
Efficient Alternative Wiring Techniques
and Applications

SZE, Chin Ngai
BEng

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

© T h e Chinese University of Hong Kong

August 2001

The Chinese University of Hong Kong holds the copyright of this thesis.

Any person(s) intending to use a part or the whole of the materials in this

thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.

‘ 氣2 (卿 識 i

NSjXL'BRARy SYSTEfjx^^

碩士硏究畢業論文

高效率的基於可替換線邏輯變換及其應用

作者：施展毅

摘要

可替換線邏輯綜合方法硏究的基本問題是怎樣針對電路中的一條目標線，尋找一條可替換

線。由於把可替換線加入電路中的時候，該可替換線是冗餘的，因此電路的邏輯功能不變。

可替換線邏輯綜合方法的用途十分廣泛，包括電路優化（circuit optimization)，時延優化

(timing optimization)，電路分割規劃(circuit partitioning)以及現場可編程門陣列綜

合方法（FPGA synthesis) °

可替換邏輯綜合方法的廣泛用途引起了不少硏究小組的興趣及參與。其中大多數的硏究採用

自動測試生成（ATPG)的算法來尋找可替換線’因爲這種算法都比其他算法快捷有效。但這

類算法的運行速度仍然緩慢，不足以滿足速度上的要求，原因是它們涉及了大量的邏輯蕴涵

(logic implication)和冗餘測試。爲了解決以上有關尋找可替換線的問題，我們的硏究提

出了兩種不同的算法0這兩種算法都比現有的方法更爲有效，而且執行速度更爲快捷。

首先我們提出「基於邏輯蘊涵的可替換線檢驗算法」（Implication Based Alternative

Wiring Logic Transformation)。這個算法是根據不同邏輯蕴涵之間的關係，把傳統基於自

動測試生成的算法加以改善。從實驗結果得知，我們的算法有效地減少冗餘測試的次數，從

而加快可替換線檢驗的運算速度。

第二種算法是「基於圖像的可替換線檢驗算法」（Graph Based Alternative Wiring),它將

可替換線辨驗的過程轉化爲一個圖像配對的問題。我們把電路中的線與門和一組預先定義含

有可替換線的圖像配置作配對，來尋找目標線及可替換線0因爲這種算法不涉及任何邏輯蕴

涵’所以比傳統基於自動測試生成的算法更快捷°但是以往這種算法檢驗出的可替換線數目

不及傳統基於自動測試生成的算法，原因是預先定義的圖像配置不足。我們的硏究不但大大

增加了圖像配置的數目，還採用了一種圖像配置組織分類的方法’從而增加檢驗出的可替換

線數目和算法的運行速度。

「基於圖像的可替換線檢驗算法」的槪念與傳統基於自動測試生成的算法有很大分別’圖像

配對的過程之中’我們完全不知道有關邏輯蕴涵的資料°因此我們的硏究提出了一種新的方

法’應用圖像配對算法於邏輯優化的問題之中。實驗結果證明了我們的邏輯優化算法不但保

持了邏輯優化的質素，而且更大大加快了傳統邏輯優化算法的運行速度。

Abstract

Alternative wiring refers to the process of adding a redundant connection to

a circuit so as to make a target connection redundant and removable from

the circuit without altering the functionality of the circuit. The technique of

alternative wiring has a wide range of applications including logic synthesis

sucli as circuit optimization, timing optimization; and physical design such as

partitioning, post-layout logic restructuring and FPGA synthesis.

Due to wide applications of alternative wiring, the study of locating alter-

native wires effectively and efficiently has drawn the attention of many research

groups. They used to adopt ATPG-based approaches to identify alternative

wires but their methods involved time-consuming logic implications and redun-

dancy checks. Thus, we explore two different approaches to provide efficient

solutions to the alternative wiring problem in this thesis.

Our first approach is to improve the traditional ATPG-based alternative

wiring algorithms by implication analysis. Our algorithm, the implication-

based alternative wiring logic transformation (IBAW), aims at reducing the

number of alternative wire checks by skipping unnecessary identification steps.

By exploring the implication relationship among alternative wires, IBAW suc-

cessfully improves the efficiency of traditional ATPG-based approaches.

By modeling the alternative wire identification as a graph matching process,

the Graph Based Alternative Wiring algorithm (GBAW) suggests a different

approach to the problem. In GBAW, alternative wires are found by match-

ing the elements in the network with a set of pre-defined graph configurations,

i

which is termed the pattern family. Since GBAW does not involve any logic im-

plication, it runs much faster than traditional ATPG-based alternative wiring

algorithms. However, the solution-quality is slightly worse than ATPG-based

algorithms since only a small subset of patterns are included in GBAW. Our

work is to group the patterns in an organized manner and hence to simplify

the pattern implementation as well as the logic transformation. Besides, we

propose a number of new patterns which help to increase the solution-quality

of GBAW effectively.

Since the concept of GBAW is completely different from the traditional

ATPG-based alternative wiring algorithms, the implication information is un-

known throughout the GBAW process. Therefore, we develop a new algorithm

to apply GBAW in logic optimization. Experimental results in area minimiza-

tion show that our GBAW optimization algorithm is more efficient than other

logic minimization tools with competent optimization ability.

ii

Acknowledgments

First, I would like to express my deepest gratitude to my advisor, Professor

David Yu-Liang Wu for his guidance and kindness. He aroused my interest

in the research of alternative wiring, piloted me when I was confused and

encouraged me when I felt depressed. Besides, I would thank Professor Chak-

Kuen Wong, Professor Kam-Wing Ng, Professor Kin-Hong Lee and Professor

Fung-Yu Young for their advice.

Special thanks are given to Rachel Wai-Yiu Wong, Ray Chak-Chung Che-

ung, Jessica Gut-Yee Hui, Ada Kwan, Martinian Chan, Nancy Chan, Wangn-

ing Long, Professor Shih-Chieh Chang, Professor Wayne Wolf, Professor Eby

G. Friedma and Robbin Dodson.

.Last but not least, the greatest gratefulness are owed to my family. I am

just nothing without them.

iii

Curriculum Vitae
Born - Hong Kong - September, 1977.

Education
1996 - 1999 BEng in Computer Engineering,

The Chinese University of Hong Kong

Major: Computer Engineering, Minor: Mathematics

Final Year Project: Low Earth Orbit Satellite Systems

Publications

• C.N. Sze, Y. L. Wu, "Improved Alternative Wiring Scheme Applying

Dominator Relationship", Proceedings of Asia and South Pacific Design

Automation Conference (ASPDAC) 2001, Pages: 473-478.

• Y. L. Wu, C .N. Sze, C.C. Cheung, "On Improved Graph-Based Alter-

native Wiring Scheme for Multi-Level Logic Optimization", Proceedings

of IEEE International Conference on Electronics Circuits and Systems
• (ICECS),2000.

• P. T. S. Tarn, J. C. S. Lui, H. W. Chan, C. C. N. Sze, C. N. S z e , “

An optimized routing scheme and a channel reservation strategy for a

low Earth orbit satellite system Proceedings of Vehicular Technology

Conference, 1999. VTC 1999-FalL IEEE VTS 50th Volume:5, 1999

,Pages: 2870-2874 voL5

• Y. L. Wu, C .N. Sze, W. N. Long, J. N. Bian, "Accelerated Alternative

Wiring Logic Transformation by Implication Analysis", in revision of

IEEE Transactions on Very Large Scale Integration Systems.

iv

Contents

Abstract j

Acknowledgments

Curriculum Vitae

List of Figures .
IX

List of Tables "
Xll

1 Introduction 1

1.1 Motivation and Aims 1

1.2 Contribution g

1.3 Organization of Dissertation 10

2 Definitions and Notations n

3 Literature Review ^
15

3.1 Logic Reconstruction 15

3.1.1 SIS: A System for Sequential and Combinational Logic

Synthesis 16

3.2 ATPG-based Alternative Wiring 17

3.2.1 Redundancy Addition and Removal for Logic Optimization 18

3.2.2 Perturb and Simplify Logic Optimization 18

V

3.2.3 REWIRE 21

3.2.4 Implication-tree Based Alternative Wiring Logic Trans-

formation 22

3.3 Graph-based Alternative Wiring 24

4 Implication Based Alternative Wiring Logic Transformation 25

4.1 Source Node Implication 25

4.1.1 Introduction 25

4.1.2 Implication Relationship and Implication-tree 25

4.1.3 Selection of Alternative Wire Based on Implication-tree • 29

4.1.4 Implication-tree Based Logic Transformation 32

4.2 Destination Node Implication 35

4.2.1 Introduction 35

4.2.2 Destination Node Relationship 36

4.2.3 Destination Node Implication-tree 39

4.2.4 Selection of Alternative Wire 41

4.3 The Algorithm 43

4.3.1 IB AW Implementation 43

4.3.2 Experimental Results 43

4.4 Conclusion .r 45

5 Graph Based Alternative Wiring Logic Transformation 47

5.1 Introduction 47

5.2 Notations and Definitions 48

. 5.3 Alternative Wire Patterns 5O

5.4 Construction of Minimal Patterns 54

5.4.1 Minimality of Patterns 54

5.4.2 Minimal Pattern Formation 55

5.4.3 Pattern Extraction 61

5.5 Experimental Results 63

vi

5.6 Conclusion 63

6 Logic Optimization by G B A W 66

6.1 Introduction 66

6.2 Logic Simplification 67

6.2.1 Single-Addition-Multiple-Removal by Pattern Feature . . 67

6.2.2 Single-Addition-Multiple-Removal by Combination of Pat-

terns 68

6.2.3 Single-Addition-Single-Removal 79

6.3 Incremental Perturbation Heuristic • . 7I

6.4 GBAW Optimization Algorithm 73

6.5 Experimental Results 73

6.6 Conclusion 76

7 Conclusion ^^

Bibliography 朋

A VLSI Design Cycle

B Alternative Wire Patterns in [WLFOO] 87

B.l 0-local Pattern 87

B.2 1-local Pattern 88

B.3 2-local Pattern 89

B.4 Fanout-reconvergent Pattern 卯

C New Alternative Wire Patterns 91

C.l Pattern Cluster Ci 91

C. l . l NAND-NAND-AND/NAND;AND/NAND 91

C.1.2 NOR-NOR-OR/NOR;AND/NAND 92

C.1.3 AND-NOR-OR/NOR;OR/NOR 95

vii

C.1.4 O R - N A N D - A N D / N A N D ; A N D / N A N D 95

C.2 Pattern Cluster C2 gg

C.3 Pattern Cluster C3 99

C.4 Pattern Cluster C4 104

C.5 Pattern Cluster C5 IO5

Glossary 106

I n d e x 108

viii

List of Figures

1.1 Interconnection projections [Ass97] 3

1.2 An example of alternative wiring 5

1.3 Application of alternative wiring - placement and routing . . . • 6

1.4 Application of alternative wiring - critical path removal 6

1.5 Application of alternative wiring - partitioning 7

3.1 Outline of the logic optimization algorithm in [CE93j 19

3.2 Outline of the logic optimization algorithm in [CGLMS99] . . . 23

4.1 An example of implication relationships 26

4.2 An example of an implication-tree 28

4.3 Implementation of selecting source node from implication-tree • 31

4.4 Framework Implementation of Implication-tree Based Logic Trans-

formation

4.5 Implementation of Implication-tree Based Logic Transformation 34

4.6 An example of Theorem 5 38

4.7 An example of Corollary 7 39

4.8 A sub-circuit 40

4.9 A destination node implication-tree 4O

4.10 Implementation based on destination node identification . . • . 42

4.11 Implementation of IB AW 仏

5.1 Configuration of a sub-network 49

ix

5.2 A sample alternative wire pattern 50

5.3 One member of Pattern Cluster Ci 51

5.4 One member of Pattern Cluster C2 52

5.5 One member of Pattern Cluster C3 53

5.6 One member of Pattern Cluster C4 53

5.7 One member of Pattern Cluster C5 54

5.8 An example of minimality requirement 55

5.9 Another example of minimality requirement 55

5.10 A sub-network S 57

5.11 The sub-network S transformed by an ATPG-based alternative

wiring algorithm 57

5.12 The resultant pattern configuration - Step 1 58

5.13 Example - Step 2 59

5.14 Example - Step 3 60

5.15 Example - Step 4 6i

5.16 Example - minimal pattern 62

5.17 Minimal pattern extracted from Figure 5.16 62

6.1 A sub-network gg

6.2 Simultaneous pattern matching 69

6.3 The corresponding sub-network after logic transformation . • . • 69

6.4 Outline of GBAW logic optimization algorithm 74

A.l A simplified VLSI design cycle 85

B.l 0-local pattern 87

B.2 Three cases of 1-local patterns 88

B.3 Three cases of 2-local patterns 89

B.4 Example of fanout-reconvergent patterns 9O

C.l Cluster Ci, Pattern A l 92

V

c . 2 Cluster Ci, Pattern A 2 93

C.3 Cluster Ci, Pattern Cl

C.4 Cluster Ci, Pattern C2 94

C.5 Cluster Ci, Pattern El 95

C.6 Cluster Ci, Pattern E2 96

C.7 Cluster Ci, Pattern F1 96

C.8 Cluster Ci, Pattern F2 97

C.9 Cluster C2�Pattern A1 98

C.IO Cluster C2, Pattern A2 99

C . l l Cluster C3, Pattern A1 刷

C.12 Cluster C3, Pattern A2 100

C.13 Cluster C3, Pattern B1 101

C.14 Cluster C3, Pattern Cl 101

C.15 Cluster C3, Pattern Dl 皿

C.16 Cluster C3, Pattern El IO2

C.17 Cluster C3, Pattern F1 102

C.18 Cluster C3, Pattern Gl 搬

P. 19 Cluster C4, Pattern A l 皿

C.20 Cluster C5, Pattern A l 105

xi

I

List of Tables

1.1 Projections of VLSI chips feature size 2

4.1 Comparison between RAMBO, IBAW in CPU time usage 44

5.1 Verification of the pattern in Figure 5.14 60

5.2 2-local pattern comparison between RAMBO and refined GBAW 64

5.3 Comparison between RAMBO and GBAW 65

6.1 Comparison between GBAW optimization algorithm, SIS scripts

and REWIRE . .

6.2 CPU time improvement of GBAW optimization and REWIRE

against SIS scripts 76

xii

Efficient Alternative Wiring Techniques
and Applications

History teaches us that men and nations behave wisely once they have

exhausted all other alternatives.

- A b b a Eban

Chapter 1

Introduction

1.1 Motivation and Aims

Traditionally, the Computer-Aided Design (CAD) for Very Large Scale Inte-

gration (VLSI) can simply be separated into three steps: high level synthesis

(involving Behavioral Synthesis and Sequential Synthesis), logic synthesis (in-

cluding technology mapping) and physical design synthesis[HS96, She99]. The

detailed design process is shown in Figure A. l in Appendix A. High level

synthesis consists of the construction of behavioral and functional specifica-

tion., and the conversion from specification into hardware descriptions such as

Finite State Machine (FSM). Logic Synthesis refers to the translation of high-

level language descriptions into logic designs (a set of technology specific gates

and interconnects, or netlist) and the optimization of chip area, speed (delay)

and testability. Physical design synthesis transforms the circuit representation

into a geometric representation, the physical layout. It involves the process of

circuit partitioning, floorplanning, placement, and routing and the objective is

to minimize the chip area and to maintain chip performance. Since the design

processes are very complicated, these steps often operate separately and, in

other words, there is no interaction between them. However, the design pro-

cesses are changing due to the development of sub-micron and deep sub-micron

VLSI technology in the last decade,

1

Chapter 1 Introduction 2

Year of 1 对 Product shipment 1998 2001 2004 2007 2010
Minimum feature size (nm) 250 180 ^

Table 1.1: Projections of VLSI chips feature size

Due to the development of fabrication technology, the VLSI synthesis pro-

cesses enter the deep sub-micron range (feature size < 1/nm). According to

several reports [FS97, Ass97, AssOO] , the VLSI chips feature size will be lOOnm

and 70nm in 2007 and 2010 respectively. The information is shown in Table 1.1.

The decrease in chip feature size brings the following effects:

• The interconnect delay dominates the total path delay, which includes

interconnect and gate delays. (Refer to Figure 1.1 [Ass97])

• noise effect is exacerbated.

• power dissipation becomes unmanageable.

As a result, a verified design in logic synthesis steps may violate the rules in

physical design steps. The unmanageable violations are related to the timing

constraints and power dissipation requirements. j

With the development of sub-micron VLSI technology, there is an appeal for

the mergence of logic synthesis and physical design. In a panel session in 34认

DAC entitled "Physical Design and Synthesis: Merge or Die"[Ped97], all panel

members agreed that Physical Design and Synthesis must merge when "deep

sub-micron effects”, which refer to the increasing dominance of interconnect

delay versus gate delay in the total path delay, grow stronger.

In the last decade, there are several research directions relating to Logic

synthesis and Physical design. Some of the directions are tlie buffer insertion,

gate resizing, or logic reconstruction after the floorplanning and placement

steps. Another direction is to find a new timing model during the logic syn-

thesis steps.
I
i

Chapter 1 Introduction 3

< > I I I I t I I I I I I I I I I • I I I
！ J • I • • I 一 一 Gate Delay

I i I I I I I 45 I I • I _ I I • I I I I I t • I I I I I I i I I I I I I • I I < I I i

40 \ f ！" \ f / ; — Sum of Delays, A1 & SiO:
> < I I I < / I
‘ I » I • _ / _ I I I I I /

35 1 1 � i ； i.."”/ ：,
！ I [, I • Z • •

to I I i i i \ / * \ Sum of Delays, Cu & Low K
O4 • • 1 • I I / • I
a 30 f f ： � f \卜•……： •H I I I I I 1/ . I

_ • I • I / I >1 ‘ _ _ • • / • I
H 25 L � i t 1 .ilx 丨 _ • • • Interconnect Delay, A1 & SiO,
(V) » I I I « # • I
« ； ; ； ： ： / < ；

1 ！ ！ 丨 、卜、 ： 20 «• t I I i—y•.…...A _
‘ ‘ • • i / I I SS^ 丨 ： ； V̂ ： 丨-——-Interconnect Delay, Cu & Low K '̂ NCVfĉ , . I ^ • • I

1 5 广 广 … … … . . 丨 … … …
• I • ‘ I ^ ^ 1
• ‘ ‘ II I I • ‘ — • I
I « I \ I • - 1 I * \

_ • • � • • ‘ I ‘ I
» I • • • 、 I ‘ I

C 1 1 I .•…
： ： . . ^ ； 、 • ‘ •••'；

！ "•…• ！ … 卜 - ‘ I ： 一
0 ！ - - - V T - _ ： ； ； ；
0.65 0.5 0.35 0.25 0.18 0.13 0.1

Generation
Figure 1.1: Interconnection projections [Ass97'

Buffer insertion can decrease the number of fanouts, and in turn minimize

the connection delay. Gate resizing refers to the increase in gate size in critical

path and the decrease in gate size in non-critical path. The arrangement can ！

decrease the overall chip delay. However, most of the researches cannot provide ‘

a satisfactory solution to the problem, which is the divergence between logic

synthesis and physical design. A better method to merge the logic synthesis

into physical design steps would be performing logic reconstruction, or logic

transformation, during physical design processes. For example, a circuit may

not fit into a specified chip because of the inflexibility of routing resources. In

such case, to route an unroutable circuit successfully, we may need to change

the placement by swapping or duplicating some logic functional blocks, and to

alter the circuit topology.

For logic transformations, traditional multi-level logic synthesis systems

such as SIS [SsLea92] usually adopt algebraic and Boolean methods. These

Chapter 1 Introduction 4

methods are based on different sets of don't cares in circuit simplification.

They perform transformation in each logic expression which can be viewed

as a sub-circuit transformation. Thus, they are usually unable to perform

engineering change [LCMS99], that is the minimization of change in the logic

and physical specification for VLSI chips.

In recent years, some Automatic Test Pattern Generation (ATPG) based al-

ternative wiring logic transformation algorithms were proposed [CE93, CLMS95,

KM94, CPK98, CMSC96, CGLMS96, IK98]. Unlike SIS, this kind of methods (

utilize the ATPG techniques, such as logic implication [FS93] and recursive

learning [KP92], to substitute the target connection by adding a new wire

without changing the network's logic behavior. One of these ATPG-based al-

ternative wiring algorithms is the Redundancy Addition-and-removal for Mul-

tilevel Boolean Optimization (R A M B O) [CE93, CLMS95] which has been well

developed for different applications.

The concept of alternative wiring logic transformation is to add a redun-

dant connection to the circuit which in turn makes another wire redundant.

A wire in a circuit is redundant if its addition and removal does not alter the |

functionality of the circuit. An example of alternative wiring logic transforma- |

tion is shown in Figure 1.2. Figure 1.2(a) shows an irredundant circuit. The

additional connection g r x with an AND gate in Figure 1.2(b) is redundant,

but the new connection makes the originally irredundant wire g) "4 redun-

dant. After removing the connection g) — "4, a new circuit with the same

functionality but much simplified is obtained (shown in Figure 1.2(c)). The

connection g-j 你 is known as the alternative wire of connection g2 g^. Al-

ternative wiring refers to the replacement of a target wire with its alternative

wires.

Alternative wiring algorithms succeed in merging logic synthesis with phys-

icaJ design tools because they are able to replace a circuit element(gate or ；

connection) with another element elsewhere. This kind of logic transformation |

Chapter 1 Introduction 5

ccz^ — i p j] ^ ^ y � • = > • — i - T i r y J c=>y

(a) An irredundant sub-circuit (b) Adding redundant connection

c cz> §7 [=> y

(c) Circuit after redundancy
adding and removing

Figure 1.2: An example of alternative wiring

fulfills the requirement of engineering change researches since the change can

be minimized and it does not affect any other circuit element. For example,

an unroutable wire can be replaced by a routable wire, or a "long" wire which

violates timing constraints can be replaced by a "short" wire. In the examples, \
I

the violations are prevented, while the replacement can be made so that no

other connection is affected.

Alternative wiring technique also has a wide range of applications such ‘

as circuit optimization [CE93, EC93, EC95, CMSC96, CGLMS99, EEOU96,

CGLMS96],timing optimization [EEOU96], partitioning [CLMS95], post-layout

logic restructuring [CCWMS97a, CCWMS97b] and FPGA synthesis [CCWMS94].

The latter three applications are for physical design automation of the VLSI

circuits.

The first example is depicted in Figure 1.3. Assuming that the thick line

is an unroutable or a long wire, it is then possible to replace the connection |

with its alternative wire. The flexibility in selecting wires will improve the

routability and reduce overall delay of the circuit.

Chapter 1 Introduction 22

1 1̂ —1 I 1 _

t

丨'

Figure 1.3: Application of alternative wiring - placement and routing

Figure 1.4 shows another example. If connection t is on the critical path

and it connects two functional blocks, it will bring long propagation delay to

the system. In this case, we can replace the wire with its alternative wires to

reduce the critical path delay.

blockl block2

I
critical ‘

path

Figure 1.4: Application of alternative wiring - critical path removal

Another application of alternative wiring in partitioning is shown in Fig-

ure 1.5. If wire t violates the pin constraints of chips 1 and 2, it is possible to

replace t with the alternative wire a, which is inside the chips. The transfer-
！

mation can reduce the number of ofF-chip connections in the system and hence i
i

increase the flexibility of partitioning. [

Alternative wiring can also be applied in the area of logic optimization. If
i
I

Chapter 1 Introduction 7

chipl chip2

• , a

Figure 1.5: Application of alternative wiring - partitioning

the number of circuit elements newly added to the network is less than the

number of elements removed, the circuit will be simplified. In Figure 1.2, after

replacing g) 4 94 by its alternative wire g? — g各 , t h e number of gates is

reduced. All the above applications demonstrate that alternative wiring is not

only a competent solution to fill the gap between logic synthesis and physical

design，but it also can be a logic optimization tool.

