
May 2000 UILU-ENG-00-2205
CRHC-98-14

University o f Illinois at Urbana-Champaign

A Graph Traversal Based Framework for Sequential Logic
Implication with an Application to C-Cycle Redundancy
Identification

Jian-Kun Zhao, Jeffrey A. Newquist, and Janak H. Patel

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801

bi zyo MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE Form Approved
OMB NO. 0704-0188

Public reporting buroen for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this
collection of information, «eluding suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports. 1215 Jefferson
Davis Highway. Suite 1204. Arlington. VA 22202-4302. ana to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1998

4. TITLE AND SUBTITLE

A Graph Traversal Based Framework for Sequential Logic
Application to C-cycle Redundancy Identification

5. FUNDING NUMBERS

SRC 97-DS-482
DABT63-95-C-0069

6. AUTHORfS) " ' Jian-Kun Zhao, Jeffrey A. Newquist, and Janak H. Patel

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)

Coordinated Science Laboratory
University of Illinois
1308 W. Main St.
Urbana, IL 61801

8. PERFORMING ORGANIZATION
REPORT NUMBER

(CRHC-98-14)
UILU-ENG-00-2005

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Semiconductor Research Corp. DARPA
P.0. Box 12053 P.0. Box 12748
Research Triangle Park, NC 27709-2053 Ft. Huachuca, AZ85670-2748

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as
an official Department of the Army position, policy or aecision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper presents a new graph traversal based framework for sequential logic implication called
GRAPH_SIMP. Due to the prohibitive time and space cost, few previous work target the discovery of
sequential indirect implications that span multiple time frames. By using an efficient graph data structure
and incorporating a graph reduction step into the implication generation process, our approach provides
an efficient full support for sequential implication. Sequential logic implication has many useful applica
tions, one of which is sequentially redundant fault identification. We show that sequential implications
found by GRAPH_SIMP allow us to find more sequential redundancies than previously reported.
Results of testing our implication algorithm against ISCAS89 circuits show that high implication cover
age is essential to identifying redundant faults.

14. SUBJECT TERMS
ATPG, fault modeling

15. NUMBER IF PAGES
24

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OR REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01 -280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
, 298-102

A Graph Traversal Based Framework for Sequential
Logic Implication with an Application to C-cycle

Redundancy Identification

Jian-Kun Zhao (C ontact A uthor)

Center for Reliable & High-Performance Computing
University of Illinois
1308 W. Main Street

Urbana, IL 61801
Phone: (217)-244-7174 FAX: (217)-244-5685

Email: j-zhaol@crhc.uiuc.edu

Jeffrey A . Newquist

Silicon Graphics, Inc.
2011 N. Shoreline Boulevard

Mountain View, California 94043-1389
Phone: (650)933-6255 FAX: (650)932-0925

Email: newquist@mti.sgi.com

Janak H. Patel

Center for Reliable Sz High-Performance Computing
University of Illinois
1308 W. Main Street

Urbana, IL 61801
Phone: (217)-333-6201 FAX: (217)-244-5685

Email: patel@crhc.uiuc.edu

Topics: ATPG and Fault Modeling

35 word abstract: The paper presents a new graph-based sequential implication framework

which can discover large number of sequential indirect implications that span multiple time

frames. Applying our implication results in sequential redundancy identification achieved

better results than previously reported.

This research was supported in part by the Semiconductor Research Corporation under contract SRC 96-

DP-109, in part by D A R P A under contract D A B T 63-95-C -0069, and by Hewlett-Packard under an equipment

grant.

mailto:j-zhaol@crhc.uiuc.edu
mailto:newquist@mti.sgi.com
mailto:patel@crhc.uiuc.edu

A Graph Traversal Based Framework for Sequential
Logic Implication with an Application to C-cycle

Redundancy Identification

A bstract

This paper presents a new graph traversal based framework for sequential logic implica

tion called GRAPH_SIMP. Due to the prohibitive time and space cost, few previous work

target the discovery of sequential indirect implications that span multiple time frames. By

using an efficient graph data structure and incorporating a graph reduction step into the

implication generation process, our approach provides an efficient full support for sequen

tial implication. Sequential logic implication has many useful applications, one of which

is sequentially redundant fault identification. We show that sequential implications found

by GRAPH_SIMP allow us to find more sequential redundancies than previously reported.

Results of testing our implication algorithm against ISCAS89 circuits show that high impli

cation coverage is essential to identifying redundant faults.

I Introduction

A number of different digital circuit analysis problems need to know the effects of asserting

various logic values throughout a circuit: automatic test pattern generation (ATPG) [1],

[2], [3], [4], untestable fault identification [5], [6], circuit optimization [7]- [10], and design

verification [11]. Various solutions exist, and can be grouped into two major classes: static

learning [1] and dynamic learning. In the context of logic circuits, learning refers to capturing

the functional behavior of the circuit to more easily solve a given problem. Static learning

algorithms are applied as a preprocessing step; in contrast, dynamic learning algorithms are

performed as part of the circuit analysis procedure (e.g., during ATPG). In either case, logic

implications are discovered and used to solve the various analysis problems.

