device, and hard errors, that cause
permanent damages in the device structure [112, 144, 188].

(a) SEE induced by a heavy ion. (b) SEE induced by a proton.

Figure 3.4. Mechanism for Single Event Effects [72].

Soft errors occur when a transient pulse or bit-flip in the device causes a change in
the content of a flip-flop or a memory element, or in a signal on a wire. Therefore, soft
errors are entirely device and design specific, and are best categorized by their impact
on the device. These are "soft" errors in the sense that a reset or rewriting of the device
causes normal device behavior thereafter. Hard errors may be physically destructive
for the device, and may cause permanent functional effects [112, 188, 144]. SEEs
may be classified as follows [144]:

• Soft Errors
– Single Event Upset (SEU): a change of the content of a memory location or a

flip-flop that causes a change of the state of the system.
– Single Event Transient (SET): a transient change of the value of the signal on

a wire due to a current pulse.
• Hard Errors

– Single Hard Error (SHE): an SEE which causes a permanent change to the
operation of a device. An example is a stuck bit in a memory device.

– Single Event Latchup (SEL): a condition which causes loss of device function-
ality due to a single event-induced high current. SELs are hard errors, and
are potentially destructive since their effect is a high operating current. The
latched condition can destroy the device or damage the power supply. An SEL
is cleared by a power off-on reset or power strobing of the device. If power is
not removed quickly, catastrophic failure may occur due to excessive heating.
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SEL is strongly temperature dependent: the threshold for latchup decreases at
high temperature.

– Single Event Burnout (SEB): a condition which can cause device destruction
due to a high current in a one or more transistors.

– Single Event Gate Rupture (SEGR): a single ion-induced condition in transis-
tors which may result in the formation of a conducting path in the gate oxide.

Single Event Upsets in SRAM

When an energetic particle strikes an SRAM cell (typically the drain of a transistor
in the “off” state) the charge collected in the transistor’s junction causes a transient
current in the transistor. This current propagates through the feedback loop of the
SRAM cell to the input of the other inverter of the SRAM cell. If the width and amplitude
of the current pulse are sufficient, the next inverter will change its output and thus a
new value will be loaded in the memory cell. The sensitivity of an SRAM cell depends
on the gate capacitance and operating voltage. The gate capacitance together with
the transistor channel resistance acts as a low pass filter that may reduce the rising
slope and magnitude of the induced current pulse. With technology down-scaling the
operational voltage of a device is also decreased. This means that less charge is
needed to induce an SEU. [66, 188]. The basic mechanism of SEUs in SRAM cells is
shown in Figure 3.5

Figure 3.5. SEU mechanism in a SRAM cell [66].

3.3 Effects of Radiation on FPGA devices

The circuit elements affected by radiation in FPGA devices may be divided in two
classes: user memory elements and configuration memory elements. The first class
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(user memories) consists of the memory elements that can be used by the designer
to implement an application, such as flip-flops, registers, and embedded memories.
The second class (configuration memories) is further divided into memory cells that
define the functions of logic blocks, and cells that establish their interconnections, as
well as the registers and the flip-flops (FFs) of the several control mechanisms of the
FPGA configuration itself.

User memories are affected by both TID and SEEs without respect of the con-
figuration technology employed by the considered device. Configuration memories of
anti-fuse-based FPGAs are completely immune to radiation. Flash/EEPROM-based
FPGAs are immune to SEEs, but they are particularly prone to TID. Finally SRAM-
based FPGAs are extremely prone to SEEs [188].

SEUs affecting the configuration memory represent the main cause of failure in
SRAM-based FPGAs for two reasons: (i) the high occurrence rate of SEUs makes
TID negligible and (ii) the impact of SEUs in the configuration memory is more relevant
than faults in other resources, because the memory cells used for FPGA configuration
are larger than those found in high-density devices used for storage [79].

3.3.1 Effects of Single Event Upset in the Configuration Memory of
SRAM-based FPGA devices

An FPGA can contain millions of configuration bits controlling the routing structure and
the logic blocks. SEUs in the configuration memory of an SRAM-based FPGA may
disrupt the routing architecture of the implemented circuit and the behaviour of the
functional units. Such faults may be considered permanent because the configuration
memory is usually not written again after the first configuration.

From a modeling point of view, SEUs affecting the configuration memory of an
FPGA device may not be modeled by the stuck-at model that is generally assumed
for digital circuits. A more accurate fault model has to be considered, as shown in [155]
for logic resources and in [186] for routing resources. In the following we present the
fault model that has been considered in the design of the presented software tools.

The model of SEUs affecting configuration bits controlling logical resources

The tools presented in this thesis adopt the functional fault model for SEUs affecting
the configuration bits controlling the logic resources of FPGAs proposed in [155]. This
fault model has been demonstrated to be much more accurate than the stuck-at fault
model when the problem of analysing the effects of SEUs in SRAM-based FPGAs is
addressed.

In the stuck-at fault model, a SEU in the configuration memory of a component
causes the output of the component to be stuck at a given value, thus the faulty com-
ponent always produces an incorrect value. In our simulator, a SEU in the configura-
tion memory of a LUT causes an alteration of the functionality performed by the LUT.
In particular, the faulty LUT will produce an incorrect value only when the configuration
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of its input values is the one associated with the faulty configuration bit, while for every
other configuration of its input values the faulty LUT will behave correctly. Figure 3.6(a)
shows a SEU causing a bit flip in the configuration bit associated with input (0 0 0 0). In
this case the logic function implemented by the LUT changes from the correct function
y = x1 · x2 + x3 · x4 to the faulty function yf = x1 · x2 + x3 · x4 + x̄1 · x̄2 · x̄3 · x̄4.

(a) SEU in a lookup table. (b) SEU in a I/O buffer.

Figure 3.6. Effects of SEUs in the logic components of an FPGA.

It may be observed that in the example the behaviours of y and yf are different
only when the values of the input signals are (0000).

A SEU in the configuration bit of an I/O buffer causes an undesired connection or
disconnection between two wires, as shown in Figure 3.6(b).

The model of SEUs affecting configuration bits controlling routing resources

To show the model of SEUs [186], let us consider the switch block shown in Fig. 3.7,
where two PIPs connect wire A to B and wire C to D, respectively. Depending on
the position and the electrical properties of the affected PIP, an SEU in the routing
structure can cause the following topological modifications (also shown in Fig. 3.7):

• Open, where the PIP is not programmed any more and thus the corresponding
connection (A→ B) is deleted.

• Antenna, where a new connection (unused → B) is added between an unused
input node and a used output node.

• Conflict, where a new connection (A → D) is added between a used input node
and a used output node.

• Bridge, where an existing connection is deleted (C → D) and a new one (A→ D)
is added between a used input node and the output node of the deleted connec-
tion.

• Unrouted, where the modification of the routing structure of the system induced
by the SEU in the configuration bit controlling the PIP cannot be classified in any
of the previous categories.
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Figure 3.7. Effects of SEUs in the routing components of an FPGA.

Effects of SEUs in PIPs involving unused connections are not considered as they
do not cause a faulty behaviour since they do not affect the system.

Figure 3.8 shows the distribution of the effects of SEUs in the configuration bits
controlling routing resources [186]. It appears evident that the major effects are open
and conflict.

Figure 3.8. Distribution of the effects of SEUs in the configuration bits controlling routing re-
sources [186].
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The effects of the modification of the routing structure of the system induced by
SEUs in configuration bits controlling PIPs can be mapped on modifications of the
behaviour of logic components of the netlist at a higher level of abstraction. The fol-
lowing logical effects can be induced by SEUs in configuration bits controlling routing
elements [186]:

• Stuck-at: A node is stuck at a constant logic value.
• Bridge: Two nodes exchange their values.
• Wired-AND (Wired-OR): The value of a node C is the AND (OR) of the values of

two nodes A and B.
• Wired-MIX: The values of two nodes A and B are mixed as follows: If the values

A and B are equal, A and B keep their correct values, otherwise A takes the zero
logic value and B takes the one logic value.

K
S

Pi
Pj

Ci

Dj

D

C
H

Figure 3.9. Routing example.

With reference to Fig. 3.9, if S is a switch box, C and D are two components
directly connected to S, Ci and Dj are the input pins of C and D connected to S

through the PIPs Pi and Pj , respectively, the five possible effects of a SEU in the
configuration bit controlling P are modeled as follows:

• A stuck-at on Pi is modeled by setting the logic signal on Ci at the corresponding
fixed value.

• A bridge between Pi and Pj is modeled by exchanging the logic values on Ci and
Dj .

• A Wired-AND (Wired-OR) between Pi and Pj is modeled by setting the logic sig-
nals on Ci and on Dj to the value Pi AND (OR) Pj .

• A SEU causing a Wired-MIX between Pi and Pj is modeled by setting the logic
signals on Ci to 1 and on Dj to 0 if Pi 6= Pj , while leaving Ci and Dj unaltered
otherwise

It may be observed that a given SEU in the configuration bit associated with a
PIP can propagate to different routing segments, and that the same SEU can have
different effects on the routing segments through which it propagates.
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Table 3.1. Correspondence between physical and logic effects of SEUs in tile routing PIPs.

Physical Modification Logic Effect

Conflict Wired-AND
Open Stuck-at 0
Bridge Bridge
Antenna Stuck-at 0

Table 3.2. Correspondence between physical and logic effects of SEUs in tile routing PIPs.

Physical Modification Logic Effect

Conflict Wired-AND
Wired-MiX

Open Stuck-at 1
Bridge Bridge
Antenna Stuck-at 0

Table 3.3. Correspondence between physical and logic effects of SEUs in tile routing PIPs.

Physical Modification Logic Effect

Conflict Wired-AND
Open Stuck-at 0
Bridge Bridge
Antenna Stuck-at 0

In particular the effect of a SEU in the configuration memory controlling a PIP
depends on the position of the PIP with reference to the levels of routing introduced in
Section 2.1.2. The logical effects corresponding to the physical modifications induced
by SEUs in the configuration bits controlling PIPs belonging to the tile routing, local
routing and multiple-tile routing are summarized in Table 3.1, Table 3.2 and Table 3.3
respectively [186].
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The ASSESS Tool

4.1 Related Work: Techniques for SEU Sensitivity Analysis

A lot of techniques and tools for the analysis of the effects of the various types of
faults in digital circuits have been proposed in the last years. A detailed discussion
about this topic can be found in [201]. In the remainder of this section we focus on
the techniques and tools specifically focused on the analysis of the effects of SEUs in
SRAM-based FPGAs that can be found in the literature.

The sensitivity to SEUs of SRAM-based FPGA systems can be analysed exploit-
ing four main approaches: accelerated radiation ground testing, fault injection boards,
analytical computation, and fault simulation.

4.1.1 Radiation Testing

Accelerated radiation ground testing [28, 44, 46, 79, 80] aims at emulating the effects
of SEUs by exposing a prototype of the FPGA-based system to a flux of radiations,
originated by either a radioactive source or a particle accelerator. While being exposed
to the radiations flux, the prototype is fed with a set of input patterns, and its behaviour
is monitored.

Advantages of radiation testing experiments to assess the sensitivity to SEUs of a
digital system are:

• The experiments are carried out using a prototype of the system.
• The prototype of the system can be exposed to a radiation environment that can

accurately emulate the environment in which the system will work.

Because of these two points radiation testing gives accurate results. Drawbacks of
these techniques are:

• The impossibility of injecting SEUs only in the configuration memory of the FPGA,
since the whole chip area will be irradiated (including user resources).

• A possibility that the device be permanently damaged after the experiment.
• High cost.



CHAPTER 4. THE ASSESS TOOL

4.1.2 Fault Injection

Several injection boards have been developed in order to evaluate the impact of SEUs
in the configuration memory of circuits mapped on SRAM-based FPGAs [5, 8, 178,
191]. These boards emulate the occurrence of SEUs by modifying the bitstream of
the target system whose dynamic behavior is then evaluated. Fault injection can be
performed either before downloading the bitstream on the device under test, or at run
time exploiting partial dynamic reconfiguration. Unlike radiation testing experiments,
fault injection makes it possible to focus the analysis on SEUs in the configuration
memory of the FPGA, leaving out any other resources. Moreover fault injection avoids
the risk of damaging the device under analysis. The major drawbacks of SEU injection
boards are high costs, complex usability, and chip and vendor dependence. Moreover
both fault injection and radiation testing have an additional drawback: they are applied
late in the design process, only when a physical prototype of the system is available,
thus modifications of the systems may be expensive and may take a long time.