However, the main problem of the current ATPG-based alternative wiring

scheme is that it runs slowly, mainly due to the time-consuming nature of the

ATPG procedures. The R A M B O algorithm first selects a target wire, locates a i

new wire that makes the target wire redundant, and then substitutes the new

wire for the target wire. The new connection is a feasible alternative wire only

if it is redundant when adding to the network. Otherwise, the addition of the

new wire will change the network logic behavior. The most time consuming

procedure in R A M B O is the redundancy check of the candidate alternative

wires. Our research aims at the acceleration of ATPG-based alternative wiring

schemes. To improve the efficiency, the number of redundancy identification

must be reduced.

In [WLFOO], a new graph-based technique of identifying alternative wire,

named Graph-Based Alternative Wiring (GBAW) , was first proposed. It first

models a circuit network as a directed acyclic graph (DAG).Then it identifies

I

Chapter 1 Introduction 24

alternative wires by performing graph pattern matching between local sub-

graph of the network and the pre-specified minimal sub-graph configurations,

which contains alternative wires within a given range limit. Experiments show

that the number of all such local minimal sub-graphs is limited and most of

the alternative wires are located topologically "near" to their target wires. It

is found that about 96% of the closest alternative wires are of only 2-edge-

distance from their target wires.

GBAW produces a competitive result in finding alternative wire when com-

paring to R A M B O . Not only does GBAW perform well in searching alternative

wires but it also runs very fast. Experiments show that on average, the CPU

running time of G B A W is just 1.4% of that of R A M B O . This significantly

short running time makes GBAW a better technique for identifying alterna-

tive wires. The efficiency of GBAW is gained mainly because of its avoidance of

running the CPU-expensive Boolean implications. Since common alternative

wire patterns repeatedly occur in the same circuit, the one-time analysis effort

of pattern based rewiring scheme is made practical. However, we observed that

G B A W finds less 2-local alternative wires, which are of 2-edge-distance from

the target wire, than R A M B O due to the small pre-defined set of minimal con-

figurations shown in the early version [WLFOO]. In this problem, we intend to

improve the G B A W ,s solution quality, especially in locating alternative wires.

1.2 Contribution

In this paper, we first propose an algorithm to accelerate the speed of alter-

native wiring using the implication relationship between nodes of candidate

alternative wires. We have noticed that the implication relationship among

source nodes and destination nodes of alternative connections can help us to

accelerate the ATPG-based alternative wiring algorithms. In fact, the iden-

tification of an alternative wire consists of the selection of a source node and

Chapter 1 Introduction 25

a destination node. Hence, the alternative wiring algorithm becomes more

efficient by dividing the procedure of redundancy checking into two parts: se-

lection of suitable source and destination nodes. For example, it is unnecessary

to investigate the destination node of a candidate alternative wire if merely

the implication relationship of the corresponding source node is sufficient in

identifying redundancy.

We propose an algorithm in which redundancy identification is carried out

by analyzing the relationship among destination nodes. In [CGLMS99], it is

shown that the destination nodes of an alternative wire are always with forced

mandatory assignments. In large circuits, the number of feasible destination

nodes of an arbitrary target wire can be very large. So, the acceleration in

destination node identification would highly expedite the whole alternative

wiring scheme. Then, by exploring the implication relationship among desti-

nation nodes, we have obtained encouraging results in improving the efficiency

of our alternative wiring scheme when compared with R A M B O .

Our algorithm, Implication Based Alternative Wiring Logic Transformation

(IBAW), is a general-purposed alternative-wiring algorithm. Since it is capable

of finding alternative wires for target wires efficiently, it is also powerful in

other applications such as logic optimization, delay optimization and circuit

partitioning. Experimental results show that, to find alternative wires for

target wires, our scheme runs 6.7 times faster than the complete R A M B O

algorithm.

Secondly, a much extended Graph-Based Alternative Wiring (GB AW) scheme

to identify alternative wires in multi-level logic with promising results is pre-

sented. By modelling subsets of circuits as minimal graphs and applying purely

graph-based local pattern search technique, we have found more than 40 graph

patterns which contain alternative wires within 2-edge-distance from the tar-

get wire. Applying proper grouping technique for the patterns with similar

configurations, the complexity of our rewiring technique as well as the CPU

Chapter 1 Introduction 10

run time can be reduced.

Experimental results on MCNC benchmark circuits show that our tech-

nique is much faster than the ATPG-based technique R A M B O with compet-

itive number of found alternative wires. With this much augmented pattern

family of alternative wires, we are able to find 30% more alternative wires

compared to R A M B O , with 75 times speedup on average. To demonstrate

GBAW technique in logic minimization, we applied it as a perturbation en-

gine and simplify the target circuit by SIS algebraic operations. Results show

a further reduction of 11.1% in literal count compared to applying algebraic

operations alone.

Besides, we propose the GBAW optimization algorithm, which applies

G B A W for logic optimization in circuit area. The idea of our algorithm is based

on the simplification and perturbation optimization scheme in [CMSC96].

There are two different parts in GBAW optimization algorithm, which are

the logic simplification algorithm and the incremental perturbation heuristic.

Both of them focus on the characteristics of all patterns in our pattern fam-

ily. We classify the patterns into different groups with the same function for

logic optimization. Our experimental results show that our algorithm pro-

duces competent optimization quality and better efficiency when comparing

with other optimization schemes.

1.3 Organization of Dissertation

The rest of the paper is organized as follows. Definitions and notations are

introduced in Chapter 2. Discussions of some previous works are included

in Chapter 3. Chapter 4 presents the redundancy identification by destina-

tion node relationship. Chapter 5 explains the graph based approach to the

alternative wiring problem. Chapter 6 shows the G B A W logic optimization

algorithm. Conclusion is presented afterwards.

Chapter 2

Definitions and Notations

A Boolean network can be formulated as a directed acyclic graph (DAG). The

nodes can be primary inputs (PI), primary outputs (PO), or internal nodes. PI

have only out-going edges and PO have only an in-coming edge while internal

nodes have at least two in-coming edges and one out-going edge, and they

are associated with Boolean functions. Inverter is not treated as an internal

node but is considered as the polarity of an edge. In this paper, all gates are

assumed to be simple gates including AND, OR, NAND, and NOR.

A wire w is an edge which connects two nodes. It can be represented as a

triplet, < S,D,P > , where S denotes the source node , D denotes the desti-

nation node, and P € { 0 , 1 } denotes the polarity of the wire. The input value

of the wire w to node D, D, P\ is (SP + SP). An absolute dominator,

or namely dominator, D of a target wire w is defined as a node such that all

paths from w to any PO should go through D.

The controlling value of a node G, cv{G), is defined as the input value

Qf G, which can determine the output of G. Conversely, the non-controlling

value of a node G is where na; (G) = [ct;(G)]'. The controlled output

value of a node G, is defined as the output value when one of the inputs of

G is cv{G). Similarly, the non-controlled value is simply the negation of the

controlled output value.

The stuck-at-o: fault of a wire w, fault, a: G { 0 , 1 } , is defined

1 1

Chapter 2 Definitions and Notations 12

as a fault model of a circuit such that the fault circuit can be modeled as one

with w setting to a constant logical value of x.

The test generation of (w\s-a-x) fault is defined as the generation of input

vectors, known as test vectors, such that with the input vector, the output

values of the faulty circuit is different from those of the fault-free circuit.

The set of mandatory assignments (SMA) for the test of a—:r) fault

is defined as the value assignment to nodes which must be satisfied by all

test vectors of the fault. The node with an assigned logic value is defined as a

determined node. The set of mandatory assignments can be classified into three

different subsets. The driving mandatory assignment (D M A) is defined as the

value assignments in order to drive the target wire to a fault-free value. The

observability mandatory assignment (O M A) is defined as the non-controlling

value assignments to nodes such that it sensitizes a fault-propagating path

to one of the primary output during the (w\s-a-x) fault test. The fault

propagation mandatory assignment (FPMA) is defined as the value assigned

to all dominators of the target wire with the value driven and only controlled

by the target wire. The FPMA are denoted as { 1 / 0 } or { 0 / 1 } indicating

the values in the fault-free circuit and the faulty circuit respectively. In this

paper, the symbols D and D denote { 1 / 0 } and { 0 / 1 } respectively. Forced

mandatory assignments, first introduced in [CMSC96], is a subset of SMA,

which consists of OMA, DMA and the mandatory assignments obtained by

backward propagation. Similarly, forced node is defined as the node with

forced mandatory assignment.

Direct implicationis defined as the determination of input (output) values

of gates by the corresponding input or/and output value. Take an AND gate

as an example, one of the inputs with value 0 would imply the output to

be 0 while the output value of 1 would imply both input values to be 1.

The former example is said to be a forward implication and the latter is a

backward implication. In an implication process, implying value always implies

Chapter 2 Definitions and Notations 13

the implied value. Take the backward implication of an AND gate as an

example, the output value 1 of AND is the implying value and the input

values 1 of AND are the implied values.

A wire is said to be redundant in a circuit if and only if the removal of the

wire will not change the functionality of the circuit. Based on the concept,

we define a wire u; < 5, D, P > to be ATPG-based redundant if the SMA

generated by direct implication for the —a- ;r) fault test is inconsistent,

where rc is the non-controlling value of D. For convenience, the SMA of (w <

> | « s — f a u l t test is abbreviated as M A ^ . Throughout the

paper, the word redundant stands for ATPG-based redundant in short. By

the abbreviation, is defined to be stricter than M A ^ , if and only if

c

A wire Wa < Sa,Da,Pa > , which does not exist in the circuit, is defined

as an alternative wire of an existing target wire Wt < S t , D “ P t > if and only

if it satisfies the following conditions:

A l . The addition of Wa to the circuit will change the mandatory assignments

for (wt < SuDuPt > \s-a-ncv{Dt)) fault test to inconsistent.

42 . After the addition ofu;^, the mandatory assignments for {wa\s-a-ncv(Dd))

fault test is inconsistent.

We demonstrate the above definitions by examples. In Figure 1.2(a), the

circuit is not redundant since all connections are irredundant. In Figure 1.2(b),

after adding the dotted connection and an AND gate, the generation of SMA

of (< 5^2,^4,0 > | 5 - a - l) fault is described as follow. F P M A is {g2 = ge =

= "8 = D}, DMA is { c = 1, 6 = 1} and O M A is {d = I, g^ = 0, gr = 1}.

By direct implication, we get g, = 0, g, = 0, d = 0. It is obvious that the

SMA of (< g2,g4,Q > k - a - l) fault is inconsistent since it contains = 1 and

= 0. As a result, < 92,94,0 > is a redundant wire.

Chapter 2 Definitions and Notations 14

In Figure 1.2(b), it can be proved that the additional connection < gi^gs^ 0 >

is also redundant. The addition of < 仍,"8,0 > makes the originally irredun-

dant wire < 92,94,0 > redundant. So, < "7 ’ "8 ,0 > is the alternative wire of

< 92,94,0 >.

Chapter 3

Literature Review

3.1 Logic Reconstruction

Traditionally, there are two kinds of logic reconstructions, which are either

technology-dependent or technology-independent. For technology-dependent

logic reconstruction, local optimizations are performed in order to reduce the

area delay and power consumption while leaving the structure of the circuit

substantially unchanged. The local optimization refers to, for example, the

change of gates impedance or transformation between serial and parallel con-

nection structures. They are carried out based on the specific knowledge of

the implementation technology.

For technology-independent logic reconstruction, the change of gate-function

and local logic structure is concerned. The reconstruction, multi-level mini-

mization, may lead to a simpler, smaller circuit, with shorter delay and higher

testability. In most cases, multi-level minimization relies on the externaland

mternal don't cares. External don't cares exist when the circuit has incom-

pletely specified function while the internal don't cares are related to the local

circuit structure.

An important step for multi-level minimization is substitution, or resub-

stitution. It refers to the addition of new input to a gate. The additional

input should be an existing function. In this case, some of the functions can

15

Chapter 3 Literature Review 16

be reused and shared. When part of the function of the gates is replaced by

the additional input, some circuit elements can be eliminated. This is actually

based on the concept - division of function. For two Boolean functions f and

d, it is possible to express their relationship by / = Qd-\-R. With such division

relationship, we can perform substitution on the functions.

There are two kinds of substitution: algebraic substitution and boolean

substitution, which use algebraic division and boolean division respectively.

Both of them use the technique of cube extraction, kernel extraction and a

set of don't cares to find the product of the division. Boolean substitution

produces better logic minimization results since the don't cares set of boolean

division is larger. However, boolean substitutions are more time-consuming.

The following is an introduction of a logic synthesis system which provides

us a platform with well-developed functions for performing logic resubstitu-

tions.

3.1.1 SIS: A System for Sequential and Combinational

Logic Synthesis

SIS is an open-source logic synthesis system which is developed by the De-

partment of Electrical Engineering and Computer Science in the University of

California, Berkeley. It is built on the basis of MISII [BRSVWST], a multi-level

logic optimization system, and much enhancement has been made to the logic

optimization techniques. In fact, SIS is not only an interactive tool for syn-

thesis and optimization of sequential circuits, but also a comprehensive logic

synthesis platform on which developers can implement their systems. The

system of R A M B O [CE93] and R E W I R E [CGLMS99] are built on the SIS

synthesis platform. All experiments in this paper are also built on the same

platform.

There are several scripts in SIS for logic optimization by reconstructions

Chapter 3 Literature Review 17

such as script.algebraic^ script.boolean and script.rugged, script.algebraic

and script.boolean can simulate the algebraic and boolean substitutions. For

script.rugged, it gives better logic minimization results but it takes more CPU-

time since it uses the binary decision diagram (BDD [Lee59, Bry86])-based.

techniques to find a larger don't cares set. However, if the BDD of the circuits

cannot be built, the script will not terminate.

3.2 ATPG-based Alternative Wiring

The basic idea of alternative rewiring is the concept of redundant - adding a

redundant wire to make another wire redundant. It has been found that an

untestable stuck-at fault indicates a redundant connection. For example, if the

stuck-at-1 fault at a connection is untestable, we can replace the connection

with a constant，T signal without changing the circuit's functionality. Un-

der this consideration, the ATPG algorithms can then be applied to identify

redundancy (untestable fault).

There are two types of ATPG-based alternative wiring algorithms: the

add-first schemes and the target-first schemes. The add-first schemes first add

a redundant wire to the network and try to locate the wires which become

redundant after the addition of the new wire. On the contrary, the target-first

schemes try to locate all alternative wires for a specified target wire. When

logic optimization is concerned, some algorithms adopt an add-first approach,

instead of the target-first approach used by the original R A M B O [CMSC96. •

These schemes are good for logic optimization purpose because adding a new

wire (with or without an additional gate) may lead to the removal of more than

one wire. Several methods are proposed to quickly identify the redundant wires

for the add-first scheme [CGLMS96, IK98]. By excluding some wires that are

vital for keeping the new connection redundant, reference [CGLMS96] dimin-

ishes the search space of possible redundant wires, and accelerates the process.

Chapter 3 Literature Review 18

In [IK98], a new direct RID method was proposed to expedite the redundancy

identification process. However, we notice that the add-first scheme is not suit-

able for post-layout logic transformation. The reason is that post-layout logic

synthesis tools prefer selecting a target wire first and then searching for alter-

native wires for substitution. As a result, most alternative wiring algorithms

for post-layout logic transformation utilize the target-first approach.

3.2.1 Redundancy Addition and Removal for Logic Op-

timization

In [CE93], the idea of alternative wiring based on ATPG techniques was first

published. The algorithm is named Redundancy Addition and Removal for

Logic Optimization (RAMBO) . The authors first proposed the connection fault

model. In the model, an extra connection is generated by the fault. Then, by

identifying the testability of the fault, a feasible redundant connection can be

found. Having the redundant connection added into the circuit, the feasible

target wire can be found by ATPG-based redundancy removal algorithms.

The paper also explained the implication of mandatory assignments in test

generation. The outline of their algorithm of logic optimization by alternative

wiring is shown in Figure 3.1. The paper stated that the destination nodes of

a feasible alternative wire should be the dominators of the target wire.

3.2.2 Perturb and Simplify Logic Optimization

Based on R A M B O , the paper [CMSC96] proposed new techniques to improve

both the alternative wiring scheme and the logic optimization algorithm. First,

the authors had extended the alternative wiring algorithm and showed that

the alternative wiring logic transformation can be divided into several difFer-

ent types. The types include single alternative wire, multiple wire addition,

gate function substitution and simultaneous alternative wires. After that, a

Chapter 3 Literature Review 19

logic_optimization()
{

while(Under a specified time limit) {

for each gate G {
based on the MA of G , find all redundancy;

add all found redundancy to the circuit ；

}
if (redundancy is added){

remove redundant wires according to a cost value;

/* the cost value is calculated based on

its effect on the circuit area */

}
}

Figure 3.1: Outline of the logic optimization algorithm in [CE93

logic optimization algorithm, termed Perturb and Simplify, was proposed and

the experiment shows that their algorithm is better than R A M B O in both

efficiency and the quality of optimization.

Single alternative wire is the removal of a wire by the addition of an al-

ternative wire. Using the forward MA (generated by forward implication)

together with the backward MA (by backward implication), it is possible to

identify more single alternative wires. Moreover, by exploring the fact that the

destination nodes of a feasible alternative wire can be nodes other than the

dominators, their algorithms are able to consider more connections. In order

to further improve the efficiency, the authors had concluded a complete set of

all possible transformations (connection fault models).

For the multiple alternative wires, the paper explored the cases where

adding one wire may cause the removal of multiple wires. The number of

circuit elements(connections and gates) decrease in such cases so the research

IS very important for circuit area minimization. Besides, the authors also found

that for some cases, the change of a gate's function will not alter the function-

ality of the whole circuit. After the explanation, they proposed procedures

Chapter 3 Literature Review 20

to locate these two special logic transformations by observing special SMA

patterns.

Simultaneous alternative wires are a pair of wires Wi,W2 in the circuit such

that each of them is not redundant, but simultaneously adding (removing) Wi

and removing (adding) W2 will not alter the circuit functionality. In this case,

we can add Wi (1^2) and then remove W2 {wi) but the alternative wire cannot

be identified by redundancy check. The paper presented the conditions for

simultaneous alternative wires to be identified. It stated that if the fanin of a

X O R / X N O R gate have a specific don't care term, the simultaneous alternative

wire will exist in the fanin connection.

After all the alternative wiring types are presented, a circuit minimization

algorithm, Perturb and Simplify, was proposed in the paper. The algorithm

consists of two steps: greedy optimization and circuit perturbation.

In the greedy optimization step, it tries to remove as many connections as

possible when adding one wire. For each node D, all the connections with D as

their dominator are selected. Then, for each selected wires, all its alternative

wires are recorded. After that, a list of alternative wires is obtained. From the

list, it can be concluded that some wires, e.g. may share the same

alternative wire, e.g. Wa- That means adding the wire Wa makes those wires

redundant. In other words, the addition of w � a n d the removal of

do not change the functionality of the circuit. The removal of at least one

connection by adding one connection is named Incremental Transformations.

This step is recursively performed until no more minimization can be done.

The greedy step may stuck at a local minimum, so the perturbation step is

proposed to bring the circuit out of the local minimization. Circuit perturba-

tion is single alternative wire transformations in order to increase the internal

don't cares in the circuit and in turn facilitate the greedy optimization step.

There are three rules in choosing alternative wires to increase the internal don't

cares. It is advisable to have:

Chapter 3 Literature Review 21

• nodes with fewer fanout

• nodes far from primary output

• wires with more parallel fanin

The authors stated that the rules are intuitively correct and do not guarantee

the increase of internal don't cares. Therefore, it is necessary to keep track

of the quantity change of the internal don't cares. Their heuristic uses the

number of dominators as the cost function for a specific wire.

The overall optimization algorithm iteratively performs greedy optimiza-

tion and circuit perturbation for a limited number of times. Experimental

results show that their algorithm performs very well in optimizing combina-

tional circuits and sequential circuits. Besides, their memory requirement is

quite low when compared with R A M B O .

3.2.3 REWIRE

In [CGLMS99], the ATPG-based alternative wiring algorithm is further im-

proved in its efficiency. First, the paper refined the concept of MA and in-

troduced a new notation, forced mandatory assignment. From the concept

of forced MA, the backward alternative wires (identified by backward M A) is

better-defined.

Then, the authors proposed five conditions for a wire to be an infeasible

alternative wire. If a wire possesses some properties, we know that it must be

an infeasible alternative wire without any identification procedure. A wire is

not feasible (irredundant) if:

• a wire is not visited during the implication process.

• its destination node has a forced observability MA.

• it holds an MA of destination node's ncv and the destination node has

no MA

Chapter 3 Literature Review 22

• its parallel fanin holds a MA of destination nodes of value cv

• its removal does not change the observability MA.

Utilizing these five filtering conditions, the omission of a number of unnecessary

redundancy checks is possible. As a result, the alternative wiring algorithm is

greatly accelerated.

The authors then deduced two necessary and sufficient conditions for a

redundant wire to be an alternative wire of a target wire. For a candidate

alternative wire w < S,D,P >, the conditions are:

• S should have an MA with value cv{D) ® P for the stuck-at fault test of

target wire

• D should have a forced MA with value ncv(D) for the stuck-at fault test

of target wire

According to the conditions as well as some previous works, the authors

proposed a procedure for logic optimization. The algorithm is shown in Fig-

ure 3.2.

The algorithm is much more efficient than [CMSC96] since it first uses a

destination node to select "good" target wire. Then it uses the selected target

wires to skip "bad" source nodes. The two filters trim out a large number of

unnecessary redundancy identification.

3.2.4 Implication-tree Based Alternative Wiring Logic

Transformation

In [LWBOO], the redundancy identification by the implication relationship

among source nodes of the alternative wires is proposed. For two candidate

alternative wires that share a common destination node, we assume that the

two source nodes are g^ and which have determined logic value a and b

Chapter 3 Literature Review 23

logic_optimization()
{

for each D in the circuit {

find the OMA of D
for each wire wJ in the fanin and fanout cone of D {

use previous five conditions to skip w_t if it

cannot be redundant；

find MA of w J stuck-at fault ；

use two necessary and sufficient conditions to

skip all wires S D which is not a feasible

alternative wire;

store all possible S into source_node_array；

}
optimize the circuit by 'Greedy Optimization, in [CMSC96]；

}
}

Figure 3.2: Outline of the logic optimization algorithm in [CGLMS99

respectively. If gi = a implies g2 = b and the candidate wire from gi is irre-

dundant, then the candidate wire from 仍 is also irredundant. Utilizing this

relationship, the approach can accelerate the ATPG-based scheme significantly,

because many infeasible alternative wires are discarded without invoking the

time-consuming redundancy identification procedure.

In order to apply the implication relationship of the source nodes for effi-

ciency improvement, the authors proposed a data structure, the implication-

tree, to store the implication relationship. The source node selection of an

alternative wire from the implication-tree avoids many needless redundancy

checking.

The details of the Implication-tree Based Alternative Wiring [LWBOO] will

be discussed in section 4.1.

Chapter 3 Literature Review 24

3.3 Graph-based Alternative Wiring

Graph Based Alternative Wiring (GBAW) was first proposed in [WLFOO .

First, it models a circuit network as a directed acyclic graph (DAG). Then,

it identifies alternative wires by performing graph pattern matching between

local sub-graphs of the network and the pre-specified minimal sub-graph con-

figurations which contain alternative wires within a given range limit. The

scheme works because it has been shown that most alternative wires are of

only 2-edge-distance from their target wires.