A number of papers have dealt with implication algorithms[l] -[4], [10]-[15]. These al

gorithms are either structural based or Boolean satisfiability (SAT) based models. Kunz

and Pradhan proposed a complete implication algorithm called recursive learning[15], which

gurantees to find all necessary assignments under a partial set of node values. However, in

practical implementation, the depth of recursion must be restricted to keep the time and

space expense with reasonable bounds. As a result, some implications may not be found.

In [14], Stoffel et al. proposed an implication engine which models recursive learning by

AND-OR reasoning graphs. The working principle of AND-OR graph is the same as that

of recursive learning in that both of them derive indirect implications by set intersection

operation. Another graph-based implication engine proposed by Tafertshofter[16] inherits

the characteristics of both structural based model and SAT based model. Their implication

engine derives indirect implications through set operation and law of contraposition, which

are considered as two major current techniques to discover indirect implications.

In this paper we propose a new graph-based implication framework which is efficient in

terms of both time and space. We focus on discussing the construction phase of this impli-

1

cation engine, which can be viewed as a static learning procedure. Compared with dynamic

learning, static learning has several advantages. Dynamic learning is typically applied in the

context of an ATPG, or other analysis algorithm, during branching steps. Implications found

in dynamic learning are only valid under a specific situation of assignments, which limits the

scope of discovered implications and causes common implications to be re-learned in another

situation. In contrast, implications found through static learning are valid in all branch

ing situations. By using statically learned implications, a branch-and-bound algorithm will

spend considerably less time backtracking from incorrect decisions. Moreover, it is usually

expensive to discover indirect implications during dynamic learning, whereas many indirect

implications, especially those unilateral indirect implications[2], can be easily found in static

learning . Since indirect implications play a critical role in many processes, it is of utmost

importance to perform static learning as a preprocessing phase in many applications.

Our approach distinguishes from previous approaches in several aspects. First, few pre

vious papers discuss sequential indirect implication that may involve multiple time frames.

Even though some of the implication algorithms proposed before may be applied to sequen

tial circuits, the implication engines used are mainly combinational and sequential indirect

implications that span multiple time frames are not targeted. The reason for this may lie in

the prohibitive time and space costs. The implication algorithm proposed here fully supports

sequential indirect implication as well as combinational indirect implications. Experimental

results show that the execution time spent by our algorithm is within reasonable bound. A

second characteristic of our implication algorithm is the small memory space requirement,

considering the huge number of indirect implications found. Usually, indirect implications

are either put in external data structures or included into the implication engines. Neither

of the two ways outperforms the other in saving storage space for indirect implications. Our

experiments show that an extremely large number of sequential indirect implications can be

derived in static learning, which causes storage space issue if no explicit measures are taken

2

for space reduction. Our algorithm overcomes this issue by incorporating a graph reduction

procedure into the construction process of the implication engine. This graph reduction ap

proach significantly reduces the space consumption, making sequential implication a feasible

and attractive tool to apply in many applications.

Indirect implications are very useful in many processes, such as logic optimization[10],

logic verification[17], ATPG[2], and redundancy identification [5], [6], [7], [18]. In the later

part of this paper, we present an application of our implication algorithm to sequential C-

cycle redundancy identification using the FIRES algorithm proposed by Iyer et al. [6]. We also

propose an efficient procedure called STEM.ANALYSE, to do the unobservability validation

on stems, which is a critical step in FIRES. Applying the results of our implication algorithm,

we achieved better results in sequential redundancy identification than the original FIRES

did.

The rest of the paper is organized as follows. Section II discusses the basic concepts and

data structures supporting the implication algorithm, Section III presents the implication

algorithm, Section IV describes an application of the implicaton algorithm — C-cycle re

dundancy identification, Section V gives the experimental results, and Section VI concludes

the paper.

II Basic Concepts and Data Structures

A Basic terms and concepts

We first define a few terms that will be used frequently throughout the algorithm description.

1. [N, v, t]: assign logic value v to node N in time frame t\

(In combinational circuits, t is ignored. The default value for t is 0.)

2. [M, w] —> [Nj v , t]: assignning value w to node M in the current time frame (time frame

0) implies another assignment: value v on node N in time frame t.

3

3. impl[N, v, t]: set of implications resulting from setting node N in time frame t to value

v. In case t is not specified, impl[N, represents the set of implications resulting from

setting node N in the current time frame to value v.

