
Improving Rewiring Scheme
and Its Applications on Various

Circuit Design Problems

Lo Wing Hang

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Philosophy
in

Computer Science and Engineering

©The Chinese University of Hong Kong
August 2005

The Chinese University of Hong Kong holds the copyright of this thesis. Any per-
son (s) intending to use a part or the whole of the materials in this thesis in a proposed
publication must seek copyright release from the Dean of the Graduate School.

|(V8 eIPm
N^^library SYSTE^^

論文題目：換綫法的改進及其於不同電路設計問題上之應用

學生名字：盧永恒

學位：計算機科學及工程學哲學碩士

日期：二零零五年八月

換綫法技術是一種用於布爾網路上的邏輯變換方法。其主要應用方法是在布爾網

路中增加一根導線並移除其它導線，而在整個過程中布爾網路的邏輯功能會維持

不變。這份論文進一步從理論的層面闡述最新的單次性換綫法技術，並嘗試探討

其於物理設計及邏輯合成上的應用。在第一部份，我們提出一個使用矛盾指派値

的槪念去加強單次性換錢法技術的方法。我們的新方案能夠辨認出多一成的供選

擇的導線，並能減省近兩成的運算時間。在第二部份，我們將換錢法技術應用於

電路分成的問題。利用換綫法技術對電路作出的邏輯擾動能有效減少現時最佳的

電路分成問題的解式的代價平均達一成多。最後一 展示了換綫法技術在邏輯

優化上的應用。針對於關鍵路徑上的邏輯門來使用換綫法技術進行邏輯變換，我

們能在不增加電路的字面數目的前提下，縮短關鍵路徑的長度。當這些最優化後

的電路被技術映射到現場可編程門陣列上，映射解式的硬體搜索表的深度能減少

約七個百分點，而硬體搜索表的數目依然能保持不變。由以上的結果，我們可見

換錢法技術在物理設計及邏輯合成階段探索布爾網路的靈活性上，能有相當的功

用。

Abstract of thesis entitled:
Improving Rewiring Scheme and Its Applications on Various Circuit Design

Problems
Submitted by Lo Wing Hang
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in August 2005

Rewiring technique is a form of logic transformation performed on a circuit
by adding one wire and then removing another wire, while maintaining the cir-
cuit's logic equivalence. This thesis further refines the theoretical background
of the state-of-the-art single-pass rewiring scheme proposed by Chang et. al.,
as well as explores the applications of rewiring techniques in both physical
design and logic synthesis problems. In the first part, a method of augmenting
the single-pass rewiring algorithm RAMFIRE by making use of the idea of
propagating inconsistent assignments is proposed. The new approach is able
to identify 10% more alternative wires while saving about 20% CPU time. The
second part describes a coupling scheme which adapts rewiring algorithms for
the circuit partitioning problem. By exploiting the flexibility provided by
logic perturbation using rewiring, the cut cost of already-excellent solutions
produced by hMetis-Kway can be further reduced by 13% on average. The
last part demonstrates an application of rewiring in logic optimization. By
targeting the gates along the critical path of the circuit, rewiring can achieve
a reduction of circuit level by 11% without increasing the literal count. When
the optimized circuits are mapped onto the FPGA architecture, the overall
number of levels of LUTs can be reduced by 7% while the number of LUTs
used remained almost unchanged. The results show that rewiring is a promis-
ing way of exploring the flexibility of Boolean network to extend the solution
space of different circuit design problems.

i

Contents

Abstract i

1 Introduction 1

2 Preliminaries 5
2.1 Backgrounds and Definitions 5

2.1.1 Boolean Network 5
2.1.2 Transitive Fanin and Fanout Cone 6
2.1.3 Controlling and Sensitizing Values 6
2.1.4 Stuck-at Faults and Test Generation 6
2.1.5 Mandatory Assignments 8

2.2 Review of ATPG-based Rewiring 9

3 Improved Single-Pass Rewiring Scheme Using Inconsistent As-
signments 14

3.1 Introduction 14
3.2 Overview of FIRE 15
3.3 Alternative Wire Identification Method 17

3.3.1 Identifying Candidate Wires 17
3.3.2 Redundancy Test on Candidate Wire 18

3.4 Redundancy Identification Using Inconsistent Assignments . . . 21
3.5 Experimental Results 26
3.6 Conclusions 28

4 Improving Circuit Partitioning With Rewiring Techniques 29
4.1 Introduction 29
4.2 Implementation of Rewiring Schemes 31
4.3 Coupling Partitioning Algorithm With Rewiring Techniques . . 33
4.4 Experimental Results 37
4.5 Conclusions 43

5 Circuit Logic Level Reduction by Rewiring for FPGA Map-
ping 45

5.1 Introduction 45
5.2 Overview of the Technology Mapping Problem 47

ii

5.2.1 Problem Formulation 47
5.2.2 FlowMap Algorithm Outline 49

5.3 Logic Level Reduction by Rewiring Transformations 51
5.4 Experimental Results 54

5.5 Conclusions 57

6 Conclusions and Future Works 58

Bibliography 60

iii

List of Figures

1.1 A rewiring example 2

2.1 A stuck-at fault example. The left value at x is the true response
while the right value is the faulty response 7

2.2 Example circuits 10

3.1 Implication rules for uncontrollability and unobservability for
AND, OR and NOT gates. The black values indicate known
values, while gray values are the implied values 16

3.2 Transformations for adding a candidate wire to a circuit based
on the mandatory assignments on the source and sink gate of
the candidate wire. The dashed line is the candidate wire. . . . 18

3.3 The uncontrollability and unobservability values on Wc in S(wt =
1) and S{wt = 0) in C + î c for different cases 20

3.4 (a) AND gate examples of inconsistent assignments, (b) Trivial
inconsistent assignments, (c) Non-trivial inconsistent assign-
ments 22

3.5 Outline of the proposed redundancy addition and removal algo-
rithm for Operation 1 25

3.6 An example circuit 26

4.1 An example of improving paritioning using rewiring 31
4.2 Outline of the implementation of Rewire 32
4.3 The cut cost gains of different rewiring perturbation 34
4.4 Diagrams showing the procedure of the experiments and cut-

cost calculation 35
4.5 Outline of logic perturb phase 36

5.1 Example of depth optimization using rewiring 46
5.2 Example of a mapping solution of a network for 3-input LUTs. . 48
5.3 Example of a cut with node cut size 3 and height 2 50
5.4 Outline of logic perturb phase 53

iv

List of Tables

3.1 Improvements by using propagated inconsistent assignments . . 28

4.1 Statistics of rewiring algorithms 38
4.2 Comparison of 2-way partitioning results 39
4.3 Comparison of 3-way partitioning results 40
4.4 Comparison of 4-way partitioning results 41
4.5 Comparison of 5-way partitioning results 42

5.1 Depth optimization results 55
5.2 FlowMap solutions improvements 56

V

Chapter 1

Introduction

Nowadays, the integrated circuit design process is usually partitioned into

several steps. Firstly, from the specification of the system, the architecture,

functional units and detailed logic is designed in turn. The outcome is usually

captured in a register-transfer-level (RTL) description using hardware descrip-

tion language (HDL) like VHDL or Verilog. The RTL description is then

translated into a gate-level net list, which describes an interconnection of logic

gates, state elements and other ready-made macro blocks. Lastly, the netlist

is placed and routed to give a final layout. The final layout is then sent to the

fabrication process to produce the actual chip.

The step of translating RTL description to a gate-level netlist is referred

to as logic synthesis. On the other hand, the steps of routing and placement

are known as physical design. Given an RTL description, there exists many

different yet equivalent gate-level netlists that implement the RTL description

correctly. The logic synthesis algorithms are usually guided by some cost

functions to produce a netlist that has the least cost. However, as the VLSI

technology migrates to deep-submicron feature size, interconnection delay is

becoming a more dominating factor affecting the performance of the circuit

over gate delay. It is increasingly difficult to estimate the performance of the

placed and routed final layout solely from the information available in the logic

1

CHAPTER 1. INTRODUCTION

c • — — I \
！ G4

d c u ~ ‘ y

Figure 1.1: A rewiring example.

synthesis stage as the interconnections have not yet been fully determined

before the physical design phase. Therefore, the least-cost netlist produced

by the logic synthesis algorithms is likely to turn out to be a sub-optimal

implementation or even fail to meet the design specifications after placement

and routing. Despite this, most physical design tools do not utilize the logic

information of the gate-level netlist. Naturally, if the flexibility of different

netlist implementations can be explored during the physical design stage, it is

foreseeable that the solution quality of the final layout can be improved.

Rewiring technique, also know as redundancy addition and removal (RAR)

11] [5] [6] [2] [22], is a form of logic transformation performed on the netlist

description of the circuit by adding one wire and then removing another wire,

while maintaining the circuit's logic equivalence. The idea is to add one re-

dundant wire to the circuit to make a previous irredundant wire to become

redundant and hence removable. An example of this operation is shown in

Figure 1.1. By adding the wire d —)• Gl, we can remove the wire G4 —> G3

without changing the functionality of the circuit at the primary outputs. The

advantage of rewiring is that it performs logic transformations directly on the

netlist description of the circuit so the consequence of the applied transfor-

mation can be easily evaluated. In addition, rewiring operations alter the

interconnections between the gates in the netlist while the gates themselves

2

CHAPTER 1. INTRODUCTION

are only minimally changed. Therefore, it is a natural way to use rewiring

to add the flexibility logic transformations to physical design processes like

partitioning [8] and routing [4], in which interconnections are the main focus.

Moreover, despite the simplicity of the rewiring operation, which only in-

volves adding a wire and removing another wire, Kunz et. al. proved in [18

that the rewiring operation is complete. It is complete in the sense that given

any two logically equivalent circuits Ci and C2, there exists a sequence of

rewiring operations which can transform Ci to C2. Since rewiring operates

only on the logic that need to be changed, the consequences of the performed

operations can be determined with little effort. By using a suitable cost func-

tion to guide the rewiring process, it can be applied as an optimizer during

the logic synthesis phase to optimize the netlist with respect to specific goals.

In the past, rewiring technique is applied to a wide range of areas like logic

minimization [11] [5] [6], performing substitution [3], improving testability [7],

etc.

In [2], Chang et. al. proposed an ATPG-based rewiring algorithm which

has major improvements in runtime over previous methods. In this thesis, we

will further refine the theoretical background of this state-of-the-art single-pass

rewiring scheme, as well as propose a novel method to augment the algorithm to

increase the number of alternative wires found while reducing the CPU usage.

We also applied this enhanced rewiring technique in both physical design and

logic synthesis problems and showed that this scheme significantly outperforms

another well-known rewiring algorithm in terms of run time, while being able

to achieve the same solution quality in perturbation based optimization. The

organization of this thesis is as follows.

Chapter 2 briefly reviews some of the basic concepts of automatic test pat-

tern generation (ATPG) which are the basis of the rewiring algorithms. It will

also give an overview of the main ideas in ATPG-based rewiring algorithms.

3

CHAPTER 1. INTRODUCTION

Chapter 3 further refines the theoretical background of the state-of-the-art

single-pass rewiring scheme proposed by Chang et. al in [2]. We have observed

that on average more than half of the implication results can be reused if the

idea of inconsistent assignments is extended onto the reasonings of rewiring,

therefore we make use of this property to augment the rewiring algorithm and

results in about 20% saving in CPU time and being able to identify 10% more

alternative wires.

Chapter 4 and Chapter 5 explores the applications of rewiring techniques in

both physical design and logic synthesis problems. In Chapter 4, we describe a

coupling scheme which adapts rewiring algorithms for the circuit partitioning

problem. By exploiting the flexibility provided by logic perturbation using

rewiring, cut cost of already-excellent partitioning solutions produced by the

well-known partitioner hMetis-Kway [16] can be further reduced by 13% on

average. Chapter 5 demonstrates an application of rewiring in logic optimiza-

tion. By targeting the gates along the critical path of the circuit, rewiring

can achieve a reduction of circuit level by 11% without increasing the literal

count. When the optimized circuits are mapped onto the FPGA architecture,

the overall number of levels of LUTs can be reduced by 7% while the number

of LUTs used remained almost unchanged.

Finally, Chapter 6 gives the conclusions.

• End of chapter.

4

Chapter 2

Preliminaries

The following gives a brief overview of some automatic test pattern generation

(ATPG) concepts which forms the basis of the rewiring algorithms discussed.

Main ideas of ATPG-based rewiring algorithms are then reviewed in the second

section.