The paper also demonstrates that GBAW produces a competitive result

in finding alternative wire when comparing to R A M B O . G B A W not only

performs well in searching alternative wires but also runs very fast as no

ATPG-based implication is involved in alternative wire identification. The

significantly short running time makes GBAW a potentially and considerably

different technique for identifying alternative wires.

The details of the Graph-Based Alternative Wiring [WLFOO] will be dis-

cussed in section 5.

Chapter 4

Implication Based Alternative

Wiring Logic Transformation

4.1 Source Node Implication

4.1.1 Introduction

In this section, the technique in [LWBOO] is reviewed. By exploring the impli-

cation relationship between alternative wires with the same destination node

but different source nodes, we develop a theorem as well as an implication-tree

data structure. Selecting source nodes from the implication-tree, the technique

is able to trim out a significant number of unnecessary redundancy identifica-

tions.

4.1.2 Implication Relationship and Implication-tree

In a network after mandatory assignment and logic implication process, many

nodes are assigned with a determined logic value. We define an implication

relationship between two determined nodes as the following.

Definition 1 (Implication relationship between two determined nodes)

Suppose go and g^ are two determined nodes in the network under consid-

eration, go = bo, and gi = bi. If g �= bo results in 仍 = w e say go = bo

25

Chapter 4 Implication Based Alternative Wiring Logic Transformation 26

implies g^ = 61, denoted go = bo gi = 61； or for brevity, go implies gi,

denoted go � gi.

The implication relationship between determined nodes possesses transi-

tivity property, i.e., if go � gi and gi g2, then go 仍 .A n d , go directly

implies gi i f " � i m p l i e s gi through no transition,. In Figure 4.1, for example,

95 directly implies g2, d and qq, while implies gi and g^ through transition.

c n r \ o _ _ ^
^ " g j " ^ ~ Candidate alternative wire jf^

n 1
f y H ^ Target wire (s-a-1)

h

Figure 4.1: An example of implication relationships

Theorem 1 Considering two determined nodes go and 夕1, where go = bo and

= �s u c h that go 力 let < g” > , where {i = 0 ,1) , be two candidate
wires while D is an internal node, pi is the correspondent polarity that makes

P{9i->D,pi) = cv(D). If < go ,D,po > is irredundant, < g i , D , p i > is also

irredundant.

P 簡 f As the two candidates are connected to the same destination

node, they share the same fault propagation path. Hence, the O M A

are the same for the two candidates. Besides, considering the fault

driving assignment when the redundancy checking is performed for

wires < gi, D,pi > (i = 0 ,1) , the fault that may cause < g— D,pi >

redundant is {s-a-ncv(D)). Therefore, the DMA on < 仿,D,pi >

requires {{gi,D,pi) = cv(D). Recall that when g, = hi is given,

the value of pi is defined to make = cv[D). Hence,

Chapter 4 Implication Based Alternative Wiring Logic Transformation 27

the above DMA equals to those of gi = 6,-. As Qq implies gi, after

the mandatory assignment and logic implication for (< ^o, D,po >

s-a-ncv{D)), both go and gi become determined, i.e. go = bo and

9i = bi. So if < gi,D,pi > is redundant , < go,D,po > must be

also redundant. By contrapositive, if < go,D,po > is irredundant,

< D,p i > is also irredundant. •

It is observed that most candidate alternative wires are not redundant.

Hence, applying Theorem 1, many irredundant candidate wires can be easily

eliminated without calling the time-consuming ATPG procedure. For example

in Figure 4 . 1 ， = 1 ^ a = 1, so if < 5̂ 3，你,1 > is irredundant, < a.gs, 1 > is

also irredundant. Thus the whole logic transformation process can be greatly

accelerated. To store the implication relationship and apply Theorem 1’ we

propose a data structure, implication-tree. We simplified the relationship to

a tree, since the number of checks in node selection procedure are similar to

that of a graph while the construction of the tree is more efficient.

Definition 2 (Implication-tree) Given a determined-node set V̂ = vi,V2,..., Vk,

an impiication-tree is a tree whose vertex set is V = VR, VI, V 2 , V K , where VR

is the root which does not correspond to any nodes in the network. The chil-

dren of VR are the determined nodes that are not implied by any other nodes. A

leaf vertex corresponds to a node in the network that does not imply any other

nodes. Apart from the root and leaves, others are called internal vertices. An

internal vertex directly implies all its children. There are two kinds of edges in

an implication-tree, parent-child edge and sibling edge. The parent-child edge,

denoted by a vertical solid line, links a parent to its first child. The sibling

edge, denoted by a horizontal dotted line, links two close siblings. Of a parent,

all children form an array linked by sibling edges. All the vertices except VR

have a logic value marked next to it. Besides, every vertex in the tree must

Chapter 4 Implication Based Alternative Wiring Logic Transformation 28

possess one and only one parent. If two or more nodes imply a vertex, we only

assign the vertex as a child of any one of them.

For example, Figure 4.2 gives an implication-tree corresponding to the SMA

shown in Figure 4.1. The target wire is wt = g^ ge. Let the determined-

node set under consideration be K = a , / , o f , " 3 , " 4 , " 5 . Then, the vertex

set of the implication-tree is = a,/,c/,"i,"2，fif3,fiN4’"5, where VR is the

r o o t .仍 and 仇 are the children of VR , since they are not implied by any other

nodes. The edge from gs to a is a parent-child edge, with a being the first

child of gs. The edge from a to / is a sibling edge, which means that a and f

are two close siblings in the child array. Both a and f are leaf vertices. The

rest of the implication-tree is built similarly according to definition 2.

©

•1- <^。

… - - 4 - … - -

Figure 4.2: An example of an implication-tree

In the above example, ge, gr and gg are excluded from K , the reason is that

according to [CMSC96], the connections from the nodes in the fanout-cone of

the target wire cannot be a feasible alternative wire. As a result, only the

determined nodes outside the output-cone of the target wire are selected to

establish an implication-tree.

Chapter 4 Implication Based Alternative Wiring Logic Transformation 29

To conclude, after the mandatory assignment and logic implication for

a target wire, the corresponding implication-tree can be established in the

following two steps: (Assume that the nodes under consideration are outside

the output-cone of the target wire)

Step 1 For each determined node, store the implication relationship between its

inputs and the output. For example, let z'l be an input of node n. If n

implies zi which has no parent until now, is put into the child-array of

node n.

Step 2 Assign all the determined nodes which have no parent to the child-array

of VR.

4.1.3 Selection of Alternative Wire Based on Implication-

tree

From and A2, a candidate alternative wire is required to make the target

wire redundant while it should be redundant after its addition into the network.

Besides, as mentioned previously, the selection of a candidate alternative wire

can be divided into two parts: selection of source and destination nodes.

In [CMSC96], it is proved that the destination node of an alternative wire

should have the following properties.

R l . It should have forced mandatory assignment which is consists of the

O M A , DMA and the MA obtained by backward propagation.

112. The logic value of the on-input of the dominator should be D for OR

and NOR gates, and D for AND and NAND gates.

We adopt the above criteria to select destination nodes while our algorithm

merely focuses on the efficient selection of a source node. In R A M B O , the

Chapter 4 Implication Based Alternative Wiring Logic Transformation 30

process is quite time-consuming. However, by applying implication-tree, we

can speed the process up significantly.

Given destination node D, a node 5 is called a feasible source node if the

candidate wire < Z), P > is a feasible alternative wire. In Figure 4.3, the

algorithm describes the selection of a source node from the implication-tree.

The main idea of the source node selection algorithm is explained as follows.

Before the procedure is called (except the first time), it always checks whether

the node, which is selected last time, is a feasible source node. If the node

is feasible, the node-pointer is modified to its first child if it exists, else it is

pointed to its close sibling in the child array. Otherwise, if it is an infeasible

node, the node-pointer is modified to its close sibling or its parent's close

sibling. At the end of the procedure, if the node-pointer is pointing to a non-

root vertex of the implication-tree, the vertex is returned. Otherwise, NULL

is returned.

Throughout the procedure, the parameter R , is a flag that marks whether

the node selected last time is a feasible source node. For the first time when

the procedure is called, P, is Null. So A is pointed to the first child of the

root ”R and returned. For the next times, R ! is first checked. If R , is TRUE,

it is necessary to visit its children, and P, is modified to Pi's first child if there

exists any, or else to its next sibling or parent's next sibling and so on if it

has no children. If R , is FALSE, (the node selected last time is an infeasible

source node, and its children are also infeasible), P, is pointed to A ' s sibling

or its parent's sibling and so on. Moreover, the vertex is returned if P, points

tQ a non-root vertex of the tree finally. Otherwise, NULL is returned, showing

that no more nodes can be selected.

Consider the implication-tree in Figure 4.2 as an example. Supposing gs in

Figure 4.1 is selected as the destination node of the candidate wire, the above

procedure is invoked for several times as following.

(1) At the first time when the procedure is called, Pj = NULL. So Pi is

Chapter 4 Implication Based Alternative Wiring Logic Transformation 31

SelGct-a-nodG-from-implication-treG(i?i)
is TRUE or FALSE; /* (7?i=TRUE) means the node

visited last time is a feasible source node. */
Begin
/* Pi = global variable pointing to the last visited node.

尸 1 s initial value is Null. After the tree has
been traversed, Pi is set as vr, the root of
the implication-tree. •/

if (Pi == Null) {
Pi = first_child_of (vr)；
return P!；

} else if (i?i==TRUE) {
if (Pi has at least one child) {

Pi = first.child.of (Pi)；
return F\;

} else if (Pi has unconsidered siblings) {
Pi = next_sibling_of (Pi)；
/* close sibling that has not been examined */
return f\;

} else {

/* Pi has no child and
•no unconsidered siblings. */

while (Pi has no unconsidered siblings
&& Pi ^ VR) 6

尸 1 = parent一of (Pj)；
if (Pi == VR)

return NULL; /* No more nodes */
else {

Pi = next-sibling_of (f\);
return Pi :

}

,.}
I else /• if El == FALSE */

if (Pi has unconsidered sibling) {
Pi = next_sibling_of (Pi)；
/* close sibling that has not been examined •/
return

} else { /* Pi has no other siblings */
while (Pi has no unconsidered siblings

&& Pi ^ vn) 6
Pi = parent-of (Pi)；

if (Pi == VR)
〒！irn NULL; /* No more nodes •/

else {
= next_sibling_of (parent_of (R)：

return A :
}

}
End

Figure 4.3: Implementation of selecting source node from implication-tree

Chapter 4 Implication Based Alternative Wiring Logic Transformation 32

modified to vr's first child, which is then returned.

(2) As 仍 is an infeasible source node, R , = FALSE, and P, is modified to

93's next sibling g^ and returned.

(3) As is a feasible node, R , = TRUE. So P, is modified to 仇’s first child,

92 and returned.

(4) As Ri = FALSE, P, is modified to next sibling, d and returned.

(5) As Ri = FALSE, Pi is modified to VR. Hence, Null is returned, which

means that no more nodes can be selected. Finally, g , becomes the only

feasible node in the network.

After the procedure, we know that the corresponding feasible alternative

wire is < " 5 , " 8 , 0 � • Our algorithm needs only 4 trials, while the original

R A M B O needs 8.

4.1.4 Implication-tree Based Logic Transformation

The pseudo-code in Figure 4.4 presents the framework of our implication-tree

based logic transformation.

Srcld(net)
， i s the network under consideration：
Begin

for_each_node (net, m)
for_each_fanout (n!, oi) {

wt = ni->oi ；
SrcId-transform (net, wt)；

End

Figure 4.4: Framework Implementation of Implication-tree Based Logic Trans-
formation

The scheme tries to find alternative connections for every wire in the net-

work. In AW, SrcId-transform() is a key function, which tries to find an alter-

native wire to substitute the target-wire, w,. In Figure 4.5, the pseudo-code

Chapter 4 Implication Based Alternative Wiring Logic Transformation 33

describes the details of SrcId-transform().

At the beginning of the process, the redundancy identification for Wt is

performed. If Wt is redundant, it is removed; otherwise, an implication-tree

is built from the results of the logic implication process. For each candidate

destination node X, a temporary buffer node D is added right after where

D is assumed to be the destination node of the candidate alternative wire. The

buffer node can be converted into an AND gate or O R gate when the candidate

wire is introduced. Then the implication-tree is traversed in order to identify

a feasible source node S such that wire 5 L) is a feasible alternative wire.

The alternative wire is stored in an array named alt一array with 4 parameters,

X , P and T , where P and T are the polarity and the gate type required

for the alternative connection respectively.

After the implication-tree has been traversed, the buffer node is removed

to keep the original circuit unchanged. If alt.array is not empty, which means

there exists at least one alternative wire, the other destination nodes will be

ignored. However, if we want to find as many alternative wires as possible,

line 24 and 25 can simply be removed.

If alLarray is not empty at the end of the procedure, a candidate wire is

chosen from the array to substitute the target wire. The procedure Add(net,

is intended to add the alternative wire Wa into the network net. As men-

tioned previously, we use 5 , X , P and T to store a candidate alternative wire.

If X has only one fanout node whose gate type is T , the alternative wire is

directly connected from S to X ' s fanout node with polarity P. Otherwise, a

new gate D with type T is added right after X to be the destination node of

the alternative wire. Actually, the possibility for the alternative wires to exist

is higher if we add a new gate behind the destination node.

Chapter 4 Implication Based Alternative Wiring Logic Transformation 34

Srcld-transform(net, wt)
net.is the network under consideration:
m IS the target-wire;
Begin
1 if (wt is redundant) {

/* Redundancy checking is called for Wt */

3 rltull TRUE-""山 remove 切，from net. •/
4 } ，

5 VR = Generate-implication-treeCnet, Wf)；
/* VR is the root of implication-tree. */

6 Put candidate destination nodes into Sd.
/* Sd is an array. •/ ，

7 Sort-destination-node-array {Sd)；

8 for “1=0; zi < length of Sd\ ii++) |

ly D = Insert-buffer-node-after (X).

t； f i = null; /* Pi is a global node pointer. */
S = Select-a-node-from-implication-tree (TRUE).

13 while (S VR) { ‘
Determine P；

_ /* the polarity of the candidate alt. wire •/
2 = <S, D, P>； /* candidate alt. wire */

If 、Wa is redundant) {
17 /* ^a is a feasible alt. wire. •/

Put Wa into alt一array;
18 = TRUE;

19 }

20 • else R^ = FALSE;

22 } S = Select-a-node-from-implication-tree
23 Delete-buffer-node (D)；
24 if (alt_array is not empty)

II } break; /• break from the for loop. */

27 if (alt.array is not empty) {

28 Choose a wire Wa from alt array；

If. Add (net, Wa); /• Add Wa into net. •/

3? r t t Z l TRUE-“""山卜 Remote t/;, from net. */
32. } ,
33 else return FALSE;
End

Figure 4.5: Implementation of Implication-tree Based Logic Transformation

Chapter 4 Implication Based Alternative Wiring Logic Transformation 35

4.2 Destination Node Implication

4.2.1 Introduction

In this section, we focus on the add-first alternative wiring procedures. The

procedures are able to further improve the efficiency of the technique in Sec-

tion 4.1[LWB00]. Based on the definitions (A l ’ A 2) in previous sections, the

procedure of locating alternative wires of a target wire is simply the addition

of a candidate alternative wire between any two nodes in a, circuit, SMA gener-

ation by direct implication, and inconsistence checking. It is necessary for the

SMA generation and inconsistency checking, being very time-consuming, to be

carried out selectively for efficiency reason. The trivial approach to accelerate

alternative wire identification is based on the properties of alternative wire.

The following lemma presents one of the properties as an example.

Lemma 2 If a wire w �< > is an alternative wire of target wire

< >，for the test of fault, the MA of S � s h o u l d be

assigned such that /?(< Sa, >) = cv(Da).

尸 F r o m Al.，the addition of w^ < D^, P^ > should change

the mandatory assignments for w ^ l s - a - x . The only way to change

a node's value, if it can be changed, is the addition of an input to

the node with a controlling value. •

Since acceleration can be m a d e merely by source nodes implication rela-

tions, it is expected that further improvement can be made by developing the

identification trimming by relationship among destination nodes. In this sec-

tion, the second technique is presented. We first concentrate on the properties

of the destination nodes of alternative wires for a target connection. Based

on the properties, we develop theorems on the relationship between alterna-

tive connections with the same source node but different destination nodes, in

order to accelerate the alternative wiring process.

Chapter 4 Implication Based Alternative Wiring Logic Transformation 36

4.2.2 Destination Node Relationship

It is observed that the selection of destination node based on R1 and R2 in the

previous section is not efficient for large circuits, since the number of forced

nodes of a target wire is still large. An efficient procedure to select destination

node further improves the alternative wiring algorithm. Our solution to this

problem is to introduce a new method to select destination nodes of a target

wire. Before describing our algorithm in detail, some theorems are derived.

Theorem 3 All FPMA of the target wire are not involved in the inconsistency

of the SMA of the target wire.

P 彻 f The inconsistent SMA of a wire is that a logic conflict

occurs between the implication from its inputs and output. For

FPMA, the assigned value follows the fault propagation path and

all FPMA is driven by their input. So there is no inconsistency

involving FPMA. •

By Theorem 3, the derivation of the following corollary is trivial.

Corollary 4 For ATPG-based redundancy check, it is not necessary to include

FPMA in the checking of inconsistent SMA.

We continue to discuss the relationship between different candidate desti-

nation nodes with the same source node in constructing an alternative wire.

For the candidate alternative wires with the same source node but different

destination nodes, their DMA are the same. As a result, we merely concentrate

on the OMA, which is implied by the destination node.

Theorem 5 For a target wire, the OMA of a candidate destination D^ node

is the same or stricter than that of another candidate destination node D) if

D2 is the transitive fanout of Di , excluding nodes on the path from Di to D2.

Chapter 4 Implication Based Alternative Wiring Logic Transformation 37

Proof As mentioned in Rl, all candidate destination nodes are

forced node of the target wire. For any two forced node Di and

D2 which are candidate destination nodes with Di is the transitive

fanin of D2, the OMA of all fanout gates of D2 driven by both Di

and D2 should be the same since all side-inputs are set to non-

controlling value in the fault propagation path. However, for the

backward implication of D2, if the inputs of D2 can be implied,

they should be set to non-controlling value. Since for backward

implication, the "implying value" should be non-controlled value

and the "implied value" should be the non-controlling value. Sim-

ilarly, if backward implication can be done in all gates between Di

and D2, all side-inputs should be set to non-controlling values. As

a result, excluding the path from Di to D2, the OMA implied by

the destination node Di should be stricter than that of D2 in most

cases. The OMA implied by destination node of Di and D2 are

the same only when all gates between Di and D2 are involved in

backward implication. •

Example of Theorem 5 is shown in Figure 4.6. Figure 4.6(a) demonstrates

a subset of OMA < 5' ,Z)i,0 > and (b) for a subset of O M A < 5,1)2,0 > .

It can be observed in the figures that the OMA < > is stricter than

O M A < 5 , ^ 2 , 0 > .

Based on Theorem 5, we conclude the relationship of the destination nodes

selection for alternative wires.

Theorem 6 For two new connections < 5 ,Z) i ,P i > and < S � D i , P o with

Di being in the transitive fanin of D2, if < S, A , Pi > is irredundant, <

> is also irredundant, where S is an internal node, Di and D2 are

internal nodes satisfying the condition in R1 and R2, Pi and P2 are the polar-

ities that make the corresponding connection the controlling values of D^ and

Chapter 4 Implication Based Alternative Wiring Logic Transformation 38

•,S、、“，
、、”)

\ 0/1

� � �^ \ o / l 0/1 ^
1 Di A 0/1

1 乂
1

(a) Subset of O M A of <S，Di，0>

� � “ ‘

z ^ J j ^ l l l ^ f ^ ^ ^

X ^ y ^ - U

1 ‘！

(b) Subset of OMA of <S，D2，0>

Figure 4.6: An example of Theorem 5
D2 respectively.

P 糊 f For the two connections, < S^D^.P^ > and < D2, P2 > ,

having the same source node, their DMA should be the same. How-

ever, from Theorem 5, the OMA of the former connection is stricter

than or equal to the latter one excluding nodes on the path from

to D2. So if the former connection is irredundant, there is no

conflict in corresponding SMA for both connections. Thus, the

latter connection should be irredundant. •

Corollary 7 For the same condition stated in Theorem 6，if < 1)2,^2 > is

redundant , < > should be also redundant.

Proof The contrapositive of Theorem 6. 口

An example illustrating Corollary 7 is shown in Figure 4.7. The circuit

demonstrates the addition of a new connection to the circuit in Figure 1.2(a).

Chapter 4 Implication Based Alternative Wiring Logic Transformation 39

According to Figure 1.2(b), the new connection can be added after ge. How-

ever，when applying Corollary 7, the new connection can also be added before

96 and the addition is concluded in Figure 4.7.

：?、
‘

c C Z . 一 i ^ y

叫 丄 丄

Figure 4.7: An example of Corollary 7

Based on Theorem 6, a large number of alternative wire checking can be

skipped. When a candidate wire with a destination node D is identified to be

irredundant, all connections with forced nodes which is in the transitive fanout

of D and the same source node can be skipped from checking. The complete

procedure to identify alternative wires with the technique is presented in the

next sections.

4.2.3 Destination Node Implication-tree

Based on Theorem 6, we can build a destination node implication-tree to store

all relationships among candidate destination nodes, with forced mandatory

assignments. For nodes with F P M A , we first set the dominator which is closest

to PO to be the root of the tree, while for other dominators, if dominator D,

is in the fanin of dominator D ” A . is set to be the child of Dj . After that, we

assign all other nodes with MA obtained by backward implication to be the

children of their fanin nodes.

An example is shown in Figure 4.8 and Figure 4.9. Assuming that all nodes

Chapter 4 Implication Based Alternative Wiring Logic Transformation 40

in the Figure 4.8, a subset of a circuit, are forced nodes, the corresponding

destination node implication-tree is shown in Figure 4.9.

target wire

513—L_y

Figure 4.8: A sub-circuit

© G…
© ©

Figure 4.9: A destination node implication-tree

Destination node selection can be made from the implication-tree. Ac-

cording to Theorem 6, we conclude that if a node in the implication-tree is

identified to be infeasible, all its ancestors should also be infeasible. In other

words, we can skip all the redundancy checks of alternative wires associating

with the ancestor nodes.

Chapter 4 Implication Based Alternative Wiring Logic Transformation 41

4.2.4 Selection of Alternative Wire

The selection of appropriate candidate alternative wires is crucial to the accel-

eration of the whole process of alternative wiring. Since the basic implemen-

tation of alternative wiring transformation is described in Figure 4.3, 4.4 and

4.5, only the alternative wire selection procedure of a target wire Wt, which is

based on destination node relationship, is briefly described as the pseudo-code

in Figure 4.10.

In the alternative wiring identification procedure of a target wire lu“ a can-

didate source node is selected according to the SMA of w,. When all potential

nodes are checked, the procedure would restart with the next target wire.

For the source node selection, we can choose any algorithm to accelerate the

process on condition that it is independent of the destination node selection.

For a selected candidate source node, candidate alternative wires can be

formed with candidate destination node of the target wires. So in our im-

plementation, the destination nodes are first stored in the destination node

implication-tree. Then, destination nodes are obtained and a redundancy

check is performed for the candidate alternative connection in the inner while

loop. If the connection is identified to be redundant, it is an alternative wire

and is stored for further use, for example, when selecting suitable alternative

wires for optimization.