4.1.3 Analytical Methods

Analytical approaches, such as reported in [24, 100, 176, 177] have been developed
to avoid the high cost of radiation testing and the long experimental time of fault in-
jection. In [176] and [177], a model based on the structure of the design implemented
on the FPGA is built, and the topological modifications induced by SEUs in each con-
figuration bit are deduced, thus discovering which SEUs affect the design. In [24],
sensitive paths to SEUs are identified by combining the error probability of all nodes
of the circuit with the error propagation probability of each path of the circuit. Finally
in [100] an accurate probabilistic model to estimate the reliability of SRAM-based
FPGA system is presented. Given the probability of occurrence of a SEU, the model
is able to estimate the probability of having a system failure after a given amount of
time. The drawback of these approaches is that, since the analysis is carried out with-
out respect to the input patterns fed into the system, they are able to provide a worst
case analysis while they cannot give information about the behaviour of the system in
its normal operating conditions.

4.1.4 Fault Simulation

Although a large number of fault simulators for digital circuits can be found in the lit-
erature, very few simulation approaches targeting the analysis of the effects of SEUs
have been proposed. Moreover, if we look for simulators that specifically address the
FPGA technology we find an even smaller number of works. In [172, 43] two simu-
lators of SEUs affecting digital circuits have been proposed. Both simulators work at
the gate-level representation of the circuit, thus ensuring accurate results, but both
do not take into account any details specific of the FPGA technology. To the best of
our knowledge, the only simulator targeting SEUs in FPGAs is SST [94]. SST is a
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set of TCL scripts able to modify the HDL description of the circuit in order to emu-
late the effects of SEUs, and then to interact with standard RTL-simulators, such as
ModelSim [130]. Since SST works on the RTL representation of the system, it is just
able to emulate the effects of SEUs in user resources, e.g., flip-flops and memories,
but it is not able to reproduce the effects of SEUs in the configuration memory. To
the best of our knowledge no simulators able to reproduce the effects of SEUs in the
configuration memory of SRAM-based FPGA systems has been proposed, apart from
ASSESS, that was preliminary presented in [31, 32, 34, 35]. .

4.2 The SAN Formalism and the Möbius tool

Stochastic Activity Networks [170] are an extension of the Petri Nets (PN) formal-
ism [149]. SANs are directed graphs with four disjoint sets of nodes: places, input
gates, output gates, and activities. The latter replace and extend the transitions of the
PN formalism.

The topology of a SAN is defined by its input and output gates and by two functions
that map input gates to activities and pairs (activity, case) (see below) to output gates,
respectively. Each input (output) gate has a set of input (output) places. Each SAN
activity may be either instantaneous or timed. Timed activities represent actions with
a duration affecting the performance of the modelled system, e.g., message transmis-
sion time, recovery time, time to fail. The duration of each timed activity is expressed
via a time distribution function. Any instantaneous or timed activity may have mutually
exclusive outcomes, called cases, chosen probabilistically according to the case dis-
tribution of the activity. Cases can be used to model probabilistic behaviours, e.g., the
failure probability of a component. An activity completes when its (possibly instanta-
neous) execution terminates.

As in PNs, the state of a SAN is defined by its marking, i.e., a function that, at
each step of the net’s evolution, maps the places to non-negative integers (called the
number of tokens of the place). Whereas the PN formalism defines a fixed enabling
condition to determine which transitions are enabled, and a fixed firing rule to deter-
mine the next marking after a transition has taken place, SANs enable the user to
specify any desired enabling condition and firing rule for each activity. This is accom-
plished by associating an enabling predicate and an input function to each input gate,
and an output function to each output gate. The enabling predicate is a Boolean func-
tion of the marking of the gate’s input places. The input and output functions compute
the next marking of the input and output places, respectively, given their current mark-
ing. If these predicates and functions are not specified for some activity, the standard
PN rules are assumed.

The evolution of a SAN, starting from a given marking µ, may be described as
follows: (i) The instantaneous activities enabled in µ complete in some unspecified
order; (ii) if no instantaneous activities are enabled in µ, the enabled (timed) activities
become active; (iii) the completion times of each active (timed) activity are computed
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stochastically, according to the respective time distributions; the activity with the ear-
liest completion time is selected for completion; (iv) when an activity (timed or not)
completes, one of its cases is selected according to the case distribution, and the
next marking µ′ is computed by evaluating the input and output functions; (v) if an
activity that was active in µ is no longer enabled in µ′, it is removed from the set of
active activities.

Graphically, places are drawn as circles, input (output) gates as left-pointing (right-
pointing) triangles, instantaneous activities as narrow vertical bars, and timed activi-
ties as thick vertical bars. Cases are drawn as small circles on the right side of ac-
tivities. Gates with default (standard PN) enabling predicates and firing rules are not
shown.

4.2.1 The Möbius Tool

Möbius [63, 49] is a software tool that provides a comprehensive, easy-to-use and
flexible graphical environment for model-based system analysis. The main features of
the tool include: (i) multiple high-level modelling formalisms, including, among others,
Stochastic Activity Networks (SANs) [170] and PEPA fault trees [93]; (ii) the possibil-
ity of extending the behaviour of a SAN model by attaching C++ functions to input
and output gates. (iii) a hierarchical modelling paradigm, allowing one to build com-
plex models by first specifying the behaviour of individual components and then by
combining the components to create a model of the complete system; (iv) customised
measures of system properties; (v) distributed discrete-event simulation, to evaluate
measures using efficient simulation algorithms.

The Möbius tool introduces two extensions to the SAN formalism: extended places
and shared variables. Extended places are places whose marking is a complex data
structure instead of a non-negative integer. Shared variables are (possibly complex)
data structures that are shared between different SANs, thus enabling them to com-
municate. Enabling predicates and input and output functions of the gates are speci-
fied as C++ code.

SAN models can be composed by means of Join and Rep operators. Join is used
to compose two or more SANs. Rep is a special case of Join, and is used to construct
a model consisting of a number of replicas of a SAN. Models composed with Join and
Rep interact via place sharing.

Properties of interest are specified with reward functions [171]. A reward function
specifies how to measure a property on the basis of the SAN marking. Measurements
can be conducted at specific time instants, over periods of time, or when the system
reaches a steady state.

4.3 The ASSESS Tool

ASSESS is simulator of SEUs affecting the configuration memory of SRAM-based
FPGA systems. The simulator can be used for the analysis of the SEU sensitivity,
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i.e., the probability of a system failure given that a configuration memory bit has been
corrupted by a SEU, and for the assessment of the failure probability due to SEUs,
i.e., the probability of a system failure given a probability of the occurrence of an SEU
in the configuration memory of the system.

The ASSESS tool is a C++ program generated by the Möbius environment. The
high level structure of ASSESS is shown in Figure 4.1. The simulator is composed of
a SEU Injector (SI) module, an Input Pattern Generator (IPG) module, and a Netlist
Simulator (NS) module.

Figure 4.1. Flow Diagram of the Simulation Environment.

The SI module is in charge of injecting SEUs in the netlist during the simulation.
The SI module is fed with two lists of SEUs: the list of SEUs in the memory bits
controlling logic components and the list of SEUs in the memory bits controlling the
routing structure. SEUs in the memory bits controlling logic components are simulated
by modifying the functionality performed by the faulty component. SEUs in the mem-
ory bits controlling the routing structure are simulated according to the fault model
discussed in Section 3.3.1. The SEU injection module can work either in deterministic
or in stochastic mode. The deterministic SEU injection is used to assess the SEU
sensitivity of the system. In the deterministic SEU injection SEUs are injected one at
a time, at the beginning of the simulation, and the simulation end when every SEU in
the fault lists has been injected. The stochastic SEU injection is used to assess the
failure probability given to SEUs. The stochastic SEU injection allows to specify the
maximum number of SEUs that may occur and the probability of SEU occurrence. At
each clock cycle, if the maximum number of occurred SEUs has not yet been reached,
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a SEU will be injected with the specified probability. The SI module is implemented by
the Fault Injection SAN model (see Section 4.3.2).

The IPG module is in charge of generating the input patterns with which the NS
module be fed. The IPG module can work either in deterministic or in stochastic mode.
In the deterministic input pattern generation, the IPG module is provided with a list of
input patterns. Moreover the IPG module working in deterministic mode can interact
with external tools for the generation of test patterns, e.g., in [30] a genetic algorithm
generated the test patterns that the IPG module fed to the simulation kernel. In the
stochastic input pattern generation, the IPG module is provided with the signal proba-
bility of each input signal, i.e., the probability of a given input signal of assuming value
1 at a given clock cycle, and according with these probabilities it generates the input
values for the input signals of the system. The IPG module is obtained by replicating I
times the Input Vector SAN model (see Section 4.3.3), being I the number of input
pins of the system.

The NS module is composed of the Combinational Logic module and a Sequential
Logic module. The Combinational Logic module simulates the behaviour of the com-
binational components of the FPGA system, i.e., LUTs, I/O buffers and multiplexers.
The Sequential Logic module simulates the behaviour of the sequential components
of the system, i.e., various types of flip-flops.

The functionality performed by each component is stored in a matrix called
Functions_Table (shown in Figure 4.2(a)). The ith entry of the matrix stores the
type of the ith component (LUT, flip-flop, buffer and multiplexer) and the specific
functionality performed by the ith component (logic function for LUTs, type of flip-
flops, input/output for buffers). The example shown in Figure 4.2(a) reports about
two LUTs performing the 2-input XOR and the 3-input OR and about a flip-flop with
clear and clock-enable signals. All the simulated netlist components interact through
a Connectivity Matrix (shown in Figure 4.2(b)) that simulates the connections
among the components of the simulated system. The ith entry of the matrix stores
the ids of the component whose output represents the input of the ith component.
More in detail the jth element of the entry of the matrix associated with the ith com-
ponent represents the id of the component whose output is connected to the jth input
pin of the ith component. The example shown in Figure 4.2(b) reports that the output
of components 3 and 15 are connected to the 1st and the 2nd input pins of the ith

component respectively. The Combinational and Sequential Logic modules and the
functions table and connectivity matrix are instantiated in terms of functionalities per-
formed by components and connections among them through the netlist description
file.

Both the Combinational Logic module and the Sequential Logic modules are ob-
tained by replicating C and S times the Generic Component SAN model (see Sec-
tion 4.3.4), being C and S the number of combinational and sequential components
of the system respectively.
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(a) The functions table.

(b) The connectivity matrix.

Figure 4.2. Data structure of ASSESS for three components.

The simulation process is orchestrated by the System Execution SAN model
(see Section 4.3.1), that coordinates the interaction of the various modules of the
simulator. The basic functioning of ASSESS in the deterministic SEU injection mode
is described by Algorithm 1.

The functioning of ASSESS in the stochastic SEU injection mode is described by
Algorithm 2.

As shown in Figure 4.1 additional inputs of the simulator are: the Reward Func-
tions defined on the netlist module (see Section 4.3.6) and a configuration file (see
Section 4.3.7).

At the end of the simulation ASSESS produces the number of SEUs that caused
a failure of the system. Additionally, by configuring dedicated simulation parameters,
ASSESS can also generate the list of the applied input patterns and the detailed list
of the SEUs that caused a failure of the system.

4.3.1 The System Execution Model

The System Execution SAN model (shown in Figure 4.3) orchestrates the execution
of the of the simulation process by coordinating the interactions between the various
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load the description of the netlist
load the list of SEUs in logic components
load the list of SEUs in routing components
load the list of unexcitable SEUs
system_failures := 0
critical_faults[] := {FALSE, ..., FALSE}
generate a random test pattern T
for every SEU s in the netlist do

inject the i-th SEU
apply test pattern T
simulate the circuit
if the system output is incorrect then

system_failures := system_failures + 1
critical_faults[i] := TRUE

end if
correct the i-th fault

end for

Algorithm 1: The simulation algorithm with deterministic SEU injection.

load the description of the netlist
load the list of SEUs in logic components
load the list of SEUs in routing components
load the list of unexcitable SEUs
system_failure := false
injected_SEUs := 0
generate a random test pattern T
apply test pattern T
for every clock cycle do

if injected_SEUs < N_MAX_SEUs then
randomly decide whether as SEU has to be injected
if an SEU has to be injected then

randomly select a SEU
inject the selected SEU
injected_SEUs = injected_SEUs + 1

end if
end if
simulate the circuit
if the system output is incorrect then

system_failure := true
end if

end for

Algorithm 2: The simulation algorithm with stochastic SEU injection.
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modules of the simulator. Places Input_Lines, Internal_Lines and Output_Lines

model the input, internal and output signals respectively. Place Expected_Output

models the expected output for the unfaulty system. Place n_clock_cycles mod-
els the number of simulated clock cycles in a given time instant of the simula-
tion. Finally end_fault_injection is a place with which the SEU Injector mod-
ule informs the System Execution model that the last SEU was injected. Places
Internal_Lines and Output_Lines and Expected_Output are shared between
the System Execution model and the Netlist Simulator module. Place Input_Lines

is shared among the System Execution model, the Input Pattern Generation mod-
ule and the Netlist Simulator module. Place n_clock_cycles is shared between the
System Execution model and the Input Pattern Generation module. Finally place
end_fault_injection is shared between the System Execution model and the
SEU Injector module. System Execution is structured as a loop consisting of the
following five steps:

Figure 4.3. The System Execution SAN model.