2.1 Backgrounds and Definitions

2.1.1 Boolean Network

A Boolean network is modeled as a directed acyclic graph (DAG). Each node

is distinguished as primary input, primary output, or internal node. A primary

input node has only outgoing edges and represents an external input to the

Boolean network. A primary output node has only incoming edges and repre-

sents an output of the network. The internal nodes have both incoming and

outgoing edges. Each internal node n is associated with a Boolean function f

and a Boolean variable y. If there is an edge directed from node n̂ to node rij,

the Boolean function f j depends on the Boolean variable yi. Here we limit the

functions associated with each internal node to be either AND, OR or NOT

functions which depends on at most two input variables. Hence each internal

node can be considered as a AND, OR or NOT gate with at most two inputs

5

CHAPTER 2. PRELIMINARIES

and each directed edge can be considered as a wire connecting two gates.

2.1.2 Transitive Fanin and Fanout Cone

For a node u, we call the set of nodes such that there exists a directed path

from u to v^ the transitive fanout cone of u. Similarly, the set of nodes v, such

that there exists a directed path from v to u, is called the transitive fanin cone

of u.

2.1.3 Controlling and Sensitizing Values

Given a gate g, if a logic value set at any one of the inputs of g uniquely

determines the output of g regardless of the logic values on the other inputs of

g, it is called the controlling value of g. The opposite of the controlling value

is called the sensitizing value. For an AND gate, the controlling value is 0 and

the sensitizing value is 1, because a 0 at one of the inputs of an AND gate

will result in the gate's output to become 0 for any logic values on the other

inputs. Similarly, the controlling value for an OR gate is 1 and its sensitizing

value is 0.

2.1.4 Stuck-at Faults and Test Generation

ATPG-based rewiring scheme is closely related to the single stuck-at fault

model In the single stuck-at fault model, defects in a circuit are modeled as

wires permanently connected to either VDD or GND. Moreover, only one such

defect exists in a given circuit.

In the single stuck-at fault model, a stuck-at-0 fault on a wire means that

the wire is permanently set to 0. Likewise, a stuck-at-1 fault means the wire

is permanently set to 1. A stuck-at fault on a wire may cause the circuit to

behave differently. For example, in Figure 2.1, assume the dotted wire has a

stuck-at-0 fault, if the inputs of the circuit is set to the value as shown, the

6

CHAPTER 2. PRELIMINARIES

a o ^ ^

b • J V \
乂 ~ A 1 / 0

1 / 0] G3 y X

1 G2 ---
d • y Stuck-at-O Fault

Figure 2.1: A stuck-at fault example. The left value at x is the true response while
the right value is the faulty response.

output of the circuit containing the stuck-at fault (faulty circuit) is different

from the circuit without the fault (good circuit).

The output of the circuit under the influence of the stuck-at fault is called

the faulty response while the original output is called the true response. In

the example of Figure 2.1, the true response is 1 and the faulty response is 0.

Given a certain input vector t applied to a circuit with a stuck-at fault /，if

the true response of the circuit differs from the faulty response, the fault / is

said to be testable by t and t is called a test vector for / . Hence, the input

vector (a = 0, 6 = l , c = l,d = 1) is a test vector for the stuck-at-0 fault on

the dotted wire in Figure 2.1. If no input vector can cause the circuit to have

a different true and faulty response, the stuck-at fault is said to be untestahle.

An untestable stuck-at fault is also called a redundant fault, because the wire

having the untestable stuck-at fault can be assigned a constant logic value

and thus removable from the circuit, without changing the circuit's behavior.

The algorithmic method of finding test vectors is called automatic test pattern

generation (ATPG), and proving no such test vectors can be found is the

process of redundancy identification. Both problems are known to be NP-hard.

7

CHAPTER 2. PRELIMINARIES

2.1.5 Mandatory Assignments

Given a stuck-at fault to be tested, it can be observed that certain nodes

in the circuit must assume some fixed values for any test vector that exists.

Such values are called mandatory assignments. Its formal definition is given

as follows.

Definition 2.1 Let f be the stuck-at-v {v is 0 or 1) fault on the target wire

in a Boolean network C and let T be the set of all input vectors that can test

the fault. A node n in C has a mandatory assignment of m if n is assigned

the value m for all input vectors in T.

Computing mandatory assignments and checking their consistency is known

as implication. Like ATPG, the problem of find all mandatory assignments for

a stuck-at fault is also NP-hard. However, by using the concept of dominators

17], we can compute a subset of all mandatory assignments efficiently.

Definition 2.2 The dominators of a wire k; is a set of gates g such that all

paths from w to any primary output have to pass through all gates in g.

Definition 2.3 For a dominator D of w, the side inputs of D are the inputs

not in the transitive fanout cone of w.

For a stuck-at fault to be testable, two conditions must be satisfied. Firstly,

the fault must be activated, that is, the input test vector must be able to create

a different true and faulty value on the wire having the fault. Secondly, the

fault must be able to propagate to one of the primary outputs so that its effect

can be observed. Fault propagation requires that all the lines along at least

one path between the fault site and the primary outputs must have different

true and faulty values. Since any such path must pass through the dominators

by definition, side inputs of any dominator must not assume controlling values,

8

CHAPTER 2. PRELIMINARIES

that is, they must assume sensitizing values, otherwise the fault will be blocked

and its effect cannot be observed at the primary outputs. From these condi-

tions, we can compute the subset of mandatory assignments by firstly setting

the source of the wire having the fault to the fault's activating value and then

the side inputs of the dominators to their corresponding sensitizing values.

From these known assignments, we can infer other assignments throughout

the network. These assignments form a subset of mandatory assignments that

can be computed easily.

Since mandatory assignments must be satisfied by all test vectors, if the

mandatory assignments for a fault is inconsistent, there exists no test vector

for the given fault and hence the fault is unt est able and redundant. However,

when the mandatory assignments are consistent, whether the fault is testable

or not cannot be inferred from the mandatory assignments.

We use the example circuit in Figure 2.2(a) to illustrate the process of

computing mandatory assignments using the concept of dominators. To detect

the stuck-at-0 fault on the dotted wire in the circuit shown in Figure 2.2(a),

the gate GA must be set to 1 to activate the fault. Then the side input

G2 G3 of the dominator G3 is set to its sensitizing value 0. From G4 二 1,

we can imply that c and d are 1. From c = 1 and G2 = 0，we can imply that

G1 = 0. Figure 2.2(a) shows the results of implications and the computed

mandatory assignments. Figure 2.2(b) shows a slightly modified circuit such

that the mandatory assignments for the stuck-at-0 fault on the dotted wire is

inconsistent and hence the fault is undetectable.

2.2 Review of ATPG-based Rewiring

Rewiring can be viewed as a form of logic transformation performed on the

netlist description of the circuit by adding one wire and then removing another

9

CHAPTER 2. PRELIMINARIES

^ U X 八st-o
c o \

G4

d o rT 力

(a)

oj
L I N st-0

c o \
G4

d o — ' r 力
conflict I z

(b)

a C3 ^ \ 1 /O

0 r —-4 G1) — \ 1 /0 ^ r ^

[conflict
I st-0 1 X

c • ~ I 、 1
! G4

d 1 J

(c)

Figure 2.2: Example circuits.

10

CHAPTER 2. PRELIMINARIES

wire, while maintaining the circuit's logic equivalence. First a redundant wire

is added to the circuit. As a result, some previous irredundant wires become

redundant and hence removable. The overall operation does not change the

circuits functionality. We formally states the operations of rewiring as follows.

Operation 1: Given a target wire Wt to be removed, find a redundant wire, Wa,

when added to the circuit, will make Wt redundant.

Operation 2: When a redundant wire Wa is added to the circuit, find all wires

that have become redundant because of the addition of Wa.

The two main types of basic operations concerning redundancy addition and

removal find their usage in different optimization applications. Operation 1 is

used in FPGA routing and post-layout timing optimization, by targeting and

removing those wires that are unroutable or having long delays [14] [4]. Circuit

partitioning also uses this type of operation, by targeting wires across the cuts

and replacing them with wires within the cuts [8]. Operation 2 is mainly used

in literal minimization [11] [5] [6]. The algorithm search for alternative wires

that when added, more than one wire become redundant and removable, thus

reducing the literal count.

Suppose we are given a target wire Wt having a source gate n̂ and a sink

gate rid. Depending on the gate type of n ,̂ we perform different stuck-at-fault

test on Wt. If rid is an OR gate, we perform a stuck-at-0 test on Wt. If rid is an

AND gate, we perforin a stuck-at-1 test on Wt. A set of mandatory assignments

can be obtained. Among these mandatory assignments, some are forced.

Forced mandatory assignments [5] are mandatory assignments which, when

violated, will cause the target faults to be ^intestable. If the circuit structure

is modified such that a forced mandatory assignment is changed, the fault

will become untestable. The mandatory assignments obtained by setting side

inputs of dominators to sensitizing values and the mandatory assignment for

11

CHAPTER 2. PRELIMINARIES

activating the fault, as well as mandatory assignments obtained by backward

implication of the previous two types, are forced.

Based on the mandatory assignments obtained, we can determine a set of

candidate wires, such that when added, will make Wt to become redundant.

The criterion for such candidate wires are expressed in the following two the-

orems from [5

Theorem 2.4 (Corresponding to Theorem 11 in [5]) If Wc = rics —> ricd is an

alternative wire for wt, the source gate rics must have a mandatory assignment

0 (1) for the stuck-at-fault test of Wt and Tied is an AND (OR) gate.

Theorem 2.5 (Corresponding to Theorem 12 in [5]) If Wc = rics —> 几cd is an

alternative wire for wt： the destination gate ricd must have a forced mandatory

assignment 1 or D (0 or D) for the stuck-at-fault test of Wt if it is an AND

(OR) gate.

By theorem 2.4 and 2.5，the addition of a candidate wire Wc guarantees that

the set of mandatory assignments for the stuck-at-fault test on Wt will become

inconsistent in the transformed circuit; therefore Wt will be redundant after

the addition of Wc. Still, the addition of Wc may change the circuit function.

Additional redundancy tests are performed on each candidate wire to to verify

that Wc is also redundant so that we can add this wire to the circuit without

modifying the circuit behavior.

Figure 2.2 shows an example of the overall redundancy addition and re-

moval operation. Suppose we want to remove the target wire GA — G3 by

adding its alternative wire to the circuit. Firstly we perform a stuck-at-0 test

on the wire GA — G 3 and obtain a set of mandatory assignments as shown

in Figure 2.2(a). All the mandatory assignments except the one on G3 are

forced. By applying theorem 2.4 and 2.5, we can determine that the connec-

tion d ^ Glisa candidate wire. We then perform a stuck-at-0 test on d ^ G1

12

CHAPTER 2. PRELIMINARIES

and found that the mandatory assignments is inconsistent as shown in Figure

2.2(c). Hence the connection d -> is a valid alternative wire for the target

wire G4 — G3.

• End of chapter.

13

Chapter 3

Improved Single-Pass Rewiring

Scheme Using Inconsistent

Assignments

3.1 Introduction

Previously proposed approaches in [11] and [5] perform the rewiring operation

by firstly constructing a set of candidate wires and then perforin redundancy

tests on each of them by stuck-at-fault implications. However, given a target

wire, there is potentially a huge number of candidate wires. Although [5

proposed filters to screen out impossible candidates, a lot of CPU time is still

spent on trial-and-error redundancy tests on the candidates. In [2] Chang et.

al. proposed a single-pass rewiring scheme RAMFIRE. RAMFIRE has a major

improvement in runtime over the previous methods in [5] and [11], as it uses

a new technique to identify redundant candidate wires in one pass so there is

no need to perforin repetitive redundancy tests. Here we will explore further

on the theories behind RAMFIRE, particularly on Operation 1. We will give

a detailed discussion on Operation 1 and also propose a way to improve the

rewiring power and runtime of RAMFIRE further by extending the concepts

14

CHAPTER 3. IMPROVED SINGLE-PASS REWIRING SCHEME USING
INCONSISTENT ASSIGNMENTS

of inconsistent value assignments in [12 .

An overview of the fault-independent combinational redundancy identifica-

tion technique (FIRE) is given in the next section. Section 3.3 explains the

basic principles of the method to identify alternative wires. Section 3.4 then

details the idea of inconsistent assignments and how it is used to enhance the

rewiring scheme. The experimental results are presented in Section 3.5 which

is followed by the conclusions.

3.2 Overview of FIRE

Iyer et. al. proposed a fault-independent combinational redundancy identifi-

cation technique (FIRE) [13] which is the basis of the single-pass redundancy

addition and removal scheme RAMFIRE. The following briefly reviews the

FIRE algorithm. Here we only consider circuits consisting of AND, OR and

INV gates. Complex gates can be handled by decomposing them into these

primitive gates.