As indicated by Theorem 6, a destination node is skipped if any of its de-

scendants is infeasible. In the function select.dest.node, we select destination

node according to the implication-tree, last traversed node and the result of

last redundancy check. At the first time, the last traversed node is NULL,

the function returns a leaf node of the implication-tree. If the last node is

not NULL, the function will switch the node's flag based on the result of last

redundancy check. For example, if the last identification returns FALSE, the

flags of all ancestors of the last traversed node would be set such that all of

Chapter 4 Implication Based Alternative Wiring Logic Transformation 42

find_all_candidatGJiW (wt)
^t is the target wire;
Begin

dest_impl_tree = get_dest_tiode (Wf);
/* the source node selection loop
* can be different depends on which
* algorithm is adopted
*/

S = select_source_node (wt):
D = NULL; , ,
while (S ！= NULL){

w]iil?((D = select_destjiode (dest_impl_tree,R,D)) NULL
/* dest. node of candidate wire •/
insert_bufferrate (D)；
P = find-polarity 0“S,D);
if (is_redundant (S,D,P)){

store.candidateJlW (S,D,P);
R = TRUE; ‘‘

}
else{

R = FALSE;
remove_buffer_gate (S)；

}
} S = select_source_node (wt)；

End

destination node from the destination node
*^implication-tree, according to the last redSnd^cy check result

SGlect_dest_node (dest_impl_tree,R,D)
S = true,FALSE, result of last redundancy check

traversed node

if (D -= NULL){
} D = get_a_leafjiode(”H); /*VR is the root node •/

else{

if (R == TRUE){
} node—setjeiag(D,TRUE);

elsej
} all_ancestors_setjf lag(D,FALSE);

D = get_next_sibling(D)；
, i f (D == NULL){

} D = get_parent_sibl ing(D);

} D = get_a_leaf_nodG(D)；

return D;

End

Figure 4.10: Implementation based on destination node identification

Chapter 4 Implication Based Alternative Wiring Logic Transformation 43

them will be skipped. Then it will try to get its next sibling or, if no sibling

exists, try to get its parent or its parent's next sibling. At this step, if a node is

obtained, its descendant leaf node will then be found and returned. When no

sibling or parent exists, the function will return a NULL value and the inner

while loop will break and another source node would be selected.

4.3 The Algorithm

Our algorithm, the Implication Based Alternative Wiring Logic Transforma-

tion (IBAW), is an integration of the source node and destination node implica-

tion relationship techniques. They work independently and are complementary

to each other as they both focus on different parts of alternative wires when

trimming unnecessary redundancy identifications. As a result, IBAW speed

up the alternative wiring process significantly.

4.3.1 IBAW Implementation

The core implementation of IBAW is presented in Figure 4.11. Only the logic

transformation part is shown for the framework of IBAW is similar to the

pseudo-code shown in Figure 4.4. The implementation is simple and clear

since it is an integration of Figure 4.5 and Figure 4.10.

4.3.2 Experimental Results

In order to illustrate the performance of our algorithm, we compared IBAW

with the original RAMBO[CE93j . Both algorithms are implemented to locate

as many alternative connections as possible for all wires in the benchmark

circuits. All experiments are performed on Sun Enterprise 4500 machines.

Results are listed in Table 4.1. In the table, the columns display the CPU-

time usage for running R A M B O and IBAW. From the results, we know that

C h a p t e r 4 Implication Based Alternative Wiring Logic Transformation 44

the CPU-time usage of our implementation is only 14.7% of that of RAMBO.

The most encouraging finding is that the acceleration of IBAW increases as

the size of the circuit increases, which can be observed from the ratio between

R A M B O and IBAW in larger circuits such as C3540 and tooJarge.

Circuits I RAMBO | IBAW 丨 Ratio
5xpl 24.89 6.75

_C1355

C3540 ~6886.63 _ 7 3 6 j _ _ _ 9 j 5
C432 ~ 65.05 “ J S j； ^

C5315 4 7 7 . W n O j g ^ 4.33

C7552 992.71 “ 2 6 1 ^ 3 j 0
_C880

4878.6~ 591.61 8.25
apex6 ~ ~ 286.85~ 64.03 4.48

5.84 一

comp 15.98"
duke2 893.92""
f51m 3 4 . r
misex3 Q.fi?
pder8 7.79" 5.23

sao2 82.06 —
terml 53.27"
tooJarge 602.78"
ttt2 36.45 —
x3 150.71 34.35 4.39
Total 19400.01 2844.87 6.82

• Relative 1 0.147

Table 4.1: Comparison between R A M B O , IBAW in CPU time usage

Chapter 4 Implication Based Alternative Wiring Logic Transformation 45

4.4 Conclusion

Based on implication relationship among nodes in alternative wiring, we pro-

pose a novel algorithm, Implication Based Alternative Wiring Logic Trans-

formation (IBAW)，to accelerate the ATPG based alternative wiring logic

transformation algorithms. IBAW demonstrates its high efficiency in our ex-

perimental results by running 6.7 times faster than the original R A M B O in

exhaustively finding alternative wires in a circuit. To conclude, IBAW is a

fast and general-purpose alternative wiring logic transformation tool which is

applicable to many other EDA problems.

C h a p t e r 4 Implication Based Alternative Wiring Logic Transformation 46

IBAW-transformCnet, Wt) -
net_ is the network under consideration.
m IS the target-wire; ‘
Begin

if (m is redundant) {
/* Redundancy checking is called for Wt */

} rTuln ^SSe；切山 /* remove from'net. */

”R = Generate-implication-treeCnet, wt) •

/* Vr is the root of implication-tree. */
X “ get_dest_iiode (wt)；

wh土二le厂4est�ode (dest.impl.tree,R,X)) ！= NULL){
^ - Insert-buffer-node-after (X). ^

= NULL; /* Pi is a global nod； pointer. */
巧厂from-implication-tree (TRUE)；

Willie CS ！ = Vfi) {
Determine P；
/* the polarity of the candidate alt. wire */
切a = <S, D, P>； /* candidate alt. wire •/
If (Wa IS redundant) {

/* ^a is a feasible alt. wire. •/
Put Wa into alt一array;

} Ri = TRUE;

else Ri = FALSE;

} S = Select-a-node-from-implication-tree (R O ;

Delete-buffer-node (D);
if (alt-array is not empty)

R = TRUE; 】
else

} R = FALSE;

if (alt一array is not empty) {
Choose a wire from alt array•

，）；、 〈* Add Wa into net. •/
rlTuln ^ m h Z* Remove from net. */

；̂ else return FALSE;
End

Figure 4.11: Implementation of IBAW

Chapter 5

Graph Based Alternative

Wiring Logic Transformation

5.1 Introduction

In [WLFOO], Graph-Based Alternative Wiring (GBAW) , a new graph-based

technique to identify alternative wires, was first proposed. It first models a

circuit network as a directed acyclic graph (DAG). Then, alternative wires

are identified by performing graph pattern matching between local sub-graphs

of the network and the pre-specified minimal sub-graph configurations which

contain alternative wires within a given range limit . Experiments show that

the number of all such local minimal sub-graphs is limited and most of the

alternative wires are located topologically "near" to their target wires. The

paper states that about 96% of the alternative wires are only of 2-edge-distance

from their target wires .

. GBAW is proved to produce a competitive results in finding alternative

wires when compared with RAMBO. Not only does GBAW perform well in

searching alternative wires, but it also runs very fast. The paper [WLFOO]

shows that the CPU running time of GBAW is, on average, just 1.4% of that

of RAMBO. Due to its significantly short running time, GBAW is potentially

considerable to be a different and better technique for identifying alternative

47

Chapter 5 Graph Based Alternative Wiring Logic Transformation 48

wires. The efficiency of GBAW is gained mainly due to its avoidance of run-

ning; the CPU -expensive Boolean implications. In addition to the existence of

common alternative wire patterns which repeatedly occur in the same circuit,

the one-time analysis effort of pattern based rewiring scheme is made practical.

It is also observed that GBAW is unable to find all 2-edge-distaiit patterns

which can be found by ATPG-based alternative wiring, if G B A W is limited

to search merely the small pre-defined set of minimal configurations like the

early version shown in [WLFOO]. In this section, we present a much extended

G B A W scheme, mainly with more 2-local patterns, to improve the effectiveness

of G B A W significantly. We also define the concept of pattern cluster in order

to keep G B A W simple while expanding the pattern library. With the refined

GBAW, we achieve an encouraging result in identifying 2-local alternative

wires.

5.2 Notations and Definitions

A Boolean network can be modeled as a directed acyclic graph (DAG) . In a

Boolean network G, the in-degree of node y, denoted by is defined as

the number of edges entering y. The out-degree of node y, denoted by d+(y),

is defined as the number of edges leaving y. We define a node y by a triplet

{op, where op is the Boolean operator of y which can be AND,

OR, NAND,or NOR.

A wire is replaceable if and only if it has at least one alternative wire.

We use a graph configuration D to map the logic function from a Boolean

Network G. For each node rii in sub-network S in network G, rii is mapped

to a triplet in D where op denotes the operator representing the

boolean function of ly and z � a r e non-negative integers. All edges in S

are preserved, while the edges outside S are omitted in D. In most cases, ii

equals (/ " (n,) and “ equals d+(ni). The element of a triplet (op, d'(y), d+{y))

Chapter 5 Graph Based Alternative Wiring Logic Transformation 49

can also be don't care, dc. For the first element, dc means any operator. For

the other elements, dc can be any positive integer. We use a configuration to

denote a minimal pattern containing both the target wire and its alternative

wires.

G s

: : _ _ > n g2
~ F ^ ^ S3

(a) Boolean network G and its sub-networks

(AND’2’1) (AND,2,2)

^

(b) A configuration of 5, Dj

(AND’dc’l) (AND’dc’dc)

^

(c) Another configuration of S, D^

Figure 5.1: Configuration of a sub-network

• The mapping is illustrated in Figure 5.1. 5 is a sub-network of G. Di and

D2 are two mappable configurations of S. The main difference between Di

and D2 is that the nodes in Di have definite number of fanins and fanouts

while those nodes in D2 can have any number of fanins and fanouts.

The A;-local pattern is defined as the alternative wire pattern with the

distance between the alternative wire and the target wire being k. The distance

Chapter 5 Graph Based Alternative Wiring Logic Transformation 50

between two wires is the difference of maximum path length from any primary

input to the destination nodes of the wires.

A pattern P covers an alternative wire pair (Wt, Wa) if the wire pair matches

with P in the graph matching process of GBAW. In same senses, the cover set

of pattern P is defined as all alternative pairs which are covered by P.

Figure 5.2 shows a sample of alternative wire patterns. The figure suggests

that adding connection a ^ g^ and removing connection a gi is a. feasible

alternative wire transformation. However, for each pattern, it is always possi-

ble to match two types of alternative wire pairs: the forward alternative wire

pairs and the backward alternative wire pairs. In Figure 5.2, the replacement

o^ a ^ gi with a 4 仍 is an example of forward alternative wires while the

replacement oi a g ^ with a gi refers to a backward alternative wire pair.

(dc,dc,dc) (NOR,dc,1) (NAND,dc,l) (NOR,dc,dc)

Q — © < £) ： ©
、、…

Figure 5.2: A sample alternative wire pattern

For pattern matching alternative wire transformation, if connection w^

replaces Wb, we define w � a s the addition wire and Wb as the removal wire.

So for the pattern shown in Figure 5.2, connection a ^ g^ can be the addition

wire or the removal wire, depending on the actual pattern matching.

5.3 Alternative Wire Patterns

In this section, the core of GBAW, alternative wiring patterns, is presented. In

practice, the alternative wires are not too far away from the target wire. The

paper [WLFOO] states that about 96% of alternative wires can be found within

2-edge-distance. The original 0-local, 1-local and 2-local patterns [WLFOO

Chapter 5 Graph Based Alternative Wiring Logic Transformation 51

can be found in Appendix B. The new patterns in this section are intended

to help GBAW to identify 2-local alternative wires that the original GBAW is

unable to locate. Proved by our experiment, the set of new patterns is capable

of greatly enhancing GBAW in locating alternative wire.

Before introducing the new patterns, we first define the complete set of

alternative wire patterns as the pattern family F and each of the member in

the pattern family set as pattern member P. Besides, in order to analyze

the patterns systematically, we introduce another terminology: the pattern

cluster. Pattern cluster C is defined as a subset of F which contains more

than one pattern member P. These members in the same pattern cluster

should have the same topological order, but the operator op in each of the

nodes can be different. In the following, we present some examples of the

pattern clusters which we have implemented. The explanation and verification

of partial implemented patterns are included in Appendix C for illustration.

(dc’dc’dc) (NAND’dc，l) (NAND’k’l) (AND/NAND’dc’dc)

(d c , d c , d c) / V 7 / / (NAND’k，dc)

m
(dc ,dc ,dc) / / / / w

(dc.dc.dc)/ &
Figure 5.3: One member of Pattern Cluster Ci

One member in the first pattern cluster C： is shown in Figure 5.3. In the

pattern member, except one fanin node, g^ and g , should share the same set

of fanin nodes b. Thus, after the alternative wire transformation, the signals

Chapter 5 Graph Based Alternative Wiring Logic Transformation 52

of nodes b can be operated with a before they reach 仍 . A detailed proof is

shown in Appendix C. l . In fact, the pattern cluster is related to the case 2-2 of

local-2 patterns shown in [WLFOO]. The pattern members can have different

operators. For example, the operator opi can be AND, OR, NAND, or NOR.

, 广 \ 、 、 、

(dc’dc,k) / (NAND,dc,l) (NAND,k, l)�̂(AND/NAND,dc,dc)

\ V N A N D . c I C , !) / /

\ w /
\(NAND’dc’ l)/ w

(NAND’dc’l)

Figure 5.4: One member of Pattern Cluster C2

For the second pattern cluster C2, one of the pattern members is shown in

Figure 5.4. In the pattern, it is obvious that the signal from a converges to

"2 and 仍.Therefore , we can replace all the corresponding fanouts of a with

a direct connection to 仍.Actual ly , the pattern cluster is a generalization of

fanout reconvergence.

Figure 5.5 demonstrates the third pattern cluster C3. This pattern is difFer-

ent from the others since it is derived from the consensus property of Boolean

Logic, which is shown in the following identities.

ab + a'c + 6c = a6 + a'c

One member of the fourth pattern cluster C4 is shown in Figure 5.6. This

Chapter 5 Graph Based Alternative Wiring Logic Transformation 53

(dc^c) (0^,1) (NAND’2’1) (AND/NAND,dc,dc)

(NAND,2,dc)

Figure 5.5: One member of Pattern Cluster C3

pattern cluster is obtained by analyzing the result from an ATPG-based al-

ternative wiring package, R A M B O . The pattern topology is more complicated

than other that of pattern clusters.

(d^dc) (NAND,2,dc) (NAND.dc.l) (NAND,2,1)

,/(AND/NAND’dc’dc)

^^•^^^NAND’2’dc)(NAND’dc’dc)

Figure 5.6: One member of Pattern Cluster C4

For the pattern cluster C5, an example is shown in Figure 5.7. This pattern

cluster is constructed by the pattern extraction method from pattern cluster

C4. C5 looks like pattern cluster C2 but the topologies are different.

Chapter 5 Graph Based Alternative Wiring Logic Transformation 54

(d c ^ c) (NAND.dc.l) (NAND，2,1)

(d c ^ c) ^ / / (AND/NAND’dc’dc)

(NAND’dc,dc) /

Figure 5.7: One member of Pattern Cluster Cg

5.4 Construction of Minimal Patterns

In this section, some approaches for constructing minimal patterns are dis-

cussed with several examples. Before the discussion, the minimality of patterns

is explained in detail. The concept of minimality is extremely important be-

cause GBAW would be ineffective if an alternative wire pair could be matched

with two different patterns. To avoid duplication of matching, all patterns

should have the property of minimality.

5.4.1 Minimality of Patterns

In the process of pattern construction, the most significant concept is the

"minimality" because it is always possible to encounter problems such as:

• Is the newly constructed pattern the same as any known pattern?

• Can two different patterns cover the same alternative wire pair?

To deal with these problems, it is necessary to explore the minimality, which

is one of the pattern properties. Actually, the concept of minimal patterns

involves the following requirements:

• For any two minimal patterns, the set of alternative wires they covered

should be mutually exclusive.

Chapter 5 Graph Based Alternative Wiring Logic Transformation 55

• All elements (nodes and connections) in a minimal graph configuration

should be vital for the pattern to maintain its correctness, i.e., no redun-

dant elements exist in the pattern.

• For a minimal pattern with fixed topology, the cover set should be max-

imized.

We take the minimal pattern shown in Figure 5.2 as an example. Figure 5.8

shows a pattern by adding the node b in Figure 5.2. It is obviously not a

minimal pattern since it consists of redundant element b. In fact, all alternative

wires covered by pattern in Figure 5.8 are covered by the pattern in Figure 5.2.

(dc,dc,dc) (NOR,dc,l) (NAND,dc,l) (N〇R,dc,dc)

{AND,dc, 1)/、、、、、、

Figure 5.8: An example of minimality requirement

Another example is shown in Figure 5.9. Obviously, it is not a minimal

pattern since its cover set is not maximum. For the corresponding minimal

pattern, the in-degree should be of value dc so that it not only covers the cover

set of pattern in Figure 5.9, but also covers more alternative wires in the same

topology.

(dc,dc,dc) (NOR,dc,l) (NAND,2,1) (NOR,dc,dc)

、 z

Figure 5.9: Another example of minimality requirement

Under these considerations, we have the following definition of minimal

pattern.

Chapter 5 Graph Based Alternative Wiring Logic Transformation 56

Definition 3 (Minimal Pattern)

An alternative wire pattern P is minimal if and only if, with the constraint

that the cover set of P cannot be reduced,

• the in-degree Xi, out-degree yi and the operator set opi of each nodes

{opi, Xi, yi) in P is maximum,

• the number of nodes in P is minimum, and

• the number of connection in P is minimum,

where dc can be treated as the "largest" value during comparison.

5.4.2 Minimal Pattern Formation

Since the old version of GBAW locates limited number of 2-local patterns,

in our work, we concentrate on concluding 2-local patterns. One effective

approach is to extract minimal configurations from experimental results of

some ATPG-based alternative wiring logic transformation algorithms. In this

section, the steps of minimal pattern construction are explained.

For the ATPG-based alternative wiring logic transformation algorithm, our

implementation is based on the R A M B O algorithm in [CE93]. In order to

locate alternative pattern configurations, we compare the network transformed

by R A M B O and G B A W [WLFOO]. After the comparison, we have extracted

a sub-circuit in which the transformed circuit of R A M B O differs from that of

GBAW.

One of the extracted sub-circuit is depicted in Figure 5.10 and Figure 5.11

as an example. Figure 5.10 is a sub-network of the pre-transformed network

and Figure 5.11 is the corresponding sub-network after the transformation by

our implementation of R A M B O .

Direct conversion from the sub-networks to the graph configuration is

shown in Figure 5.12. All "primary inputs" in the sub-network are converted

Chapter 5 Graph Based Alternative Wiring Logic Transformation 57

V1206IZ3 —— ^ y ^

P p J
v4CII>- H N

i

Figure 5.10: A sub-network S

v4C^Ha

Fgure 5.11: The sub-network S transformed by an ATPG-based alternative
wiring algorithm

Chapter 5 Graph Based Alternative Wiring Logic Transformation 58

to nodes with triplets {dc, dc, dc), since there is no restrictions to the nodes.

Similarly, the out-degree of "primary outputs" should be dc. At the same time,

since gate tl206 has only one fanout to an AND gate, they are combined to-

gether to be the node g^.

(d g c) (NAND^.1) (NAND，2’1) (NAND’2’1) (AND/NAND’2’dc)

Figure 5.12: The resultant pattern configuration - Step 1

It is obvious that the graph configuration in Figure 5.12 is not a minimal

pattern. Although both the number of nodes and the number of connections

are minimum in this pattern (it can be easily proved by exhaustive search),

the number of alternative wire pairs which it covers would increase when the

in-degree or out-degree of some nodes increase. In other words, the values of

in-degrees and out-degrees are not maximized in the example.

Hence，the next step is the attempt of adding fanin nodes {dc,dc,dc) to

all nodes except those with dc value of in-degree. This is to ensure that the

in-degrees of all nodes are minimum under the condition that the cover set

does not shrink. For the addition of (dc, dc, dc) nodes, an example is shown in

Figure 5.13.

After the trial addition of [dc, dc, dc) nodes, we should verify the correctness

of the pattern and eliminate some improper nodes addition. However, it will be

more effective if we eliminate some improper nodes before verification. From

the observations, the dc node ；i： cannot be added to the fanin of a node N

when

Chapter 5 Graph Based Alternative Wiring Logic Transformation 59

(dc.dc.dc) (dc,dc,dc) (dc’dc’dc)

Q Q

U ^ ^ ; / ! ^ N A N D ’ 3 ’ l j / _ D ’ 2 ’ l)广

(dc,dy^(dc’cMc)(^ gc,cic)
(dc,dc,dc)

Figure 5.13: Example - Step 2

• AHs a transitive fanin of the target wire but at the same time X is not

a transitive fanin of the alternative wire.

• AHs a transitive fanin of the alternative wire but at the same time X is

not a transitive fanin of the target wire.

The two rules are obvious since the signal from will be blocked after the

logic transformation. The rules suggest that the addition of (dc, dc, dc) node is

improper when the signal only passes through target wire or alternative wire.

According to the rules, we know that the {dc,dc,dc) nodes p,t,u in Fig-

ure 5.13 can be eliminated without performing verification. The resultant

graph configuration is shown in Figure 5.14. And the verification details are

demonstrated in Table 5.1.

Since the graph configuration is shown to be incorrect for 伪 during the

verification, we need to eliminate some nodes for the correctness. As shown

in the verification, it is obvious that the node r should be removed. After the

removal of r, the pattern is correct for matching with alternative wire pairs.

The resultant pattern is shown in Figure 5.15.

The final step includes the combination of {dc, dc, dc) nodes with their

Chapter 5 Graph Based Alternative Wiring Logic Transformation 60

(dc,dc’dc) (dc,dc,dc) (dc’dc’dc)

(S Q Q

(dc’dc’dc) (NAND 2,1)\(NAND 3,1)\(NAND.3.1) \

U^y^NAND’2’lj/(NAND’2’l) 丨

(dc,dc^ VL/
(dc.dc.dc)

Figure 5.14: Example - Step 3

Verification:

Node Before transformation After transformation

gi ~(ac)' {ac)' —
{a'^-h^s)' I T T ^ + ^y
{ahty
[{acybq]' (bq)' 一

—96 [(“' + b + •s/t;]' + 6 + •s)'!；]'

[(ab)' + c'Y c']'
93 {[(a' + b + syv]'r[(acYbq]'y { [(7 + b + s) '时 r (6g) ' } '
94 {[(«' + b + syv]'r[(acybq]'yw {[(a' + b + •s)'i;]'r(6g)'}'u;[(a6)' + c']

二 [ab's'v' + r ' + bq(a' + c')]w = [ab's'v' + r'{a' + + c') + bq{a' + c')]w

Table 5.1: Verification of the pattern in Figure 5.14

Chapter 5 Graph Based Alternative Wiring Logic Transformation 61

(dc’dc’dc) (dc’dc，dc)

(S Q
(dc,dc,dc) (NAND,2,1)\(NAND,3,1) (NAND’2’1) \

\ P X : W 3 , 1) . / / (AND/NAND’3’dc)

/ I "

� （dc，dc’clc)

Figure 5.15: Example - Step 4

fanouts and the maximization of out-degree for all nodes. To maximize the

fanout number, it is necessary to follow a simple rule.

• The out-degree of nodes cannot be increased when the node is a transitive

fanout of target wire or alternative wire.