Time frames are bounded by D flip-flops and the current time fram e is always time frame

0. When implication is propagated across a D flip-flop, the time frame will be incremented

or decremented correspondingly. For description convenience, for combinational circuits, the

time frame part is omitted in assignment representation. For example, assignning value 0 to

node A in a combinational circuit is represented as [A, 0] instead of [A, 0,0].

For sequential circuits, static implication procedure is performed on all assignments in

the current time frame (time frame 0).

The following laws are used in the implication generation process:

1. Deriving implication set for an assignment in time frame t (non-current time frame)

impl[N, v, t] = {[M , w,t' + 1] | [M, w,t'\ E impl[N,v}}]

2. Forward implication: If all the input values of a gate are known or one of the inputs is

at the controlling value of the gate, then the output value of this gate can be uniquely

determined from its input values. For example, for an AND gate, if one of the inputs

is set to 0, then the output is 0; if all of the inputs are set to 1, then the output is 1.

3. Backward implication: Suppose we are generating implications of [AT, a]. Let G be

an unjustified gate in time frame t with m unspecified input nodes Si and a specified

output node Y.

if G is an AND gate:

if [7,0] E impl[N, a], impl[N, a] = impl[N , a] U (fl^i impl[Si, 0, i])

if [y, 1] E impl[N, a], impl[N, a] = impl[N , a] U (U£Li impl[Si, 1, t])

If y = 1, then all gate inputs are 1, and we can add the implications of setting these

inputs to 1 to our list of implications. If Y = 0, we find implications resulting from

4

setting each input to 0, and since at least one input must be 0, we add the common

implications found, impl[5», 0/1, t] can be derived using the first basic law described

above.

if G is an OR gate:

if [y, 1] G impl[N, a], impl[N, a] = impl[N, a] U (f|™ i impl[Si, 1, t})

if [y, 0] G impl[N, a], impl[N, a] = impl[N, a] U (U£Li impl[Si, 0, t])

4. Extended backward implication: For gate G in time frame t with m unspecified input

nodes Si and a specified output node Y ,

if G is an AND gate:

if [Y, 0] G impl[N, a] and [Y, 0] is unjustified by gate inputs 5», then

impl[N, a] = impl[N, a] U (fl£ i Forward Jmply(impl[N, a] U impl[Si: 0, t]))

ForwardJmply is a procedure performing forward implications on a set of node as

signments.

if G is an OR gate:

if [K, 1] G impl[N,a\ and [y, 1] is unjustified by gate inputs Si, then

impl[N, a] = impl[N, a] U ForwardJmply{impl{N, a] U impl[Si, 1, t}))

5. Transitive law: If [M,w] —> [iV,u,ii] AND [N,v] —> [L,y,t<i\, then [M,w\ —> [L,y,t\ +

t2\. In set notation, if [N, v,ti\ G impl[M, w] and [L ,y ,t2] G impl[N,v\, then [L ,y ,ti +

t2\ G impl[M, w].

6. Contrapositive law: If [M,w] —> [N,v,t], then [N,v] -> [M ,w ,—t]. In set notation, if

[N ,v,t] G impl[M, w], then [M,w, — t] G impl[N,v\. This law enables the algorithm to

discover unilateral indirect implications [2].

5

7. Conflicting assignments: If [M,w\ —* [N, v,t] AND [M, w] [iV, U, t], then [M,w] is

an impossible setting. In other words, M will permanently hold the value w. This

law enables the algorithm to detect those nodes with constant values. Our algorithm

includes conflict checking. If conflicts are not checked, the false values will create

many useless new implications during execution of the algorithm, thus affecting the

performance.

The contrapositive law discovers at trivial cost many indirect implications that would

cost at least one recursion depth to be discovered using recursive learning approach [15].

Figure 1 shows two examples of this advantage.

[d, 1]— *~[f, 0] direct implication [a, 0] ------ ► [b,0] direct implication

JJ, by contrapositive law ,JJ, by contrapositive law

[f, 1] — [d, 0] indirect implication [b, 1]------ *- [a, 1] indirect implication

(a) (b)

Figure 1: Contra positive implication example.

Extended backward implication further discovers some indirect implications that cannot

be discovered by simply applying the transitive and contrapositive laws.

B Data structure — implication graph

a. Graph representation

A directed graph is used to represent the implication relationship in the circuit. We call

this graph implication graph. Each graph node corresponds to a circuit node assignment.

Each directed edge represents an implication. In implication graphs of sequential circuits,

6

each edge has a weight that indicates the time distance (i.e. the number of time frames) that

this implication spans. Figure 2 shows an example of the implication graph of a sequential

circuit.

Figure 2: An implication graph example.

The weight of edge is an integer. Its range depends on the time frame constraint of

the implication procedure. In our implementation, we restrict the implication propagation

within 21 frames (10 backward time frames, 10 forward time frames, and the current time

frame). So the edge weight ranges from -10 to 10.