FIRE uses the concept of uncontrollability and unobservability. A 0 (1)

uncontrollable status of a signal means that the signal is uncontrollable for 0

(1), i.e. that signal cannot assume the value of 0 (1). The uncontrollability

status of a signal can be propagated throughout the circuit by implication.

Figure 3.1(a) shows the implication rules for uncontrollability. For example, if

an AND gate's output cannot be set to 0, i.e. assigned to have 0, then none

of it inputs can be set to 0 either, i.e. all input signals also have a 0 assigned.

Furthermore, if one of a gate's inputs cannot be set to the non-controlling

value of the gate, any stuck-at faults on the other inputs of the gate cannot

be observed. For example, in Figure 3.1(b), to observe any stuck-at faults on

one of the inputs of an AND gate, the other input must be able to assume

1. If the one input is 1 then any stuck-at faults on the other inputs are not

15

CHAPTER 3. IMPROVED SINGLE-PASS REWIRING SCHEME USING
INCONSISTENT ASSIGNMENTS

O ； ： 口 *

(T) " O * 一 *

(a) (b)

Figure 3.1: Implication rules for uncontrollability and unobservability for AND, OR
and NOT gates. The black values indicate known values, while gray values are the
implied values.

observable. Therefore, uncontrollability on a line can result in some wires

becoming unobservable, which is denoted as *. The unobservability status

propagates backwards. If a wire is unobservable, both the stuck-at-0 and stuck-

at-1 faults on that wire are not testable. Figure 3.1(b) show the implication

rules for unobservability.

By assigning a wire id = 0 and 1 and propagating the value by implication,

we have two sets of uncontrollability and unobservability values implied on

some other wires. We denote the set of value assignments resulting from the

implication ofw = OaisS{w = 0) and that from w = laisS(w = 1). Because to

test a stuck-at-0 (1) fault on a wire requires the wire to be able to assume value

1 (0) to activate the fault, if a wire is implied to be 1 (0) the stuck-at-0 (1) fault

on that wire cannot be tested and is redundant. If a wire is unobservable, both

stuck-at-0 and stuck-at-1 faults on that wire are not detectable. Therefore from

S{w = 0) and S�w 二 1)，we can find two sets ofuntestable faults F[w = 0) and

F(w 二 I) respectively. The set of faults F{w 二 0) 二 I)) contains the

faults that it; = 0 (u； = 1) is the necessary condition for them to be detectable.

16

CHAPTER 3. IMPROVED SINGLE-PASS REWIRING SCHEME USING
INCONSISTENT ASSIGNMENTS

The intersection of F{w = 0) and F{w = 1) is a set of faults that requires w

to have a value of both 0 and 1 to be testable. Clearly this is not possible and

thus the faults in the intersection of F{w = 0) and F(w = 1) are redundant.

3.3 Alternative Wire Identification Method

In this section, we describe steps to identify the alternative wires Wa for a given

target wire wt. The operation is divided into two steps:

1. Identifying wires which, upon addition onto the circuit, will make Wt

become redundant. These wires are called candidate wires.

2. Determine whether the addition of a candidate wire will change circuit

function, i.e. whether the candidate wire itself is redundant.

If a candidate wire is redundant, its addition onto the circuit will cause Wt

become removable, and at the same time the function of the circuit will be

unchanged. So such a wire is an alternative wire for Wt.

3.3.1 Identifying Candidate Wires

Suppose we are given a target wire wt having a source gate Us and a sink gate

nd. Our method of finding the set of candidate wires for wt is similar to that

discussed in Section 2.2.

Firstly, stuck-at fault test is started on the target wire. Based on the

mandatory assignments obtained, we can determine a set of candidate wires,

when added, will make Wt become redundant. Here, we extend the "add wire"

notation in [5]. Suppose we try to add a candidate wire Wc whose source gate

is rics and sink gate is Ucd- Instead of expanding Ucd to a 3-input gate and

connect the output of rics to the extra input as in [5], we try to perform the

transformations according to the mandatory assignments on rics and ricd as

17

CHAPTER 3. IMPROVED SINGLE-PASS REWIRING SCHEME USING
INCONSISTENT ASSIGNMENTS

Mandatory assignment of tied = Mandatory assignment of Tied =
0 and is forced 1 and is forced

Mandatory • • •
assignment ' ' * • • • vl^V

of 二。：：： ：：：
Mandatory • • •
assignment • • • “ • ••• r v ^

of 〜 一 ： ： ： I ： ： ：

Figure 3.2: Transformations for adding a candidate wire to a circuit based on the
mandatory assignments on the source and sink gate of the candidate wire. The
dashed line is the candidate wire.

shown in Figure 3.2，by adding an extra gate Unew at the output of ricd and

connecting rics to the input of the added gate. Note that the gate type of

the Unew can be different from Ucd- If the gate type of 71卿 is the same as

Tied, the transformations in Figure 3.2 is equivalent to the original "add wire"

operation.

By theorem 2.4 and 2.5, the addition of a candidate wire Wc according to the

transformation in Figure 3.2 guarantees that the set of mandatory assignments

for the stuck-at-fault test on wt will become inconsistent in the transformed

circuit; therefore Wt will be redundant after the addition of Wc- Still, the

addition of Wc may change the circuit function so it is necessary to verify that

Wc is also redundant.

3.3.2 Redundancy Test on Candidate Wire

The method we use to determine whether a candidate wire is redundant is

based on FIRE. FIRE is used to find redundant wires that are already in the

circuit. We modified the FIRE procedure to determine whether the candidate

wire to be added is redundant.

As in FIRE, we first assign 0 and then 1 to Wt and perform implications. We

18

CHAPTER 3. IMPROVED SINGLE-PASS REWIRING SCHEME USING
INCONSISTENT ASSIGNMENTS

denote the set of gates having uncontrollability/unobservability values assigned

resulting from the implication of it;, 二 0 as S{wt = 0) and those resulting from

Wt = ld^ S{wt = 1).

Given a candidate wire Wc whose source and sink gate are rics and ricd

respectively, and a set of implication result 5, the following notations are

defined:

Definition 3.1 The source gate Ucs is potentially redundant in S if the output

of the gate has a mandatory assignment of 0(1) in the stuck-at-fault test of Wt

and has a value of 0 (1) in S.

Definition 3.2 The sink gate ricd is potentially redundant in S if

• output of Tied is assigned unobservable (*) in S, OR

• output of Tied has a mandatory assignment of 0 (1) in the stuck-at-fault

test of Wt and has a value of 0 (1) in S. Moreover, ricd is in the transitive

fanout cone of Wt.

Definition 3.3 A candidate wire Wc is potentially redundant in S if either its

source or its sink gate is potentially redundant in S.

Using the above definitions, we have the following theorem:

Theorem 3.4 A candidate wire Wc is redundant if it is potentially redundant

in both S{wt = 0) and S{wt = 1).

Proof. Suppose a candidate wire Wc is potentially redundant in both S{wt = 0)

and S{wt = 1), it is impossible that its source gate is potentially redundant

in both S(wt = 0) and S{wt 二 I). The reason is that in such case, Ucs will

be present in both F{wt = 0) and F{wt 二 1), which implies that any wire

starting from Ucs is redundant in the original circuit. Similarly it is impossible

19

CHAPTER 3. IMPROVED SINGLE-PASS REWIRING SCHEME USING
INCONSISTENT ASSIGNMENTS

： ： ： ： ： ： " 一
1 In S{w, = 0") 1 In S(w, = 0)

In S(wt =T) In S(w, =T)

(a) (b)

Figure 3.3: The uncontrollability and unobservability values on Wc in S{wt = 1) and
S(wt = 0) in C + î c for different cases.

that the sink gate is potentially redundant in both S{wt = 0) and S{wt 二 I).

Thus, either one of the following cases is true:

1. The source gate Ucs is potentially redundant in S[wt = 0) and sink gate

Tied is potentially redundant in S{wt = 1).

2. The source gate Ucs is potentially redundant in S(wt = 1) and sink gate

Tied is potentially redundant in S(wt = 0).

Now we assume the first case is true. Furthermore, we assume that Tics has

a mandatory assignment of 1 and ricd has a mandatory assignment of 0 in the

stuck-at-fault test of Wt. By the wire addition rules in Figure 3.2, we add the

Wc to the circuit C by adding a new OR gate as shown in Figure 3.3,

Suppose a 1 implication is started on Wt in the circuit C + Wc： the newly

added wire rics 几腳 will be unobservable in the modified circuit. The

reason is that Ucd is potentially redundant in S(wt 二 I)，and by the definition

of potentially redundant ricd either one of the following two cases as shown in

Figure 3.3 will be true:

(a) The output of ricd in C is replaced by the output of newly added gate

rinew in C + Wc. Since ricd is unobservable in C, the output of Unew, and

hence all its inputs, including rinew, are unobservable in C + Wc.

20

CHAPTER 3. IMPROVED SINGLE-PASS REWIRING SCHEME USING
INCONSISTENT ASSIGNMENTS

(b) Tied — rinew IS implied 0 in C Wc from the inputs of ricd, therefore

Ties rinew is unobseivable in C + Wc. (Note: In this case, if ricd is in the

fan-in cone of Wt then the fire value of 0 at the output of ricd is implied

from its fanout gates, and in such case the addition of rinew will block the

propagation of 0 to Ucd- Therefore we need to check specifically to ensure

Tied is in the fanout cone of Wt.)

Now suppose we start a 0 implication on ly, in C + Wc, Ucs will be assigned

a value of 1 because Ucs is potentially redundant in S{wt 二 1). Therefore the

fault Wc stuck-at-0 is in both F{wt = 0) and F{wt = 1) so it is not detectable

in C + wt. Therefore Wc is redundant in the new circuit. By similar arguments,

the same is true for the other cases where an AND gate is added. 口

3.4 Redundancy Identification Using Inconsistent As-

signments

Assume that A = {xi = ai,X2 = a2,--.,Xn = an} is an inconsistent assign-

ment of values in the circuit (e.g. A = {a = = 1} in Figure 3.4(a))，

any fault that requires this combination of values for detection, i.e. F{xi =

n F{x2 = n . . . n F{xn = ‘)，is undetectable and hence redun-

dant. FIRE considers a special case of inconsistent assignment of values

A 二 {工二 0，:c 二 1}, i.e. a single line in the circuit is set to both 0 and

1.

In general, any arbitrary assignments A, as long as it is inconsistent, can

be used. In [12], Hsiao extended the FIRE method by considering inconsistent

assignments at a gate instead of on a single line. For example, consider the

AND gate in Figure 3.4(a)，FIRE only considers three sets of inconsistent

assignments: {ti = 0,a 二 1}, 二 0,6 = 1}, {c 二 0, c = 1}. There exists

other sets of inconsistent assignments not considered in FIRE, e.g. {a = 0, c =

21

CHAPTER 3. IMPROVED SINGLE-PASS REWIRING SCHEME USING
INCONSISTENT ASSIGNMENTS

1}, {6 = 0,c = l } , { a = 1,6 = l , c = 0} as shown in Figure 3.4(b) and 3.4(c).

However, some of these assignments are trivial. Consider the assignment {a =

0，c = 1}, the redundant faults identified will be the intersection of the sets

of faults F{a = 0) and F{c = 1). But since c = 0 directly implies a = 0,

therefore F(a = 0) is a subset of F(c = 0) and F(a = 6)0 F(c = 0) C F(c 二

0) n F(c = 1), i.e. the redundant faults identified by using {a = 0,c = 1}

are already covered by those using {c = 0,c = 1}. The only non-trivial set

of inconsistent assignments is {a = 1,6 = l , c = 0}，because both a = 1

and 6 = 1 can directly imply c = 1, therefore F{c = 1) C F{a = 1) and

F{c = 1) C F{b = 1), hence F{c = 1) C F{a = I) n F[b = 1). As a result,

F{c = 1) n F{c = 0) C F{a = 1) n F{b - 1) H F{c = 0), therefore the

redundant faults identified using {a = 1’ 6 = 1’ c 二 0} is potentially more

than those using {c = l , c = 0}. Similarly, for an OR gate, the non-trivial

inconsistent assignments {a = 0，6 = 0, c = 1} can identify more redundant

faults than {c = 0, c = 1}.

In [12], Hsiao only considered inconsistent assignments at a gate. We fur-

ther extend his idea by propagating the inconsistent assignments. We start

with the single-line inconsistent assignment A = {x = 0,x = 1}. For each

assignment Xi = Vi in A, we propagate it towards the primary inputs by the

following rule:

(a) (b) (c)

Figure 3.4: (a) AND gate examples of inconsistent assignments, (b) Trivial incon-
sistent assignments, (c) Non-trivial inconsistent assignments.