The reason behind this rule is simple: Only those signals to the transitive

fanouts of the addition and removal wires will be changed throughout the

alternative wiring transformation process.

After the combination and maximization of out-degree of nodes, a minimal

graph configuration is obtained and shown in Figure 5.16.

5.4.3 Pattern Extraction

Practically, we can obtain more patterns by simplifying some known patterns.

For a minimal pattern, if we eliminate any "primary input" from the graph

configuration and maintain the correctness of the pattern, a different pattern

will be obtained. The method is named Pattern Extraction.

Pattern Extraction method is explained by an example. Considering the

pattern shown in Figure 5.16, if we eliminate the node c by putting its value

Chapter 5 Graph Based Alternative Wiring Logic Transformation 62

(dc’dc’dc) (NAND,2,dc) (NAND.dc.l) (NAND’2’1)

_ _ ^ / / (AND/NAND,dc,dc)

Figure 5.16: Example - minimal pattern

to 1, the graph configuration is still correct but it represents a different alter-

native wire pattern (the verification is shown in Appendix C.5). The newly

extracted pattern is shown in Figure 5.17. The pattern is different from Fig-

ure 5.16 and their cover sets are mutually exclusive. If it is not the same as

any known pattern in our pattern family, it can form a new pattern cluster

with its variations.

(dc,dc,dc) (NAND’dc’l) (NAND,2,1)

(d c ^ c) \ \ < : ; i N O R , d c , d c) , _ / / , (AND/NAND’dc’dc)

(NAND,dc,dc) /

Figure 5.17: Minimal pattern extracted from Figure 5.16

Chapter 5 Graph Based Alternative Wiring Logic Transformation 63

5.5 Experimental Results

Table 5.2 shows the number of target wires which have 2-local alternative

wires. The results are competitive with R A M B O (98%). For each target

wire, it may have more than one alternative wire and some of them may be

2-local patterns. So the number of alternative wires is usually greater than

the number of corresponding target wires. Besides, since R A M B O uses ATPG

techniques to locate alternative wires, its search space is much larger than

that of GBAW. Thus, R A M B O is able to find a larger number of alternative

wires than our technique does. However, we are able to obtain a promising

result since it is possible for GBAW to find backward alternative wire while

the current R A M B O cannot.

We implemented the improved GBAW on Sun UltraSparc 5 workstation

for MCNC benchmark circuits and results are shown in Table 5.3. The speed

and capability of locating alternative wires between R A M B O and G B A W are

also compared. In the table, it is shown that our improved G B A W is able to

find 30% more alternative wires than R A M B O with only 1.38% CPU time on

average.

5.6 Conclusion

In this chapter, an augmented Graph-Based Alternative Wiring (G B A W) scheme

is presented. Although there are more than 40 patterns are included, an at-

tractive efficiency is still maintained by using the concept of Pattern Cluster.

G B A W has forward and backward search capability and can identify alterna-

tive wire efficiently. Experimental results showed that it is capable to find 30%

more alternative wires comparing with the forward search R A M B O version.

G B A W has a good coverage of alternative wires with 75 times speedup on

average. When using G B A W as the perturbation engine and combining with

Chapter 5 Graph Based Alternative Wiring Logic Transformation 64

~ ~ R A M B O G B A W Searched (%)
Name (target/alter.) (target/alter.) (target/.alter.)

一5xpl 1 0 / 2 1 = 1 0 / 1 8 = 100/86
^ s y m - h d l 一 5/6 “ 5/8 1 0 0 / 1 3 3
_ C 1 9 0 ~ 42/57 44/44 1 0 5 / 7 7
_ C 2 6 7 r ~ 85/99 . 83/94 98/95
~ C 3 5 4 0 208/297 — 238/250 1 1 4 / 8 4
I I C 4 3 2 _ _— 33/44 一 40/40 “ 121/91

_ C 5 3 1 ~ 7 6 / 1 1 3 69/73 9 1 / 6 5
_ C 6 2 8 r ~ 3/17 3/18 100/106

C 7 5 5 2 1 3 2 / 2 1 9 76/82 58/37
C88Q 27/62 27/27 100/44

64/100 一 54/56 — 84/56
alu4 — 1 2 0 / 1 9 8 84/86 T O j ^

I^pe?^ 72/121 一 68/70 “ 94/58 —
b 9 - n F ~ 8 / 1 0 3 / 3 38/30
comp — 28/44 “ 1 7 / 1 7 6 1 / 3 9 _ _ _

H j e s 6 7 V 9 0 7 795/795 “ 1 1 8 / 8 8
duke2 35/64 一 29/29 _ 83/45 —

misex3 — 5 0 / 1 6 7 4 1 / 4 1 82/25
~ r o t 46/75 3 1 / 3 2 — 67/43

sao2-hdl “ 25/38 9/9 3 6 / ^

I j e m ^ 4 1 / 7 7 _ 27/28 — 66/36

t t t 2 ~ ~ 28/68 1 0 / 1 3 3 6 / 1 9

x3 7 1 / 8 2 76/76 107/93

~ T o t a l I 1880/2886 | 1839/ 1909 | 98/66

Table 5.2: 2-local pattern comparison between R A M B O and refined G B A W

SIS algebraic operations, there is a further reduction of 11.1% comparing with

the result by algebraic operations alone.

Chapter 5 Graph Based Alternative Wiring Logic Transformation 65

R A M B O R A M B O G B A W G B A W
Name alt, wires C P U alt, wires C P U

— 5 x p l 36 1 0 . 1 7 62 0.24
9sym-hdl 27 1 .56 “ 40 ^ ~

C 1 3 5 5 ~ ~ 185 ~ 250 0.89
一C1908 一 1 2 7 ~ 240 0 .68

~ ~ C 2 6 7 0 ~ ~ 2 6 7 8 3 . 5 ~ 344 “ 1 . 3 3
~ ~ C 3 5 4 0 ~ ~ 5 6 9 2 7 3 . 8 ^ " 816 “ 2 . 1 5
— C 4 3 2 — 129 ~ 1 0 . 2 6 188 0.37 “

C499 16 6.05 34 0.6
~ C 5 3 1 5 ~ ~ 5 1 1 155.9T~ 713 — 2.88

~ ~ C 6 2 8 8 1 3 5 2 3 6 1 . 1 厂 2 1 9 1 4 . 18
C 7 5 5 2 1709 143.95 6 1 7 1 2 ~
C880 1 5 1 ~ 9.86 “ 239 ~ 0 W ~
alu2 — 169 一214.71 263

270.50
apex6 239 ~ 3 4 . 3 2 377 1 . 2 3

— b 9 - n 2 ~ 48 — 1 .65 7 1 0 . 1 7
comp 57 — 9. 18 58 ~

des 一 1468 “ 729.92 2204 K l
duke2 1 5 7 4 6 . 5 5 — 0 . 6 3

, f 5 1 m “ 49 - 6.19 — 65 0.25
misex 2 1 6 124.48 439 0.97

my_adder 46 1 . 1 6 0 ~
— p c l e r S 29 一 1 . 3 30 0 . 1 2

rot 243 “ 48.04 406 L I
—sao2-hdl — 104 一16.86 1 5 3 0.39
一 t e r m l 106 _ 0.37

68 9 . ^ 1 3 3 0 . 3 4
x3 228 2 3 . 1 3 ^ 1 ^ 8 1.2

. Total 8639 ^ 6 5 7 . 1 3 J 1 2 2 4 ^ _ 3 6 ^
"Normalized | 1 | 1 | 1 .2992 O . O l f

Table 5.3: Comparison between R A M B O and G B A W

Chapter 6

Logic Optimization by GBAW

6.1 Introduction

The Graph-Based Alternative Wiring (GBAW) algorithm, which has been ap-

plied in logic optimization, was first published in [WLFOO]. The authors sim-

ply used GBAW to perform some random network perturbation and invoked

SIS [SsLea92] script.algebraic script for logic minimization. The perturbation

and simplification processes were iterated for several times and the best results

(smallest in circuit area) were chosen.

However, the logic optimization approach in [WLFOO] is not as good as the

REWIRE algorithm [CGLMS99]. The reasons are listed below.

• The standard SIS minimization script script, algebraic is comparatively

ineffective in logic minimization when comparing with other tools and

scripts since it only adopt simple algebraic substitutions.

• Applying GBAW to perform random perturbation is undesirable since

the circuit may become bigger or the internal don't care terms will be

reduced after the perturbation.

In fact, GBAW can be applied effectively in logic optimization and incre-

mental perturbation. Incremental perturbation refers to the logic transforma-

tion which aims at increasing internal don't cares and in turn increasing the

66

Chapter 6 Logic Optimization by GBAW 67

number of possible alternative wires. In this chapter, a GBAW logic minimiza-

tion algorithm and a GBAW incremental perturbation heuristic are presented.

Afterwards, our algorithm in logic optimization is explained.

6.2 Logic Simplification

Logic minimization by alternative wiring logic transformation is possible since

adding one logic element (usually a connection) to the Boolean Network may

make more than one circuit element (connections or gates) become removable.

In such situation, the circuit is simplified. In [CMSC96], by gathering a list

of alternative wires information, a greedy circuit optimization algorithm is

proposed based on this idea.

For GBAW, alternative wires are identified by pattern matching and each

pattern possesses different features, so a different approach is needed for logic

simplification.

In our approach, alternative wiring logic transformation by G B A W is ba-

sically divided into two types: the single-addition-multiple-removal and the

single-addition-single-removal. The former refers to the alternative wiring pro-

cess, which is able to remove more than one connection by adding only one

connection. The latter transformation type refers to the removal of only one

connection by adding one wire. In this section, these two types of transforma-

tions will be explained separately.

6.2.1 Single-Addition-Multiple-Removal by Pattern Fea-

ture

In our implemented alternative patterns, some of them belong to the type

single-addition-multiple-removal, including both pattern cluster 2 and pattern

cluster 3. All of them are able to remove more than one connection while

Chapter 6 Logic Optimization by GBAW 68

one connection is merely added. In pattern cluster 2 (refer to Appendix C.2),

all re-convergent fanout of a can be removed. In pattern cluster 3 (refer to

Appendix C.3), two connections, a •仍’ 6 4 奶，can be removed.

6.2.2 Single-Addition-Multiple-Removal by Combination

of Patterns

However, the transformations of most implemented patterns belong to the type

single-addition-single-removal For most cases, they are not able to decrease

the total network area directly. In such situations, total circuit area can still

be reduced when more than one minimal pattern share the same alternative

wire.

Example is shown in Figure 6.1. In the sub-network, it is obvious that no

single-addition-multiple-removal patterns matches with the circuit.

d(ZD i—J H y
eni> -i-

Figure 6.1: A sub-network

However, in Figure 6.1, the sub-network matches with two single-addition-

single-removal patterns. The gates {§1,92,93,96) match with the pattern mem-

.ber 1 in cluster Ci . At the same time, the gates (^3,^4,^5,^6,^7) match with

the backward alternative wire pattern of member 1 in cluster Cj . It is depicted

in Figure 6.2.

In this situation, if we perform the alternative wiring logic transformation

for two matched sub-network simultaneously, we can remove the two wires by

adding only one wire. The corresponding sub-network is simplified and shown

Chapter 6 Logic Optimization by GBAW 69

‘•• •••••••••••••••••••••• ••••.•.•.•.•••.•.li-H-H-H--

I
•.. •. •, I I

d d > •：：：：：：：：： B i j ： ： ：-：-： ：-：-：'：- H V I

el=> 1 iJ I
I

Figure 6.2: Simultaneous pattern matching

in Figure 6.3.

a

d[ZD> i — T

e(ZD —

Figure 6.3: The corresponding sub-network after logic transformation

In the last example, the simultaneous pattern matching shows its ability in

logic optimization. However, it is not always applicable for simultaneous alter-

native wiring transformation. The reason is that the transformation of pattern

Pi may change the logic structure of another originally matched pattern P2, In

the concept of ATPG-based alternative wiring, the transformation of P^ may

affect the implication of mandatory assignments for alternative wire pairs in

pattern P2. In order to ensure a simultaneous alternative wire transformation,

we develop the following theorem.

Theorem 8 (Simultaneous alternative wire transformation)

The alternative wire transformation for two matched minimal patterns,

where share the same addition wire, can be performed if and

only if both of the following conditions are satisfied.

• Pi does not contain the removal wire of P2, and

Chapter 6 Logic Optimization by GBAW 70

•尸2 does not contain the removal wire of

Proof From definition 3，all elements in a minimal pattern cannot

be eliminated while the cover set is maintained not to be reduced. It

implies that all elements are essential for the alternative wire pair

to exist in the pattern. In the sense of ATPG-based alternative

wiring，all gates and connections are vital to the implication of

mandatory assignments of the corresponding connection faults. As

a result, if the pattern does not contain the removal wire of another

pattern, the mandatory assignments of both alternative wire pairs

will be kept intact.

Based on Theorem 8’ we can match the feasible simultaneous alternative

wire patterns for logic optimization. First, the information of all matched

patterns, the addition wires and removal wires are gathered. Then, we list and

sort all feasible simultaneous alternative wire patterns in descending order of

the total number of removable wires. After that, we are able to perform logic

transformation according to the sorted list.

6.2.3 Single-Addition-Single-Removal

For the single-addition-single-removal alternative wire patterns which the si-

multaneous transformation technique cannot be applied, area can be reduced

in a different way. We observed that the removal of one connection may cause

the removal of one gate, and hopefully, some of its transitive fanins, when the

gate has only one fanout.

Under this consideration, a matched alternative wire transformation (Sa

Da replaces St A) will be performed when

• Dt has only two fanins.

• St has only one fanout.

Chapter 6 Logic Optimization by GBAW 71

In these two cases, at least one gate can in turn be removed after the

removal of connection, St 4 A . Hence, these conditions contribute to the

logic simplification.

6.3 Incremental Perturbation Heuristic

Although some alternative wiring logic transformations would decrease the

total network area, there are still a subset of transformations which do not alter

the total area of the network. Such logic transformation refers to the circuit

perturbation. However, logic perturbation can change the circuit structure and

it is possible to increase the total number of feasible alternative wire pairs. We

define this kind of logic perturbation to be the incremental perturbation.

Intuitively, the number of possible alternative wires in a network is related

to the number of internal don't cares. Since in the view of ATPG-based alter-

native wiring, alternative wire pairs exist when the addition wire is initially a

redundant wire, and afterwards the removal wire becomes a redundant wire.

In this section, we aim at proposing several heuristic considerations for ap-

plying alternative wiring transformation (incremental perturbation) to increase

the potential number of alternative wire pairs.

In [CMSC96], it stated three conditions for a logic transformation {Sa Da

replaces St A) to increase the internal don't cares in a network. The

conditions are listed here.

• Da should have fewer fanouts than Dt.

• Da should be farther from PO than Dt.

• Da should have more side inputs than D f

The underlying reason bases on the relation between internal don't cares

and an informal term - the "observability". In [CMSC96], the term "observ-

able” for a connection is intended to describe the difficulty of propagating the

Chapter 6 Logic Optimization by GBAW 72

connection fault. So, the less observable a connection is, the more its corre-

sponding internal don't cares are. For the three conditions above, all of them

refer to the increase of difficulties in propagating the fault which makes the

connections less observable.

The conditions do not absolutely guarantee the increase in internal don't

cares since different logic structures such as fanout reconvergence would can-

cel the observability. However, they still serve as a good indicator to judge

whether an alternative wire pattern should be transformed for incremental

perturbation.

According to the conditions, we suggest an incremental perturbation heuris-

tic to increase internal don't cares by alternative wiring transformation while

the perturbation does not increase the network area. The following cost func-

tion quantifies the conditions and it is to represent the possibility of an alter-

native wiring transformation to increase the "observability".

For the addition wire Sa D^ and removal wire S^ D , , the cost function

of the transformation is:

Cost = a / + � / + 7«s

where

f = number of fanouts of Da — number of fanouts of Dt

/ = - (m i n i m u m edge-distance from any PO node to Da

- m i n i m u m edge-distance from any PO node to Dt)

• ^ : - (n u m b e r of side inputs of D^ - number of side inputs of Dt)

and a, are constants to control the importance of each condition.

With the cost function, we propose a systematic procedure to perform

incremental perturbation. Firstly, we list and sort all matched alternative

wire patterns in ascending order of the cost function. Then, we perform all

Chapter 6 Logic Optimization by GBAW 73

transformation according to the sorted order until all transformations with

positive cost function are made.

6.4 GBAW Optimization Algorithm

The overall algorithm for logic optimization is depicted in Figure 6.4. First,

the target network is simplified according to the approaches discussed in sec-

tion 6.2. Then, the simplified network is perturbed in order to increase its

internal don't cares according to section 6.3. These steps are repeated for a

specific number of iterations. Finally, the network is further simplified before

the end of the procedure.

6.5 Experimental Results

We implemented GBAW optimization algorithm on SIS platform. For the cost

function of the incremental perturbation heuristic, we took {a = 1,/? = 1,7 =

1) in our e x p e r i m e n t as it represents al l three f a c t o r s a re e q u a l l y w e i g h t e d . For

efficiency, our implementation run for only one iteration. All the experiments

were performed on the MCNC combinational circuits. In the experiment,

the circuit area and CPU-time of our optimization algorithm, which were

compared to standard SIS scripts including script .algebraic, script.boolean

and script.rugged, were recorded. Before running GBAW circuit optimiza-

tion program, we pre-processed the circuits by mapping them with a library

mcncl.genlib which is a subset of mcnc.genlib. The mapping limits all gates

in the circuit to be simple gates (NOT, OR, AND, NOR and NAND) with at

most 2 fanins. Since the circuits consist of only simple gates after optimiza-

tion，we post-processed all circuits with SIS commands el-sweep; el-simplify

and compared the factored literal counts among all four optimization schemes.

All experiments were performed in a Sun Enterprise 4500 machine. The

Chapter 6 Logic Optimization by GBAW 74

GBAW_logic_optiinization(n)
{

for n iterations {

/* logic simplification */

match and store all alternative wire patterns;

perform transformations for

single-addition-multiple-removal patterns；

perform simultaneous pattern transformations;

perforin transformations for single-addition-single-removal
patterns according to section 6.2.3;

/* Incremental perturbation heuristic*/

match and store all alternative wire patterns;

perform transformations for single-addition-single-removal

} patterns according to section 6.3;

/* logic simplification before the end of the procedure*/

match and store all alternative wire patterns;

perforin transformations for

single-addition-multiple-removal patterns;
perform simultaneous pattern transformations;

perform transformations for single-addition-single-removal
patterns according to section 6.2.3;

}

Figure 6.4: Outline of GBAW logic optimization algorithm

Chapter 6 Logic Optimization by G BA W 75

experimental results are shown in Table 6.1. The table shows the optimized cir

cuit area (literal count) and CPU-time taken for five optimization approaches:

script .algebraic, script.boolean, script.rugged, GBAW optimization algorithm

and REWIRE [CGLMS99]. Columns 2 and 3 show the results and run

time of script .algebraic; Columns 4 and 5 show the results and run-time of

script .boolean; Columns 6 and 7 show the results and run-time of script.rugged.

For our GBAW optimization algorithm, the CPU-time for circuit simplifica

tion and incremental perturbation are recorded separately in columns 9 and 10

while columns 8 and 11 show the results and the total CPU-time. The last col

umn shows the optimized area of REWIRE which is published in [CGLMS99] .

In their paper, REWIRE was shown to be a competent optimization scheme

with short CPU run-time.

The total area and CPU-time of all benchmark circuits were calculated in

the second last row. In the last row, we normalized all total op timized circuit

area and CPU-time with respect to the corresponding figures of GBAW opti

mization algorithm. Table 6.1 shows that the literal counts are about the same

for GBAW and REWIRE. At the same tilne , GBAW optimizes benchmark cir

cuits with 29%, 15% and 3% smaller area than script .algebraic , script.bool ean

and script .rugged do respectively. Moreover, GBAW optimization is , on av

erage, 3.64, 4.34 and 215.02 times faster than the above three standard SIS

scripts.

Since our experiments and the experiments in [CGLMS99] were done on

different workstations, it is not appropriate to compare the CPU run-time

directly. Thus, we compared GBAW optimization and REWIRE with standard

SIS scripts and the comparisons are shown in Figure 6.2. In the table , column

2 shows the CPU time ratio of SIS scripts to GBAW optimization while column

3 shows the ratio of the same scripts to REWIRE. The ratios of REWIRE are

calculated from the figures reported in [CGLMS99] . The last column shows

that GBAW optimization runs 6% faster than REWIRE when both comparing

Chapter 6 Logic Optimization by G BA W 76

Circuit algebraic boolean rugged GBAW REWIRE
lits time/ s lits time/s lits time/s lits sim-t perb-t tot-t

C1355 670 1.66 554 1.99 552 290.74 546 0.07 5.88 6 .16
C1908 564 2.35 552 3.37 538 361.73 519 0.09 4 .71 4 .9
C2670 840 3 .39 759 5.75 746 547.44 739 0.21 12.43 12.9
C3540 1486 7.69 1297 20.01 1200 143.57 1181 0.36 19.26 20

C432 252 0.82 240 1-.1 196 123.1 167 0.05 0.55 0 .66
C499 558 1.07 554 1.71 552 23.4 546 0 .07 5.89 6.17
C880 473 1.52 427 1.75 411 14.12 410 0.1 3.11 3.33
a lu2 478 2.74 422 21.5 325 31.88 317 0.11 2.28 2.52

f51m 159 0.6 131 0.64 110 1.13 107 0.04 0 .39 0.46
frg2 1118 8.4 934 10.87 758 59 .88 745 0.17 6 .8 7.14

term1 271 1.48 231 3.26 154 4.58 143 0 .04 0.34 0.42
tooJarge 491 210.43 437 216.53 302 12748.6 273 0 .08 1.23 1.4

ttt2 242 0.77 230 1.25 207 1.86 183 0 .05 0.53 0.63
z4ml 42 0.14 39 0.21 36 0 .36 36 0.01 0.04 0.06

total 7644 243.06 6807 289.94 6087 14352.4 5912 1.45 63.44 66 .75
re lative 1.29 3.64 1.15 4.34 1.03 215 .02 1.00 1.00

Table 6.1: Comparison between GBAW optimization algorithm, SIS scripts
and REWIRE

with script .boolean, and at the same time, our algorithm runs 65% faster than

REWIRE when both comparing with script.rugged.

I CPU time ratio I GBAW I REWIRE I GBAW /REWIRE I
script .boolean 4.34 4.02 1.08
script. rugged 215 .02 130.00 1.65

Table. 6.2: CPU t ime improvement of GBAW optimization and REWIRE
against SIS scripts

Table 6.2 provides a indirect comparison between our GBAW optimization

and REWIRE, which is the latest ATPG-based alternative wiring logic opti

mization algorithm. It is shown that GBAW optimization not only provides

excellent circuit optimization capability which is comparable to REWIRE but

also offers better efficiency.

6.6 Conclusion

In this chapter, the GBAW optimization algorithm is proposed. The algo

rithm consists of two parts : the logic simplification algorithm and incremental

lits

552
512
697

1127
171
550
415
324
105
761
145
301
179

36

5875
0 .99

Chapter 6 Logic Optimization by GBAW 77

perturbation heuristic. The simplification and perturbation are based on dif-

ferent pattern matching of GBAW. The experimental results shows that our

algorithm runs faster than [CGLMS99] with the same optimization ability.

Chapter 7

Conclusion

We have proposed two different approaches to the alternative wiring problem

including IBAW and improved GBAW. At the same time, a comprehensive

logic optimization algorithm by applying GBAW is clearly explained.