The transitivity nature of the implication relationship is also reflected in the implication

graph. For example, in Figure 2, since [AO] - » [5, 1,2] and [5,1] [5 ,1 ,7], implication

[A, 0] —> [5 ,1 ,9] can be derived by transitive law. Therefore we define the implication

relationship in an implication graph as follows:

Definition 1 Graph node A implies graph node B with time distance t if there exists a path

of length t from A to B in the implication graph.

Note that the length of a path could be negative,

b. Graph reduction

By transitive law the implications of a circuit node assignment (i.e. a graph node) can be

collected by traversing from the corresponding graph node, in other word, the implications

7

are contained in the transitive closure of the graph node. Therefore, this graph representation

has great potential in reducing the storage space for implications, by deriving the simplest

version of the implication graph without changing the transitive closure of the graph. This

procedure is known as transitive reduction [19] and defined as follows:

Definition 2 A transitive reduction of a directed graph G = (V, E) is defined to be any

graph G ’ = (V, E ’) with as few edges as possible, such that the transitive closure of G ’ is

equal to the transitive closure of G.

Transitive reduction can be done in a much easier way if the graph is acyclic. However,

this is not the case for the implication graph discussed here, in which there may exist many

cycles or strongly connected components. A strongly connected component actually forms

an equivalence class, in which all nodes are mutually implied and therefore equivalent in

the sense of logic implication. So we first identify those strongly connected components,

merge them into single nodes, and then perform the transitive reduction procedure on the

graph. As an example, Figure 3 shows how the implication graph in Figure 2 is reduced to

its simplest version.

Algorithms invloved in this 3-step reduction procedure will be discussed in detail in a

seperate section later.

c. Graph traversal

The implications of a node assignment reside in the transitive closure of the corresponding

graph node and are collected by traversing from the graph node. Therefore, graph traversal

is a key step in the implication procedure. There are two major ways to traverse a graph:

depth first search (DFS) and breadth first search (BFS). In this work, depth first search is

used in traversal.

d. Graph initialization Graph initialization is performed at the beginning of the static

implication procedure. It is a procedure that maps the functions of the circuit elements to

8

a graph representation. There are two major things done in this procedure

. Create the graph nodes. Each node represents a circuit node assignment.

. Add the direct implications local to the gates in the circuit.

Since the purpose of the graph approach is to reduce memory space consumption, transi

tively implied edges should be avoided as early as in the initialization phase. Figure 4 shows

an example of graph initialization. The original circuit is shown in Figure 4(a), and the initial

version of the implication graph, using only local implications, is shown in Figure 4(b).

e. Im plication generation

The implication engine searches for new implications by iteratively performing forward

and backward implications. Forward implication is incorporated within the graph traversal

procedure. Figure 5 shows an example of how forward implication is performed in graph

9

(a) (b)

Figure 4: A graph initialization example.

traversal. In Figure 5(b), implication is currently performed on [d, 1]. The current im

plication set of [d, 1], {[d, 1,0], [5,1,0], [6,1,1], [a, 1,0], [e, 1,0], [/, 0,0]}, is contained in the

transitive closure of [d, 1]. [d, 1,0] and [e, 1,0] are both present in the current implication

set. Therefore [/, 0,0] is learned by evaluating the NAND gate in the circuit. In our imple

mentation, the evaluation procedure is event-driven, i.e. evaluation on a gate is performed

when the number of inputs with known values reaches the threshold value that make the gate

ready for evaluation. For common gate types, such as AND and OR, the threshold value is

the number of gate inputs instead of 1, since controlling value propagation is reflected in the

initialized graph.

The forward implication procedure basically does graph traversal while keeping an eye on

circuit nodes ready for evaluation and adding new implications to the graph conditionally.

Also, the contrapostive law is applied whenever a new implication is added to the graph.

Many indirect implications are discovered through this way at trivial time cost. Graph

traversal combined with forward implication can also be viewed as an independent dynamic

learning procedure.

10

b

(a) circuit

Figure 5: A forward implication example.

Ill The Algorithms

In this section we present several procedures involved in this graph-based static implication

algorithm. The algorithm is called GRAPH S I M P .

Figure 6 shows the outline of the main function. In each main iteration, graph reduction

is first performed and then implication generation.

G R A P H _S IM P ()

Graph_Initialize() ; / / I m p l i c a t i o n g r a p h in i t i a l i z a t i o n

W h ile implications found / / m a i n i t e r a t i o n

' G raph_R educe(); / / g r a p h r e d u c t io n

For each circuit node N
r Im ply (N ,0) ;

L L lm p ly (N ,l) ;
/ / im p l i c a t io n g e n e r a t io n

Figure 6: Main function GR APH S I M P .

Figure 7 shows the outline of the implication generation procedure — Imply. The

AddNew procedure (Figure 8) adds new implications and applies contrapositive law as well.