22

CHAPTER 3. IMPROVED SINGLE-PASS REWIRING SCHEME USING
INCONSISTENT ASSIGNMENTS

• If Xi is the output of an AND (OR) gate and Vi = 1(0)，replace the

assignment Xi = Vi by assignments yo = 1(0) ...yn = 1(0) where yo …yn

are inputs to the AND (OR) gate. (*)

The propagation continues until no further propagation can be made, i.e.

all assignments are either at the primary inputs or having a value of 1 (0) for

gate type AND (OR).

Theorem 3.5 Given a set of inconsistent assignments A, the set of assign-

ments A' after propagation by (*) is always inconsistent and the faults found

by using A' can always cover those found by A.

Proof. Given the inconsistent assignments A = {xi = Vi,..., Xn-i = Vn-i,Xn 二

Vn}, assume that after the propagation of a single assignment Xn = Vn, we have

A' = {xi = Vi..., Xn-i = Vn-u Vi = Vyi, •.., Vi = �B y the propagation

rule (*), the values yi = Vyi,...,yi = Vyi can directly imply Xn = Vn. Hence A'

will remain inconsistent. Moreover, since yi = can directly imply Xn =

we have F(xn = C F(yi The same is true for the other new assign-

ments in A', therefore F(xn = C F(yi = 巧) n . . . n F (队 = i . e . the

set of faults found by using A' is at least as large as (potentially larger than)

that found by using A. 口

For example, considering the example circuit in Figure 3.6 and assume

the wire Wa(d — Gl) has already been added onto the circuit. Suppose now

we want to find redundant faults by using the inconsistent assignments A =

{G4 二 1,G4 = 0}. We need to compute S(G4 = 0) and S(G4 = I). First

we assign G4 = 0 and perforin implications. Since the gate G4 cannot assume

0, neither any of its inputs can and we have c = 6 and d = 0. One of the

inputs of G3 cannot assume 0 implies that the output of G3 cannot assume

1, therefore G3 二 Furthermore, any stuck-at fault on G2 G3 needs

23

CHAPTER 3. IMPROVED SINGLE-PASS REWIRING SCHEME USING
INCONSISTENT ASSIGNMENTS

G4 — G3 to be able to assume sensitizing value 0 to observe, therefore G4 = 0

implies G2 and its fanin cone Gl, a and b are unobservable. Hence we have

5 (G 4 = 6) = { G 4 = 5，c = 0’ d = 6，G3 = I, G2 二 G1 = *，a 二 *，6 = *}•

For GA = 1, no implications can be made so we obtain S{GA = 1) = {G4 = 1}.

We can see if G4 cannot assume 0, c cannot assume 0 also and therefore any

stuck-at-1 fault on c G4 cannot be detected because it needs a 0 to activate.

Moreover, G2 = * implies any faults on the inputs of G2 are not observable

hence both stuck-at-0 and stuck-at-1 faults on c — G2 cannot be detected.

By similar arguments, we have the set of faults that require G4 to be able

to assume 0 to detect, F[GA 二 0) 二 {G4 G3 st-l，c GA st-l,c -> G2

st- l ’c -> G2 st-0, d — G4 st-l，G2 — G3 st-l,G2 G3 st-0, G1 G2

st-l，Gl G2 st-0, a G1 st-0, a -> G1 st-1,6 Gl st-0, b G1 st-

l ,d — Gl st-0, d Gl st-1}. Similarly F{GA = 1) = {G4 G3 st-0}.

Obviously, F(G4 = 1) n F(G4 = 0) = 0, therefore no redundant faults can be

detected using A. However, if we propagate G4 = 1 in A by (*) and obtain

A' = {G4 二 0，c = 1, (i = 1}, we have 5(c 二 I) 二 {c = I, c? = * ， 二 I, G4 二

I, G3 二 0，Gl = *, a = *, 6 二 * } and S{d 二 I) = {d = I, G4 = I，c = * } . We

can see that GA = 1 are present in both 5(c = I) and S{d= 1) so any faults

that be covered by F(G4 = 1) can also be covered by F(c 二 I) n F{d = I).

Here, the fault d — Gl stuck-at-0 is common in F{G4 = 0), F{c = 1) and

F{d = 1), so d ^ Gl stuck-at-0 requires G4 = 0, c 二 1 and d = 1 to detect

but this combination of value is inconsistent so d Gl stuck-at-0 is not

detectable. Hence in this case A' can find more redundant faults than A.

By combining Theorems 3.4 and 3.5 we have:

• Let 义 = = Q,Wt = 1} and A' = {:ro = ” o , . . . ,知=幻 r j be the incon-

sistent assignments resulting from the propagation of A by (*). Given a

24

CHAPTER 3. IMPROVED SINGLE-PASS REWIRING SCHEME USING
INCONSISTENT ASSIGNMENTS

Algorithm Find AW
Input: Circuit C, Target wire wt
Output: Set of alternative wires AW
1. AW = 0;

2. perform stuck-at-fault test on wt in C;
3. construct the candidate wires set W according to Figure 3.2;
4. A= {wt = 0,wt = 1};
5. while some assignment Xi = Vi in A can be propagated by rule (*)
6. do propagate Xi = Vi\n A according to rule (*);
7. for each assignment xi 二 ！；《in A
8. do find S{xi = ̂)；

9. for each candidate wire Wc in W
10. do if Wc is potentially redundant in all S{xi = vl)
11. AW = AW U {wc}-,
12. return AW;

Figure 3.5: Outline of the proposed redundancy addition and removal algorithm for
Operation 1.

candidate wire Wc found by the stuck-at-fault test on Wt, if Wc is poten-

tially redundant in all (̂rro =可)，.•., S{xn = Wi) then Wc is redundant.

Moreover, using A' can identify as least as much as, and potentially more

redundant candidate wires than using A. (**)

The proof of (**) is similar to that of Theorem 3.4 and is skipped here. We

outline the redundancy addition and removal algorithm for Operation 1 based

on (**) in Figure 3.5. The algorithm in Figure 3.5 can also be easily extended

to perform Operation 2 more efficiently.

The following example illustrates how our algorithm works. Consider the

circuit in Figure 3.6 and we want to find the alternative wires for Wt = G4

G3. Here we use the gate to denote the signal at its output. First we perform a

stuck-at-0 test on wt because G3 is a NOR gate. We assign the fault activating

value G4 二 1 and fault propagating value (̂ 2 二 0 and perform implications.

The following MAs are obtained: {G4 = l，G2 = 0 , c = l， d = l , G l = 0,a =

0,6 = 0，G3 二 f>}，all the MAs except the one on G3 are forced. We then

25

CHAPTER 3. IMPROVED SINGLE-PASS REWIRING SCHEME USING
INCONSISTENT ASSIGNMENTS

j Wa
W t

y

Figure 3.6: An example circuit.

start with the inconsistent assignments A 二 {G4 = 0,G4 = 1}. By applying

propagation rule (*) on G4 二 1, we have A' = {G4 = O^c = l,d = 1}, in

which no further propagations can be made. For the assignment GA = 0,

we assign G4 = 0 and perform implication to obtain S{G4 = 0) = {G4 =

0’c 二 0，d = 6，G3 = = = *，a = = *}. Similarly, we have

S{c = I) = {c = i，d = G2 = I, G4 = I, G3 = 0, 二 *，a = *, 6 二 *} and

S[d = l) = {d=l,G4 = l,c = *}• Now consider the wire d — Gl. Because

the MA Gl = 0 is forced and d = 1 is in the set of MAs of the stuck-at-0 test

of Wt： it is a candidate wire. We check the source gate d and it is potentially

redundant in S{d 二 I) because it is assigned 1. Similarly, the sink gate Gl is

potentially redundant in 5(c = 1) and S{G4 二 0) because it is unobservable

in both. Hence by (**) the wire is redundant and is a valid alternative wire

for Wt. Note that the single-line inconsistent assignments A cannot locate this

alternative wire.

3.5 Experimental Results

The proposed algorithm has been implemented in C. The experiments were

performed for publicly available benchmark circuits from LGSynth93 [20], on

an Athlon XP 1600+ workstation. For each circuit, we target every wire and

26

CHAPTER 3. IMPROVED SINGLE-PASS REWIRING SCHEME USING
INCONSISTENT ASSIGNMENTS

find its alternatives. The total number of alternative wires found and the CPU

time used is shown in Table 3.1.

Table 3.1 also compares the running time and the number of alternative

wires found with (column 3-4) and without (column 5-6) using propagation

on inconsistent assignments. There is a 18% reduction in running time and

10% improvement in the number of alternative wires found if propagated in-

consistent assignments are used. The main reason for the reduction in run-

ning time is that we can reduce the number of FIRE implications done. As-

sume we want to find the alternative wires for two target wires wn and Wt2

which are close to each other. We start with the inconsistent assignments

Al = {wti = 0, wti = 1} and A2 = {wt2 = 0，wn = 1} and propagate them to

obtain and 斗 We observed that there is a high probability that some as-

signments in A'l and are common and therefore may actually contain

less assignments than A1UA2. Since we perform a FIRE implication for each

assignment in the inconsistent assignments set, by using A[and A'^ instead

of Al and A2 we may actually do less FIRE implications because we can save

the FIRE implication results for the common assignments when we are finding

the alternative wires for wn and reuse them when we are finding the alterna-

tive wires for Wt2. The column 7 in the table shows the percentage of FIRE

implications which were actually performed if we use the propagated inconsis-

tent assignments instead of the original. On average, more than half of the

FIRE implication results can be reused if we use the propagated inconsistent

assignments. Such reuse of implication results is not possible in the original

RAMFIRE algorithm because it always performs two FIRE implications on

the target wire, therefore if a different wire is targeted, the implications are

performed on the previous wire is useless.

27

CHAPTER 3. IMPROVED SINGLE-PASS REWIRING SCHEME USING
INCONSISTENT ASSIGNMENTS

Table 3.1: Improvements by using propagated inconsistent assignments

Circuit II Wires Single Line Propagated —
Name Tested No. of AW CPU (s) l o . of AW CPU(s) IMPLY %

5xpl.sis — 220 “ 486 2.3 542 2.07 56.1
Qsym-hdl.si^ 200 “ 244 0.5 311 0.41 45.9

C1355.sis — 992 1105 “ 11.8 1131 ~9.91 47.6
C1908.sis — 800 _ 1227 — 12.8 1453 9.34 32.4
C432.sis — 380 — 678 — 3 . 5 761 3.02 51.2
C499.sis — 784 561 “ 7.2 571 —5.69 38.6
C88Q.sis - 714 — 982 — 4 . 7 1041 _ 3.81 49.3
duke2.sis _ 624 _ 1449 — 16 1616 13.34 38.3
fSlm.sis — 230 — 436 2.1 483 1.91一 54.2
pclerS.sis ~ 142 — 244 — 0.5 255 0.37 48.8
terml.sis 402 859 2.4 982 2.09 55.8
ttt2.sis 346 876 2.5 929 2.16 57.6 :
Total 5834 9147 = 66.2 — 10075 54.12 48.0

Normalized || || 1 | 1 || 1.10 0.82

3.6 Conclusions

The RAMFIRE redundancy addition and removal scheme has significant run-

time improvement over existing ATPG based rewiring methods. We have

explored further the method of finding alternative wires for a given target

wire under the RAMFIRE scheme. We have also augmented the algorithm

with propagation of inconsistent assignments and resulted in even less CPU

time usage while being able to identify more alternative wires. In addition,

with a little modification, our proposed approach of propagating inconsistent

assignments should be able to enhance algorithms for general redundancy iden-

tification problems as well.

• End of chapter.

28

Chapter 4

Improving Circuit Partitioning

With Rewiring Techniques

4.1 Introduction

Rewiring [11] [5] [2] [22], is a form of logic transformation performed on a

circuit, by adding redundant wires or gates to a circuit so that other wires

or gates become redundant and thus removable. The logic equivalence of the

circuit is preserved during the whole operation.

By applying different cost function to guide the process of selecting alter-

native wires for transformation, it can be used to optimize the circuit with

respect to different goals, like logic minimization [11] [5], post layout timing

optimization [14], circuit partitioning [8] [21], FPGA routing [4], etc. Since

rewiring techniques operate directly on the netlist representation of the cir-

cuit, they can be used to explore the flexibility of logic transformations in

many physical design problems.