For IBAW, aiming at improving the efficiency of traditional ATPG-based

alternative wiring algorithms, we explored the implication relationships among

the source nodes and destination nodes of the alternative wire pairs. Exper

iment shows that our technique is able to quicken the original RAMBO by

using only 3~8 of RAMBO 's 1PU-tim .

For GBAW, by adding more than 40 patterns into the pattern family, we

successfully improved the solution-quality (number of alternative wires found)

of GBAW, esp ially for 2-1ocal alt rnative wire pairs. In order to decrease

the complexity of pattern implementation, we group the patterns together as

pattern clusters by concentrating on the similarity of patterns. Experimental

results show that our improved GBAW is able to produce solution-quality

comparable to ATPG-based alternative wiring algorithms.

For the GBAW optimization algorithm, we divided the logic optimization

into two steps: the logic simplification and incremental perturbation. In the

logic simplification step, patterns are divided into several groups depending

on their functions . We observed that the logic transformations of the matched

single-addition-multiple-removal patterns may lead to the decrease in network

78

Chapter 7 Conclusion 79

area. Besides, the logic transformation of some matched single-addition-single

removal patterns can be performed simultaneously such that the network area

can be decreased. For some of other patterns, the removal of connection can

in turn eliminate a number of gates. All these pattern transformations are

competent in logic simplification.

Incremental perturbation is useful when the logic simplification is trapped

into local minimum since it can be applied to increase the internal don't cares

of the network. In such situations, the number of possible alternative wires

would increase and this may bring the network out of the local minimum

in the logic simplification process. Experimental results show that our logic

optimization approach is able to obtain competent optimization results and

better efficiency when comparing with other logic optimization tools.

Bibliography

[ASS97] Semiconductor Industry Associates. National technology

roadmap for semiconductores, 1997.

[AssOO] Semiconductor Industry Association. International technology

roadmap for semiconductores, 2000.

[BRSVW87] Robert K. Brayton, Richard Rudell, Alberto Sangiovanni-

Vincentelli, and Albert R. Wang. MIS: A multiple-level logic

optimization system. IEEE Transactions on Computer-Aided

Design, CAD-6(6):1062-1081, November 1987.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function

manipulation. IEEE Transactions on Computer, 35(8):677-691,

Aug. 1986.

[CCWMS94] Shih Chieh Chang, Kwang Ting Cheng, Nam Sung Woo, and

M Marek-Sadowska. Layout driven logic synthesis for FPGAs.

In Proceedings of ACM/IEEE Design Automation Conference,

pages 308-313, June 1994.

[CCWMS97aJ Shih Chieh Chang, Kwang Ting Cheng, Nam Sung Woo, and

M. Marek-Sadowska. Postlayout logic restructuring using alter-

native wires. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 16(6):587-596, June 1997.

80

[CCWMS97b] Shih Chieh Chang, Kwang Ting Cheng, Nam Sung Woo, and

M. Marek-Sadowska. Postlayout logic restructuring for per-

formance optimization. In Proceedings of ACM/IEEE Design

Automation Conference, pages 662-665, 1997.

CE93] Kwang Ting Cheng and Luis A. Entrena. Multi-level logic op-

timization by redundancy addition and removal. In Proceedings

of European Conference on Design Automation, with the Euro-

Pean Event in ASIC Design, pages 373-377, Feb. 1993.

CGLMS96] Shih Chieh Chang, Van Ginneken, L.P.P.P.’ and M. Marek-

Sadowska. Fast boolean optimization by rewiring. Digest of

Technocal Papers of IEEE/ACM International Conference on

Computer-Aided Design, pages 262-269, 1996.

[CGLMS99] Shih Chieh Chang, Van Ginneken, L.P.P.R, and M. Marek-

Sadowska. Circuit optimization by rewiring. IEEE Transactions

on Computer, 48 9:962-969, Sept. 1999.

[CLMS95] D. 1. Cheng, C C Lin, and M. Marek-Sadowska. Circuit par-

titioning with logic perturbation. In Proceedings of IEEE In-

ternational Conference on Computer-Aided Design, pages 650-

655, 1995.

[CMSC96] Shih Chieh Chang, M. Marek-Sadowska, and Kwang Ting

Cheng. Perturb and simplify: Multilevel boolean network op-

^ timizer. IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, 15 12:1494-1504, Dec. 1996.

[CPK98] M. Chatterjee, D. K. Pradhan, and W. Kunz. Lot: Logic opti-

mization with testability - new transformations for logic synthe-

sis. IEEE Transcations on Computer-Aided Design of Integrated

Circuits and Systems, 17(5):386-399, May 1998.

81

EC93] Luis A. Entrena and Kwang Ting Cheng. Sequential logic opti-

mization by redundancy addition and removal. In Proceedings

of IEEE International Conference on Computer-Aided Design,

pages 310-315, Nov. 1993.

[EC95] Luis A. Entrena and Kwang Ting Cheng. Combinational and

sequential logic optimization by redundancy addition and re-

moval IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 14(7):909-916, July 1995.

[EEOU96] L. A. Entrena, J. A. Espejo, E. Olias, and J. Uceda. Timing

optimization by an improved redundancy addition and removal

technique. In Proceedings of European Design Automation Con-

/erence, with EURO-VHDL '96 and Exhibition, pages 342-347,

1996.

FS93] H. Fujiwara and T. Shimono. On the acceleration of test gen-

eration algorithms. In Proceedings of International Symposium

on Fault Tolerant Computing, pages 98-105, 1993.

[FS97] James F. Freedman and Scott Sibbett. Report of the ad hoc

working group on interconnect. Focus Center Research Pro-

gram, 1997.

[HS96] Gary D. Hachtel and Fabio Somenzi. Logic Synthesis and Ver-

ification Algorithms. Kluwer Academic Publishers, 1996.

[IK98] H. Ichihara and K. Kinoshita. Logic optimization: Redundancy

addition and removal using implication relationships. lEICE

Transactions on Information & Systems (Special Issue on Test

肌d Diagnosis of VLSI), E81-D(7):724-730, 1998.

82

KM94] W. Kunz and P. R. Menon. Multilevel logic optimization by im_

plication analysis. In Proceedings of IEEE International Con-

ference on Computer-Aided Design, pages 6-13, 1994.

[KP92] W. Kunz and D. K. Pradhan. Recursive learning: an attractive

alternative to the decision tree for test generation in digital

circuits. In Proceedings of International Test Conference, pages

816-825, Sept. 1992.

[LCMS99] Chih-Chang Lin, Kuang-Chien Chen, and M. Marek-Sadowska.

Logic synthesis for engineering change. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems,

18(3):282-292, March 1999.

Lee59] C. Y. Lee. Representation of switching circuits by binary-

decision programs. Bell System Technology Journal, 38:985-

999, July 1959.

[LWBOO] Wangning Long, Yu Liang Wu, and Jinian Bian. IBAW: An

implication-tree based alternative-wiring logic transformation

algorithm. In Proceedings of Asia and South Pacific Design

Automation Conference, pages 415-421, 2000.

[Ped97] Massoud Pedram. Panel: Physical design and synthesis: Merge

or die! In Proceedings of ACM/IEEE Design Automation Con-

ference, pages 238-239, 1997.

[She99] Naveed Sherwani. Algorithms for VLSI Physical Design Au-

tomation. Kluwer Academic Publishers, 1999.

[SsLea92] E. M. Sentovich, K. J. singh, L. Lavagno, and et. al. SIS: A

system for sequential circuit synthesis. ERL Memorandum No.

UCB/ERL, M92/41, 1992.

83

WLFOO] Yu Liang Wu, Wangning Long, and Hongbing Fan. A fast

graph-based alternative wiring scheme for boolean networks. In

Proceedings of International Conference on VLSI Design, pages

268-273, 2000.

84

Appendix A

VLSI Design Cycle

The overview of the VLSI systems design cycle is shown in Figure A. l which

is extracted from [She99j. The cycle can be generally divided into three parts:

high-level synthesis, logic synthesis and physical design synthesis.

System Specification

i
Architectural Design High-level synthesis

i
Behavioral Design

i ：：

Logic Design

^ i Logic synthesis

Circuit Design

i ：：
Physical Design

j Physical Design Synthesis

Fabrication

i
Packaging and Testing

Figure A. l : A simplified VLSI design cycle

In high-level synthesis, the first steps are system specification and architec-

tuml design. The specification is a high-level representation of the system and

85

it initiates the whole design process. As a result, it should consider all fac-

tors inside the design process such as, functionality, performance, technology,

market value, etc. For the Architectural design, instruction sets and system

elements such as ALUs, caches are specified. The Micro-Architectural Specifi-

cation is the output of architectural design step.

The next step is the functional design and behavioral synthesis. In this step,

all functional unit and the connection between the units are defined. Besides,

for each unit, the system requirements are specified while the limitations are

estimated.

For logic design, the output is the Register Transfer Level (RTL) descrip-

tion such as Verilog, Hardware Description Language (HDL) and VHDL. The

description specifies logic expressions of each functional unit. In this step, logic

and timing simulation and testing are performed.

The circuit design step is intended to convert logic specification into circuit

representation. The representation is always called a netlist. It represents all

circuit elements including gates and connections. The conversion is always

guided by timing and power limitation.

For physical design processes, circuit level representation is converted into

geometric representation. The process includes partitioning, floorplanning,

placement and routing. The output of physical design is a layout. Throughout

the processes, the conversion should strictly satisfy some design rules, such

as metal width, size, layers and chip area specification. Verification is very

important for layout quality assurance. If the limitation cannot be fulfilled,

engineering changes must be performed.

Fabrication, packaging and testing are the last steps of the design cycle.

In the process, wafers are fabricated and diced into chips. The chips should

be packaged and tested before delivery. The final product should satisfy all

system specification and performance requirement.

86

Appendix B

Alternative Wire Patterns
in [WLFOOl • •

In this chapter, the basic minimal patterns (0-local, 1-local, 2-local) in for

rewiring [WLFOO] are introduced.

B.l 0-local Pattern

Figure B.l shows a 0-local pattern. As g, and 仍 have the same fanins and

the same operators, they possess duplicated signals. Let g , — 仍 be the target

wire, adding 仍 — g ^ makes g, 4 g, redundant and thus can be removed.

Furthermore, the node g, (and its fanins: a^ — g.^a^ — g,) can

also be removed if gi has only one fanout.

(oPi-k.dc) (dc,dc,dc)

(oPs'k.dc) (dc.dc.dc)

Figure B.l : 0-local pattern

87

B.2 1-local Pattern

There are three 1-local patterns, which are case 1-1, case 1-2 and case 1-3. All

of them are shown in Figure B.2. If gi has only one fanout g�,opi = AND and

on ^ AND (or NAND), then a g ^ can be replaced by a 仍.Similarly

it applies for opi = OR and op) = OR (NOR). Case 1-2 is similar to the 0-local

pattern, except the target wire \s a g2 and the alternative wire is gi 4 仍.

In case 1-3’ if r̂! has only one fanout, opi = NOR and op2 = NAND (or AND),

then a g i can be replaced by a with an inverter. Similarly it applies

to opy = NAND and op2 = NOR(OR) .

AND AND (or NAND)

\ \
^ ^ (oPi.dc.l) (opj.dc.dc)

^

� . - —--
(a) Case 1-1’ op,=AND, op^ =AND (or NAND); or op,=OR, opj=OR(or NOR)

(op,,k,dc)

a i ^ ^ ^ ^ 。 ）

(b) Case 1-2, op,=AND, op^ =AND (or NAND); or op,=OR, op2=OR(or NOR)

a n d a n d (or NAND)

(^dc.dc)

： ^
” 一

�� \ \ | > . z z Z
(c) Case 1-3’ op,=NOR, op^ =NAND (or AND); or op,=NAND, op2=OR(or NOR)

Figure B.2: Three cases of 1-local patterns

88

B.3 2-local Pattern

For 2-local patterns, the alternative wire is 2-edge far away from the target

wire. There are three cases of 2-local patterns. All of them are shown in Figure

B.3. For case 2-1, let a gi he the target wire. The pattern requires that

5^i=(N0R，dc,l)，g2 = (NAND, dc, 1) , 仍 = (N O R , d c , d c) . For case 2-2, let

< > be the target wire. The pattern requires that gi = (OR,dc , l) , g) =

(AND,k, l) , g3 = (NOR,dc,dc) and g^ = (AND,k,dc). Case 2-3 is also shown

in Figure B.3.

(N0R,dc,1) (NAND,dc,1) (NOR,dc,dc)

•、•-、

\

(a) Case 2-1

(OR.dc. l) (AND.dc.l)

a , ^ ^ ： ： ^ ^ ^ ^ Z ' Z “ 译
(OR.dc.dc)

(AND.k.dc)

(b) Case 2-2

^ (AN^ (^dc.dc)

1

: ^ ^ ^ ^ (A N D . s . d c)

(c) Case 2-3

Figure B.3: Three cases of 2-local patterns

89

B.4 Fanout-reconvergent Pattern

The 2-local patterns involving re-convergent fanouts of this kind can also be

easily located by graph-based algorithm for example, GBAW. The fanout-

reconvergent pattern is adopted by GBAW and it is shown in Figure B.4.

,一、\ / \ / \

/ (oMc.l) \

(oM.1) \

(0P4,dc,dc)
(opj.dc.l)

Figure B.4: Example of fanout-reconvergent patterns

In the figure, and g^ should have the same logic operator, opi = op2-

They can be AND, OR, NAND and NOR. Besides, g, and g^ should have

at least 2 fanins. For node 伪, the operator should be AND or OR. In this

pattern, the alternative wire may have inverter when opi = op2 = NAND or

NOR.

90

Appendix C

New Alternative Wire Patterns

The construction of new minimal patterns is a joint project with

another M. Phil, student, Chak-Chung Cheung, under the super-

”ision of Professor Yu-Liang Wu, in the Department of Computer

Science and Engineering. In this thesis, we only show partial pat-

terns for illustration.

In the following figures, dark thick lines represent target wires and thin

dotted lines are alternative wires.

c . l Pattern Cluster Ci

The first pattern cluster is in the form of two gates in series with only one

fanout. And there are two parallel gates with same fanins. This pattern

cluster is of type single-addition-single-removal.

C • 1 • 1 N AND-N A N D - A N D / N AND; AND / N A N D

Figure C. l shows a pattern in pattern cluster Ci. The proof is shown as

follows. Without loss of generosity, we assume 仍 is an AND gate. In the

proof, let :r be the AND-product of all other inputs of g, except a and z be

the OR-summation of all other inputs of g^ except 仍 . 6 is the AND-product

of all other inputs of g^ except g^, i.e. b = 626364...6̂ ：, where k = 2,3，4.…

91

(dc,dc,dc) (NAND’dc’l) (NAND，k’l) (AND/NAND’dc，dc)

{dcAcAc)/

® y
(Sy

Figure C.l: Cluster Ci, Pattern Al

Before transformation g^ = [(ax)'h]'z = z{ax + h')

After transformation g^ = = z(ax + b')

The pattern shown in Figure C.2 is nearly the same as Figure C.L The

difference is that the NAND gate g各 is separated into a AND and a NOT.

We treat them as different patterns in pattern matching since g^ would pass

different values to its fanouts and hence it represents different logic structure.

C.1.2 N O R - N O R - O R / N O R ; A N D / N A N D

Figure C.3 shows another pattern. The proof is shown as follows. Without

loss of generosity, we assume 仍 is an OR gate. In the proof, let a: be the

OR-summation of all other inputs of g^ except a and z be the OR-summation

of all other inputs of 仍 except b is the AND-product of all other inputs of

92 except gi, i.e. 6 = 62 + 63 + 64 + ... + bk, where k = 2,3,4....

Before transformation "3 = [(« x)' b]' z = zah' + xh'

After transformation 仍 二 (x' + 6)' + z + {a' + 6)' = : + ah' + xh'

92

(dc.dc.dc) (NAND.dc.l) (NAND.k.l) (AND/NAND,dc,dc)

(譯

(dc.d^dc)/

Figure C.2: Cluster Ci, Pattern A2

(dc,dc’dc) (NOR’dc’l) (NOR’k，l) (OR/NOR,dc,dc)

(dc.^dc) Z

(dc’dc’dc) / (AND,k,dc)

(dc,dc,dc) / /

Figure C.3: Cluster Ci, Pattern Cl

93

The pattern shown in Figure C.4 is nearly the same as Figure C.3. The

difference is that the NOR gate g头 is separated into a OR and a NOT. We treat

tliem as different patterns in pattern matching since g^ would pass different

values to its fanouts and it represents different logic structure.

(dc’dc’dc) (NOR’dc’l) (NOR,k,l) (OR/NOR,dc,dc)

？ ©

(dc.^dc) /

(dc’dc’dc) / (NAND.k.dc)

(dc,dc,dc) / /

Figure C.4: Cluster Ci, Pattern C2

94

C.1.3 AND-NOR-OR/NOR;OR/NOR

(dc’dc’dc) (AND’dc’l) (NOR,k,l) (OR/NOR,dc.dc)

(d c . d c . d c) / / / /^OR,k，dc) w
(dc .dc^c) /

Figure C.5: Cluster Ci, Pattern El

Figure C.5 shows another pattern. Actually, this pattern is logically the

same as the second pattern of 2-local patterns in [WLFOO]. The proof is shown

as follows. Without loss of generosity, we assume 仍 is an OR gate. In the

proof，let a; be the AND-product of all other inputs of 仍 except a and z be the

OR-summation of all other inputs of "3 except 仍 . 6 is the OR-summation of

all other inputs of 仍 except 仍,i.e. b = 62+ 63 + 64 + …+ where k = 2 ,3,4" . .

Before transformation §3 = {axb)' z = za'h' + x'h'

After transformation 仍 = (: r + h)' + z + … + 6)' = 2 + a!h' + ？6'

The pattern shown in Figure C.6 is nearly the same as Figure C.5. The

difference is that the NOR gate g各 is separated into a OR and a NOT. We treat

them as different patterns in pattern matching since g^ would pass different

•values to its fanouts and it represents different logic structure.

C.1.4 O R - N A N D - A N D / N A N D ; A N D / N A N D

Figure C.7 shows another pattern. Actually, this pattern is logically the same

as the second pattern of 2-local patterns in [WLFOO]. The proof is shown

95

(dc’dc’dc) (AND’dc’l) (NOR,k,l) (OR/NOR,dc,dc)

7 0

(dc,dc,dc) / y f / (N O R , k , d c)

(dc’dc，dc) / &
Figure C.6: Cluster Ci, Pattern E2

(dc’cic’dc) (OR’dc，l) (NAND,k,l) (AND/NAND,dc,dc)

/ / / (NAND,k,dc)
(dc ,dc ,dc) / / 7 /

Figure C.7: Cluster Ci, Pattern Fl

96

as follows. Without loss of generosity, we assume 仍 is an AND gate. In the

proof, let a: be the OR-summation of all other inputs of 仍 except a and z be

the AND-product of all other inputs of g^ except g^. b is the AND-product of

all other inputs of "2 except 仍，i.e. b = 626364...6^, where k = 2 ,3 ,4 " . .

Before transformation "3 = [(a + x)h]'z = (a'x' + b')z

After transformation "3 = (xbyz{aby = z{a' + b')(x' + 6 �

The pattern shown in Figure C.8 is nearly the same as Figure C.7. The

difference is that the NOR gate 巩 is separated into a OR and a NOT. We treat

them as different patterns in pattern matching since g头 would pass different

values to its fanouts and it represents different logic structure.

(dc’dc’dc) (OR’dc’l) (NAND’k’l) (AND/NAND,dc,dc)

？ ©

(NAND,k,dc) /

(l l ^ f e M ”
(d �輕

(d c , d c 4 c) / (§

Figure C.8: Cluster Ci, Pattern F2

97

C.2 Pattern Cluster C2

All patterns in Cluster C2 are related to fanout reconvergence. Since they are

of type single-addition-multiple-removal, they are very useful in logic simplifi-

cation.

Figure C.9 shows the first pattern in the cluster. The proof is as follows.

Without loss of generosity, we assume g3 is an AND gate. In the proof, let Xl be

the AND-product of all other inputs of gl except a and X2 be the AND-product

of all other inputs of b2 except a. Similarly, X3 ... Xk are the AND-product of all

other inputs of b3 ... bk except a.

Before transforrnation g3 = [(axd'(ax2)' ... (axk)']'Z = az(xI + X2 + ... + Xk)

After transformation g3 = az(xI + X2 + ... + Xk)

,.. , ,.. ,
,/,/ "

(dc,dc,k)
,/

(NAND,dc,l) (NAND,k,l) ',(ANDINAND,dc,dc)

n------.@

Figure C.9: Cluster C2 , Pattern Al

The logic structure of Figure C.IO is the same as Figure C.9 while NAND

NAND is replaced with AND-OR.

98

(dc,dc,k) " ,,(ANDINAND,dc,dc)

~®

Figure C.IO: Cluster C2 , Pattern A2

C.3 Pattern Cluster C3

This pattern is related to the consensus property of logic. Belonging to the

type single-addition-multiple-removal, they are also very useful in logic sim

plification. For the patterns with the same alphabetical name but different

numerical name, they are of the same logic structure. For example, patterns

AI, A2, A3 and A4 are the same. In fact, our implementation includes similar

variation of patterns (e.g. Dl,D2,D3,D4) but all variations of Bl , Cl, Dl, El,

Fl and Gl are omitted in this chapter.

The pattern in Figure C.ll is different from all specific member in pattern

cluster Cl and C2 . The proof is shown as follows. Without loss of generosity,

we assume g3 is an AND gate. In the proof, let z be the AND-product of all

other inputs of g3 except g2, and y is the OR-summation of all inputs of g5

except b'.

Before transformation g3 = [(a + b)(y + b')]'z = z(a'b' + y'b)

After transformation g3 = (yb)' z(ab'), = z(a'b' + y'b + a'y')

99

(dc’dc’dc) (0R’2’1) (NAND’2,1) (AND/NAND’dc’dc)

‘ (N A N D , 2 , d c)

Figure C . l l : Cluster C3, Pattern A1

This pattern member has another form and it is shown in Figure C.12,

(d c ^ d c) (0R’2’1) (NAND,2,1) (AND/NAND,dc,dc)

(AND,2,dc)

Figure C.12: Cluster C3, Pattern A2

Figure C.13 shows another pattern member. The proof is shown as follows.

Without loss of generosity, we assume g3 is an AND gate. In the proof, let

^ be" the AND-product of all other inputs of g^ except 仍,and y is the OR-

summation of all inputs of g^ except h'.

Before transformation "3 = [(a + 6)(y + 5')]'^ = z[a'b' + y'b)

After transformation "3 = {ybyz(a' b) = z{a'b' + y'b + a'y')

Figure C.14 shows another pattern member. The proof is shown as follows.

• Without loss of generosity, we assume "3 is an AND gate. In the proof, let z be

the AND-product of all other inputs of "3 except g), and y is the AND-product

of all inputs of g^ except b'.

Before transformation g^ = [(a + b){yby]'z = z{a'h' + yh)

After transformation "3 = {y'h)'z{ah')' = z[a'h' + + a'y)

100

(dc，dc’dc) (0R,2,1) (NAND,2,1) (AND/NAND’dc’dc)

(NAND’2’dc)

Figure C.13: Cluster C3, Pattern B1

(dc，dc’dc) (OR.2,1) (NAND’2’1) (AND/NAND，dc,dc)

(0R’2’dc)

Figure C.14: Cluster C3, Pattern Cl

Figure C.15 shows another pattern member. The proof is shown as follows.

Without loss of generosity, we assume g^ is an AND gate. In the proof, let

^ be the AND-product of all other inputs of c/3 except g�,and y is the OR-

summation of all inputs of g^ except b'.