Procedure ForwardJmply, which is also frequently called during extended backward impli

cation, is shown in Figure 9. The extended backward implication is described in the fourth

11

basic law in Section II.

Imply(N: node; V: logic-value)
If [N,V] or [N,V] is a constant

return;
else

Forward_Imply(N, V);
AddNew();
For each unjustified implication [M,w,t]

' Extended_Backward_Imply(M,w,t);
. LAddNewQ;

Figure 7: Procedure Imply.

AddNew()
For every new implication [x,a,t] found
- impl[N,v] = impl[N,v] U { [X,a,t]} ;

impl[X,a] = impl[X,a] U [N,v,-t]

If [X,a,t] also belongs to impl[N,v]
r Then mark [N,v] as impossible;
L return;

Figure 8: AddNew.

Figure 10 shows the outline of the procedure Graph-Reduce.

Procedure Graph-Reduce consists of two major steps: strongly connected component

identification and merging (The merged node is considered as a single node thereafter.),

and removal of transitively implied edges. Procedure Find.Cycle[20\, which identifies the

strongly connected components, is shown in Figure 11.

In our implementation, in merging a strongly connected component, one node in the

component is selected as the representative of the component, and all incoming and outgoing

edges of the nodes in the component are hooked to this representative. The original nodes

within the component are then kept in a seperate record. During graph traversal, if a merged

12

Forward_Imply(N: node; Vilogic-value)
//An evaluation queue is maintained to hold gates ready for
//evaluation. Each event in queue has the form [N, T], indicating
//that circuit node N in timeframe T is ready for evaluation
While there are untraversed outgoing edges from [N,V]

Traverse-Watch(); // Traverse from these untraversed edges,
// keep watching for gates that become
// ready for evaluation and add them
//to the evaluation queue.

For each event [N,T] in the evaluation queue
r Evaluate(N,T); //Evaluate gate N in timeframe T;

- 1-AddNewQ;

Figure 9: Procedure ForwardJmply.

Graph_Reduce()
Find_Cycle();/7 Identify strongly connected components and

//merge them into single nodes
Remove_Implied_Edge(); // Remove transitively implied edges.

Figure 10: Procedure Graph-Reduct.

Find_Cycle()
//This procedure consists of two rounds of depth-first-search’s (DFS).

Depth_First_Search(); //First depth-first-search
//In this round, the finishing order
// of search is recorded.

Inverse_Depth_First_Search();
// Second depth first-search
//In this round, search is :
// 1. pe formed on the nodes in decreasing
// finishing order in the first DFS.
// 2. along the reverse directions of the edges.
//Each tree formed in this traversal corresponds
//to a strongly connected component,

Merge_Cycles(); //Merge the strongly connected components identified
// in the second DFS into single nodes.

Figure 11: Procedure Find.Cycle[20].

13

node is reached, the original nodes in the component are visited first and then traversal

proceeds from the representative node.

To simplify the problem, only the combinational strongly connected components , i.e.

those strongly connected components in which there is a path of length 0 between each pair

of nodes, are identified and merged.

IV Sequential Redundancy Identification Using Sequen
tial Implications

One useful application of sequential implication is sequential redundant fault identification.

Our previous work [21] illustrated that applying our algorithm SIMP (a combinational im

plication algorithm) to FIRE[5] , (a combinational redundancy identifier) finds more com

binational redundancies than reported in [5]. In this section, we briefly review FIRES, a

sequential c-cycle redundancy identifier, developed by Iyer et al. [6]. A c-cycle redundant

fault, is a fault for which no test sequence exists after powering up the faulty circuit and

applying c clock cycles [6].

The FIRES algorithm proposed in [6] is a fault-independent redundancy identification

algorithm for sequential circuits. It identifies faults which require a conflict on a stem (a

gate with two or more fanouts) as a necessary condition for detection. Since a node in a

circuit can only achieve one value at a time, these faults are redundant. The algorithm works

by first applying a ‘O’ to a stem and collecting faults which are either not activated or not

propagated. Unactivated faults are found through implication analysis. Unpropagated faults

are found by finding unobservable lines caused by controlling values. Then the algorithm

applies a ‘1’ to the stem and determines faults which are not activated or not propagated

in the same manner. Common faults between the two tests are the redundant faults. The

outline of the FIRES algorithm is shown in Figure 12.

We applied our implication results to FIRES. One important issue involved in fault

14

FIRES()
S untestable = emPty>

For each circuit node N

Sequentially imply on N=0

S o = all lines that become uncontrollable or unobservable
under assignment N =0 ;

Sequentially imply on N=1

S i = all lines that become uncontrollable or unobservable
under assignment N = l ;

- S untestable = $ untestable U (S q H ^ l)

Figure 12: FIRES procedure.

collection in FIRES is unobervability validation for those stems that have all fanouts marked

unobservable during the fault collection. As we know, a stem maybe observable even if all

its fanouts are unobservable due to the fact that the faulty effects may be propagated onto

multiple fanout branches and then reconverge, making the fault on the stem observable.