Circuit partitioning is the problem of dividing a given circuit into sub-

circuits of similar sizes, such that a certain cost defined over the interconnec-

tions of the sub-circuits is minimized. The most commonly used approach is

to first model the circuit as a hypergraph, onto which a graph partitioning

29

CHAPTER 4. IMPROVING CIRCUIT PARTITIONING WITH REWIRING
TECHNIQUES

algorithm is applied. The problem of hypergraph partitioning is NP-hard and

many heuristic algorithms have been developed. A survey by Alphet et. al. [1

gives a detailed comparison of different methods of partitioning. By far, a class

of partitioning schemes based on a multilevel paradigm [15] has been shown

to give the most encouraging results. In these partitioning schemes, a series of

smaller graphs are constructed by clustering the original graph. High quality

initial partitions on the smallest graph are then computed using well-known

partitioning algorithms. The graph is then unclustered and a refinement al-

gorithm is used to adjust the cut edges after each uncluster operation. The

multilevel k-way partitioning scheme hMetis-Kway proposed by Karypis et.al.

16] is shown to produce excellent solutions in comparison with many other

algorithms.

Although the results produced by hMetis-Kway are excellent, the algorithm

itself is purely graph-based and does not take into account the logic information

of the circuit. It has been shown in [8] [21] that by considering the flexibil-

ity of logic transformation by coupling graph domain algorithm with rewiring

techniques, we can expand the solution space and obtain a significantly better

partitioning result. Figure 4.1 shows how an already optimal partition result

can be further improved by rewiring techniques. As shown in the figure, the

global optimal partitioning has a cut size of 3. By applying rewiring transfor-

mations on the circuit, we replace the cut wire with its alternative wire and

further reduce the cut size to 2.

In this chapter, we experimented with different rewiring techniques and

tried to find out their capability to further improve the already near-optimal

partitioning results produced by hMetis-Kway. We performed partition refine-

ment on 2", 3", 4- and 5-way hMetis-Kway partitioning results by coupling the

rewiring scheme proposed in [5] and the improved RAMFIRE discussed in the

previous chapter with the Fiduccia-Mattheyses (FM) partitioning algorithm

30

CHAPTER 4. IMPROVING CIRCUIT PARTITIONING WITH REWIRING
TECHNIQUES

c z i ^ T W S H

L-—̂——I
Figure 4.1: An example of improving paritioning using rewiring.

and obtained in average 13% improvement in cut cost without incurring ob-

servable changes in area of the circuits. Since the original objectives of the

scheme proposed in [5] is logic optimization, the algorithm in its original form

are not suitable for applications in circuit partitioning. Therefore we adapted

and implemented our own variant of the algorithm. The details of the imple-

mentation are discussed in Section 4.2. Section 4.3 gives a brief description

of the coupling scheme of rewiring algorithms and FM and the experimental

results are presented in Section 4.4.

4.2 Implementation of Rewiring Schemes

We have implemented two rewiring schemes to couple with the graph-domain

FM partitioner.

The first one is the enhanced RAMFIRE as described in Chapter 3. An

outline of the algorithm can be found in Figure 3.5 and thorough discussion

of the implementation can be found in Chapter 3 and is not repeated here.

The second scheme, we termed Rewire, is a variant of the algorithm pro-

posed in [5]. Here we use the theorems in [5] to find the alternative wire Wa

31

CHAPTER 4. IMPROVING CIRCUIT PARTITIONING WITH REWIRING
TECHNIQUES

Algorithm Rewire Find AW
Input: Circuit C, Target wire wt
Output: Set of alternative wires AW
1. AW = 0;

2. perform stuck-at-fault test on wt in C;
3. CW = 0;

4. for each node rics with forced mandatory assignment
5. do for each node Ucd with mandatory assignment
6. do 二 CW U (Tics, ricd： Polarity, Added.gatedype)
7. where Polarity and Added_gate_type are determined from figure

3.2;
8. for each candidate wire Wc in CW
9. do if Ties has observability mandatory assignment
10. continue;
11. if stuck-at-fault on Wc is redundant
12. AW = AW U {̂ c}；

13. return AW\

Figure 4.2: Outline of the implementation of Rewire,

for a given target wire Wf The operation is divided into two steps:

1. Identify a set of candidate wires CW 二 w � w h i c h , upon addition of Wc

into the circuit, will make Wt redundant.

2. Apply screening to CW by using theorems in [5] so that candidate wires

that are not possible to be redundant are not considered. For each candi-

date wire Wc remaining, determine whether the addition of Wc will change

circuit function, i.e. whether the Wc itself is redundant.

In the first step, the candidate set is constructed in the same way as de-

scribed in Section 3.3 by using Theorem 2.4 and 2.5 and the extended "add

wire" operation. Theorem 14 from [5] is the used to screen out candidate

wires that have observability mandatory assignments in the sink gate. Finally,

stuck-at-fault tests are performed on the remaining candidates to determine

whether they are actually redundant. A redundant candidate wire is added to

32

CHAPTER 4. IMPROVING CIRCUIT PARTITIONING WITH REWIRING
TECHNIQUES

the set of valid alternative wires found. The overall algorithm is outlined in

Figure 4.2.

4.3 Coupling Partitioning Algorithm With Rewiring Tech-

niques

We demonstrate how the already excellent partitioning solutions from hMetis-

Kway can be further improved by applying rewiring techniques in the following.

The main objective of multi-way circuit partitioning is to partition the

given circuit into sub-circuits, at the same time minimize the number of in-

terconnections between the partitions. We use the K-1 metric [10] [1] as the

cost for the partition solution here. The K-1 metric cost for a cut net is one

less the total number of partitions spanned by the cut net. For example, the

K-1 metric cost for the cut net as shown in Figure 4.4(b) is 3, because the

net spans 4 partitions. The K-1 metric cost is chosen here because it is an

accurate measure of the number of interconnections required to connect the

different partitions.

Figure 4.4(a) shows the basic flow of our partitioning refinement scheme.

Firstly the hypergraph information is extracted from the benchmark circuit

and inputted into hMetis-Kway to generate a near optimal initial partition.

The initial partition, along with the logic information from the initial circuit, is

then subjected to further refinement in the iterative logic perturbation phase.

In the logic perturbation phase, FM is used as the graph domain partitioner

because of its simplicity and efficiency. However, it should be noted that any

other partitioning algorithm can be used in the place of FM. We use different

rewiring algorithms (Rewire and RAMFIRE) at this point to provide feasible

rewiring transformations. During logic perturbation, the cut wires of the input

solution are targeted to search for alternative wires. Figure 4.3 shows some

33

CHAPTER 4. IMPROVING CIRCUIT PARTITIONING WITH REWIRING
TECHNIQUES

w w v V ^ ^

w w
(a) (b)

A ! — a d O

w w
(c) ⑷

W w
/ \ \ partition

\ boundary

w
(e)

Figure 4.3: The cut cost gains of different rewiring perturbation.

34

CHAPTER 4. IMPROVING CIRCUIT PARTITIONING WITH REWIRING
TECHNIQUES

Input benchmark circuits
BLIP file

^
Graph domain
information

I logic domain - ！
I Rewire/RAMFIRE ‘ i

I graph domain - FM |
1 RP I

multi-way partitioning results
(a)

I ^ 4

(b)

Figure 4.4: Diagrams showing the procedure of the experiments and cut-cost calcu-
lation.

35

CHAPTER 4. IMPROVING CIRCUIT PARTITIONING WITH REWIRING
TECHNIQUES

Algori thm Logic Perturb
Input : init—partition, n, k
Output : best-partition
1. num_perturb 二 0;
2. curr.partition = init .partition;
3. for i 二 1 to n
4. do AW = 0;
5. for each cut wire wt
6. do use rewiring algorithm to find all alternative wires SWa for wt;
7. AT^ 二

8. if {AW + 0) .
9. then pick alternative wire pair (wt, Wa G SWa) with the largest gain;
10. replace wt with Wa in curr_partition;
11. curr.partition = FM(ciirr .partition)；

12. if (gain < 0)
13. num_perturb + = 1;
14. if (cost (curr—partition) < cost (best-partition))
15. best-partition = curr—partition;
16. if (num.perturb > k)
17 . break;
18. else break;
19. return best .partition;

Figure 4.5: Outline of logic perturb phase.

36

CHAPTER 4. IMPROVING CIRCUIT PARTITIONING WITH REWIRING
TECHNIQUES

possible rewiring perturbation and cut cost gains for 3-way partitioning. The

perturbation as shown in Figure 4.3(a) and 4.3(b) has a gain of +1, while

the one in Figure 4.3(c) has a zero gain. Those shown in Figure 4.3(d) and

4.3(e) has a gain o f - 1 . Among all the feasible cut-wire-alternative-wire pairs,

the one that produces the highest gain is selected for perturbation, which is

by replacing the target wire with its alternative wire. If no wire pair can

produce a positive gain, a random wire pair producing a zero gain or negative

gain will be selected for perturbation. In such case wire pairs with zero gain

have a higher priority over those with negative gain. The total number of

rewiring perturbation is limited by n and the number of zero/negative gain

perturb is limited by k. The major difference between our algorithm and that

in [21] is that we consider all cut wires to be the target wires and choose the

perturbation with the best gain, as our choice of rewiring algorithms has a

better power in finding alternative wires pairs than that in [21]. Also, the

priority constraint for choosing wires in zero/negative gain perturbations is

found to have improved the results in our experiments. Figure 4.5 outlines the

coupling algorithm.

4.4 Experimental Results

We have implemented the perturbation-based circuit partitioner in C which

was coupled with Rewire and the enhanced RAMFIRE. All experiments were

conducted on Pentium 4 2.4GHz platform with 512 MB memory on 26 MCNC

benchmark circuits. Table 4.1 compares the statistics of alternative wires

searched and CPU usage by RAMFIRE and Rewire. Rewire can find two-

thirds more wires than RAMFIRE but consumes about 20 times CPU usage.

In our experiments, hMetis-Kway was first run for each benchmark circuit

37

CHAPTER 4. IMPROVING CIRCUIT PARTITIONING WITH REWIRING
TECHNIQUES

Table 4.1: Statistics of rewiring algorithms.

^ C i r c u i t I I Node Wire Literals | PI | PO || RAMFIRE 11 Rewire
II II" #alt. wires | CPU || #alt. wires CPlT"

5xpl 132 257 235 I 7 I 10 11 299 0-08 711 3.26 _
9sym-hdl “ 141 232 ~ 9 ~ 252 ~ 0 W 749 0.32

C1355 600 1055 —41 32 — 1109 1.36 1776 28.01
C l ^ 5 1 6 999 ~ 883 ^ ~ ~ W 1204 1.23 1613 84.92
C267Q 1043 I M T 1444 1951 ~9.94 5446 275.35
C354Q 1263 2267 ~ ~ ^ 4009 17.9 7005 1302.68
C432 238 1 4 0 ~ 392 36 T " 663 0.37 2056 9.49

503 965 ~ 854 ~41 ~ ~ W 549 0.78 624 21.39
C5315 1962 3746" 3282 3968 39.69 5627 398.74
C ^ 2 8 5 6 " 5 6 ^ 5195 ~32 32 — 4665 87.47 7414 592.46
C7552 2422 4105 4726 7922 1141.23
C ^ 906 97A " o W 1697 7.34
^ 422 834 - 777 ~ 1 0 ~ ~ ^ 1 3 2 0 ~ ~ 1.29 2426 316.87
^ ~ ~ 1 4 7 0 ~14 8 ^ ~ 4.66 4383 565.88

^ ^ 9 0 8 1681 1417 135 1926 2.82 3116 100.2
b9-n2 157 273 “ 208 4 1 ~ ~ W 252 0.02 401 0.66
^ ^ 184 336 270 ^ 354 0.1 767 5.61
d ^ n ^ 3 8 6 750 676 22 1 2 5 9 ~ 0.71 2131 102.15
f ^ 266 244 "~8 ^ 386 0.07 675 5.17

538 1062 990 14 " ~ I 4 ~ 1968 1.68 3594 286.7
130 233 ^ J T ^ ^ ~ ~ l 7 ~ 218 0.03 252 0.82

^ t ~ m ~ ~ 1 2 5 1 " l35 107 1753 1.71 2856 28.58
sao2-hdl 250 490 — 439 10 797 0.4 1347 15.42

t ^ 272 510 439 " M ~ ~ W 817 0.21 1430 11.35
227 430 - 376 ^ 715 0.14 1307 6.16

x3 855 1575 1334 135 99 || 1677 1.7 || 2456 43.42
[1 I I I I I I 40298 260.9 11 67325 5354.18"

Normalized || I I II 1 I 1 II 1.67 20.52

38

CHAPTER 4. IMPROVING CIRCUIT PARTITIONING WITH REWIRING
TECHNIQUES

Table 4.2: Comparison of 2-way partitioning results.
Circuit II hmetis-Kway || RAMFIRE 11 Rewire