Before transformation 仍 = [(a + b)' + (yb)]z = z{a'b' + yb)

After transformation 仍 = (y + b')z(a' + 6) = z{a'b' -\-yb-\- a'y)

(d g c) (NOR,2,1) (AND,2,1) (AND/NAND,dc,dc)

© ^

(OR,2,dc)

Figure C.15: Cluster C3, Pattern Dl

Figure C.16 shows another pattern member. The proof is shown as follows.

101

Without loss of generosity, we assume g^ is an AND gate. In the proof, let

: b e the AND-product of all other inputs of g^, except g2, and y is the OR-

summation of all inputs of "5 except b'.

Before transformation gs = [{ab') + (yb)]z = z(ah' + yh)

After transformation gs = (y + b')z(a + b) = z(ab' + + ay)

(d 穴 c) (AND,2,1) (AND,2,1) (AND/NAND,dc,dc)

(d c 兴 (A N D , d c ’ l) , ,
© ^

(0R,2,dc)

Figure C .16: Cluster C3, Pattern El

Figure C.17 shows another pattern member. The proof is shown as follows.

Without loss of generosity, we assume g^ is an AND gate. In the proof, let

‘ ^ be the AND-product of all other inputs of 仍 except 仍,and y is the OR-

summation of all inputs of g^ except b'.

Before transformation "3 = [(a + b')(y + 6)]'^ = z(a'b + y'h')

After transformation 仍= { y h) ' z (a h) ' = z{a'b + y'b' + a'y')

(d g c) (0 ^ 1) (NAND,2,1) (AND/NAND,dc,dc)

(NAND’2’dc)

Figure C.17: Cluster C3’ Pattern F l

Figure C.18 shows another pattern member. The proof is shown as follows.

Without loss of generosity, we assume 仍 is an AND gate. In the proof, let

102

： b e the AND-product of all other inputs of 仍 except 仍’ and y is the OR-

summation of all inputs of g^ except b'.

Before transformation "3 = [{a'b) + (y + by]z = z(a'b + y'b')

After transformation "3 �(j / + b)z(aby = z{a'b + y'h' + a'y')

(d 兴 d c) (AND^.I) (OR,2,1) (AND/NAND’dc’dc)

(NAND’2,dc)

Figure C.18: Cluster C3, Pattern Gl

1 0 3

C.2 Pattern Cluster C2

The pattern cluster is extracted from experimental results. We compare the

result of original GBAW and other ATPG-based alternative wiring programs.

Figure C.19 demonstrates one pattern in the cluster. The pattern is bigger in

size as it consists of 11 nodes.

(dc’dc’dc) (NAND.2,dc) (NAND’dc’l) (NAND’2’1)

(d c，d c , d c i ^ | f § ; ^ : ! l) ~ \ / /(AND/NAND’dc’dc)

^̂ •̂ •̂ ^̂ NAND’2，dc)(NAND,dc’(lc)

Figure C.19: Cluster C4, Pattern A1

The proof is shown as follows. Without loss of generosity, we assume g各 is

an AND gate. In the proof, let q be the AND-product of all other inputs of

92 except g, and b, w be the AND-product of all other inputs of 伪 except 仍

and g'8, s be the OR-summation of all inputs of 仇 except a’ and b, and v be

the AND-product of all inputs of qq except g^.

Before transformation g^ = { [(« ' + 6 +

= [a b W + bq(a' + c')]w

After transformation "4 = {[{a' + 6 + syv]'(bqyyw[{aby + c']

= [ab's'v' + bq(a' + c')]w

104

C.2 Pattern Cluster C2

The pattern cluster is obtained from experimental results and is extracted from

pattern cluster C4. Figure C.20 demonstrates one pattern in the cluster.

(dc’dc’clc) (NAND’dc,l) (NAND’2’1)

(d c ^ c) Y^i^< ; ; : j i^R ’dc ’dc)^ ^ / / (AND/NAND’dc’dc)

(NAND,dc,dc) /

Figure C.20: Cluster C5, Pattern A l

The proof is shown as follows. Without loss of generosity, we assume g* is

an AND gate. In the proof, let w be the AND-product of all other inputs of

92 except a and b, x be the AND-product of all other inputs of g^ except 仍

and "7，y be the OR-summation of all inputs of "5 except a and b, and z be

the AND-product of all inputs of 你 except 诉.

Before transformation 没4 = {{abwy[{a + 6 + x)'y\']'z

= (abw + a'b'x'y)z

After transformation g^ = + 6 + xYy] 'yz{a'by

= [bw + + b')

105

Glossary

absolute dominator a node D on the transitive fanout of a target wire such

that all paths from the target wire to any primary output should go

through D.

alternative wire pattern a graph configuration containing an alternative

wire pair.

A T P G abbreviation for Automatic Test Pattern Generation.

cv abbreviation for controlling value.

dc abbreviation of any operator or any positive integer, appeared in the triplets

of nodes in a GBAW graph configuration.

D M A abbreviation for Driving mandatory assignments.

dominator short form of absolute dominator.

F P M A abbreviation for fault propagation mandatory assignments.

G B A W abbreviation for Graph Based Alternative Wiring Logic Transforma-

tion.

I B A W abbreviation for Implication Based Alternative Wiring Logic Trans-

formation.

O M A abbreviation for observability mandatory assignments.

106

pattern short form of alternative wire pattern,

perturbation short form of logic perturbation.

PI abbreviation for primary inputs.

PO abbreviation for primary outputs.

R A M B O abbreviation for Redundancy Addition-and-removal for Multilevel

Boolean Optimization, refer to [CE93 .

R E W I R E one of the latest logic optimization algorithms based on ATPG-

based alternative wiring logic transformation, refer to [CGLMS99 •

SIS a open-source system for sequential and combinational logic synthesis.

S M A abbreviation for set of mandatory assignments.

107

Index

algebraic substitution, 16 heuristic, 72

alternative wire, 13
. , IBAW, 9, 22, 25

simultaneous, 69
alternative wiring, 4 Destination Node Implication, 35

1. r r r Source Node Implication, 25 applications of, 5
ATPG-based, 17 implication’ 12

add-first, 17 backward, 12

, 丄 1” direct, 12
target-first, 17

, „ , forward, 12 example of, 4
ATPG 4 implication-tree

destination node, 39

boolean substitution, 16 source node, 27

controlling value, 11 in-degree, 48

dc 49 logic optimization, 66

Destination Node Implication, see 丨。^;。simplification, 67

IBAW mandatory assignments, 12

DMA, 12 forced, 12

dominator, 11 minimality, 54

•• don't cares, 15, 71

external 15 observability, 71
C入丄丄丄Cl丄,丄C)
•毛 1 1 r observable, 71 internal, 15, 71

OMA, 12

FPMA’ 12 out-degree, 48

GBAW, 9, 24, 47 pattern, 50

108

A:-local, 49

cluster, 51

family, 51

member, 51

minimal, 54

minimality, 54

Perturb and Simplify, 18

perturbation, 71

incremental, 71

PI, 11

PO, 11

RAMBO, 18

redundant, 4, 13

REWIRE, 21, 75

script

.algebraic, 17, 66, 73

.boolean, 17, 73

.rugged, 17, 73

scripts, see SIS scripts

SIS, 3’ 16

SIS scripts, 16

SMA, 12

Source Node Implication, see IBAW

triplet, 11, 48

109

Strategies to Enhance Performance of Pre-sorting based Algorithms
in Building Decision Trees for Large Data Sets

Jian Tang* Ada Wai-chee Fu+ Yin Ling Cheung.

* Department of Computer Science

Memorial University of Newfoundland,

St. John's, NF, A l B 3X5 Canada

jian@cs.mun.ca ..

+ Department of Computer Science and Engineering

Chinese University of Hong Kong

Shatin, Hong Kong

{adafu,ylcheung}@cse.cuhk.edu.hk

Abstract

Classification is a function that identifies a new object as belonging to one of several prede-
fined classes. Since late 70，s’ it has been used to assist in decision making process in a variety of
applications such as medical diagnosis, credit approval, weather prediction, etc. It has emerged
now as an important branch of data mining in databases. Among the techniques for classifi-
cation, decision tree has caught most attention recently due to its conceptual simplicity and
accurdicy. One class of methods for building a decision tree pre-sort the attribute values for
each attribute. As the decision tree grows, the attribute values will be distributed (recursively)
to each node in such a way that their relative orders are preserved. The advantages of this
pre-sorting method are twofold. First, it maintains the pre-sorted order of the attribute values
without incurring sorting-related overhead at each node. Second, compared with other meth-
ods’ the input data set it creates at each node is less sensitive in size to the inter-dependencies
between different attributes. Thus its performance is relatively stable under different data dis-
tributions. In this paper, we study several strategies for pre-sorting based methods in building
decision trees under database oriented constraint: the main memory space is limited, and is
smaller than the dataset. We pay particular attention to the problem of how to minimize the

'I/O operations under the limited memory space. Our study shows that by emphasizing on
different aspects, we can obtain schemes with different performance characteristics. Thus they
can be used to meet different requirements for applications.

Keywords: Knowledge Discovery in Databases, Classification, Decision Trees, Sorting.

1

mailto:jian@cs.mun.ca

1 Introduction

Classif ication has emerged as one of the main branches in d a t a mining since the 90's. Ear ly

applications were restricted only to small datasets , which were assumed to fit into main memories

and accuracy was the only concern. With the rapid growth of the computer ' s capabil ity to collect

and store large amount of data , assuming the entire dataset to fit into the main memory is no

longer realistic. This results in new issues such as fast classification, scalability, etc. Several kinds

of classifiers were proposed in the past [5, 14 , 8, 4, 18]. A m o n g them decision tree has caught most

attention recently due to its simplicity, conceptual cleanness, and accuracy [4, 1， 1 1 , 1 2 , 13] .

S P R I N T [15] employs a presorting method, which sorts att irbute values only once. T h e advan-

tages of pre-sorting attr ibutes are twofold. F i rs t , it maintains the pre-sorted order of the attr ibute

values without incurring sorting related overhead at each node. Second, compared with other meth-

ods, the input d a t a it creates at each node is less sensitive in size to the inter-dependencies between

different attr ibutes. Compared with other work, such as [10, 3, 1 7 , 7，6，9], S P R I N T eliminates the

introduction of inaccuracy in the result, sorting at every node, memory resident d a t a structure,

and the dependence of sample selection.

In this paper, we study strategies to speed up the pre-sorting based approaches to building

decision trees under database oriented constraint: the main memory space is limited, in comparison

to the dataset size. We make no assumption that the main memory can hold any dataset dependent

on the structures of the original dataset for the major evaluation steps. Also, we do not introduce

any restriction that may compromise the accuracy. Therefore we provide absolute improvements on

previous methods with no trade-offs . Since in general the growing phase dominates the performance,

we consider the growing phase only.

In our schemes, we pay special attention to the problem of how to minimize the I / O operations

under limited main memory space. We use a technique, called 'pre-evaluation' , whereby split points

can be evaluated for an attr ibute list while the attr ibute list is being generated, instead of after

it has been generated and written to disk. This virtually reduces the amount of I / O operations

required for evaluating split points to zero. Our study also shows that by emphasizing on different I
aspects, one can obtain schemes with different performance characteristics. T h u s they can be used

to meet different requirements for the applications.

T h e rest of this paper is organized as follows. In Section 2, we describe the problem and explain

the f ramework introduced in S P R I N T . In Section 3, we introduce pre-evaluation technique. In ‘

Section 4, we present several strategies for building decision trees. In Section 5, we analyze the

performance for those strategies. We conclude the paper by summarizing the main results.

I

2 A framework using sorted attribute lists in Decision Trees

T h e construction of decision tree for large dataset in S P R I N T [15], is based on the use of attr ibute

lists, one for each predictor attribute. An attribute list for attribute X at node iV is a projection j
of the associated dataset S{N) on X , C and Rid. If X is a continuous attribute, then the attribute ‘

2

i

Preprocessing: construct a set A of sorted attr ibute lists.

Bui ldTree(Node N, At t r iSe t A)
0. if all d a t a in N are of the same class then return

1 . further splitting is necessary: find splitting attr ibute list L and splitting point v
2. Generate NL and NR as the left child and right child of N\

3. Sp\it{A, L,V,AL,AR); .
4. Bui ldTree(iVL,AL) ;

5. BuildTree(iVH,Afi);

Figure 1 : Scheme 0 (S P R I N T)

list is ordered by the values of X. A f ramework for this approach is shown in F igure 1 . In the

preprocessing, attr ibute lists are created for both the splitting attr ibute and non-splitting attr ibutes.

Then Bui ldTree(iV,A) is called, where parameter A is the set of constructed at tr ibute lists. Further

splitting is necessary if all records in S{N) do not have a unique class label. In this case we search

for the best splitting point in any attr ibute list using Gini Index.

Let L be an attr ibute list for attr ibute X . Assume X is a continuous attr ibute and a; € X . Let

S^ = {r:r.X <xkreL]^,n(iR^ = {r:r.X>xkre L). Then the Gini Index at a: is

Gini 工 = 贸 G—.(5；)+ 傲 I

To evaluate all the splitting points for X , we scan L top down. Suppose r and e are two entries,

we say that r < e i { and only if the value of the splitting attr ibute in r is less than or equal to that

of e. For each entry e scanned, for any class label i , the count yi = \ {r \ r ^ S{N) k r < e k
r . C = %} I is accumulated. These counts can be used to calculate the Gini Index for each splitting

point on the w a y i .

Now assume X is a categorical attr ibute and x C X. Let JJ^ = {r \ r.X ^ x k r ^ L} and V：^

={r : r.X ^ X S^ r e Lj. Then the Gini Index at x is

Gini 工 = 弼 Gz.n 肌) + 贤 II

In S P R I N T , a count matrix is constructed for each attr ibute list to calculate the Gini Index for

each possible partit ion of the attr ibute domain. In either case, we can determine the best splitting

point for each at tr ibute list. A m o n g all these splitting points, we choose the best one as the final

splitting point and the associated attr ibute list as the splitting at tr ibute list. T h e n , we can split

every attr ibute list according to the splitting point, with one portion going to NL and the other to

NR. Th is task is carried out by the subroutine Split .

In the subroutine Split , we first scan, in top down manner, the splitt ing at t r ibute L and split

it into LL belonging to NL and LR belonging to NR. For each entry scanned, we compare the

iln SPRINT, these counts are stored and updated incrementally in a data structure called 'histogram'.

3

attr ibute value it contains with the splitting point, and determine its destination (i.e., either LL
or LR) immediately. Then, we split non-splitting attr ibute lists. Between LL and LR, we bring in

the shorter list, say LL, to the main memory. Then we can bring in non-splitting attr ibute lists

LN one by one to do the splitting for them. For each record in LN, we see if it exists in LL by

matching the record id (rid). If so it belongs to NL else it belongs to NR. TO reduce the search

time, we build a hash table for LL using the rid as the key. Each record in LN will "probe" the

hash table using the rid value.

If an attr ibute list cannot fit into main memory, the attr ibute list is divided into buckets. T h e

buckets are brought in one at a t ime to the main memory. For the splitting attr ibute, each time a

bucket X is brought in from L l , a hash table is built for the bucket only. With the hash table in

main memory, we bring in every bucket f rom each non-splitting attr ibute list one by one, and do

the probing of the hash table to determine whether each record must go to NL or NR. Then we

repeat the entire process with the next bucket in LL- When the last bucket of LL is brought into

the memory, all the entries in each bucket of each non-splitting attr ibute list can be determined for

their destinations. This essentially splits each non-splitting attr ibute list into two sub-lists, one for

NL and the other for NR.

3 Post-evaluation vs Pre-evaluation of Splitting Points

In the S P R I N T f ramework , evaluation of splitting points occurs a f ter the attr ibute lists have been

constructed, as indicated by the order of the related statements (i.e, preprocessing precedes step

1，and step 2 precedes step 3 .) . We call this way of evaluating splitting points post-evaluation.
T h e post-evaluation scheme requires multiple write-back and fetching for splitting point evaluation

when the attr ibute lists cannot fit into the main memory.

T h e S P R I N T f ramework can be improved in such a way that once the attr ibute lists are gen-

erated at a node we can determine for further splitting the splitting attr ibute list and the final

splitting point without incurring any e x t r a I /O. We call this scheme of evaluating splitting points

pre-evaluation. (The prefixes 'post ' and 'pre ' are with respect to writ ing the attr ibute lists to

the disk.)

4 Schemes to Construct Decision Trees

In this section, we describe several schemes to construct decision trees (only for the growing phase)

based on pre-sorting. All the schemes use pre-evaluations.

4.1 One-to-many hashing

This is the S P R I N T approach except that the pre-evaluation of splitting points is used. A s described

before, in this scheme for each bucket of records in the splitting attr ibute list, we create a hash

table and then read every bucket f rom each non-splitting attr ibute list to probe the hash table.

4

�

The reason for the phrase one-to-many is because the buckets of the splitting attribute are loaded
into memory one time while the buckets of the non-splitting attributes are loaded many times.

4.2 Many-to-one and Horizontal hashing

A merit for one-to-many hashing is that the ha^h table is created only once in the memory. However,
for each bucket from splitting attribute list, each bucket of a non-splitting attribute list can possibly
be brought into the memory multiple times. For each load, it must be subsequently written back
to the corresponding disk file. To reduce the I/O cost, we can use an alternative to do the hashing,

which we call many-to-one hashing. Like one-to-many hashing, we divide each attribute list
into buckets. However we fetch the buckets from non-splitting attribute lists first. For each of
these fetched buckets, we bring in all the buckets from the splitting attribute list and create ha^h
tables one by one. These hash tables are probed by the bucket of the non-splitting attribute list.
When all the records in that bucket are resolved, we write them back to the corresponding files,
and then repeat this process for the next bucket from the non-splitting attribute list. Thus each
bucket from a non-splitting attribute list will be read and written only once, while each bucket
from the splitting attribute list can possibly be fetched multiple times, but without involving write
operations. We call this scheme many-to-one because the splitting attribute list has to be brought
into main memory many times while the non-splitting attribute lists are brought in only one time.

One way of constructing a bucket from the non-splitting attribute lists is to let each bucket
contain the records entirely from one list. We call the resulting scheme the many-to-one simple
hashing scheme. The other way is to divide the bucket into k slots, where k is the number of the
non-splitting attribute lists, and let each slot contain the records from one list. We call this second
method horizontal hashing.

4.3 A scheme using Paired Attribute Lists

This scheme differs from the previous schemes in the structure of the attribute lists and the way
they are split. At each internal node N we maintain a set of paired attribute lists. Let X and
^ be two attributes. The paired attribute list for X paired with Y, denoted as Rid), is

a list of tuples of the values for these four attributes. Furthermore, if X is a continiiou's attribute
the tuples are listed in the ascending order of the values of We say that X is the host and Y
is the guest in the list.

The idea behind the attribute pairing is the following. Suppose there exists another attribute
list {Y,Z,C,Rid) at the same node. Then the values of y in (X,Y,C,Rid) can reference those of
y in (Y,Z,C,Rid). If (Y,Z,C,Rid) is the splitting attribute list at the left child, this reference
can facilitate the process to distribute the entries in {X,Y,C,Rid), a^ described below. To make
It possible for any attribute to reference any other attribute at a node, we maintain a cycle of m
paired attribute lists: [Xu Rid),…,{Xm-u Rid), {X^, X^C, Rid).

Now, consider how to construct the attribute lists at the two children NL and NR of P Suppose
the attribute lists for P have been created, and attribute has been chosen â the splitting at_

5

1 4 3 2
al a2 c rid a2 a3 c rid a3 a4 c rid a4 al c rid

1.0 3 cl 0 J _ _ _ _ 1 _ 4 0.2 c2 2 0.1 4 .0 c2 3

2 .0 1 cl 1 2 6 c2 3 5 0.3 c l 1 0.2 3.0 c2 2

3.0 9 c2 2 3 8 c l 0 6 0.1 c2 3 0.3 2 .0 cl 1

4.0 2 c2 J _ 9 4 I c2 I 2 I 8 |o.4|cl 0 |o.4| l .o| cl 0

\ / ^ ^ ^ ^
/ ^ ^ attribute lists generation

1.0 3 8 0.4 c l 0 , ^ ^ , - “ .. ‘
al , a2, a3, a4 : four continuous attributes

2.0 1 5 0.3 cl 1 。，，<_,
c : Class Label

3.0 9 4 0 .2 c2 2
rid: record ID

4 .0 2 6 0.1 c2 3
al a2 a3 a4 c rid ： reverse splitting order

Figure 2: Splitting attribute by attribute pairing

tribute and x as the splitting point of X^. There is no difficulty to split attr ibute l i s t � X i , X 2 , C , Rid)
for node NL and NR. Let the attr ibute list at NL be {Xi, X2, C, Rid)^ as a result of that splitting.

To determine the entries that must go to node NL (and respectively NR) for the non-splitting

attribute lists at P, we start from (Xm, Rid).

• F i rs t , assume Xi is continuous. Since x is the splitting value for Xi at node P, any entry in

�Xm, Xi,C, Rid) with a value for Xi being less than or equal to x goes to NL and otherwise

goes to NR. Thus we scan the entries in {XM, X i , C , Rid) top down. For each entry scanned,

we can determine where it goes by examining its value for X i .

• Second, assume Xi is categorical. We scan each entry in {Xm^Xi^C^ Rid)^ and check if its

XI value is in set x. If it is, the entry goes to NL, otherwise it goes to NR.

Let {Xm^Xi^C, Rid)L be the attr ibute list at node Nl as a result of splitting {Xm,叉1, C , Rid).
Note that this list is still sorted on the value for X m in case it is a continuous attr ibute. Now

consider {Xm-i,Xm, C , Rid). Assume Xm is a continuous attribute. Let x'饥 be the largest value

for Xm in Rid)^. We scan the entries in Rid) top down. If an entry

contains a value for Xm larger than x'^, it will surely go to NR, otherwise we use hashing similar

to the previous schemes to determine its destination.

If Xm is a categorical attr ibute, we use hashing for each entry of {Xm-i,Xm,C, Rid) to deter-

mine which child it goes to. Once the list {Xm-i,Xm^ C , Rid) splits, we then split {Xm-2, Rid),
then (Xm-3,Xm-2iC^ Rid), etc. , using the same procedure. Eventually, the l i s t � X 2 , X3,C, Rid)
will be split. We observe that these lists are split following the reverse order of their subscripts.

We therefore refer to this order reverse splitting order. F igure 2 gives an example of this scheme.

(The boldface numbers indicate the order the attr ibute lists are split, assuming the top left most

list is the splitting attr ibute list.) 丨

6

�

4.4 A scheme using Database Replication

We notice that when we do the reverse splitting in the attribute pairing scheme, splitting the
first non-splitting attribute list is 画ch easier than splitting other non-splitting attributes. This is
because the value used for splitting that list is the splitting value of the splitting attribute list. Is
It possible to use this splitting value for the splitting of all other non-splitting attribute lists? The
answer is yes. We can make u copies of the entire dataset, where u is the number of continuous
attributes. These copies are sorted based on the values of different continuous attributes. We use
notatKm�Xi ’. . . , X；, • • •) to indicate that this dataset copy is sorted based on the value of Xi. (If
there is no continuous attribute, a single copy must be maintained.) ‘

At the root, all the copies are created in a preprocessing pha^e. As usual for any continuous
attribute the best splitting point can be determined when the copy is sorted. For categorical
attributes we can choose any copy to do the evaluation when that copy is in memory. Thus the
splitting attribute and the splitting point are determined in a pre-evaluation of the splitting points
Now consider the children, NL and NR of an internal node N, assuming the existence of u copies
of the datasets and the splitting attribute X and splitting point a; at node N. Since every copy
contains JT, splitting is easy. We can simply compare the value for JC in each entry with x If X is
continuous, a value smaller than or equal to a; implies the entry must go to NL, otherwise to NR

If X IS categorical, a value belonging to implies the entry must go to NL, otherwise to NR.