1. When place start contains a token (at the beginning of the simulation), activ-
ity fault_injection becomes active. When the execution of this activity termi-
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nates, a token is moved into place p2, thus activating the execution of the SEU
Injector module.

2. At the end of the execution of the SEU Injector module, gate IG1 enables activity
input_generation. When the execution of this activity ends, a token is moved
into place p3, and the execution of the Input Pattern Generation module starts.

3. When the execution of the Input Pattern Generation module terminates, gate IG2

enables activity comb_exec. When the execution of this activity terminates, a to-
ken is moved into place p4, and the Combinational Logic module is activated.

4. When the Combinational Logic module terminates, gate IG3 enables activity
seq_exec. When the execution of this activity terminates, a token is moved into
place p4, and the Sequential Logic module becomes active.

5. When the execution of the Sequential Logic module ends, gate IG4 enables activ-
ity iterate. When the execution of this activity terminates, a token is moved into
place p5, thus activating the execution of gate OG1. After increasing the contents
of place n_clock_cycles, OG1 performs the following checks: (i) If deterministic
SEU injection was selected:
• if the value stored in n_clock_cycles does not equal the required number

of simulated clock cycles, OG1 moves a token into place p3, thus reactivating
Input Pattern Generation module.

• if the value stored in n_clock_cycles equals the required number of simu-
lated clock cycles and the content of place end_fault_injection is 0 (mean-
ing that at least a SEU has still to be injected), OG1 resets the contents of
n_clock_cycles and moves a token into place start, thus reactivating the
SEU Injector module.

• if the value stored in n_clock_cycles equals the required number of sim-
ulated clock cycles and the contents of place end_fault_injection is 1

(meaning that all SEUs have already been injected), OG1 moves a token into
place stop, thus ending the simulation

(ii) If stochastic SEU injection was selected:
• if the value stored in n_clock_cycles does not equal the required number of

simulated clock cycles, OG1 moves a token into place start, thus reactivating
the SEU injection module.

• if the value stored in n_clock_cycles equals the required number of simu-
lated clock cycles OG1 moves a token into place stop, thus ending the simu-
lation

4.3.2 The Fault Injection Model

The Fault Injection SAN model (shown in Figure 4.4) implements the SEU Injec-
tor component presented in the high level description of ASSESS. Place injected_fault

is shared between the SEU Injector module and the Netlist Simulator module and rep-
resents the ID of the injected fault. Place n_injected_faults represents the number
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of SEUs currently injected in the circuit, while place stochastic_deterministic

specifies whether stochastic or determinist SEU injection is required. The detailed
behaviour of the model is described by the following steps:

Figure 4.4. The Fault Injection SAN model.

1. When place start contains a token (when the System Execution model acti-
vates the injection of a fault), activity inject_fault becomes active.

2. When activity inject_fault terminates, gate OG1 is executed. This gate mod-
els the actual injection of a SEU by storing the two lists of faults (SEUs in logic
and routing components) and by specifying the ID of the injected fault in place
injected_fault. If deterministic SEU injection is required OG1 performs the fol-
lowing steps:
a) Inject a SEU in the circuit.
b) If the injected SEU is the last fault of the two lists of SEUs, move a token

in place end_fault_injection in order to inform the System Execution

module that the fault injection process is terminated.
Conversely, if stochastic SEU injection is required OG1 performs the following
steps:
a) If the required maximum number of injected SEUs has been reached, do

nothing.
b) Otherwise randomly chose an SEU from the two fault lists, inject it in the circuit

and increment the content of place injected_faults.

4.3.3 The Input Vector Model

The Input Vector SAN model (shown in Figure 4.5) is the basic building block of
the Input Pattern Generator component of ASSESS. In particular for each input pin
of the netlist a replica of the Input Vector module is instantiated. Each replica is
uniquely identified by the ID of the associated input pin stored in place InputPinID.
The purpose of each replica of the model is to generate (either deterministically or
stochastically) the input signal applied to the associated input pin p at the clock cycle
c specified by the content of place n_clock_cycles. The detailed behaviour of the
model is described by the following steps:
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Figure 4.5. The Input Vector SAN model.

1. When place start contains a token (when the System Execution module acti-
vates the generation of an input pattern), activity generate_input becomes ac-
tive. If the user required the stochastic input pattern generation, activity generate_input
stochastically activates either gate zero or gate one according to the input signal
probability for input pin p at clock cycle c specified in the simulation configura-
tion file (see Section 4.3.7). Similarly, if the user required the deterministic input
pattern generation, activity generate_input activates either gate zero or gate
one according to the logical value for input pin p at clock cycle c specified in the
simulation configuration file (see Section 4.3.7).

2. When activity generate_input terminates, either gate zero or gate one is exe-
cuted. If gate zero is executed, the ith location of place Internal_Lines (which
is an array of Boolean) is set to a logical 0, to a logical 1 otherwise.

4.3.4 The Generic Component Model

The Generic Component SAN model (shown in Figure 4.6) is the basic building block
of the Netlist Simulator component of ASSESS. Generic Component is a customiz-
able SAN model able to model all the combinational and sequential components of
the netlist. In particular, for a given system, a replica of Generic Component is in-
stantiated for each component of the netlist. Each replica is uniquely identified by an
ID stored in place ComponentID. The specific behaviour of the netlist component is
modeled by a C++ function, attached to gate OG1, that simulates the logic behaviour
of the component itself. The components that can be simulated are: (i) Input/Output
buffers; (ii) lookup tables; (iii) multiplexers; and (iv) various types of flip-flops (normal D
flip-flops, with clock-enable, with asynchronous reset and set). The detailed behaviour
of the model is described by the following steps:

1. When place start contains a token (when the System Execution module ac-
tivates the execution of the combinational or sequential components), activity
exec_component becomes active.

2. When activity exec_component terminates, gate OG1 is executed. This gate mod-
els the actual logic behaviour of the component by executing the attached C++
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Figure 4.6. The Generic Component SAN model.

function. More precisely, for a given component i, the function F specified in gate
OG1 retrieves the logic function f associated with component i. Then F retrieves
the inputs of component i from places Input_lines and Internal_Lines. F cal-
culates the expected output of component i by applying f to the input signals of i
and then stores the calculated value in the ith location of place Expected_Output

(which is an array of Boolean). Then, if component i is affected either directly
(SEUs in configuration bits controlling logic resources) or indirectly (SEUs in con-
figuration bits controlling routing resources) by the fault identified by the ID spec-
ified in place injected_fault (which is shared with the Fault Injector mod-
ule), F calculates the actual output of the component and stores it the ith location
of place Output_Lines.

4.3.5 The Composition of the SAN Models

The structure of the composition of the SAN models of which ASSESS is composed is
shown in Figure 4.7. The upper hierarchical level is constituted by the join between the
System_Execution model, the Fault_Injection model and Combinational_Logic,
Sequential_Logic and Input_Pattern_Generator.

Figure 4.7. The composition of the SAN models of the ASSESS tool.

Combinational_Logic and Sequential_Logic constitute the netlist simulator of
ASSESS. Both Combinational_Logic, Sequential_Logic are the replication of the
basic SAN model Generic_Component. In particular Combinational_Logic models
the combinational components of the netlist and is composed of a number of replicas
of Generic_Component equal to the number of LUTs, multiplexer and I/O buffers.
Similarly Sequential_Logic models the sequential components of the netlist and
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is composed of a number of replicas of Generic_Component equal to the number
flip-flops. The Input_Pattern_Generator is composed of the replicas of the basic
Input_Vector equal to the number of input pins of the netlist.

4.3.6 The Reward Function

A reward model was added to the model of the netlist in order to make possible the
assessment of the sensitivity to SEUs of the system under analysis. In particular we
were interested in discovering if the output of the system was different from the ex-
pected output for at least one clock cycle during the simulation. To this purpose the
designed reward function was the one shown by Algorithm 3:

if (System_Execution→p5 == 1) then
for (int i = 0; i < N_OUTPUT_PINS; ++i) do

if (System_Execution→Output_Lines [i] !=
System_Execution→Expected_Output[i]) then
return 1

end if
end for

end if

Algorithm 3: The reward function.

This reward function returns 1 whenever a clock tick arrives and the actual output
of the system differs from the expected output for at least one output signal.

Thus at the end of an exhaustive fault simulation this reward function returns the
number of SEUs that caused a failure of the system, thus allowing the assessment of
the criticality of SEUs and of the sensitivity to SEUs of the system.

When the stochastic fault injection is selected by the user, a number of simulation
runs will be performed. At the end of these simulations the reward function returns the
number of runs in which the actual output and the expected output where different in
at least one clock cycle, thus allowing to assess the failure probability of the system.

4.3.7 Building and Configuring ASSESS

The Möbius tool generates a C++ implementation of the composed SAN models,
together with its reward function. More in detail, the simulator is obtained through the
following steps:

1. Describing the SAN models of the various basic components composing the sim-
ulator.

2. Describing the SAN model that specifies the interaction among the basic compo-
nents.
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3. Specifying which basic components have to be replicated and how many replicas
have to be generated.

4. Specifying the reward function that has to be executed on the simulated model.
5. Having the Möbius tool generate the executable.

Before running ASSESS, the following simulation parameters have to be initialized
through a configuration file:

• N_CLOCKS: the number of clock cycles the user wants to simulate.
• RANDOM_INPUTS: TRUE if the user requires random input pattern generation; FALSE

otherwise.
• The input signal probabilities if random input pattern generation is required by the

user; the required deterministic input patterns otherwise.
• RANDOM_SEU_INJECTION: TRUE if the user requires random SEU injection; FALSE

otherwise.
• N_MAX_SEUs: the maximum number of injected SEUs (if stochastic SEU injection

is required by the user).
• The SEU occurrence probability if random SEU injection is required by the user.
• SAVE_INPUTS: TRUE if the user requires that ASSESS saves the applied input

patterns in an additional output file (this option is useful when random input pattern
generation is required by the user); FALSE otherwise.

• SAVE_FAULTS: TRUE if the user requires that ASSESS produces a detailed report
containing the list of SEUs that caused a failure of the system; FALSE otherwise.
Note that if SAVE_FAULTS is set to FALSE ASSESS will only produce as output the
number of SEUs that caused a failure of the system.
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5.1 Related Work: Techniques for Fault Untestability Analysis

A number of works addressing various aspects of the analysis of untestability of faults
in digital systems can be found in the literature. In [151] and [153] a new subclass of
untestable faults, called register enable stuck-on is defined and a method for gener-
ating property specification language (PSL) assertions for proving the untestability of
this class of faults is presented. In these papers stuck-at faults on the clock-enable
signals of registers at the register transfer level (RTL) are addressed. The same au-
thors propose in [152] a hierarchical untestability identification method. The method
addresses untestable faults in functional units, such as adders and multiplexers, at
the RTL level.

In [182] a preprocessing method for accelerating SAT-based ATPGs by eliminating
untestable faults is presented. The method takes into account the stuck-at fault model
and it addresses only easy-to-classify untestable faults.

In [125] two algorithms (FILL and FUNI) for untestability demonstration of stuck-at
faults are presented. FILL identifies large subsets of illegal states in synchronous se-
quential circuits, and FUNI finds untestable faults that require illegal states previously
found by FILL to be detected.

Apart from UA2TPG, the only works in the literature addressing the analysis of
the untestability of SEUs in the configuration memory of SRAM-based FPGAs were
presented in [33] and in [36]. In these works SEUs in the configuration bits controlling
logic and routing resources respectively were considered. Both techniques performed
only a partial untestability analysis, since they allowed to discover those SEUs that
could not be excited by any configuration of the inputs of the system, but both were
not able to analyse the problem of the unpropagability of faults. Given this, to the best
of our knowledge, UA2TPG represents the first tool able to determine which SEUs in
the configuration bits actually used by a given FPGA-based system are not testable.
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5.2 The SAL Environment

The Symbolic Analysis Laboratory (SAL) is a framework for abstraction, program anal-
ysis, theorem proving and model checking of concurrent systems expressed as tran-
sition systems through a specification language [29].

The main tools available in the environment are a SAL to Java compiler for the
simulation of specifications, the SAL-SMC model checker for property verification, an
automatic translator from SAL to PVS specifications for theorem proving, an invariant
generator and a counterexample generator.

In the following we introduce the basics of the SAL language, of the SAL model
checker and of the LTL logic that have been used to model netlists and to specify and
to to prove SEU untestability theorems.

5.2.1 The SAL Language

The core of SAL is the specification language used to describe concurrent systems.
The language is also used as an common description language used by the analysis
tools of the SAL environment.

The SAL language is a strongly-typed description language. Supported types
are: booleans, scalars, integers and integer subranges, records, arrays and abstract
datatypes. Expressions consist of constants, variables, applications of Boolean, arith-
metic, bit-vector operations and array and record selection and update. Declarations
of new types is also allowed by the language. Conditional expressions and user-
defined functions are also supported.

The basic concept in the SAL specification language is the Module. A SAL module
is a self-contained specification of a transition system. A module consists of a State

and an Initialization on the state and a list of Transitions on the state.
The state is defined by four disjoint sets of Input, Output, Global and Local

variables. The input and global variables are observed, in the sense that their value
can be just read. The output and local variables are controlled, in the sense that their
value can be both read and written. Each SAL variable has two values, the current
value (denoted, e.g., by x) and the next value (denoted, e.g., by x') valid in the current
and the next state (respectively) of the module.

The initialization is used to specify an initial value for all or some of the controlled
state variables of the module. An initialization is simply specified as an assignment
between the variable and the result of an expression, as follows:

variable = expression

The transitions of a module can be specified variable-wise, by means of Definitions,
or transition-wise by means of Transitions. A definition is a simple assignment be-
tween a controlled variable and the result of an expression.

Transitions are assignments between next-state variables and the result of expres-
sions. A transition is of the form:
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variable’ = expression

A list of transitions can be specified as a Guarded Command. A guarded command
is composed of a guard, i.e., a boolean condition defined on state variables, and one
or more transitions. The guard has to be satisfied in order to perform the transitions.
A guarded command is of the form:

condition→ variable1’ = expression1
...

variablen’ = expressionn

where condition is the guard and variable1’ = expression1 · · · variablen’ = expressionn
is the list of transitions.

The SAL language provides the IN construct that denotes nondeterministic choice
among a set of values. However in some contexts the language uses IN also for deter-
ministic assignment. The SAL language allows the composition of different modules.
Modules can be combined by either synchronous (||) or asynchronous ([]) composi-
tion. Several modules can be collected in a SAL Context. Contexts may also include
constants, types declarations and theorems.

5.2.2 The SAL Model Checker

The SAL-SMC (Symbolic Model Checker) uses LTL (Linear Temporal Logic) as as-
sertion language [162]. LTL formulas state properties about each linear path induced
by a transition system. Typical LTL operators are:

• G(p) states that p is always true.
• F(p) states that p will be eventually true.
• U(p,q) states that p is true until a state is reached where q is true.
• X(p) states that p is true in the next state.

For a formal definition of LTL see [162]. Typical properties expressed with LTL
formulas are safety, in the form G(¬χ), stating that the undesired condition χ is never
satisfied, and liveness, in the form G(F(ψ)) or G(γ → F(ψ)), stating that the desired
condition ψ will be eventually satisfied or that the desired condition ψ will be eventually
satisfied if condition γ is satisfied.

SAL-SMC follows the automata-theoretic approach [185], in which the comple-
mented LTL formula and the transition system are translated into Büchi automata and
analysed as Binary Decision Diagrams (BDDs). Given an LTL formula φ, one can build
a Büchi automaton Aφ associated with φ such that the set of words accepted as input
by Aφ is identical to the set of computations that satisfy φ.

In particular given a transition system S and an LTL formula φ, to check whether
φ is satisfied on S the following steps are performed: (i) The Büchi automaton AS
associated with system S is built; (ii) the LTL formula φ is negated and then the Büchi
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automaton Aφ associated with the negated formula is built; (iii) AS and Aφ are repre-
sented as BDDs and (iv) the intersection between the BDD associated with AS and
the one associated with Aφ is calculated. If the intersection is empty, then φ is satis-
fied on S, otherwise the LTL formula is not satisfied on the transition system, and a
counterexample is provided by the model checker.

5.3 The Untestability Analysis and ATPG Tool

The proposed tool relies on the SAL description language to describe the structure
of the netlist under analysis, on the LTL to specify the untestability theorems and on
SAL-SMC to prove the untestability theorems and to generate counterexamples that
will be used to extract test patterns to detect the testable SEUs..

In the following we first show how to use the SAL language to model netlists of
FPGA-based systems and SEUs occurring in the configuration memory of the device,
we then show how to write untestability theorems using LTL and finally we illustrate
the execution flow of the tool.

5.3.1 Modeling SRAM-based FPGA Netlists

We used the language provided by SAL to model FPGA-based systems starting from
a description of the circuit at the netlist level before the place&route phase. Each
netlist is described by a SAL MODULE. Each component in the netlist is modeled as
a SAL LOCAL Boolean variable that represents the output of the component itself.
Input and output pins of the system are modeled by SAL INPUT and OUTPUT Boolean
variables. In particular the behaviour of output pins is modeled as an assignment
between an output variable and the local variable modeling the associated output
buffer (see below).

The behaviour of asynchronous components is described by Definitions. The
behaviour of synchronous components is described by Transitions. To show how
we modeled the behaviour of components we refer to the simple example of netlist
shown in Figure 5.1.

The behaviour of an input buffer can simply be described as an assignment be-
tween a local variable, modeling the buffer, and an input variable, modeling the as-
sociated input pin. Similarly the behaviour of an output buffer can be described as
an assignment between two local variables, one modeling the buffer and the other
modeling the connected component. Examples of input and output buffers are shown
below:

i_buff_0=i_pin_0;

i_buff_1=i_pin_1;

o_buff_0=d_ff_0;

The behaviour of LUTs is described by the corresponding logic functions. The
lookup tables of the circuit in Figure 5.1 can be modeled as follows:
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Figure 5.1. An example netlist.

LUT_0=i_buff_0 AND i_buff_1;

LUT_1=LUT_0 OR i_buff_1;

Note that LUT_0 and LUT_1 perform the AND and the OR function respectively.
Multiplexers can be described by an IF THEN ELSE clause, as follows (s represents
the select signal for the multiplexer):

y IN IF(s=FALSE)

THEN {x1}

ELSE {x2}

ENDIF;

Flip-flops are described by Transitions. D-flip-flops can be described as a sim-
ple assignment between the next value of the flip-flop and the current value of its
input:

d_ff_0'=LUT_1;

Other types of flip-flops (FDC, FDP, FDCE and FDPE) can be described by an IF

THEN ELSE clause, as follows (e represents the clock enable signal, c the clear signal
and p the pre-set signal):

q' IN IF(c=TRUE)

THEN {FALSE}

ELSE {d}

ENDIF;

q' IN IF(p=TRUE)

THEN {TRUE}

ELSE {d}

ENDIF;

q' IN IF(c=TRUE)

THEN {FALSE}

ELSIF (e=FALSE)

THEN {q}

ELSE {d}
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ENDIF;

q' IN IF(p=TRUE)

THEN {TRUE}

ELSIF (e=FALSE)

THEN {q}

ELSE {d}

ENDIF;

5.3.2 Modeling SEUs Affecting the Configuration Memory

We define an untestable SEU as an SEU that is not able to corrupt the output of the
systems even if it is able to modify the structure of the system (in terms of function-
alities performed by one of its LUTs or in terms of connections among components
of the device). In other words given a system T performing function F and an SEU
s occurring in the configuration memory of T , and modifying the function performed
by T from F into F ∗, we say that s is untestable if the output of F always equals the
output F ∗ being F and F ∗ fed with the same inputs.

We model the effects of SEUs affecting the configuration bits associated with logic
components by modifying the functionality performed by the component according
with the corrupted configuration bit. As an example, with reference to Figure 5.1, we
model the effect of the SEU shown in the figure by modifying the logic functionality of
LUT_0 from f = i_buff_0 AND i_buff_1 to f∗ = i_buff_1.

Similarly we model SEUs affecting configuration bits controlling routing resources:
with reference to Figure 3.9, let Pi and Pj be two PIPs in a switchbox, H and C two
components connected through Pi, with signals going from H (source) to C (destina-
tion), and letK andD be two components similarly connected through Pj . Further, let
Ĥ and K̂ be the SAL variables modeling H and K respectively, fĤ and fK̂ the logic
functions implemented by H and K respectively and xH and xK the configuration of
the input signals of H and K respectively. According to the caused logical effect, we
model a SEU s in the configuration bits controlling Pi and Pj as follows (let us call H
and K the affected components):

• An SEU causing a stuck-at 0 (1) on Pi is modeled by changing the function per-
formed by Ĥ to
f∗
Ĥ

= FALSE (TRUE).
• An SEU causing a bridge between Pi and Pj is modeled by changing the function

performed by Ĥ to
f∗
Ĥ

= fK̂(xK̂)

and the function performed by K̂ to
f∗
K̂

= fĤ(xĤ).
• An SEU causing a Wired-AND (Wired-OR) between Pi and Pj is modeled by

changing the function performed by Ĥ and by K̂ to:
f∗
Ĥ

= f∗
K̂

= fĤ(xĤ) ∧ (∨)fK̂(xK̂)
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• An SEU causing a Wired-MIX between Pi and Pj is modeled by changing the
function performed by Ĥ to:
f∗
Ĥ

= if(fĤ(xĤ) = fK̂(xK̂))

then fĤ(xĤ)

else TRUE

and the function implemented by K̂ to
f∗
K̂

= if(fĤ(xĤ) = fK̂(xK̂))

then fK̂(xK̂)

else FALSE

As we said in Chapter 3, a given SEU in a configuration bit controlling a PIP can
propagate through a number of routing segments with different logical effects. Thus,
a SEU having multiple propagation points is modeled by modifying the functions per-
formed by all the affected components, according with the logical effects associated
with the SEU.

5.3.3 Identifying Untestable SEUs

In order to analyse the untestability of a given SEU, according to what has been
introduced in the previous sections, we build the SAL model of the unfaulty circuit
and of the faulty one, we connect them to the same inputs and we check whether the
outputs of the two systems are always the same or not.

We define untestability theorems as LTL safety formulas, in the formG(¬(∀i (Oi 6=
Oi
∗))) where Oi are the outputs of the unfaulty circuit and Oi∗ are the outputs of the

faulty circuit. Such formulas simply state that it is always false that the output of the
correct system is different from the output of the faulty circuit. If for a given SEU the
theorem is proved, the SEU is demonstrated to be untestable.

In order to show a complete example we list the SAL code for the analysis of the
untestability of the SEU shown in Figure 5.1 (we show the code for the unfaulty circuit,
the code for the faulty circuit associated with the fault shown in the figure and the code
for the untestability theorem).

untest : CONTEXT =

BEGIN

untest_circuit : MODULE =

BEGIN

% Input Pins (for both the unfaulty

% and the faulty circuit)

INPUT i_pin_0 : BOOLEAN

INPUT i_pin_1 : BOOLEAN

% Specification of the unfaulty circuit

LOCAL i_buff_0_C : BOOLEAN

LOCAL i_buff_1_C : BOOLEAN

LOCAL LUT_0_C : BOOLEAN
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LOCAL LUT_1_C : BOOLEAN

LOCAL d_ff_0_C : BOOLEAN

LOCAL o_buff_0_C : BOOLEAN

OUTPUT o_pin_0_C : BOOLEAN

DEFINITION

i_buff_0_C=i_pin_0_C

i_buff_1_C=i_pin_1_C

LUT_0_C=i_buff_0_C AND i_buff_1_C

LUT_1_C=LUT_0_C OR i_buff_1_C

o_buff_0_C=d_ff_0_C

o_pin_0_C=o_buff_0_C

INITIALIZATION

d_ff_0_C=FALSE;

TRANSITION

d_ff_0_C'=LUT_1_C;

% Specification of the faulty circuit

LOCAL i_buff_0_F : BOOLEAN

LOCAL i_buff_1_F : BOOLEAN

LOCAL LUT_0_F : BOOLEAN

LOCAL LUT_1_F : BOOLEAN

LOCAL d_ff_0_F : BOOLEAN

LOCAL o_buff_0_F : BOOLEAN

OUTPUT o_pin_0_F : BOOLEAN

DEFINITION

i_buff_0_F=i_pin_0_F

i_buff_1_F=i_pin_1_F

LUT_0_F=i_buff_1_F

LUT_1_F=LUT_0_F OR i_buff_1_F

o_buff_0_F=d_ff_0_F

o_pin_0_F=o_buff_0_F

INITIALIZATION

d_ff_0_F=FALSE;

TRANSITION

d_ff_0_F'=LUT_1_F;

END;

% Untestability Theorem

untestability : THEOREM

untest_circuit |-

G(NOT(o_pin_0_C/=o_pin_0_F));

END

Note that, as expected, the correct and faulty circuits differ only for the function
implemented by LUT_0, which is the component suffering from the SEU considered in
the example.

5.3.4 Generating Test Patterns for Testable SEUs

When the SAL-SMC model checker is asked to demonstrated a theorem, if the theo-
rem is not proved, a counter-example is automatically produced by the model-checker
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itself. The counter-example provided by SAL-SMC after trying to prove an untestabil-
ity theorem, defined according to what has been discussed in the previous section,
is a sequence of input vectors applied to the inputs of the system that caused the
theorem not to be proved. In particular the sequence of input vectors caused the out-
put of the faulty system to be different from the output of the unfaulty one. Thus the
produced sequence of input patterns represents a test pattern able to test the SEU
under analysis.

5.3.5 The Execution Flow

The overall execution flow of UA2TPG is shown in Figure 5.2. The Netlist Description
File contains a simple description of the netlist in terms of functionalities performed by
components and connections among components. The Logic Fault list contains the
list of the faulty LUT functions associated with each SEU in each LUT actually used
by the system. The Routing Fault list contains the list of the of the effects of each SEU
in each PIP actually used by the system.

Figure 5.2. The data flow of the proposed tool.

For each SEU Sj that may occur in the configuration memory actually used by the
SRAM-based FPGA system under analysis the tool performs the following steps:
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1. If Sj affects the configuration memory controlling a LUT, load the faulty LUT func-
tion of associated with Sj from the Logic Fault list. If Sj affects the configuration
memory controlling a PIP, load the list of effects associated with Sj from the Rout-
ing Fault list.

2. Build the model of the unfaulty system (as described in Section 5.3.1) starting
from the Netlist Description file.

3. Build the model of the faulty system (as described in Section 5.3.2) starting from
the Netlist Description file and from the logical effect induced by the SEU under
analysis identified at step 1.

4. Build the untestability theorem (as described in Section 5.3.3).
5. Invoke SAL-SMC on the untestability theorem.

• If the untestability theorem is proved (thus Sj is untestable) then log Sj in the
list of the untestable SEUs.

• If the untestability theorem is not proved (thus Sj is testable) then extract the
test pattern able to detect Sj from the counter-example provided by SAL-SMC
(as described in Section 5.3.4) and log it into the list of test patterns.

At the end of the untestability analysis the list of the untestable SEUs and the list
of test patterns that test all the testable SEUs are generated. The list of test patterns
contains a test for each testable SEU. This list is then compressed by eliminating all
the duplicated test patterns and all those test patterns that are prefix of longer ones.
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6.1 Related Work: Testing Techniques

Many approaches to automatic test generation for digital circuits [4, 142] are found in
the literature. A broad classification can be made between deterministic and random
test generation methods. Deterministic methods are based on algorithms, such as
the D-algorithm [159, 160], PODEM [85], or FAN [78], that rely on knowledge of the
circuit structure to compute sets of test vectors that can detect all possible stuck-at
faults. These techniques are generally able to generate test patterns with a high fault
coverage and an optimized length, but they suffer from long execution times. Ran-
dom methods [187] produce test vectors as pseudorandomly generated n-tuples of
input values, thus requiring no knowledge of circuit structure. Random methods gen-
erate test vectors more quickly than deterministic methods, but need a large number
of vectors to ensure a high probability of detecting all faults. Newer pseudo-random
techniques use re-seeding and bit changing to improve fault coverage [111, 6]. Some
algorithms, such as RAPS [84] and SMART [3], combine random techniques with
structural information in order to improve the efficiency of randomly generated test
sets.

Another way to improve the quality of randomly generated test sets is using
coverage-directed generation [108, 169]. This is an iterative and evolutionary ap-
proach, where at each step the fault coverage of a group of tests is evaluated by
simulation, and at the next step the group is transformed in order to improve fault cov-
erage and other desirable properties. Many techniques and criteria can be used to
generate new tests at each step. In particular, genetic algorithms [131, 81, 74] have
proved to be effective.

Early applications of genetic algorithms to test pattern generation were presented
by Saab et al. [168], Rudnick et al. [164], and Corno et al. [54]. In the last twenty
years genetic algorithms have been proposed for many tasks in validation and testing
of digital circuits. Genetic algorithms have been used for test pattern generation ad-
dressing hardware defects in digital circuits [168, 164, 54, 165, 174], for test program
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generation addressing microprocessor defects [51, 52, 53, 57] and microprocessor
functional validation [55].

In the area of FPGA testing, two families of methods may be distin-
guished: application-independent and application-dependent methods. Application-
independent methods, such as those reported by Huang et al. [102], Renovell et
al. [157], and Stroud et al. [179], aim at detecting structural defects due to the man-
ufacturing process of the chip. These techniques are mainly performed by the chip
manufacturer, and thus they are also known as manufacturer-oriented techniques.
These methods are called application-independent because they target every possi-
ble fault in the device without any consideration of which parts of the chip are actually
used by the given design and which parts are not. These techniques use multiple test
configurations of the FPGA chip and the associated ad-hoc generated test patterns.
Each test configuration is intended to test a set of the possible faults of the chip.

Conversely, application-dependent methods [163, 180, 30] address only those re-
sources of the FPGA chip actually used by the implemented system. Since these
techniques are applied by the user after the system design has been defined, they
are also known as user-oriented. The basic idea behind this family of techniques is
that very often an FPGA-based system uses only a subset of the resources provided
by the FPGA chip. Therefore, demonstrating that the resources used by the imple-
mented system are fault-free is sufficient to guarantee the correct operation of the
system itself. Application-dependent methods have been proposed for in-service test-
ing of both structural defects [163, 180] and SEUs [30].

6.2 Evolutionary Approaches

Many complex problems may be solved by search methods, i.e., procedures that look
for a solution by trying out many attempts until a satisfactory result is obtained. Such
an attempt might be, e.g., a sequence of moves in a game, a set of variable assign-
ments to solve an equation, or a set of parameter values to optimize a function. Often
more than one solution exists, and some solution may be better than others according
to given criteria [81].

A GA is a search method based on the analogy with the mechanisms of biological
evolution. GAs require that any solution to a given problem be encoded, i.e., rep-
resented as a sequence of symbols, that stands for a chromosome (a sequence of
genes) in the biological analogy. A GA starts from an initial set (a population) of ten-
tative solutions (called chromosomes), selects the best ones according to a problem-
specific fitness function, and the selected chromosomes are combined and mutated
to produce a new population. These operations have a degree of randomness, de-
pending on probability distributions whose parameters can be tuned. The process is
repeated until a termination criterion is met.

Figure 6.1 shows a general structure of a GA, via an activity diagram, where T
identifies each step of the GA.
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Figure 6.1. A scenario for the crossover operator.

More precisely, for a given optimization problem, an initialization process provides
a set of randomly generated approximated solutions. Each solution is then evaluated,
using an appropriate measure of fitness. If the termination criteria are satisfied, a so-
lution is then elected as (sub)optimal for the problem. If not, each solution is encoded
as a chromosome. The chromosomes evolve through successive generations, i.e.,
iterations of the GA. During each generation, a set of new chromosomes, called an
offspring, is formed by: (i) selection of a mating pool, i.e., a quota of parent chromo-
somes from the current population, according to the fitness values; (ii) combination
of pairs of parents via the crossover genetic operator; (iii) modification of offspring
chromosomes via the mutation genetic operator. The new chromosomes are then
decoded in terms of domain solutions. Finally, a new generation is formed by rein-
serting, according to their fitness, some of the parents and offspring, and rejecting the
remaining individuals so as to keep the population size constant.

The design of a GA for a given domain problem requires the specification of the
following major elements: (i) a genetic coding of a solution; (ii) a choice of genetic
operators and parameters; (iii) a fitness function, to evaluate a solution. These issues
are covered in next section.
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v1,1 · · · v1,j · · · v1,n

...
vi,1 · · · vi,j · · · vi,n

...
vl,1 · · · vl,j · · · vl,n

← i-th gene

Figure 6.2. Genetic coding of a test pattern.

6.3 The Genetic Algorithm

GABES is a genetic algorithm-based environment aimed at producing a test set (TS),
i.e., a set of test patterns, each one selected from the population generated at some
step of a GA. More precisely, the GA maintains a Dynamic Global Record Table
(DGRT) [147] containing a list of test patterns with the respective sets of detected
faults. At each generation, the fitness of each individual from the population is eval-
uated. Then the individuals are examined in descending order of fitness and an in-
dividual is inserted in the DGRT if it detects faults that have not yet been found by
previously inserted individuals. The construction of the DGRT is completed when its
entries cover all faults (or a preset number of iterations has been reached), and the
test patterns in the table are the final TS. The information in the DGRT is also used to
compute the fitness function, as explained in Section 6.3.4.

A design choice in the development of the tool was to use a relatively lightweight
GA, leaving a larger share of the computational burden to the already available sim-
ulator. Other proposals in the literature have different approaches, where the GA has
access to details of the circuit structure and functionality, whereas the GA on which
GABES is based relies only on the externally observable behavior of the simulated
circuit.

6.3.1 The Genetic Coding

Single test patterns are considered as individuals (or chromosomes) in the GA. Their
genetic coding, described below, is a matrix of logic values.

Let Vi be an input vector at clock cycle i, i.e., Vi = [v1, . . . , vn], where n is the
number of input signals of the circuit, and the v’s are the respective values. A test
pattern (TP) is a sequence [V1, . . . , Vl] of consecutive input vectors, where l is the
number of clock cycles (or length) of the test pattern. Therefore, a test pattern is
represented by a matrix of size l × n, as shown in Figure 6.2.

The i-th row of the matrix represents the gene corresponding to the input vector
Vi applied at the i-th clock cycle. The j-th column corresponds to the sequence of
values on the j-th input pin.
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Figure 6.3. A scenario for the crossover operator.

It is worth noting that the number of genes in chromosomes is not assumed to
be constant, since the number of clock cycles can take a different value for each test
pattern.

6.3.2 The Genetic Operators and Parameters

Crossover is the main genetic operator. It consists in splitting two chromosomes in
two or more sub-sequences and obtaining two new chromosomes by exchanging
gene sub-sequences between the two original chromosomes. The place where a
sub-sequence starts is called a cut-point. More specifically, we adopt a single-point
crossover (Fig. 6.3) by choosing a non-uniform cut-point for each parent and gener-
ating the descendants by swapping the segments containing the ending clock cycles.
The rationale for this choice is summarized in the following considerations.

With sequential logic, the output of a circuit depends on both the current input val-
ues and the previous inputs, starting from the initial state. Therefore, in order to take
advantage of the added benefit of a gene sequence, in terms of number of recognized
faults, we should take into account the state of the circuit, which is a result of all pre-
vious inputs, i.e., the previous gene sequence. Hence, it is generally more efficient to
have a new generation chromosome retain a large fraction of the previous sequence.

In order to achieve this behaviour, we added the following criterion in the crossover
operation: Random cut-points are generated via the probability density function of an
exponential distribution, i.e., f(x;λ) = λe−λx, where x is the distance of the cut point
from the end of the sequence. This distribution implies that a large initial segment
is kept unchanged from parent to child. Consequently, the end segments that are
swapped are relatively short. The level of exploitation of the previous gene sequences
can be adjusted via parameter λ.

The crossover operator is applied with a probability pc (crossover rate) on the
selected pair of individuals. When the operator is not applied, the offspring is a pair of
identical copies, or clones, of the parents.

A higher crossover rate allows a better exploration of the space of solutions. How-
ever, too high a crossover rate causes unpromising regions of the search space to be
explored. Typical values are in the order of 10−1 [81].
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Mutation is an operator that produces a random alteration in a single bit of a gene.
Mutation is randomly applied. The mutation rate, pm, is defined as the probability that
an arbitrary bit of an arbitrary gene is complemented. If it is too low, many genes that
would have been useful are never discovered, but if it is too high, there will be much
random perturbation, the offspring lose their resemblance to the parents, and the GA
loses the efficiency in learning from the search history. Typical values of pm are in
the order of 10−2 [131]. We control the mutation operator by a dynamic pm which is
linearly decreasing between an initial value pm, and a value pm at the final generation.

With a linearly decreasing pm, the early generations have a high probability of
mutation and solutions are spread all over the solutions space, so that most of them
have a chance to be tried. Later generations have a lower mutation probability, so that
the search is focused on the regions of the solution space where fitter individuals are
found.

6.3.3 Selection Method

A selection operator chooses a subset of chromosomes from the current population.
Various stochastic selection techniques are available. GABES uses the roulette wheel
method [101]. With this method, an individual is selected with a probability that is di-
rectly proportional to its fitness. Each individual is mapped to an arc of a circle whose
length equals the individual’s fitness. The circumference is then equal to the sum of
the fitnesses. Selection is made by choosing a random number with a uniform distri-
bution between 0 and the circumference. The selected individual is the one mapped
to the arc containing the chosen point. This ensures that better fit individuals have a
greater probability of being selected, however all individuals have a chance.

6.3.4 The Fitness Function

The fitness function measures the quality of the solution, and is always problem de-
pendent. In our approach, fitness takes into account the fault coverage achieved by
each test pattern, its length, and its effectiveness in finding hard faults.

The fitness function adopted by GABES relies on a DGRT to evaluate each test
pattern with respect to the performance of previously generated test patterns.

The fitness function of a test pattern i is defined in terms of a value ci that we call
the relative efficiency of the TP:

ci =

ni∑
j=1

(ξij + 1)−k ,

where ni is the number of faults detected by the i-th test pattern; ξij is the number of
test patterns, generated before the i-th one, that detect fault j; k is is a configurable
parameter of the algorithm, ranging in [0, 1]. The data required to compute ξij are kept
in the DGRT.
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The fitness function is then

f(i) =
ci
N
−M li

L
,

where N is the number of injected faults; M is a configurable parameter of the algo-
rithm, ranging in [0, 1], that represents the relative cost per clock cycle. For M equal
to zero, the optimization process tends towards a maximum coverage. For increasing
values of M , the fitness function penalizes also large test patterns. Parameter li is
the length of the i-th test pattern; L is the maximum length of the test patterns. This
parameter is heuristically chosen, depending on the size and complexity of the circuit.

Table 6.1 summarizes the parameters of the fitness function, together with those
occurring in the TP generation algorithm (Sec. 6.3.5). The table also reports the val-
ues assigned to the parameters in the experiments discussed in Sect. 8.4.

The function increases with an individual’s relative efficiency ci. This value in-
creases with the number of faults detected by individual i, but the weight of each
detected fault j decreases with the number ξij of other individuals that have been
shown to detect the fault before i. The number ξij is obtained from the DGRT and in-
dicates how easily a fault can be detected (statistically, easy faults are detected earlier
and more often). In this way, individuals that detect harder-to-find faults are rewarded.
With higher values of parameter k, easy faults detected by a test pattern add a smaller
contribution to its fitness.

6.3.5 Producing the test set

The final TS is obtained by an overall algorithm that iteratively evaluates a population
of test patterns, inserts the best ones in the DGRT, and calls the GA proper to improve
the population. The GA, in turn, uses the DGRT to compute the fitness function, as
shown in the previous subsection. This is described more formally in Algorithm 4,
where s identifies the iterations of the algorithm (up to a limit of smax iterations), D is
the DGRT, and Ps is the test pattern population at iteration s. The size of the popu-
lation is S, and N is the number of possible faults. Parameter S is chosen so as to
guarantee adequate diversity among individuals while limiting the computational cost
of fitness evaluation. Predicate improve(m) is false when a stall condition occurs,
i.e., when no improvement in the fitness of the best individual of each generation is
achieved over the last m iterations.

For ease of notation, we assume that test patterns and faults are identified by
natural numbers. The DGRT is represented as a set of pairs (i, j), such that test
pattern i detects fault j. Function coverage(D) is the number of faults detected by the
test patterns recorded in the DGRT, and detects(i, j) is true if and only if test pattern
i detects fault j. The set of faults detected(i) found by test pattern i is updated in
the course of the simulation. Predicate finds(i, n̄,D) is true if and only if test pattern
i detects a set of at least n̄ faults not yet recorded in the DGRT, and new(i, n̄,D)

returns the pairs (i, j1), . . . , (i, jn̄) such that test pattern i detects a fault in that set.
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The value of n̄ is set initially at 0.05 ·N for smaller circuits and 0.1 ·N for larger ones,
and is changed to 1 when the number of undetected faults drops below the initial value
of n̄.

The GA ga(Ps−1, D) produces the new generation Ps from the previous one,
using the DGRT to compute the fitness. On exit from the outermost loop, function
compact(D) produces a new DGRT by removing individuals whose faults are cov-
ered by other ones. Finally, (D) returns the test patterns contained in the DGRT.

The algorithm stops when one of the following conditions holds: (i) total fault cov-
erage is achieved, or (ii) a stall condition is met, or (iii) the maximum allowed number
of iterations smax is reached.

s← 0
D ← ∅
D′ ← ∅
P0 ← (S randomly generated test patterns)
while coverage(D) < N ∧ improve(m) ∧ s < smax do

for i = 1 to S do
for j = 1 to N do

if detects(i, j) then
detected(i)← detected(i) ∪ {j}

end if
end for
if finds(i, n̄,D) then
D ← D ∪ new(i, n̄,D)

end if
end for
s← s+ 1
Ps ← ga(Ps−1, D)

end while
D′ ← compact(D)
return (D′)

Algorithm 4: The overall algorithm.

In Algorithm 5, P is the current population, PM is the mating pool, A is the off-
spring, i.e., the set of individuals resulting from crossover and mutation, B is the set of
individuals passed unchanged to the next generation, and Q is the size of the mating
pool (Sec. 6.2).

Function select(P ) returns an individual from P , selected with the roulette wheel
method, and function pair(PM ) returns a pair of parents from PM , selected with
the roulette wheel method. Function crossover(x, y, λ) returns the offspring of a
pair of parents, with λ as the level of exploitation parameter for cut point selection
(Sec. 6.3.2). Mutation is then applied to the selected parents with probability pm, and
the mutated individuals are added to set A.
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PM ← ∅
A← ∅
B ← ∅
for i = 1 to Q do
x← select(P )
PM ← PM ∪ {x}

end for
for i = 1 to Q/2 do

(x, y)← pair(PM )
(x′, y′)← crossover(x, y, λ)
x′′ ← mutate(x′, pm)
y′′ ← mutate(y′, pm)
A← A ∪ {x′′, y′′}

end for
for i = 1 to S −Q do
x← select(P, pc)
B ← B ∪ {x}

end for
P ← A ∪B
return P

Algorithm 5: The genetic algorithm.

Finally, a set B is built, with cardinality S−Q, with individuals drawn from the pop-
ulation P passed to the algorithm. The new generation is then obtained by replacing
P by the union of A and B.

It may be observed that all sets used in the algorithm may contain pairs of identi-
cal individuals, due to the random character of the various operators. However, each
individual is identifiable even when it is structurally identical to another one, therefore
all sets are proper sets (not multisets). As a consequence, the cardinality of P is a
constant.

6.4 The Test Pattern Generation Environment

The GA discussed above is coupled with the simulation-based fault injection tool for
FPGAs presented in [34]. In this tool, the netlist of a digital circuit is modeled with the
Stochastic Activity Networks (SAN) [170] formalism using the Möbius [63] modeling
and analysis tool.

The test pattern generation process is shown in Fig. 6.4. In the figure, the block
labelled “FPGA Design Process” is performed by an external tool that produces a
netlist described in the EDIF language. This description is parsed and translated into
the format used by the simulator to instantiate the model of the FPGA-based system,
so the tool can seamlessly interact with the standard design process of an FPGA
application.
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Table 6.1. Parameters of GABES.

Parameter Description Value Reference
λ rate parameter for cutpoint distribution 1 Sec. 6.3.2
pc crossover rate 0.8 Sec. 6.3.2
pm maximum mutation rate 0.15 Sec. 6.3.2
pm minimum mutation rate 0.05 Sec. 6.3.2
N number of possible faults – Sec. 6.3.4
M penalty coefficient for TP length 0.5 Sec. 6.3.4
L maximum length for TPs 10000 Sec. 6.3.4
k penalty exponent for easy-to-detect faults 0.75 Sec. 6.3.4
smax maximum number of iterations 2000 Sec. 6.3.5
S TP population size 200 Sec. 6.3.5
m number of iterations considered for stall condition 20 Sec. 6.3.5
n̄ threshold for acceptance into DGRT – Sec. 6.3.5

Figure 6.4. The Test Pattern Generation process.

The GA feeds the fault simulator with the current population of test patterns and
then it waits for the fault coverage values produced as output of the simulations. These
values are then used to update the DGRT and compute the fitness functions of the
test patterns, leading to the next generation of the GA.

This GA is an efficient pattern generator thanks to the iterative processing of
blocks of test patterns, which appreciably reduces the search space. It is worth not-
ing that its genetic operators have the following properties: (i) At each generation,
selection chooses test patterns which are better than average; (ii) crossover creates
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groups of similar patterns to avoid worsening the quality of the selected patterns; and
(iii) mutation creates dissimilar patterns without interfering with the result of crossover,
especially in the later generations.
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The SEU Analysis and Test Environment

All the tools previously presented work in conjunction with an EDIF parser and with
the E2STAR tool [37]. In particular the parser is a tool able to translate the EDIF de-
scription of the netlist into an intermediate description of the topology of the netlist
in terms of connections among logic components and functionalities performed by
components. This description is composed of a number of entries (one for each com-
ponent in the netlist) of the form shown below:

i comp_typei comp_fncti n_inputsi input_comp1
i . . . input_compn_inputsi

i

where i represents the id of the component, comp_typei represents the type of
component i (LUT, flip-flop, multiplexer or I/O buffer), comp_fncti represents the func-
tion performed by component i (the truth table for LUTs, the type of flip-flop, input or
output for buffers), n_inputsi represents the number of input pins of component i and
finally input_compji represents the id of the component whose output is connected
with the jth input pin of component i. Examples of entries are listed below:

2 ibuf 1;

3 lut 1100100100000000 4 1 15 0 17;

15 fdc 2 12 2;

In the examples component 2 is an input buffer connected to the input pin 1; com-
ponent 3 is a LUT, implementing the truth table 1100100100000000 and connected
with components 1, 15, 0 and 17; finally component 15 is a flip-flop with asynchronous
reset, connected with component 12 (data signal) and with component 2 (clear signal).

Moreover the parser is able to produce a list of the effects of SEUs occurring
in configuration bits associated with the logic resources used by the system under
analysis. These faults are represented in terms of the induced modification of the
truth table of the affected LUT.
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E2STAR is a static analyzer of the configuration memory of the SRAM-based
FPGA device developed at the Politecnico di Torino. Given an FPGA device and a
placed-and-routed design, E2STAR is able to determine which are the configuration
bits actually used by the design. Further E2STAR is also able to determine which are
the logical effects of SEUs occurring in the configuration bits controlling routing re-
sources according to the fault model presented in Chapter 3. For each configuration
bit associated with a routing component E2STAR reports the number of propaga-
tion points of an SEU occurring in the configuration bit, and for each propagation
point E2STAR reports the logical effect, the affected component(s) and the pins of
the affected component(s) to which the fault propagates. An example of entry is listed
below:

12 3;

0 b 12 0 4 0;

1 wa 32 1 11 3;

2 sa0 23 2;

This example is related to an SEU having sequence number 12 and three prop-
agation points (see the first line). In the first propagation point the SEU propagates
as a bridge between pin 0 of component 12 and pin 0 of component 4. In the second
propagation point the SEU propagates as a wired-and between pin 1 of component 32
and pin 3 of component 11. Finally in the third propagation point the SEU propagates
as a stuck-at 0 on pin 2 of component 23.

The overall structure of the SEU analysis and test environment is shown in Fig-
ure 7.1. After the HDL specification of the system has been synthesized, the netlist
description file and the list of the effects of SEUs in the configuration bits control-
ling logic resources are generated by the parser from the EDIF representation of the
netlist. Starting from the synthesized netlist, the place-and-route algorithm performs
the placement and routing of the designed system. After this step, E2STAR can be
performed on the post-place-and-route netlist description.

More in detail, the use of the proposed software tools involves the following steps:

1. Producing the Verilog/VHDL behavioural description of a system;
2. Obtaining the EDIF description of the netlist of the system with the support of a

synthesis tool;
3. Translating the EDIF netlist into the intermediate language using the EDIF parser,

obtaining the intermediate description of the netlist and the list of the effects of
the SEUs in the configuration bits controlling logic resources;

4. Placing-and-routing the netlist on a target device using a place-and-route tool;
5. Running E2STAR on the placed-and-routed netlist obtaining the list of the effects

of SEUs in the configuration bits controlling routing resources;
6. For the execution of ASSESS the following additional steps have to be executed:
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Figure 7.1. Flow Diagram of the SEU Analysis and Test Environment.

a) Configuring the simulator specifying the number of simulated clock cycles, the
type of simulation, and the required outputs; and finally

b) Executing ASSESS.
7. For the execution of UA2TPG the following additional steps have to be executed:

a) Executing UA2TPG.
b) Compressing the set of test patterns generated by UA2TPG, by eliminating

duplicated test patterns and those test patterns that are prefix of longer test
patterns

8. For the execution of GABES the following additional steps have to be executed:
a) Configuring the genetic algorithm specifying the parameters of the GA and

the characteristics of the required solutions; and finally
b) Executing GABES.

It may be observed that the proposed environment is fully integrated in the stan-
dard design process of FPGA-based systems. In particular, as previously noted, all
the proposed tools take an intermediate representation of the netlist produced by a
parser that takes as input the EDIF file produced by the synthesis tool. Moreover, the
E2STAR works directly on the post place-and-route netlist description file.
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Experimental Results

8.1 The considered circuits

In order to test the capabilities of the proposed tools we applied it to some circuits
from the ITC’99 benchmark [56]. The tested benchmark circuits provide a diversified
set of test cases composed of sequential circuits with a single clock signal, no tristate
buses or internal memories, modeled at the RTL level, ranging from 6 to 8, 000 equiv-
alent gates and from 4 to 59 FFs. We synthesised the VHDL code of the circuits using
the Xilinx ISE CAD tool. As a target device we adopted the Xilinx Virtex-II XC2VP30
device. The characteristics of the designs used in the experiments are shown in Ta-
ble 8.1, which reports for each circuit the number of SEUs affecting logic and routing
resources (column L-SEUs and R-SEUs respectively), the number of Look-Up Tables
(LUTs), Flip-FLop (FFs), MUXes, Input and Output buffers. Table 8.2 shows the func-
tionality implemented by each circuit. The computer used for the experiments was
equipped with an Intel Core i5 (QuadCore) 2.67 GHz, 256 KB L1 Cache, 1 MB L2
Cache, 8MB L3 Cache, 4 GB RAM.

In Table 8.3 we show the results of the analysis performed with E2STAR to the
considered circuits. The table shows the number of critical configuration memory bits
(RoutingFaults) identified by the tool, and the number of affected nodes classified by
logical effect: Stuck-at-0, Stuck-at-1, Wired-And, Wired-Mix, and Bridge. Wired-Or ef-
fects were not observed. It may be observed that, as we previously discussed, the
number of propagation points per SEU in the configuration bits controlling the routing
structure is much higher than the actual number of SEUs itself. In particular the num-
ber of fault propagation points is on average 5.3 times larger than the number of faults
(6.06 times larger for the b07 circuit). Moreover, as it was discussed in Chapter 3,
the largest number of effects of SEUs is stuck-at 0 and stuck-at 1. This, together with
the accurate model of the electrical effects induced by SEUs in PIPs, makes the fault
model implemented by the simulator much accurate than the classical open/short fault
model for circuit interconnections.
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Table 8.1. Characteristics of the considered benchmark circuits.

Circuit L-SEUs R-SEUs LUTs FFs MUXs IBuffs OBuffs

b01 124 547 9 5 0 3 2
b02 52 304 4 4 0 2 1
b03 954 5,910 76 37 0 5 4
b06 104 566 9 8 0 3 6
b07 1,720 10,431 152 51 20 2 8
b08 504 2,689 40 21 0 10 4
b09 692 3,872 53 28 0 2 1
b10 660 3,942 52 24 0 12 6
b11 1,776 10,104 147 38 14 8 6
b13 1,216 7,203 106 59 11 11 10

Table 8.2. Benchmark circuit functions.

Circuit Function

b01 Compare serial flows
b02 Recognize binary coded decimal numbers
b03 Resource arbiter
b06 Interrupt handler
b07 Count points on a straight line
b08 Find inclusions in sequences of numbers
b09 Serial-to-serial converter
b10 Voting system
b11 Scramble string with variable cipher
b13 Interface to meteo sensors

8.2 Results from the application of ASSESS

Each circuit was simulated by applying 10, 000 randomly generated test patterns and
performing an exhaustive fault injection. For each circuit, the same test vectors and
faults were also applied to and injected into its prototype on the fault injection board.
This experiment allowed us to validate the proposed fault simulator.

The comparison between the two sets of results (fault simulation and fault injec-
tion) is shown in Table 8.4. The table shows in the second column (TotFaults) the total
number of faults (both in logic and routing elements), in the third column (Sim-DF )
the number of faults that caused a failure of the systems during the SEU simulation,
in the fourth column (Sim-T ) the simulation time (in minutes), in the fifth column (FI-
DF ) the number of faults that caused a failure of the system during the fault injection
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Table 8.3. Effects of SEUs in the routing elements.

Circuit RoutingFaults SA0 SA1 W-AND W-Mix Bridge

b01 547 708 2,944 5 7 0
b02 304 118 339 5 7 102
b03 5,910 8,105 21,661 1,423 1,431 2,320
b06 566 372 790 0 18 305
b07 10,431 18,331 47,762 4,085 3,911 4,739
b08 2,689 3,074 8,061 464 496 1,217
b09 3,872 6,569 15,948 567 512 1,908
b10 3,942 4,603 10,727 482 692 1,498
b11 10,104 14,059 35,749 3,537 3,536 4,480
b13 7,203 10,390 27,720 1,143 1,387 3,602

Table 8.4. Results from SEU simulation and fault injection

Circuit TotFaults Sim-DF Sim-T(min) FI-DF FI-T(min)

b01 676 676 0.45 676 60.84
b02 359 352 0.11 350 32.31
b03 6,873 3,285 1,470.90 3,278 518.57
b06 679 670 0.56 670 61.11
b07 12,161 927 15,709.98 927 1,094.49
b08 3,207 157 189.73 157 288.63
b09 4,567 2,081 308.26 2,080 411.03
b10 4,620 3,548 365.75 3,545 415.80
b11 11,894 7,521 8,587.46 7,519 1,070.46
b13 8,440 2,517 2,424.14 2,515 756.6

experiment, and in the sixth column (FI-T ) the time (in minutes) used by the fault
injector.

The comparison between columns Sim-DF and FI-DF in Table 8.4 shows that
the proposed simulation method is able to accurately reproduce the effects of SEUs
affecting any configuration bit of an SRAM-based FPGA system. In particular the
comparison with results obtained by fault injection show that our simulator has an
average error of 0.1%, with a maximum error for b02 of 0.5%.

The accuracy of the proposed simulator is even more evident if we look at Ta-
ble 8.5, where the results (in terms of SEU sensitivity) obtained with the proposed
simulator are compared with the results obtained with the same simulator but con-
sidering stuck-at faults (that is what commercial and academic fault simulators are
today able to do) instead of the accurate fault model previously discussed and with
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Table 8.5. Estimated SEU Sensitivities Comparison

Circuit SimSens SimSASens FISens

b01 100.0% 100.0% 100%
b02 98.0% 100.0% 97.5%
b03 47.8% 45.9% 47.7%
b06 98.7% 100.0% 98.7%
b07 7.6% 5.1% 7.6%
b08 4.9% 2.1% 4.9%
b09 45.5% 37.6% 45.5%
b10 76.8% 76.2% 76.7%
b11 63.2% 80.5% 63.2%
b13 29.8% 27.1% 29.7%

results obtained by fault injection. As we can see from Table 8.5 the proposed SEU
simulator (SimSens column) and the fault injection experiments (FISens column) es-
timate almost the same SEU sensitivity, while using a stuck-at based fault simulator
(SimSASens column) we obtain very different results. This is due to two reasons: (i)
the number of stuck-at faults is much smaller than the actual number of SEUs that
may occur in the configuration memory of an SRAM-based FPGA system; and (ii)
as we previously discussed, the activation and propagation for stuck-at faults is com-
pletely different than for SEUs affecting the configuration memory controlling logic
components on the one hand, and controlling routing resources on the other hand.

In particular, while, as we previously discussed, the error of ASSESS with respect
of the fault injection is 0.1% on average, with a maximum 0.5%, the stuck-at fault
simulation has an average error of 15.1% and a maximum error, for the b08 circuit,
of 56.2% with respect of the fault simulation. This experiment clearly shows that the
analysis of the sensitivity to SEUs in the configuration memory performed by ASSESS
is extremely more accurate than the one performed by the existing simulators of faults
that consider the stuck-at fault model to emulate the behaviour of a faulty component
in the netlist.

Using ASSESS the average time per simulated fault is dependent on the size
and complexity of the circuit. Even if for small circuits the simulator is faster than the
fault injector, on average, as expected, the simulator is slower than the fault injector.
The time needed to simulate large circuits is much longer the the time required by
fault injection. Nevertheless the proposed tool could be used early during the design
process, thus allowing designers to assess early the robustness to SEUs of the circuit.
In this way ASSESS could bring two benefits to designers: (i) system modifications
and corrections due to discovered weaknesses against SEUs could be performed
early, thus allowing designers to save money and time; and (ii) the final radiation
testing and fault injection experiments can be performed on a prototype of the system
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Table 8.6. Simulation Time Comparison

Circuit Sim-T(min) SimSA-T(min) FI-T(min)

b01 0.45 0.04 60.84
b02 0.11 0.01 32.31
b03 1,470.90 119.13 518.57
b06 0.56 0.04 61.11
b07 15,709.98 1798.58 1,094.49
b08 189.73 27.95 288.63
b09 308.26 30.18 411.03
b10 365.75 24.13 415.80
b11 8,587.46 697.27 1,070.46
b13 2,424.14 523.57 756.6

that has been already hardened against SEUs, thus, again, allowing designers to
save money and time. Moreover, as we have previously shown, classical stuck-at fault
simulators are not able to accurately reproduce the behaviour of the faulty system,
even if they are much faster than ASSESS (as shown in Table 8.6), while ASSESS is
able to estimate the SEU sensitivity of the system with a very low error. If we consider
these points, we believe that the long time needed by the proposed SEU simulator
does not represent such a high cost.

In order to show the usage of ASSESS for failure probability analysis we performed
the following experiment: we considered the SEU rate of 82 s−1 reported in [7]; thus
assuming a working frequency of 1MHz, we had a SEU rate of 8,2 · 10−8 per clock
cycle. We point out that this is just a usage example with some realistic values for
SEU occurrence probability and working frequency of the system. We simulated the
circuits b08, b09 and b10 for 500,000 up to 5,000,000 clock cycles (thus simulating
0.5 up to 5 seconds) randomly injecting SEUs during the simulation. For each time
duration we performed 1,000 up to 5,000 simulation runs in order to obtain failure
probability values with a confidence level of 0.95 and a confidence interval of 0.1.
Results from this experiment are shown by Figure 8.1 and by Figure 8.2.

Figure 8.1 represents the single-SEU failure probability of the tree circuits: only
one SEU per simulation run was randomly injected in the circuit, thus allowing us to
assess the failure probability due to single SEUs.

Figure 8.2 represents the accumulation-SEU failure probability of the tree circuits:
Ncb SEUs per simulation run were randomly injected in the circuit, being Ncb the
number of configuration bits actually used by the system, thus allowing us to assess
the failure probability due to SEU accumulation.
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Figure 8.1. Failure probability with single SEU injection.

Figure 8.2. Failure probability with multiple SEU injection.

8.3 Results from the application of UA2TPG

In order to perform a sanity check of the proposed tool we tested some ITC’99 circuits
with 100000 randomly generated test vectors and with the test patterns produced by
the genetic algorithm presented in [30]. The result of this experiment was that neither
testing technique was able to cover the faults that the proposed tool proved to be
untestable. Further we performed the unexcitability analysis using the tools presented
in [33] and in [36] on the circuits considered for validation. Results from this analysis
showed that the set of untestable faults identified by the tool proposed in this paper
always contained the set of unexcitable faults identified by the tools presented in [33]
and in [36]. Finally, using the SEU simulator presented in [37], we checked that the
test patterns generated by UA2TPG were actually able to detect those faults that had
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Table 8.7. Results from the application of UA2TPG.

Circuit TotF UntLogF UntRoutF TotUntF UntTime(min)

b01 671 0 0 0 1.29
b02 356 6 2 8 0.66
b03 6,864 694 214 908 62.8
b06 670 8 6 14 1.24
b08 3,903 76 66 142 16.34
b09 4,564 244 73 317 35.48
b10 4,602 288 136 424 31.39
b13 8,419 640 671 1,311 263.10

Figure 8.3. Fault untestability for the considered circuits.

been demonstrated to be testable. All these results reinforced our confidence in the
correctness of the analysis.

Results obtained from the application of the proposed tool to the considered cir-
cuits are shown in Table 8.7. The table shows the circuit name, the total number
of faults in configuration bits controlling both logic and routing resources (TotF), the
number of untestable SEUs affecting logic resources (UntLogF column), the number
of untestable SEUs affecting routing resources (UntRoutF column), the total num-
ber of untestable SEUs (TotUntF column) and the time (in minutes) needed by the
tool to carry out the analysis (UntTime column). Figure 8.3 shows the percentage of
untestable SEUs in configuration bits controlling logic and routing resources, and the
total untestability percentage for each circuit.
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Figure 8.4. Fault untestability for the considered circuits obtained with UA2TPG, with the tools
proposed in [33] and in [36] and considering stuck-at faults.

The experiments show that almost all the considered circuits, except for b01, have
a number of faults that cannot be tested. The average untestability is 6.6%. The high-
est untestability is 15.5% for b13, while the lowest is 2% for b06. SEUs in logic re-
sources seem to be much harder to test than SEUs in routing resources. This may be
explained, if we take two points into account: (i) the excitation of an SEU in a configu-
ration bit controlling an LUT depends on the values of all the inputs of the LUT while,
as we previously discussed, the excitation of an SEU in a configuration bit controlling
a PIP depends on the value of one or two signals; and (ii) as we previously discussed,
each SEU in the routing structure has a very large number of propagation points. If
we consider only SEUs in logic resources we find an average untestability of 29.8%,
with a peak of about 72.7% for b03. Considering only SEUs in routing resources we
find an average untestability of 2.8%, with a peek of about 9.3% for b13.