II #lits I cut cost I CPU II #lits I cut cost 丨 CPU || #lits 丨 cut cost CPU
5xpl 235 25 1.74 233 20 3.47 235 20 51.7

9sym-hdl 232 9 2.16 218 9 0.17 232 8 — 1.77
C1355 16 — 2.44 " T o ^ 16 “ 28.33 1055 16 2816.5
C1908 —883 29 2.11 883 28 80.79 883 28 9147.21
C2670“ 1444 19 3.11 1443 15 16.48 1444 15 308.55
C3540 2267 ~ 4 8 6.26 2266 45 1.16 2268 4 5 ~ ~ 0.96
C432 392 13 — 1.6 392 ~ U ~ 0.13 392 1 1 _ 1.25

^ ^ 8 5 4 16 1.67 854 16 19.74 854 16 421.51
C 5 3 1 5 3 2 8 2 33 6.45 3282 ~ ~ 2 5 27.62 3282 2 5 4 1 2 . 4 7
C6288 37 7.81 5195 35 110.99 37 3481.66
C 7 5 5 2 4 1 0 5 9 7.27 4105 6 10-32 4105 6 119.25
cm 17 1.9 780 15 0.57 780 15 3.81

^ ^ ^ 777 38 2.4 777 30 241.95 777 30 2158.16
^ HTT" 60 4.01 1470 51 58.67 1470 53 7949.08

apex6 1417 ~ ~ T 3.27 1417 6 271.18 1417 6 6730.97
b9_n2 2 0 ^ 5 1.18 208 5 7.98 208 5 77.76
comp m 3 1 . 2 4 3 1.44 270 3 12.52
d u k e 2 3 5 " ^ W 676 32 14.64 676 31 626.88
f ^ 244~ 13 1.25 244 9 _ 2.3 244 8 11.13

misex3 ~990 990 26 1359.29
pclerS 174 4 0 ： ^ 174 4 0.07 174 4 0.36

^ t 23 3.08 1251 ~ ~ ^ ~ ~ 14.85 1251 21 85.69
8 " T ^ 439 8 1.23 439 8 20.4

t e r m l 1 . 8 8 439 10 3.21 439 11 22.17
Ht2 m 4 1.55 376 3 0.08 376 3 0.48
x3 II 1334 6 2.89 1334 6 20.35 1334 6 385.81

30789 507 73.55 || 30775 443 957.89 11 30790 444 36166.69""
II 0.08 II 100% 87% 1 II 100% 88% 37.76

39

CHAPTER 4. IMPROVING CIRCUIT PARTITIONING WITH REWIRING
TECHNIQUES

Table 4.3: Comparison of 3-way partitioning results.
Circuit II hmetis-Kway || RAMFIRE 11 Rewire —

II #lits I cut cost I CPU II #lits I cut cost | CPU || #lits | cut cost CPU
5xpl 235 25 1.74 233 20 3.47 235 20 51.7

9sym-hdl 232 9 — 2.16 218 9 0.17 232 8 1.77 —
C1355 1055 37 — 4.33 1055 — _ ^ 18.31 1055 36 98.99
C1908 “ 883 一46 3.83 “ 881 43 28.94 883 43 709.09
C2670 “ 1444 ^ ^ ^ 5.64 “ 1442 27 64.51 1444 27 2118.63
C354Q “ 2267 7 8 1 0 . 2 6 4744.34
C432 392 ~ ~ ^ ~ 2.55 392 18 — 13.72 392 18 179.43

854 ~ 3 2 ~ 3.25 854 3 0 ~ 16.57— 854 29 38.25
C 5 3 1 5 3 2 8 2 43 11.15 3282 ^ ~ 222.07 3282 3 5 1 9 1 8 . 9

895.82 74 18047.11
C7552 l 9 1 3 . 1 4 17 315.65 4105 19 6991.29
c m ^ 3.54 . 780 ^ ~ 12.16 780 25 143.71
^ 7 7 7 66 3.97 773 55 37.94 777 56 4881.42
^ “ ~ l m l04 6.68 1464 8 6 ~ 106.35— 1470 95 11821.9

2 4 ~ ~ 507
b 9 _ n 2 2 0 8 10 1.86 208 9 1.36 208 9 4.69
^ ^ 6 2.19 270 5 1.89 270 5 9.91
duke2 ~676 ^ ~ ~ 3.88 674 54 22.97 676 52 1269.88
f ^ 244~ 27 1.87 ~ 244 19 — 4.01 244 19 63.27

misexS 61 4.74 987 44 35.17 990 45 3505.62
pclerS 174 8 ~ 1.61 " T t T " 8 0.06 174 8 0.29

^ 1251 37 一 5.36 —1247 33 — 25.85 1251 35 222.36
saQ2-hdl 26 3.06 436 23 7.06 440 23 94.53

terml 21 3 439 20 5.86 “ 439 17 31.13
17 2.46 374 13 一 3.12 “ 378 13 — 32.63

x3 II 1334 30 4.2 1334 26 21.45 || 1334 26 375.7 ~
T S ^ I I I 30789 943 125.73 30731 824 2086.25 11 30793 833 57863.54

II 0.06 100% 87% 1 II 100% 88% 27.74

40

CHAPTER 4. IMPROVING CIRCUIT PARTITIONING WITH REWIRING
TECHNIQUES

Table 4.4: Comparison of 4-way partitioning results.
Circuit II hmetis-Kway 11 RAMFIRE 11 Rewire _

II #lits I cut cost I CPU #l i ts| cut cost | CPU || #lits cut cost CPU
5xpl 235 41 2.17 || 229 25 4.54 11 235 25 90.08 —

9sym-hdl 232 13 — 3.06 222 232 1 3 ~ 3.2 —
C1355 ^ 0 5 5 4 9 6 . 0 7 1055 ~ ~ 4 7 2 0 . 7 1 1055 47 161.99
C 1 9 0 8 8 8 3 66 5.24 881 56 36.22 883 56 1521.44
C2670“ 1444 46 6.43 1444 ^ ~ ~ 86.28 “ 1444 4 0 ~ ~ 2023.91
C354Q 137 — 10.83 —2265 116 — 309.86 2267 109 28311.4r"
C432 392 ~ ~ 3 3 ~ 3.18 393 2 7 ~ ~ 16.67 “ 392 2 7 一 222.62
C499 854 41 ~ ~ 4.65 854 ~ ~ 4 1 15.75 854 41 129.9
C5315 —3282 90 — 12.47 3282 ~ ~ 7 0 4 0 3 . 8 8 3282 69 3494.42
C6288 112 15.05 5193 ~ ~ ~ 147.82 5195 112 19236
C7552 ；] 4 3 2 . 0 5 27 11893.33

780 ~ 4 2 ~ 4.81 780 — ^ 1 6 . 6 4 780 37 168.37
777 108 4.56 773 83 54.86 777 81 — 6866.66

^ 1 4 7 0 146 7.32 • 1470 121~~ 151.55 1470 121 18080.09
a p e x 6 1 4 1 7 38 7.24 1417 38 45.36 1417 37 709.75
b 9 _ n 2 2 0 8 17 2.54 _ 208 1 5 一 2.03 208 16 12.44
c o m p 2 7 0 7 3.38 270 6 2.28 ~ 270 6 37.93
duke2 676 90 4.8 675 72 一 27.22 676 74 2133.99
f ^ 244 41 _ 2.41 ~ 2 W 32 — 4.48 244 29 81.19

misex3 990 5.64 80 58.93 “ 990 81 6164.59~
pclerS ； 0 . 1 174 12 0.62

^ t 1251 49 6.75 — 1252 43 — 28.62 1251 43 194.9
saD2-hdl 439 41 3.71 438 34 13.79 439 34 ~ 198.42

terml 439 _ 2 9 ~ 4.11 437 24 一 5.54 439 25 56.82
U t 2 3 7 6 22 3.3 370 1 6 ~ ~ 3.55 19 30.26
x3 II 1334 36 6.57 || 1334 34 29.83 || 1334 34 527.75

II 30789 1426 153.67 || 30746 1216 1920.4 11 30789 1215 102352.12
0.08 II 100% 85% 1 II 100% 85% 53.30 —

41

ft

CHAPTER 4. IMPROVING CIRCUIT PARTITIONING WITH REWIRING
TECHNIQUES

Table 4.5: Comparison of 5-way partitioning results.
Circuit II hmetis-Kway 11 RAMFIRE 11 Rewire 一

II #lits I cut cost I CPU #lits cut cost | CPU || #lits | cut cost CPU
5xpl 235 48 2.6 || 229 34 4.96 236 32 112.05

9sym-hdl 232 14 3.52 214 14 1.82 234 14 0.88

C1355 1055 59 7.68 1055 58 27.79 1054 58 215.19

C1908 883 76 6.13 880 63 44.18 884 62 1121.38

C2670 1444 ~ ~ ^ ~ ~ 8.65 1441 5 l ~ ~ 120.52— 1443 50 2929.43

C354Q 2267 143 13.48 2266 132 383.03 2266 129~~ 24718.46

C ^ 3 9 2 36 4.56 392 32 18.4 392 31 195.13

cm 854 47 5.33 854 4 7 2 0 . 3 2 854 47 122.98

C5315 3282 102 一 16.58 3283 77 “ 411.67 3283 77 3127.12

C6288 5 1 ^ 118 18 5185 114 811.48 5195 117 14308.93

C 7 5 5 2 4 1 0 5 4 9 1 7 . 7 1 4098 4 8 一 516.75 4105 48 9210.13

cm 780 60 — 5.9 56 — 18.42 781 55 202.43

^ 777 63.84 777 90 7442.09

^ 1470~ 179 9.2 1470 ~ ~ 1 4 4 ~ 169.77 1471 145 17204.74

apex6 "1417 M ~ ~ 7.98 1417 52 “ 42.47 1417 52 562.24

b9-n2 208 22 _ 2.9 20 2.11 208 18 8.64

comp 270 12 “ 3.46 ^ ^ 12 3.18 271 11 29.56

duke2 5.81 675 84 676 81 1368.86

f51m 244 56 “ 2.77 244 37 5.84 244 33 104.65

misex3 99 6.78 978 88 58.18 990 90 3942.13

pclerS 1 7 4 ~ 17 2.34 174 15 1.93 174 15 11.29

^ t ^ 8 . 2 8 1248 56 ~ 30.17 1252 56 245.74

"^j^^IH^T 439 50 ~ 5 ~ ~ 423 44 15.38 440 44 261.1

terml 439 38 — 4.73 30 8.92 439 29 90.88

~ t t t 2 m ^ ~ 370 ~ ~ 5.5 378 25 65.98

x3 1334 57 7.64 1334 54 50.85 1334 54 744.76

T ^ I I 30789 1713 186.89 || 30698 1473 2866.83 11 30798 1463 88346.7厂

I I 0.07 I I 100% 86% 1 I I 100% 85% 30.82 —

42

CHAPTER 4. IMPROVING CIRCUIT PARTITIONING WITH REWIRING
TECHNIQUES

to obtain a high quality initial partitioning solution. The cut cost of the result-

ing solution is then further optimized by perturbation using FM partitioner

coupled with different rewiring algorithms. 2-, 3-, 4- and 5-way partitioning

was experimented, with the tolerance of area imbalance of both hMetis-Kway

and the logic domain partitioner are both set to 20% of the average area in

each partition. The maximum number of logic perturbation n is set to be 125

and the maximum number of zero/negative gain perturbation k is set to be

75.

The results show significant improvement of cut-size over the original solu-

tion. The Rewire- and RAMFIRE-coupled partitioner is able to further reduce

the cut-size by 13.82% and 13.79% respectively. Detailed results are shown in

tables 4.2 to 4.5. Although both algorithms has nearly identical optimization

results, the RAMFIRE-coupled partitioner use only on average 2.7% of the

CPU time used by the Rewire-coupled one. The significant difference in CPU

usage suggests that RAMFIRE is a more suitable choice to perform cut-size

optimization of circuit partitioning.

4.5 Conclusions

The enhanced RAMFIRE rewiring scheme discussed in previous chapter is ap-

plied to the circuit partitioning optimization problem. The optimization gain

and efficiency are compared to a more powerful scheme Rewire proposed in [5 .

Despite the fact that Rewire is able to find more wires than RAMFIRE, we can

see from the optimization results that both rewiring algorithms gives nearly the

same improvements over the cut cost. However, the partitioner coupled with

RAMFIRE use significantly less CPU time than that with Rewire. Therefore

we can see that, although RAMFIRE sacrifices certain logic transformation

flexibility, in terms of the number of wires found, for runtime improvements,

43

1

CHAPTER 4. IMPROVING CIRCUIT PARTITIONING WITH REWIRING
TECHNIQUES

such trade-off is well-justified for circuit partitioning optimization application.

• End of chapter.

44

Chapter 5

Circuit Logic Level Reduction

by Rewiring for FPGA Mapping

5.1 Introduction

A field programmable gate array (FPGA) is made up of an array of identical

programmable uncommitted logic elements and routing resources. By cus-

tomizing the logic elements and interconnections between them, an FPGA can

implement a wide variety of digital circuit designs. It has become an important

approach in digital system design and rapid prototyping due to its fast turn

around time and lower cost.

A popular architecture for the programmable logic elements inside the

FPGA is to use lookup-tables (LUTs). A /c-input LUT (/c-LUT) is able to

implement any it-input Boolean function. The value of k is commonly chosen

to be 4 or 5 for efficiency reason.

Design flow for FPGA usually consists of first synthesizing the circuit into a

gate-level netlist and then mapping it onto the logic elements of the FPGA by a

technology mapper. The mapping solution is then placed and routed to give the

final implementation of the circuit. Technology mapping for LUT-based FPGA

is the process of transforming a Boolean network into a functionally equivalent

45

CHAPTER 5. CIRCUIT LOGIC LEVEL REDUCTION BY REWIRING FOR
FPGA MAPPING

a « = > H , _
) G 1) f X

~ 0 G2 h _ ^ T ^ ^ G4 J ~ y

c o ^ 厂
(a)

a c ^
G1 > X

G5 V
c O J

(b)

Figure 5.1: Example of depth optimization using rewiring.

LUT network. The depth of the mapping solution, that is, the number of levels

of LUTS in the longest path from the inputs to the outputs of the mapped

circuit, greatly influences the time delay and hence the performance of the

resulting implementation of the circuit. Thus the minimization of depth during

technology mapping is of great significance.

Technology mapping can be viewed as a process to pack the gates in the

input Boolean network into different /c-input LUTs. Intuitively, if the num-

ber of levels of logic gates in the input Boolean network is reduced, so will the

depth of the mapping solution. Here, we used rewiring to optimize the Boolean

network so as to reduce its levels of logic gates. By performing rewiring trans-

formations on the gates along the critical path and try to remove them by

46

2

CHAPTER 5. CIRCUIT LOGIC LEVEL REDUCTION BY REWIRING FOR
FPGA MAPPING

adding alternative wires elsewhere, we can bring down the number of logic lev-

els in the Boolean network. Figure 5.1 shows an example of using rewiring to

reduce the logic gates level of the circuit. The gates G2, G3 and G4 are along

the critical path. By targeting the dotted wire G1 — G4, it can be found that

adding the redundant AND gate with inputs b and c will make the target wire

redundant and removable. Figure 5.1(b) shows the transformed circuit, which

is one level less than the original circuit.

The FlowMap algorithm [9] gives a depth optimal solution to the tech-

nology mapping problem. So we use FlowMap as the technology mapper to

actually perforin technology mapping on the optimized circuits to evaluate the

effectiveness of the logic level reduction optimization.

The rest of this chapter is organized as follows. Section 5.2 gives some

backgrounds on the technology mapping problem and the FlowMap algorithm.

Section 5.3 discuss our method of logic level reduction by rewiring transforma-

tion. The experimental results are then shown in Section 5.4 which is followed

by the conclusions.

5.2 Overview of the Technology Mapping Problem

5.2.1 Problem Formulation

A Boolean network is represented as a direct acyclic graph where each node

represents a logic gate. There is a directed edge from the node representing

the input gate to the node representing the output gate if there is a connection

between the two. The Boolean network is said to be /c-bounded if the input

degree of every node in the network is less than k. A node is said to have

a /c-feasible cone if the subgraph consisting of itself and its predecessors is k-

bounded. A /c-input LUT can implement any /c-input Boolean function, thus

it is able to implement any A:-feasible cone in the network.

47

CHAPTER 5. CIRCUIT LOGIC LEVEL REDUCTION BY REWIRING FOR
FPGA MAPPING

L-l \ Y)__I))—

a ® ^
—

Figure 5.2: Example of a mapping solution of a network for 3-input LUTs.

Here we consider the Boolean networks to be mapped composed of 2-input

gates only. Intuitively, this will maximize the flexibility of the mapping algo-

rithm to pack gates into LUTs, as well as ease the incorporation of rewiring

algorithms which currently handle 2 input gates most efficiently.

With the previous definitions, the formal definition of the technology map-

ping problem of an FPGA with /c-input LUTs is give as follows:

Definition 5.1 Given a 2-hounded Boolean network, compute a covering such

that every node is covered in a k-feasible cone.

Figure 5.2 shows an example of mapping solution of a network for 3-input

LUTs.

Our optimization goal is to reduce the delay of the mapped solution. Here

we use the unit delay model to estimate the delay of the solution. In unit

delay model, every LUT is assumed to have a delay of 1. The total delay of

the solution is therefore equals to the depth of the solution, which is defined

as follows:

Definition 5-2 Let P be the longest path from the mapping solution's pri-

mary inputs to primary outputs, the depth of the mapping solution is the

number of LUTs along P.

48

CHAPTER 5. CIRCUIT LOGIC LEVEL REDUCTION BY REWIRING FOR
FPGA MAPPING

We use the unit delay model for two main reasons. Firstly, in FPGAs,

the delay posed by LUTs is significant when compared to wiring delays and

LUTs has comparable delays even if they implements vastly different Boolean

functions. Therefore, the unit delay model is an accurate measure of the actual

delay of the mapping solution. Moreover, since placement and routing is not

yet performed at the mapping stage, we have no information regarding the

wiring delays of the solution.

5.2.2 FlowMap Algorithm Outline

In [9], Cong et. al. proposed the first polynomial-time depth-optimal tech-

nology mapping algorithm called FlowMap. For a given Boolean network,

this algorithm gives a mapping solution with optimal depth, thus we use this

algorithm to evaluate the optimized circuits. The following reviews some def-

initions and gives an outline of the FlowMap algorithm:

• A cut (X, X) is a partition of nodes such that source node s is in X and

sink node t is in X.

• Node cut size of (X, X) is the number of nodes in X that are adjacent

to some nodes in X.

• The cut is it-feasible if and only if node cut size of (X, X) is less than k.

• Each node v has a label l{v). The method of assigning labels will be

discussed in the algorithm outline.

• Height of a cut h(X,X) is the maximum label in X.

Figure 5.3 shows a cut with node cut size equals to 3 and height equals to 2.

The FlowMap algorithm consists of two phases: the labeling phase and the

mapping phase.

49

CHAPTER 5. CIRCUIT LOGIC LEVEL REDUCTION BY REWIRING FOR
FPGA MAPPING

t

Figure 5.3: Example of a cut with node cut size 3 and height 2.

50

CHAPTER 5. CIRCUIT LOGIC LEVEL REDUCTION BY REWIRING FOR
FPGA MAPPING

The Labeling Phase

The labeling phase computes the label for each node in topological order start-

ing from the primary inputs of the network. Here we denote the sub-network

formed by a node v and its predecessors as N^. The label of a node v, l(v) is

defined as the height of the minimum height /c-feasible cut in the sub-network

Ny plus 1. That is

m = — 讯 如 h{x,x)+i (5.1)
{X,X) is k—feasible

Therefore, to compute label l{v) is equivalent to finding a minimum height k-

feasible cut in N幻.[9] gives a linear time algorithm for computing the minimum

height /c-feasible cut in N^ in detail. The minimum height /c-feasible cut in N^

for each node v is saved for the computation in the next phase.

The Mapping Phase

The mapping phase generates the optimal mapping solution from the infor-

mation obtained in the labeling phase. Let (X 们勾 be the cut computed for

node u, since the cut is /c-feasible, the number of inputs into nodes X^ is less

than or equal to k, thus ^ can be implemented with one /c-input LUT. The

algorithm starts from primary outputs, implementing X^ of each node, and

then move to the inputs of the ^ nodes and implements the corresponding

兄，until only primary inputs are left. [9] proves that the LUT network thus

formed is depth-optimal with respect to the input network.

5.3 Logic Level Reduction by Rewiring Transformations

Intuitively, the number of levels of logic gates, i.e. the depth, of the original

unmapped 2-bounded Boolean network influences the depth of the mapped

51

CHAPTER 5. CIRCUIT LOGIC LEVEL REDUCTION BY REWIRING FOR
FPGA MAPPING

solution, as the technology mapping process can be seen as packing gates in

the 2-bounded Boolean network into /c-LUTs. Our objective is to utilize the

logic transformation operations of rewiring to modify the 2-bounded Boolean

network so that a network with smaller depth can be arrived. By using the

optimized 2-bounded Boolean network as the input to the technology mapping

algorithm, we hope to get a mapping solution with a better depth and therefore

has a smaller delay.

We reduce the depth of the 2-bounded input Boolean network by removing

critical gates in the network. A critical gate is defined as follows:

Definition 5.3 Given a Boolean network, let P be the set of longest paths

from its primary inputs to primary outputs. Any gate that lies on any path

in P is a critical gate.

The critical gates as well as the depth can be easily found by performing a

topological search on the Boolean network. Since removing an input wire to a

2-input gate also remove the gate itself, by targeting the input wires of critical

gates, we can remove them by adding alternative wires elsewhere. Removing a

critical gate can potentially reduce the depth of the network since the number

of gates along the longest paths can be reduced by one if the gate is part of

all longest paths or there is only a single longest path in the network.

Our logic levels reduction scheme is perturbation-based. For each pertur-

bation pass, we firstly compute the current set of critical gates. For each

input wire in every critical gate, its alternative wires are found by the rewiring

algorithm. Different rewiring algorithms can be used in this step to provide

feasible transformations. We then greedily choose an alternative wire pair from

all pairs that can achieve a positive gain, i.e. can reduce of depth by one after

the rewiring operation. If no alternative wire pair can achieve a positive gain,

one is chosen randomly from zero-gain wires pairs. The chosen alternative

52

CHAPTER 5. CIRCUIT LOGIC LEVEL REDUCTION BY REWIRING FOR
FPGA MAPPING

Algorithm Depth Reduce
Input: init-Qetwork, n, k
Output: best-network
1. num_perturb = 0;
2. curr_network = initjaetwork;
3. CG = 0; / / critical gates
4. WT = 0; / / transformed wires
5. for i = 1 to n
6. do topological search on curr.network;
7. CG = critical gates in currjietwork;
8. AW = 0; / / alternative wire pairs
9. for each input wt for each gate G CG
10. do use rewiring algorithm to find all alternative wires SWa for wt;
11. AW = AW U{(wu SWa)}；

12. if (AW + 0)
13. then wire pair WP = (w^wa G SWa) € AW where Ga.m(WP) = 1;
14. if {WP = 0)
15. then WP = (wt,wa € SWa) e AW where Gain(li^P) = 0

kk Wt i WT-
16. if (num_perturb > k)
17. then WP 二 G SWa) € AW where Gam{WP) is

most negative;
18. num_perturb = 0;
19. use WP to transform curr_network by replacing wt with Wa\
20. WT = WT\j{wa}\
21. if (Gain(iyP) 二 0)
22. then num_perturb +=1 ;
23. if (Depth (curr_network) < Depth (best .network))
24. then best—network 二 curr.network;
25. else break;
26. return best—partition;

Figure 5.4: Outline of logic perturb phase.

53

CHAPTER 5. CIRCUIT LOGIC LEVEL REDUCTION BY REWIRING FOR
FPGA MAPPING

wire pair is used to transform the network by adding the alternative wire and

removing the target wire. To prevent the algorithm from oscillating between

a few local minimum solutions, two heuristics are used. Firstly, the number

of consecutive zero-gain perturbations is limited by the input parameter k. If

the number of consecutive zero-gain perturbations exceeds k, an alternative

wire pair that can produce the largest increase in depth is chosen so as to

perturb the Boolean network to escape from a local minimum. Secondly, the

set of previously added wires is kept to record the wires that are added by the

transformations in previous perturbation passes. If a zero-gain wire pair has to

be chosen due to the absence of any positive-gain choice, wire pairs having the

target wire in the set of previously added wires has a lower priority than those

that are not in the set. The total number of perturbation passes is limited by

another input parameter n. The overall algorithm is outlined in Figure 5.4.

The optimized 2-bounded Boolean network is then used as the input to the

FlowMap algorithm.

5.4 Experimental Results

The optimization scheme in previous section is implemented in C. Two sets of

experiments, one with the scheme coupled with Rewire and one coupled with

the enhanced RAMFIRE in Chapter 3, were performed. The experiments were

conducted on MCNC benchmark circuits on a 2.4GHz Pentium workstation

with 512 MB memory running Linux.

In the experiments, the benchmark circuit is firstly optimized by the level

reduction scheme in Section 5.3 with the total number of perturbation n set

to 250 and the number of zero-gain perturbation k set to 10. The optimized

circuits are then mapped onto 4-input LUTs by FlowMap.
Table 5.1 shows the statistics of the optimized circuits. The depth of the

54

CHAPTER 5. CIRCUIT LOGIC LEVEL REDUCTION BY REWIRING FOR
FPGA MAPPING

Table 5.1: Depth optimization results

H II RAMFIRE II Rewire
Circuit II Depth #Lit || Depth | CPU (s) | #Ut || Depth | CPU (s) | #Lit
5xpl 11 221 10 4.48 221 9 47.49 221

9sym-hdl^ 22 _ J 9 _ _ 1 8 ^ 4 7 _
alu2 ~ 3 5 731 30 ~110：08~ 727 “ 27 4669.3 707
^ 43 " I W 34 307.81 1395 31 11263.24 1395

i j i ^ 19 16 1289 ~ 16 ~~614.87 1291
b ^ _ 9 _] J 8 8 7 8 一 6.94 ~ ~ 1 8 8 ~ 8 58.87 188

~ 22 22 992 ~ 22 "4^4.95 992
C l ^ 3 0 ~~8QQ~ 29 106.36 800 “ 30 762.94 800
C ^ 4 3 38 340.94 2108 “ 38 4314.78 2106

~ C ^ 3 0 28 48.62 360 “ 27 272.28 372
M 24 ~~182?72 T H 2 4 2790.08 784

C ^ 3 4 31 3029 30 4 2 5 8 i 3023
~ 40 38 750.92 3781 “ 35 9548.02 3759

C ^ ^ 7 1 0 ~ 2 4 ~ 125.34 704
^ 15 13 16.81 227 12 148.21 225
d^n^ 13 12 34 626 12 3396.06 626
f ^ 229 10 123.24 229

i i d ^ 25 932 21 163.69 932 21 3023.45 930
~ ^ ^ 12 151 11 ~ ^ 1 5 1 11 81.22 151

^ t ^ 1 1 3 1 23 "~71：85~~ 1131 “ 22 474.72 1129
15 404 12 33.17 402 12 225.2 402

ttt2 11 347 10 13.47 347 10 104.82 347
^ 18 1231 15 53.25 1231 15 368.48 1231

Total II 538 21910 || 480 3409.5 21858 11 465 51044.62 21798 ~
- N ^ ^ i ^ e d II 1 100% II 0.89 99.76% || 0.86 99.49%

55

CHAPTER 5. CIRCUIT LOGIC LEVEL REDUCTION BY REWIRING FOR
FPGA MAPPING

Table 5.2: FlowMap solutions improvements
II RAMFIRE II Rewire

Circuit Name Depth #LUT || Depth | #LUT || Depth 丨 #LUT
“ 5xpl 11 4 I 45 11 4 I 45 || 4 | 46

9sym-hdl — 6 ~ ^ 5 2 4 ~ ~ 5 24
alu2 — 12 11 ~ 2 0 8 11 216
alu4 — 15 13 382 11 368

apex6 7 7 436 7 434
b9-n2 — 3 ^ ~ 3 53 3 53
C1355 6 6 106 6 106
C1908 _ 9 9 ~ ~ ~ 9 160
C3540 _ 14 13 473 13 477
C432 12 99~~ 11 93 11 95
C499 — 5 "~T06~ 5 106 5 106
C5315 - 9 " ~ 6 5 4 ~ 9 650 9 657
C7552 — 12 ~ ~ 5 7 4 ~ 12 574 11 574
C880 — 10 1 5 厂 9 ~~158 9 158
comp 6 4 2 5 4 8 ~ 5 41
duke2 ‘ 5 " ~ 2 i r ~ 5 ~ ^ 5 212
f51m 4 ~ ~ ^ ~ 4 50 4 51

misex3 9 " ^ T T ' 8 ^ ^ ^ ~ " “ 8 277
pclerS 4 ~ l 8 ~ ~ 4 49 4 49

rot — 10 8 324 8 315
terml “ 5 ~ ~ % 5 92 — 5 91
ttt2 4 ~ ~ W f ~ 4 84 4 84
x3 II 6 I 385 5 I 386 II 5 I 386

Total II 177 4980 || 165 4988 11 162 4980
Normalized || 1 100% || 0.93 100.16% || 0.92 100%

56

CHAPTER 5. CIRCUIT LOGIC LEVEL REDUCTION BY REWIRING FOR
FPGA MAPPING

optimized circuits was improved by 11% for the RAMFIRE-coupled scheme

and 14% for the Rewire-coupled scheme, with the CPU usage of the Rewire-

coupled scheme being 15 times more. The number of literals of the optimized

circuits is almost unchanged. Table 5.2 shows the improvements in depth

of the FlowMap mapping solution of the optimized circuits with respect to

the original ones. The depth of the mapping solutions was improved by 7%

over the unoptimized circuits for RAMFIRE and 8% for Rewire. Again, the

optimization did not incur observable increase in the number of LUTs used.

Both rewiring scheme shows comparable improvements in circuit depth after

mapping but the CPU usage of RAMFIRE is significantly less than that of

Rewire.

5.5 Conclusions

The application of the enhanced RAMFIRE algorithm on the optimization of

circuit logic level for FPGA mapping is discussed. Again, the optimization

result of the enhanced RAMFIRE is comparable to the more powerful scheme

Rewire, yet with significantly less CPU usage. It shows that RAMFIRE is

a promising way of exploring the solution space provided by the flexibility of

implementing the Boolean network.

• End of chapter.

57

Chapter 6

Conclusions and Future Works

In this work, we proposed a scheme of using the idea of inconsistent assign-

ments to enhance the single-pass rewiring scheme RAMFIRE, resulting in a

saving of CPU usage as well as having better rewiring power in terms of be-

ing able to provide more potential alternative wire pairs for performing circuit

transformations. We successfully applied the enhanced rewiring scheme onto

two different circuit design optimization problems of vastly different nature:

optimization of circuit partitioning and reduction of depth of FPGA map-

ping. In both cases, we were able to obtain substantial improvements over the

already-excellent solutions given by the state-of-the-art algorithms. Moreover,

when compared to a more powerful rewiring scheme Rewire, our method is able

to provide comparable performance in optimization applications while using

much less CPU time. Our results suggest that the proposed scheme has great

potentials to provide extra flexibility in exploring different implementations

of equivalent Boolean network to improve the quality of solutions of different

circuit design problems.

Yet, as seen from experiments, the rewiring power of single-pass rewiring

scheme, in terms of number of alternative wires found, is not as good as the

other more CPU intensive algorithm Rewire. One possible reason is that the

implication of uncontrollability and unobservability is more difficult to imply

58

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

throughout the circuit. Although our proposed scheme can achieve significant

improvements in both circuit partitioning and depth optimization problems,

there may exists some other optimization application, like logic minimization,

which may have a higher demand on the rewiring power of the rewiring algo-

rithm. From the experimental results, we can still afford to spend more CPU

time on the finding alternative wires.

Recursive learning [19] is a technique that is able to find more mandatory

assignments, at the expense of higher CPU usage. The application of recur-

sive learning technique in rewiring algorithms enhances the rewiring power in

two aspects. Firstly, with recursive learning, more necessary assignments can

be found compared to direct implication. The construction of the candidate

wire set is based on connecting gates with necessary assignments to absolute

dominators, thus more candidate wires can be tried when recursive learning

is used. Secondly, recursive learning enables the detection of some hard-to-

detect redundant faults, which is not detectable by using direct implication

only. Therefore more candidate wires can be proved to be valid alternative

wires. However, in this thesis we have not considered the integration of recur-

sive learning with our enhancement on RAMFIRE.

It is worthwhile to explore further in two possible directions. Firstly, to

increase the rewiring power, we may investigate the integration of recursive

learning technique with our enhancement scheme. Applications that require

high rewiring power can be benefited. Secondly, the enhanced RAMFIRE algo-

rithm is demonstrated to be effective in perturbation-based circuit partitioning

and depth optimization. Its applications on other circuit design problems like

logic minimization and routing improvement has great potentials for explo-

ration.

59

Bibliography

1] c. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning.
Integration, the VLSI Journal, 19:1-81, Aug. 1995.

2] C. W. Chang and M. Marek-Sadowska. Single-pass redundancy addition
and removal. In Proc. InVl Conf. Computer-Aided Design, pages 606-609,
2001.

3] S. C. Chang and D. 1. Cheng. Efficient boolean division and substitution
using redundancy addition and removing. IEEE Trans. Computer-Aided
Design, 18(8):1096-1106, Aug. 1999.

4] S. C. Chang, K. T. Cheng, N. S. Woo, and M. Marek-Sadowska. Post-
layout logic restructuring using alternative wires. IEEE Trans. Computer-
Aided Design, 6:587-596, June 1997.

5] S. C. Chang, L. P. P. P. van Ginneken, and M. Marek-Sadowska. Fast
boolean optimization by rewiring. In Proc. Int,l Conf. Computer-Aided
Design, pages 262-269, Nov. 1996.

6] S. C. Chang, L. P. P. P. van Ginneken, and M. Marek-Sadowska. Circuit
optimization by rewiring. IEEE Trans. Comput, 48(9):962-969, Sept.
1999.

7] M. Chatterjee, D. K. Pradhan, and W. Knuz. Lot: Logic optimization
with testability - new transformations for logic synthesis. IEEE Trans.
Computer-Aided Design, 17(5):386-399, May 1998.

8] D. 1. Cheng, C. C. Lin, and M. Marek-Sadowska. Circuit partitioning with
logic perturbation. In Proc. Int. Conference on Computer Aided Design,
pages 650-655, Nov. 1995.

9] J. Cong and Y. Ding. Flowmap: An optimal technology mapping algo-
rithm for delay optimization in lookup-table based fpga designs. IEEE
Trans. Computer-Aided Design, 13:1-12, June 1994.

10] J. Cong and S. K. Lim. Multiway partitioning with pairwise movement.
In Intl. Conference on Computer Aided Design, pages 512-516, 1998.

60

BIBLIOGRAPHY

11] L. A. Entrena and K. T. Cheng. Combinational and sequential logic op-
timization by redundancy addition and removal. IEEE Trans. Computer-
Aided Design,�14(7):909—916’ July 1995.

12] M. S. Hsiao. Maximizing impossibilities for untestable fault identification.
In Proc. IEEE Design Automation and Test in Europe Conf., pages 839—
846, Mar. 2002.

13] M. A. Iyer and M. Abramovici. Fire: A fault-independent combinational
redundancy identification algorithm. IEEE Trans. VLSI Syst, 4(2):259-
301, June 1996.

14] Y. M. Jiang, A. Krstic, K. T. Cheng, and M. Marek-Sadowska. Post-
layout logic restructuring for performance optimization. In Proc. of Design
Automation Conf., pages 662-665, 1997.

15] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hy-
pergraph partitioning: Application in vlsi domain. In 34th ACM/IEEE
Design Automation Conference, pages 526-529, 1997.

16] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In
36th ACM/IEEE Design Automation Conference, pages 343—348, 1999.

17] T. Kirkland and M. R. Mercer. A topological search algorithm for atpg.
In Proc. Design Automation Conference, pages 502-508, 1987.

18] W. Knuz, D. Stoffel, and P. R. Menon. Logic optimization and equivalence
checking by implication analysis. IEEE Trans. Computer-Aided Design,
16(3):226-281, Mar. 1997.

19] W. Kunz, D. Stoffel, and P. R. Menon. Recursive learning: A new impli-
cation technique for efficient solutions to cad problems: Test, verification
and optimization. IEEE Trans. Computer-Aided Design, pages 1143-1158,
Sept. 1994.

20] K. McElvain. Lgsynth93 benchmark set: Version 4.0, 1993.

21] Y. L. Wu, C. C. Cheung, D. L Cheng, and H. Fan. Further improve circuit
partitioning using gbaw logic perturbation techniques. IEEE Trans. VLSI
Syst, ll(3):451-460, June 2003.

22] Y. L. Wu, W. Long, and H. Fan. A fast graph-based alternative wiring
scheme for boolean networks. In International VLSI Design Conference,
pages 268-273, 2000.

61

. ‘ • ‘ .
： ‘ - 、 •

(,

‘ \ ‘

I /.

‘‘

, ‘ ‘ I

P

Pr

.

‘ ‘.5

_ • ‘ ‘ •)
• • - ‘

- • ： . •
...•‘ •..'...

C U H K L i b r a r i e s

004280659