This is also known as multiple path sensitization issue and often happens on reconvergent

gates.

In FIRES, the unobservability propagates onto a stem sl (the copy of line 1 at time i) if

1. The fanouts of sl are marked as unobservable at time i.

2. For every fanout f l of s\ there exists at least one set of lines {p1}, such that

. /* is unobservable because of uncontrollability indicators on every line in {p*};

and

. there is no sequential path from sk, i < k < j , to any line in {p1}.

Stem unobservability validation in FIRES aims to verify there is no sequential path from

sk, i < k < j , to any line in {p1}- The original paper didn’t give the concrete implementation

of this validation step. As we think this validation step plays a critical role in the fault

15

collection — it determines whether the unobservability can be progapated further backward,

we present our approach here. We solve this problem in a conservative way. Our method

filters out those stems that have greater-than-zero chance to be observed. This approach

guarantees that after filtering the remaining stems are unobservable. The combinational

stem analysis we used in implementing FIRE [5] (combinational redundancy identification) is

shown in Figure 13. Our sequential stem analysis procedure is based on the similar working

principle. It marks sk (i < k) and their fanouts as “affected” and proceeds the analysis

in increasing order of circuit level and time frame. It also distinguishes between the nodes

affected by sl and the nodes affected by stems sk (k > i) in subsequent time frames so as to

terminate the procedure when the faulty effect on sl cannot be propagated further.

STEM_ANALY SE(S)

// A queue is maintained fo r each level in the circuit

Mark S and all its fanouts as "affected";
Insert the successors o f S into queues corresponding to their levels

Go through each queue Q in increasing level order
While Q is not empty

Take a node A from the head o f Q
If A is a primary output

Retum(OBSERVABLE); // The faulty effect could possibly
ejse // affect primary output A

‘ If every input o f A is either marked "affected" or
at non-controlling values

I" Mark A and its fanouts as "affected";
. L L Insert the successors o f A into corresponding queues;

Retum(UNOBSERVABLE);//Stem S has passed examination
// and is guaranteed unobservable.

Figure 13: Combinational stem unobservability validation procedure

We also applied our implication results to FUNTEST[22], a sequential untestable fault

16

identifier based on the single fault ATPG theorem provided in [23]. FUNTEST is simliar

to FIRES in structure. The main difference between them is that FUNTEST doesn’t cross

the time boundaries in fault collection whereas FIRES does. We also achieved better results

than reported in [22].

V Experimental Results

This section presents the experimental results for ISCAS89 sequential benchmark circuits.

Both the proposed sequential circuit implication algorithm and the sequential redunancy

identification procedure were implemented in C ++. Experiments were run on an HP 9000

workstation.

Table 1 shows the results of our static sequential implication algorithm GRAPH_SIMP.

For each circuit, the total number of implications that can be derived from the generated

implication graph (#im pl.), the actual number of edeges in the graph (#edge), the max

imum edge weight in the graph (max | edge weight]), the number of graph nodes in the

original graph right after initialization (#nodes(original)), the number of graph nodes after

equivalence merging (#nodes(after merging)), the number of constants (#Cons.) identi

fied, and the CPU time are shown. Constants are not counted as implications in these

results. We do not discriminate between stems and fanout branches; therefore, they are

considered to be the same node. Compared with our previous work which stores the

implications for each node in a seperate set, the memory consumption is very low for

this graph-based implication engine. The percentage reduction can be approximated by

(#im pf+#nodes(oH ginaj))--^^edge+#nodes(Q /term ergm g)) ̂ ^ ^ experiment) the percentage reduC-

tion ranges from 92.3% to 99.6%.

max | edge weight] indicates the maximum time offset of the implications shown in the

graph (not including those implied edges). In our implementation, we restrict the implication

propagation within 10 backward and 10 forward time frames. It is interesting to see that

17

quite a few circuits have maximum edge weight of 10 even after transitive reduction. The

maximum edge weight for these circuits may go even beyond 10 if we set the time offset

contraint larger.

Table 1: Graph-based static implication results on ISCAS89 circuits

Ckt #im pl. #edge
max

|edge weight |
#nodes

(original)
#n od es

(after merging) #C ons. time
s208 39588 1227 10 246 158 0 13.6s
s298 19238 891 8 284 158 3 17.1s
s344 14682 947 4 390 236 5 1.8s
s349 14682 947 4 392 236 6 1.9s
s382 53085 1875 10 376 226 0 137.3s
s386 32574 1255 3 358 234 3 12.0s
s400 58799 1977 10 388 234 1 150.2s
s420 262565 3618 10 506 334 0 99.6s
s444 74353 2419 10 422 254 2 252.3s
s510 44916 2932 4 486 408 0 31.3s
s526 50054 2122 10 446 286 1 83.4s
s641 64866 1576 10 914 310 0 1.0s
s713 66432 1726 10 940 310 16 1.6s
s820 62058 3040 3 662 472 0 43.3s
s838 1310185 8569 10 1026 686 0 695.3s
s953 244118 5061 4 926 706 0 87.3s
sll96 73562 5141 1 1150 836 0 10.2s
sl238 74764 5745 1 1108 912 0 12.6s
sl423 143198 4851 10 1506 1072 0 67.4s
sl488 154286 10066 2 1372 1076 0 146.4s
sl494 154550 10049 2 1360 1090 0 162.8s
s5378 2899860 11476 10 6084 1711 404 1347.4s
s9234 4531017 25229 10 11766 3818 26 5.5h

S13207.1 8146713 41780 10 17748 5509 296 3.7h
S15850.1 15604841 50208 10 21092 7486 76 2.Oh
s35932 10866538 98047 3 36296 26846 0 3.8h
s38417 29811195 106218 10 48334 19339 131 7.5h
s38584 54544728 165901 10 42350 23739 254 7.5h

Table 2 compares the results of applying our static implication results to FIRES and the

results of the original FIRES implementation. The number of c-cycle redundancies identified

18

by each procedure, the number of 0-cycle redundancies, and the maximum c, are shown in

the table for each circuit. Again, the large number of implications found by our implication

algorithm leads to the superior performance over the orginal FIRES.

Table 2: Results of c-cycle redundancy identification

Circuit
FIRES [6] w / GRAPH_SIMP

Red. (sec) 0-cycle Max. c Red. (sec) 0-cycle Max. c
s298 - - - - 3 0.2 2 1
s344 - - - - 5 0.2 4 1
s349 2 0.3 2 0 7 0.2 4 1
s382 - - - - 4 0.4 3 1
s386 27 0.6 0 2 60 0.4 60 0
s400 1 1.2 0 2 8 0.5 8 0
s444 11 1.5 11 0 16 0.6 13 1
s526 - - - - 6 0.5 5 1
s713 32 0.8 32 0 32 0.6 32 0
s953 - - - - 5 2.2 5 0
sl238 6 2.8 6 0 12 1.3 12 0
sl423 5 1.5 5 0 9 1.5 9 0
sl494 1 1.7 1 0 1 2.0 1 0
s5378 366 69.3 48 11 796 151.2 224 3
s9234 270 142.8 165 6 911 209.2 892 1

S13207.1 - - - - 391 171.4 232 1
S15850.1 - - - - 320 471.1 290 1
s35932 3984 684.8 3984 0 3984 986.3 3984 0
s38417 147 386.2 115 1 343 577.8 333 1
s38584 1437 272.0 1052 3 1460 2505.1 1145 1

Table 3 compares the results of applying our static implication results to the FUNTEST

procedure and the results of the original FUNTEST implementation. The number of untestable

faults identified by each procedure is shown in the table for each circuit. represents ’’ data

not available” , i.e. result for the corresponding circuit was not reported in [22]. Again, the

large number of implications found in the static learning phase leads to the superior perfor

mance over the orginal FUNTEST.

19

suits of untestable fault identification using

Circuit
FUNTEST [22] w / SIM P
Unt. (sec) Unt. (sec)

s298 - - 3 1.2
s344 - - 3 1.0
s349 2 0.2 5 1.0
s382 - - 4 3.4
s386 27 0.5 60 2.6
s400 1 0.6 8 3.8
s444 8 0.5 16 5.0
s526 - - 2 3.9
s713 32 0.3 32 4.0
s953 - - 5 17.7
sl238 6 3.0 12 7.1
sl423 5 0.7 9 9.74
sl494 1 1.8 1 13.4
s5378 210 25.6 772 421.9
s9234 277 126.1 923 697.8

S13207.1 - - 376 992.5
S15850.1 - - 317 2385
s35932 3984 340.6 3984 2939
s38417 125 66.9 332 2601

FUNTEST

VI Conclusion

This paper has presented a new graph-traversal based framework of sequential implication

for use in many applications such as c-cycle redundancy identification. By iterative method,

contrapositive law, and extended backward implication, our implication procedure discovers

at low cost a large number of indirect implications. To prevent the storage space requirement

for the large number of indirect implications found from becoming the bottleneck of this

implication algorithm, a graph reduction step, which consists of equivalence class merging

and transitive reduction, is incorporated into the implication generation process.

To show the efficiency of this algorithm, the static implication results were applied to

sequential c-cycle redundancy identification. Incorporating the implication algorithm pro-

20

posed here in the c-cycle redundant fault identification achieved better results than previous

work [6].

The implication framework proposed in this paper can also be applied to circuits with tri

state elements. The flexible structure of this framework allows easy extension to circuits with

new gate types and multiple-value logic. Our implication algorithm can be efficiently applied

to many other processes as well as redundancy identification. In our future work, we will

investigate the effects of including this implication engine into ATPG and logic verification.

References
[1] M. Schulz and E. Auth, “Improved Deterministic Test Pattern Generation with Appli

cations to Redundancy Identification,” IEEE Transactions on Computer-Aided Design,
vol. 8, pp. 811-816, July 1989.

[2] W. Kunz and D. Pradhan, “Accelerated Dynamic Learning for Test Pattern Gener
ation in Combinational Circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 12, pp. 684-694, May 1993.

[3] M. Schulz, E. Trischler, and T. Sarfert, “SOCRATES: A Highly Efficient Automatic Test
Pattern Generation System,” IEEE Transactions on Computer-Aided Design, vol. 7,
pp. 126-137, Jan. 1988.

[4] S. Chakradhar, V. Agrawal, and S. Rothweiler, “A Transitive Closure Algorithm for
Test Generation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 12, pp. 1015-1028, July 1993.

[5] M. Iyer and M. Abramovici, “FIRE: A Fault-independent Combinational Redundancy
Identification Algorithm,” IEEE Transactions on VLSI Systems, vol. 4, pp. 295-301,
June 1996.

[6] M. Iyer, D. Long, and M. Abramovici, “Identifying Sequential Redundancies without
Search,” in Proceedings of the 33rd Design Automation Conference, pp. 457-462, 1996.

[7] P. Menon and H. Ahuja, “Redundancy Removal and Simplification of Combinational
Circuits,” in Proceedings of IEEE VLSI Test Symposium, pp. 268-273, 1992.

[8] L. Entrena and K. Cheng, “Combinational and Sequential Logic Optimization by Re
dundancy Addition and Removal,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 14, pp. 909-916, July 1995.

[9] M. C. D. Pradhan and W. Kunz, “LOT: Logic Optimization with Testability - New
Transformations Using Recursive Learning,” in Proceedings of IEEE International Con
ference on Computer-Aided Design, pp. 318-325, 1995.

21

[10] W. Kunz and P. Menon, “Multi-level Logic Optimization by Implication Analysis,” in
Proceedings of IEEE International Conference on Computer-Aided Design, pp. 6-13,
1994.

[11] W. Kunz, D. Pradhan, and S. Reddy, “A Novel Framework for Logic Verification in
a Synthesis Environment,” IEEE Transactions on Computer Aided Design, vol. 15,
pp. 20-32, Jan. 1996.

[12] J. Rajski and H. Cox, “A Method to Calculate Necessary Assignments in Algorithmic
Test Pattern Generation,” Proc. IEEE Int. Test Conf'., pp. 25-34, Sept. 1990.

[13] S. T. Chakradhar and V. D. Agrawal, “A Transitive Closure Based Algorithm for Test
Generation,” Proc. ACM/IEEE Design Automation Conf., pp. 353-358, June 1991.

[14] D. Stoffel, W. Kunz, and S. Gerber, “And/Or Reasoning Graphs for determining Prime
Implicants in Multi-level Combinational Networks,” Asia and South Pacific Design Au
tomation Conference, pp. 529-538, Jan. 1997.

[15] W. Kunz and D. Pradhan, “Recursive Learning: An Attractive Alternative to the De
cision Tree for Test Generation in Digital Circuits,” Proc. Int. Test Conf., pp. 816-825,
Sept. 1992.

[16] P. Tafertshofter, A. Ganz, and M. Henftling, “A SAT-Based Implication Engine for
Efficient ATPG, Equivalence Checking, and Optimization of Netlists” , Proceedings of
IEEE/ACM International Conference on Computer-aided Design, pp. 648-655, Nov. 97.

[17] Wolfgang Kunz, ’’HANNIBAL: An Efficient Tool for Logic Verification Based on Re
cursive Learning,” Proceedings of IEEE/ACM International Conference on Computer-
Aided Design, pp 538-543, 1993.

[18] P. R. Menon and M. Harihara, ’’ Redundancy Identification and Removal in Combina
tional Circuits,” Proceedings of IEEE International Conference on Computer Design,
pp 290-293, 1989.

[19] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, pp 219-220, 1974.

[20] T. H. Corman, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT
Press, pp 488-493, 1994.

[21] J. K. Zhao, E. Rudnick, and J. Patel, “Static Logic Implication with Application to
Redundancy Identification,” in Proceedings of the 15th IEEE VLSI Test Symposium,
1997.

[22] M. Iyer and M. Abramovici, ’’ Sequentially untestable faults identified without search,”
Proceedings of IEEE International Test Conference, pp 259-266, 1994.

[23] V. D. Agrawal and S. T. Chakradhar, ’’ Combinational ATPG Theorems for Identifying
Untestable Faults in Sequential Circuits,” European Test Conference, pp 249-253, 1993.

22