The accuracy of the proposed tool is evident if we look at Figure 8.4, where the
results (in terms of SEU untestability) obtained with the proposed tool are compared
with the results obtained combining the tools for the SEU unexcitability analysis pre-
sented in [33] and [36] (SEU-X columns) and with a version of UA2TPG modified in
order to consider stuck-at faults (that is what similar commercial and academic tools
are today able to do) instead of the accurate fault model previously discussed. As we
can see from the figure, the combination of the tools presented in [33] and [36] (orange
line) calculates a fault untestability that is always smaller than the untestability calcu-
lated by UA2TPG. This is obvious if we consider that UA2TPG addresses the whole
untestability problem (fault activation and propagation) while in [33] and [36] only the
problem of fault activation was considered. By comparing the analysis performed by
UA2TPG, with the stuck-at untestability analysis (light yellow line) we can see how
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Table 8.8. Automatic Test Pattern Generation Results using UA2TPG.

Circuit TotF TPLen

b01 671 538
b02 356 160
b03 6,864 1,111
b06 670 255
b08 3,903 89
b09 4,564 5,866
b10 4,602 5,614
b13 8,419 5,003

different the results are, and thus how the inaccuracy of the stuck-at fault model af-
fects the analysis of the testability of faults, when SEUs in the configuration memory
of SRAM-based FPGAs are considered. This is due to two reasons: (i) the number of
stuck-at faults is much smaller than the actual number of SEUs that may occur in the
configuration memory of an SRAM-based FPGA system; and (ii) as we previously dis-
cussed, the activation and propagation for stuck-at faults is completely different than
for SEUs affecting the configuration memory controlling logic components on the one
hand, and controlling routing resources on the other hand.

Table 8.8 shows the number of faults of each circuit (TotF column) and the length
of the test patterns generated by the proposed tool (TPLen column). We point out that
these test patterns are able to cover the 100% of the testable SEUs.

In order to show the accuracy of the test patterns generated by UA2TPG for the
accurate model of SEUs, with respect to test patterns generated for stuck-at faults
we used the SEU simulator presented in [37] to evaluate the fault coverage obtained
using the two sets of test patterns. As expected, test patterns generated by UA2TPG
for the accurate SEU model detected the 100% of the testable faults. Test patterns
generated for the stuck-at fault model obtained much lower fault coverage values:
78.9% on average, maximum 93.16% for b02 and minimum 54.03% for b03. Results
from this experiment are reported in Table 8.9 that for each circuit shows the fault
coverage obtained with the test patterns generated for the accurate model of SEUs
(column F-Coverage) and for stuck-at faults (column F-CoverageSA)

The time required for the analysis ranges from some seconds up to some minutes
for very small and medium size circuits. For larger circuits the required time is about
some hours. We believe that these times are reasonable if we take into account two
different points: on the one hand this analysis should be performed just once during
the design of the system; on the other hand, by automatically generating test patterns
able to test the 100% of the testable SEUs, the proposed tool could substitute other
ATPG tools used in the FPGA design process, thus producing an overall benefit for
the design of the system.
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Table 8.9. Comparison of fault coverages obtained with test patterns generated for SEU and
for stuck-at faults.

Circuit F-Coverage F-CoverageSA

b01 100% 92.89%
b02 100% 93.16%
b03 100% 54.03%
b06 100% 92.71%
b08 100% 61.33%
b09 100% 82.23%
b10 100% 73.54%
b13 100% 81.38%

8.4 Results from the application of GABES

The GABES test pattern generator has been applied to some circuits from the ITC’99
suite [56]. The VHDL code of the circuits was synthesized for the Virtex 4 target de-
vice using the Xilinx ISE tool [2]. The characteristics of the netlists, in terms of the
number of LUTs, flip-flops (FFs), multiplexers (MUXs) and input and output buffers
(IBuffs and OBuffs), are summarized in Table 8.10. The function of the circuits, as
reported in Corno et al. [56], is shown in Table 8.2. The values of the parameters for
the experiments are shown in Table 6.1.

Table 8.10. Characteristics of the circuits to which GABES has been applied.

Circuit LUTs FFs MUXs IBufs OBufs
b01 15 10 1 3 2
b02 4 4 0 2 1
b03 90 35 1 5 4
b06 9 8 0 3 6
b08 47 21 1 10 4
b09 47 29 2 2 1
b10 55 24 0 12 6

In all experiments, only the excitable faults were injected. The unexcitability anal-
ysis of SEUs in the configuration memory was carried out with SEU-X [33].

The GA uses an adaptive DGRT admittance threshold policy, with DGRT com-
paction. The GA terminates if there is no improvement in the best fitness of the pop-
ulation over a predetermined number of generations, or when the preset maximum
number of generations is reached.

To show the behaviour of the optimization process performed by the GA, in Fig-
ure 8.5 we report, for the ITC’99 b09 circuit, the fault coverage of the whole DGRT
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Figure 8.5. DGRT coverage vs. number of generations for b09.

(i.e., the cardinality of the union of the faults detected by each DGRT entry) at each
generation versus the number of generations. Here the optimization process has been
tuned so as to maximize coverage, at the cost of greater test length. The figure shows
how a high coverage is achieved after a small number of generations.

For the same trial considered in Figure 8.5, Figure 8.6 represents the number of
individuals in DGRT that detect a fault, for each generation and for each fault, before
DGRT compaction. The number of individuals is represented via a grey level. Horizon-
tal solid black lines show undetected faults, whereas light horizontal lines represent
easy-to-detect faults. A number of solid black lines is expected, due to the presence
of non-observable faults.

In Figure 8.7, the final status of the DGRT in terms of fault coverage is shown: for
each individual in DGRT and for each fault, a white (black) dot represents a covered
(uncovered) fault, respectively. Black horizontal lines represent undetected faults. It
can be observed that many individuals are very similar in terms of detected faults. It
has been experienced that this phenomenon occurs particularly when the fitness func-
tion is tuned to maximize coverage by loosening constraints on test length (choosing
low or null values of M ) and on the threshold for acceptance in the DGRT (choosing
low values of n̄). New individuals added in the DGRT may also detects faults already
detected by other individuals, thus making the latter redundant. As an example, in the
reported trial the compacting process reduced the length of the test set by 40.3%.

Results from the application of GABES for the generation of test patterns for the
logic resources of the considered circuits are shown in Table 8.11. For each circuit, the
Faults column reports the number of possible faults while the Unex column reports the
number of unexcitable faults calculated with the SEU-X tool. The remaining columns
(Fe, Ct, Cc, Length, and Time) report the percentage of excitable faults, the measured
coverage with respect to all faults, the measured coverage with respect to excitable
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Figure 8.6. Detection of faults by GA generation.

Table 8.11. Experimental results using GABES.

Circuit Faults Unex Fe (%) Ct (%) Cc (%) Length Time
b01 197 55 72.1 69.53 96.47 151 10.25
b02 55 6 89.1 87.26 97.95 163 1.32
b03 1083 508 53.1 43.11 81.21 2380 8620.29
b06 113 8 92.9 92.02 99.04 76 3.32
b08 590 47 92.0 79.99 86.92 6988 9630.87
b09 651 205 68.5 60.37 88.12 3033 2042.98
b10 726 208 71.3 71.3 100.0 1638 84.31

faults, the test length (cumulative number of clock cycles of the test set), and the
simulation time (in minutes), respectively.

Table 8.12 compares the results for the multiple test patterns solution generated
by the GABES tool (Multiple TP GA column) with those obtained by the same tool in
single test pattern mode (Single TP GA column), and with those obtained by random
testing (Random and Random* columns).
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Figure 8.7. Final DGRT coverage.

The single test mode is a particular case of the TP generation algorithm, where the
test set reduces to a single TP. In this mode, the DGRT is disabled and parameter k of
the fitness function is set to zero. Two different random testing trials were performed:
In the first one (Random column) a random test pattern of fixed length (10 thousand
clock cycles) was used; in the second one (Random* column) a random test pattern
with the same length as the one produced in multiple test pattern mode was used.

Results from the application of the single test pattern mode to many of the consid-
ered circuits are missing because, given the very long execution time, it was unfeasible
to apply the tool to circuits larger than b01, b02 and b06.

The multiple test pattern mode of the genetic algorithm made it possible to tackle
larger circuits than the single test pattern mode.

It can then be argued that generating a test set instead of a single test pattern
considerably improves the efficiency of the TP generation process, because each test
pattern is independent with respect to the other ones in the test set.
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Table 8.12. Comparison of the results obtained by GABES with other results.

Circuit
Multiple TP GA Single TP GA Random Random*
Ct (%) Length Ct (%) Length Ct (%) Ct (%)

b01 69.53 151 64.97 120 69.0 37.05
b02 87.26 163 89.1 41 85.45 16.36
b03 43.11 2380 – - 27.52 23.26
b06 92.02 76 92.9 72 92.0 50.44
b08 79.99 6988 – - 2.7 2.7
b09 60.37 3033 – - 6.3 5.83
b10 71.30 1638 – - 38.56 38.7

Further, it may be observed that results obtained by the GA are much better than
the ones obtained by random testing, either in terms of fault coverage or of test length,
and for some circuits in terms of both. In particular, compared to the results in the Ran-
dom* column, the multiple test pattern solution achieves much higher fault coverages.

Comparing the values of Ct in the Multiple TP GA column in Table 8.12 with the
Random* column, an average improvement of 7.54 is observed, with a maximum
improvement of 29.72 for the b09 circuit. With respect to the Random column, the
solution generated by the genetic algorithm has always a shorter length, while the
fault coverage is higher for large circuits and equals for the small ones. This reveals
the better scalability of the Multiple TPGA with respect to the other approaches. For
example, the solution generated by the Multiple TP GA for b09 is 3.03 times shorter
and has a 9.58 times higher fault coverage than the Random solution (whose length
is fixed to 10 thousand clock cycles).

Finally, we observe that fault coverages reported in the literature for other test
pattern generators [56, 163], are generally much higher than the ones shown here.
Those test pattern generators consider the stuck-at fault model, whereas the one
discussed here addresses SEUs in any configuration bit. These faults are arguably
more difficult to detect than stuck-at faults, and, as observed in Chapter 3, much more
numerous. A comparison of our results with those in the current literature should take
these differences into account.
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9

Conclusions

In this dissertation a framework of tools for the analysis and test of the effects of SEUs
occurring in the configuration memory of SRAM-based FPGA systems has been pre-
sented. All the proposed tools implement an accurate model of SEUs affecting the
configuration bits controlling both logic and routing resources of the system. This
makes the proposed tools much more accurate than similar commercial and aca-
demic tools currently available. The advantage of the proposed tools is that they can
be applied early during the design process of the system, thus allowing designers
to reach the final fault injection and radiation experiments with a prototype of a well
studied and analysed system.

The framework is composed of ASSESS, a simulator of SEUs working on the
netlist representation of the system; UA2TPG, an untestability analyzer and automatic
test pattern generator and GABES, a genetic algorithm-based tool for the generation
and optimization of test patterns for in-service testing. We point out that these are the
first software tools for the simulation, the untestability analysis and the test pattern
generation specifically addressing SEUs in the configuration memory of SRAM-based
FPGA systems.

The comparison between results obtained using ASSESS and by fault injection
has shown that the proposed SEU simulator is able to very accurately reproduce the
behaviour of a faulty FPGA-based system. Moreover, by comparing results obtained
using ASSESS with results obtained by simulating stuck-at faults, we have shown that
the proposed simulator is much more accurate than similar tools today available, even
if the time required for the analysis performed by ASSESS is much longer than that
required by other simulators. In particular the comparison between results obtained
using ASSESS with those obtained by fault injection has shown that the proposed fault
simulator has an average error of 0.1% and a maximum error of 0.5%, while using a
stuck-at fault simulator the average error with respect of the fault injection experiment
has been 15.1% with a maximum error of 56.2%. Finally we have shown how the
proposed SEU simulator can be used to evaluate the effects of the accumulation of
SEUs in the configuration memory of SRAM-based FPGA systems.



CHAPTER 9. CONCLUSIONS

The application of UA2TPG to some circuits from ITC’99 benchmarks has shown
that the tool is able to identify the untestable SEUs much more accurately than other
tools for the analysis of the testability of SEUs in the configuration memory of SRAM-
based FPGAs and than other tools for the analysis of the testability of stuck-at faults
in digital circuits. In particular by comparing the untestability results obtained using
UA2TPG for the accurate SEU model, with the results of the untestability analysis
for stuck-at faults we find an average difference of 7.9% with a maximum of 37.4%.
UA2TPG is also able to generate test patterns to test the 100% of the testable SEUs
in a reasonable time. Finally the comparison between fault coverages obtained by test
patterns generated for the accurate model of SEUs and the fault coverages obtained
by test pattern designed for stuck-at faults, shows that the former detect the 100% of
the testable faults, while the latter reach an average fault coverage of 78.9%, with a
minimum of 54% and a maximum of 93.16%.

The application of GABES to some circuits from the ITC’99 benchmark has shown
that the adopted multiple test pattern genetic algorithm reaches good scalability and
efficiency in terms of both fault coverage and length of the test patterns.
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