5 Performance Analysis

We have described the following schemes:
(1) S c h e m e 1 : one-to-many hashing,

(2) S c h e m e 2: many-to-one simple hashing,

(3) S c h e m e 3 : many-to -one horizontal hashing,

(4) S c h e m e 4: paired attributes (one-to-many),

(5) Scheme 5: paired attributes (many-to-one),
(6) S c h e m e 6: dataset replication.

We also call the scheme of SPRINT Scheme 0. In this section, we compare the performance
，mong these schemes. We first formulate the amount of I/O operations involved in each scheme
(m the worst case behavior). Then we apply these schemes to a specific database to gain some
concrete idea of their performance.

: a s s u m e the size of main memory is fixed. All the data initially resides on disk, grouped
as blocks. A block IS the minimum unit of transfer between the disk and the main memory T h e

二〒naj dataset is a table with k + 1 fields. Listed in Table 1 are the symbols used in our derivation.
Note that to simplify the derivation, we assume all the fields (including the rid field) are of equal
sizes. Since all schemes need preprocessing, we first concentrate on the number of disk block
accesses (read or wite)i when splitting takes place at any particular node for each scheme in the
worst case. We call this number the cost. After that we will derive the cost for the preprocessing.

7

Table 1 : Notations for the parameters

notations unit meaning
Z bytes available main memory space
f bytes field size of a record

b bytes block size
n records size of dataset at a node

k attri number of predictor attributes
u attri number of continuous attributes

Ws bytes bucket size for the splitting attribute
瓦 bytes bucket size for non-splitting attributes

• First consider Scheme 0. Let N be an internal node of the decision tree.

(1) The attribute list for the splitting attribute contains ^ blocks. To split the attribute

list, all its blocks are read and then written back. This amounts to 平 block accesses.

(2) Af ter the splitting attribute list has been split into two lists, the smaller of the two lists,

letting it be Ls , will be fetched into memory to form hash tables. Therefore the greatest

possible size of this list is [n/2 j entries, or bounded by [響] b l o c k s . This list will form at

most [f g ^ l buckets.2

To split non-splitting attribute lists, for each bucket of Ls brought into the main memory,
all the entries of non-splitting attribute lists must be fetched. The total size of them is ^ ^
blocks. Each of these blocks is read and subsequently written 絮 times. Hence the total cost

for splitting non-splitting attribute lists is ^ + 呼樂.Note that the hash table created
for Ls and the non-splitting bucket Bn must fit into the main memory. If H is the hash table
size, then H -\-Bn < Z. The number of entries in the hash table should be greater than that
of Ls . However, each entry in the hash table has a small size, since it only need to record the
record id. In the implementation of the hash table, we can vary the utilization factor in the
hash table, and typically H = fBs, where / is a factor close to 1 . We have

B S - ^ B N ^ Z ⑴

(3) Af ter both the splitting and non-splitting attributes have been split, they must be brought

to memory again to evaluate the split points. This requires another ^ ^ block accesses.

Adding the above three values together, the total I/O cost for Scheme 0 at node N is

^ ^ ^ 7 字 + 零 ⑵
b 2b bBs b �) b bBs

• For Scheme 1 , we save on the third step because of the pre-evaluation. Hence, the total I/O

cost is

6n/ 丄 3nf kjSnf)' _ nf kjSnf}' �

丁 + + " W 二 () T + ()

2To simplify our discussion, we shall ignore the floors and ceilings in similar terms in the following

8

�

• For 恐 ， e 2, we have many-to-one hashing. F irst , to split the splitting attribute list, we

use block accesses. A f te r the splitting attribute list has been split into two lists, let the

the smaller of the two lists be L,. Let the size of L , be n/2 entries, or ^ blocks. The non-

splitting attr ibute lists amounts to 暂 buckets. Then to split the non-splitting attribute

lists, Ls is brought into main memory ^ times. Hence the cost involved in this step is

b 十 2b ^ - 义 + ^2bBn - -The total I / O cost is

6n/ 3knf kj^nf? (m\ nf k(3nf)^

• The analysis for Scheme 3 is the same as that for Scheme 2.

• FoY Schemes 4 and 5, the cost to split each of the first two attr ibute lists in the reverse
splitting order is which includes costs for both reading and writing. T h e derivation for
the block accesses for each of the remaining k _ 2 attr ibute is similar to that for splitting a
non-sphtting attr ibute list in Scheme 1 and Scheme 2，except that now each record in the
^ttribute list contains four fields, instead of three. Thus we omit the detail. T h e cost of
bcneme 4 is:

T h e cost of Scheme 5 is:

M ^ (A . - 2) (4 n /) 2 nf , {k - 2){4nf)'

• Lastly，we consider Scheme 6. Now an attr ibute list for an attr ibute (i.e, the entire dataset

s o 二 二 t h e value of that attribute) contains k + 2 fields. This amounts to {k + 2)nf bytes,

or , blocks. Twice this value is the cost to split any replicated copy. Assuming there

are u continuous attr ibute lists, the total cost for splitting all the attr ibute lists is

2u{k-^2)nf
b ~ (7)

Equation (7) indicates that Scheme 6 would have better I / O performance for large dataset since

It IS linear in n, it also requires less C P U time since no hashing is necessary, but this scheme requires
much more disk space to accommodate the replicated datasets .

From Equat ions (2), (3), and (5), we see that for the one-to-many schemes, it is better to use

a larger B . to minimize the I / O cost. From Equation � and (6), for the many-to-one schemes it

IS better to use a larger Since the buckets f 匪 the splitting and non-splitting attr ibute lists

must share the limited memory space, a larger B , would lead to a smaller B ^ (B ,) Thus if

we set B ^ too large, we will have a lot of overhead in bringing in small portions of records from

disk and in creating a large number of small hashing tables. T h e C P U cost will go up. Similarly if

we set B too arge, we will have a lot of overhead in bringing in small portions of records for the

non-sphttin，attributes. Therefore, we expect that there is a value of 凡 or B ^ neither too large

nor too small, where the overall performance is optimized.

9

T h e equations also indicate that the many-to-one schemes have better I / O cost than one-to-

many schemes if B s and Bn are comparable. However, the many-to-one approach requires each

bucket of the splitting attr ibute list to be brought into memory and the corresponding hash table

to be created multiple times. This will incur more C P U costs. Therefore the choice would depend

on the I /O performance and the C P U performance of the system.

Schemes 4 and 5 have a probabilistic advantage. In addition to hashing, attr ibute values are

used to resolve (i.e, find the destination of) each record of the attribute list being split. With such

a double resolution method, each record in a bucket of the attribute list being split may be resolved

earlier, and never later than it would be in the single resolution scheme where only hashing were

used. In other words, the fraction of the buckets being brought into the memory from the splitting

attribute list in the double resolution scheme is likely to be smaller than it is in the single resolution

scheme.

Now consider the preprocessing. For the first three schemes, each attr ibute list contains 半

blocks. Thus it requires ^ l o g ^ block accesses to be sorted. Thus the cost to sort all the

attribute lists is ^ l o g ^ . Scheme 4 requires ^ l o g ^ ^ block accesses to sort all the attr ibute

lists. Finally, Scheme 5 requires i t t ^ ^ i o g i t t ^ block accesses to sort all copies. These results

show that , except for Scheme 5, the pre-sorting costs for all the schemes are dominated by the costs

for splitting attr ibute lists.

6 Experimental results

We use the synthetic database proposed in [2] for all of our experiments. We employ two classifi-

cation functions proposed in [2].

6.1 Performance

We compare the total response time and the number of logical page access for all the schemes

presented in this paper. Exper iments are conducted under U N I X on a Sun Ultra 5 with 1 2 8 M B

main memory and 270MHz clock rate. We use a 9 G B hard disk, for which the average I / O rate

is 8000 blocks per second. We force each page access to go to the hard disk and hence the logical

page accesses corresponds to physical page accesses. F igure 3 shows various parameters setting

for our experiments. We have employed both linear probing and coalesced chaining [16] for hash

operations and find that the latter incurs less number of collision.

A s illustrated before, when we split a non-splitting attr ibute list, we bring into memory the
buckets f rom the splitting attr ibute list to create hash tables. In the actual implementation, how-
ever, to make efficient use of memory space we do not need to put an entire bucket of the splitting
attr ibute list in the memory. Instead we use a working space the size of a single block and fetch into
it the blocks f rom the splitting attr ibute list one after another. For each block fetched, we insert
entries into the hash table. T h u s we need to put only a hash table and a bucket from non-splitting
attr ibute list into the memory. A s a result we have H BN ^ Z. To increase the hit ratio when
probing the hash table, we let Bn be smaller than H . Normally the entries in the hash table are
only partially used. We use load factor to denote the percentage of the entries that are actually

10

u二d in the hash table. In the implementation, we adjust the load factor to a high value (around
80%) to make H w Bs. Thus we have 乂

Bs Z �

t ^ l T l f ? K,' main memory, we restrict the usage of the main memory to be 5 M B for
the hash table and the buckets. This is to simulate the ca .e where the main m e m o r / i s substantiaHy

smalle^ m size than the d a t a set. Under this circumstance the scalability for each scheme can be
best observed.

6.2 Test 1 ； Smaller Decision Tree

T h e first set of experiments is conducted with Function 2’ which has 4 predictor attr ibutes, and

which produces a very small decision tree. T h e range of total number of nodes is f rom 25 to 3 1

with different data^et sizes. We call this set of experiments Test 1. Our experiments confirm

our expectat ions in the earlier analysis. Scheme 6 stands out a^ the best in response time and in

page accesses for large datasets , since both I / O cost and C P U cost are low. It also h a . the linear

scalability. However, the disk space requirement is 画 c h bigger than the other methods.

For t h e o t h e r schemes, given the fixed main memory allocation, we vary the bucket sizes

and 5 We discover that the overall response time follows a U-shaped curve with an optimal

minima point. This is shown in F igure 4 (a). If we measure only the page accesses (I /O time),

the performance of the many-to-one schemes would improve with the value of 队，while that of the

one-to-many schemes deteriorates. This is shown in F igure 4 (b).

Next we choose the optimal bucket allocation for each scheme and measure the response time and

page accesses with varying database size. For page accesses, the many-to-one single and horizontal

schemes are the second best methods, which we can predict f rom Equat ion (4). T h e paired attr ibute

= e m e s are not as good since the attr ibute lists becomes bigger in size and requires more I / O costs.

T h e p r o s e d methods are better than S P R I N T a . expected. T h e total response time include both

: ？ 二 二 d the I / O time. Since the system we use h a . a very high I / O performance, the

effect of the C P U time is quite dominant. T h e one-to-many schemes are better than many-to-one

since much less hashing are needed. In particular, the one-to-many paired at t r ibute scheme is the

second best. This is because there is no hashing for the first two at t r ibute lists at each node On

^he horizontal scheme show very s i . i W behavior, because in tMs

case the S P R I N T s good C P U performance is off-set by its poor I / O per formance while the other

way IS true for onzontal scheme. We also observe that second to the da tabase replication scheme

one to many scheme and one-to-many paired attr ibute scheme have excellent scalabil ity in term：

of the to al response time This is because the decision tree is relatively small and therefore the

i i r / S u P e p l Z r r schemes is not s i g 疏 a n t . It is largely compensated by

S P R = T " : = i : ， k Z t ： 1 5 4 細 and 6 2 3 M B for the da tabase replication scheme and
S P R 广 T respect vely for a 画 dataset size using function 2. If the disk usage is acceptable the
database replication scheme is superior to the other schemes. ，

11

Parameters Descriptions

page size of a page (4K bytes)
data-size training dataset size (number of records)

= lOOOK, 2000K, 3000K, ..•, lOOOOK

record-size number of bytes for a record entry in an attribute list
= 3 X 4 for SPRINT, One-to-Many, Many-to-One Simple and Horizontal
= 4 X 4 for Paired Attrib (O), Paired Attrib (M)
= n X 4 for DB Replication
where n is the total number of continuous attributes
and field size = 4 bytes

buf fersize total main memory allocated
二 5MB
> hashSize + otherBucketSize

bucket jratio ratio of other BucketSize to hashSize
=0.01, 0.05, 0.1，0.15, ...,0.9

hashSize memory size required for hash table (in bytes)
hashRow number of entries in hash table

= L 二 f o r linear probing
= [h M h ^] for coalesced chaining

load-factor, a load factor (utilization) of hash table
= 5 0 % , 60%, 70% or 80%

splitBucketSize main memory size used for the splitting attribute bucket (= Bs in Table 2)
=record-size x load-factor x hashRow

split Bucket Row number of entries in splitting attribute bucket
_ I splitBuf ferSize i
— L record-size J

other BucketSize main memory size used for the non-splitting attribute bucket (= Bn in Table 2)
=buf fersize - hashSize (bytes)

other Bucket Row number of entries in non-splitting attribute bucket
一 I other BucketSize I
— L record-size+l -I

F i g u r e 3: P a r a m e t e r s sett ing for the exper iment

6.3 Test 2: Bigger Decision Tree

Next we exper iment with Funct ion 6 (F igure 9), which has 6 predictor a t t r ibutes , and which

produces a much larger decision tree. T h e range of total number of nodes is f rom 2500 to 6000

with dif ferent d a t a s e t size. We call this T e s t 2. We again carry out exper iments by vary ing the

dataset size and choosing the opt imal bucket sizes in each scheme. T h e result is shown in F i g u r e 6.

From F i g u r e 6, the other schemes again outper form S P R I N T . T h e I / O cost of the d a t a b a s e

replication scheme has linear scalabi l i ty in the datase t size. T h e many-to-one schemes also have

good scalabil ity. (T h e many-to-one simple and many-to-one horizontal are nearly l inear.) For

the tota l response t ime, the results are s o m e w h a t dif ferent f rom Test 1 . In Test 1 , the paired

a t t r ibute schemes have pret ty good per formance . However , in Test 2，they are the worst among ！

the proposed schemes. T h i s is because the number of a t t r ibutes have increased f r o m 4 to 6. T h e I

paired a t t r ibutes provides a d v a n t a g e s for the first two a t t r ibute lists at each node, but d e m a n d s

sl ightly bigger a t t r ibute list sizes. In Test 1 , we provide sav ings to 2 out of 4 a t t r ibutes , while here

the rat io becomes 2 out of 6. T h e benefit becomes less signif icant while the overhead becomes more

s ignif icant. T h e other di f ference is t h a t the many-to-one schemes now have a better per formance

12

�

12000 I , , , T , I ‘ ‘ SPRINT - ^ n 7000 I .-ttT- ^ . n—r^ , j
T One-to-Many — x — ... \ • / / S P R I N T ~ i ~
\ Many-to-One Simple … * … •. \ • ‘One- to-Many … x —
\ Many-to-One Horizontal … a … … ••• \ M a n ^ o - p n e Simple • • •« • • .
\ Paired Attrib (O) • \ \ o Many-tcfOn/& Horizontal ……Q……
\ Paired Attrib (M) - -o- - •, \ \ /PalBted Attrlb (O) —
\ DB Replication \ \ \ / Paired Attrib (M) - •-©--

10000 - \ 6000 - \\ \ / 『 一 一

\ / V y ^ / _

I 漏 - \ / - J — -

I 6000 3 , 3 . . . , - _ I 4000 - , , “ � . � . � . � _

I . � . � . � . � - � • . - 1 -一， � � � . �

.、、.-、z 互 .•々、、.、、.、.、.、
4000 •::、--— ‘ . 3000 - 、.々 :>：>、-

-麵一•
2000 -

2000 - -

“ “ " . •_T r"".•T ,••."."““ __•••• ‘‘ • • • « »
1 0 2 0 3 0 40 5 0 60 70 80 90 i o ^ ± ^ ±： ‘

bucket—ratio (X 100%) 30 40 50 60 70 80 90
bucket—ratio (x 1 0 0 %)

(a) T o t a l r e s p o n s e t i m e b y v a r y i n g t h e b u c k e t s i z e (b) L o g i c a l p a g e a c c e s s b y v a r y i n g t h e b u c k e t s i z e

F igure 4: d a t a s e t s i z e = 1 0 M , total buffer s i z e = 5 M B , load factor二80%，using funct ion 2

6000 I , T ,
^ • S P R I N T 4500 I _ , , , , , I

One-to-Many — k — y S P R I N T 1
Many-to-One Simple • •« • • / ” One-to-Many — m —

Many-to-One Horizontal … e / • / Many-to-One Simple /
Paired Attrlb (O) — Many-to-One Horizontal o … / j I
Paired Attrib (M) - yb-.-- 4000 - Paired Attrib (O) - . - , / /

cnnn - DB Replication，/••—-• Paired Attrib (M) - . - c / — “
/ / - DB Replication 子,

• , , 35�� -

广 。 - / / " /) ^ 3000 -

I / 梦 ， 多 :
r . 身 - L 多 , . -

...-•••• 1000 - '

^ ^ ^ ~ ~ ^ ^ 6 7 ~ 8 9 1 0 ^ ^ ^ ~ ~ i ~ ~ ^ ‘ ~ ~ - . _ . _
Dataset S ize (Million) ^ 3 4 5 6 7 8 9 1 0

Dataset S ize (Million)

(a) T o t a l r e s p o n s e t i m e w i t h o p t i m a丨 b u c k e t s i z e (b) L o g i c a l p a g e a c c e s s w i t h o p t i m a l b u c k e t s i z e

F i g u r e 5: tota l buf fer s i z e = 5 M B , load f a c t o r = 8 0 % , using funct ion 2

13

12000 I 1 > 1 1 6000 I 1 1 ,
SPRINT ~I~ SPRINT —

One-to-Many …x…o One-to-Many —x—
Many-to-One Simple / Many-to-One Simple ...*•“

Many-to-One Horizontal ……Q - -/ 11 Many-to-One Horizontal . " .g …/
Paired Attrib fO) --,；//![Paired Attrib O) ‘
P̂rê î r̂ib (M) Paired Attrib (M) - -€v</
DB Replication "力/:/ J • DB Replicat on -- X/

10000 - 5000 _ -

广 虞 , 卜

4000 - y^..,"' - Z Z Z

� Z
2000 -

' [, , , 1000 ^ I ^ -

1 1.5 2 2.5 3 1 1.5 2 2.5 3

Dataset Size (Million) Dataset Size (Million)

(a) Total response time with optimal bucket size (b) Logical page access with optimal bucket size

Figure 6: total buffer s i z e = 5 M B , load f a c t o r = 8 0 % , using function 6

than they did in test 1 . We explain this as follows: since our decision trees are binary, when the

decision tree becomes bigger, the number of levels increases and many nodes are found at the deeper

levels of the tree. Such nodes typically correspond to smaller d a t a sets. If d a t a sets are large, the

disk access are more contiguous, and the average disk access time per page is smaller. With smaller

da ta sets, the disk access are fragmented, and the average disk access time per page is increased.

Therefore the I / O time becomes more significant when the tree is bigger. Since the many-to-one

schemes win the one-to-many schemes in I/O, this results in better overall performance for the

many-to-one schemes.

From the above analytical and experimental results, we conclude that the different proposed

schemes are all better compared to S P R I N T . T h e database replication scheme can be chosen given

sufficient disk space. T h e other proposed schemes can be used in different scenarios. T h e many-

to-one scheme has better I / O performance, while the one-to-many scheme has better C P U perfor-

mance. T h e paired attr ibute scheme provides more savings if the number of attr ibutes is small.

7 Conclusion

In this paper, we present a fami ly of schemes that grow decision trees based on pre-sorting. We start

from the framework proposed in S P R I N T . Then we show how the performance can be improved

by using careful design and implementation of the procedures for splitting the attr ibute lists. We

introduce techniques for the pre-evaluation of split points. We study several methods to split

the dataset , including one-to-many and many-to-one hashing, horizontal hashing, attr ibute pairing

14

�

and database replication, and derive results relating to their performance. We also report on
experimental results, providing evidence to our expectations of the new schemes.

References

[1] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami. An interval classifier for database mining
applications. In Proceedings of VLDB, pages 560-573, 1992.

[2] R. Agrawal, T. Imielinski, and A. Swami. Database mining: a performance perspective. IEEE Trans-
actions of Knowledge and Data Engineering, 5(6):914-925, 1993.

[3] K. Alsabti，S. Ranka, and V. Singh. Clouds: a decision tree classifier for large datasets In Proceedings
of KDD, pages 2-8，1998.

[4] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and regression trees Wadsworth
Belmont, 1984. ‘

[5] P. Cheeseman, J. Kelly, and M. Self. Autoclass: a bayesian classification system. In Proceedings of 5th
/n亡.Conf. on Machine Learning. Morgan Kaufman, June 1988.

[6] J. Gehrke, V. Ganti, R. Ramakrishnan, and Wei-Yin Loh. Boat-optimistic decision tree construction.
In Proceedings of ACM SIGMOD, pages 169 - 180, 1999.

[7] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest - a framework for fa^t decision tree construction
In Proceedings of VLDB, pages 416 -427, 1998.

[8] D. Godberg. Genetic algorithms in search, optimization and machine learning. Morgan Kaufmann
1989. 6 ’

[9] M. Mehta, R. Agrawal, and J. Rissanen. Sliq: a fa^t scalable classifier for data mining. In Proceedings
of fifth Int. Conf. on EDBT, March 1996.

[10] Y. Morimoto, T. Fukuda, Matsuzawa H., TokuyamaT., and Yoda K. Algorithms for mining association
rules for binary segmentations of huge categorical databases. In Proceedings of the VLDB, 1998.

[11] J. Quinlan. Discovering rules by induction from large collections of examples. In Expert Systems in the
micro Electronic Age, 1979.

[12] J. Quinlan. Induction of decision trees. In Machine Learning, pages 81 — 106, 1986

[13] J. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, 1993.

[14] B. Ripley. Pattern recognition and neural networks. Cambridge university Press, Cambridge, 1996.

[15] J. Shafer, R. Agrawal, and M. Mehta. Sprint: a scalable parallel classifier for data mining In Proceedinas
of the 22nd VLDB, pages 544 - 555, 1996.

[16] 二 d W. Neil Webre. Data structures with abstract data types and modula-2. pages
340-363. Brooks/Cole Publishing Company, 1987.

[17] H. W a n g a n d C Zaniolo. Cmp: a fast decision tree classifier using multivariate predictions. In Proceed-
•s of the 16th ICDE, pages 449 - 460, 2000.

[18] S Weiss and C Kulikowski. Computer systems that learn: ClassrficaUon and precUct魏 methods from
她—s’ neural nets, machine learning and expert systems. Morgan Kaufmann, 1991.

15

.

.

*

-
 ’一

“

i
r

.

，

•

•

-

•

-
 ".•〜..：....

.

.

.
V

 ,

 ...

.
 .

.

...

“

.

.

.

.

.

.

.

 .

 -

•

 .

 •

 .

 .

 •

 •

•

 -
 •

 •

 •

 ,

H

•

 -

•

 -..，..

 ：
：

,

.

.

-
 .
」
.
.
.

、
：
.
.
.

、.
 .

 ，：•/“："

 ”〜：(、"」？>-.“》.…

.t
 一；.，；.\.-r

.

 .
 .

S
.
厂
.

⑦
.
玄
：
•

 •

？

.

.

.

.

；

 .
、

 .
，

.

 .
.
/
.
:
.
.

 ...〔.；.；...：，。…

 ..
.
.
.
.
：
.

 .
.
.
.
.

•

 V.,

‘

-

,

;

.

.

.

.

.

•
 *

 -

t

CUHK L i b r a r i e s

____llllll
0D3fl71flMS

�

