6,971 research outputs found

    Recent Advances in Multi-dimensional Packing Problems

    Get PDF

    A simheuristic for routing electric vehicles with limited driving ranges and stochastic travel times

    Get PDF
    Green transportation is becoming relevant in the context of smart cities, where the use of electric vehicles represents a promising strategy to support sustainability policies. However the use of electric vehicles shows some drawbacks as well, such as their limited driving-range capacity. This paper analyses a realistic vehicle routing problem in which both driving-range constraints and stochastic travel times are considered. Thus, the main goal is to minimize the expected time-based cost required to complete the freight distribution plan. In order to design reliable Routing plans, a simheuristic algorithm is proposed. It combines Monte Carlo simulation with a multi-start metaheuristic, which also employs biased-randomization techniques. By including simulation, simheuristics extend the capabilities of metaheuristics to deal with stochastic problems. A series of computational experiments are performed to test our solving approach as well as to analyse the effect of uncertainty on the routing plans.Peer Reviewe

    Thirty years of heterogeneous vehicle routing

    No full text
    It has been around thirty years since the heterogeneous vehicle routing problem was introduced, and significant progress has since been made on this problem and its variants. The aim of this survey paper is to classify and review the literature on heterogeneous vehicle routing problems. The paper also presents a comparative analysis of the metaheuristic algorithms that have been proposed for these problems

    Metaheuristics for the Vehicle Routing Problem with Loading Constraints

    Get PDF
    We consider a combination of the capacitated vehicle routing problem and a class of additional loading constraints involving a parallel machine scheduling problem. The work is motivated by a real-world transportation problem occurring to a wood-products retailer, which delivers its products to a number of customers in a specific region. We solve the problem by means of two different metaheuristics algorithms: a Tabu Search and an Ant Colony Optimization. Extensive computational results are given for both algorithms, on instances derived from the vehicle routing literature and on real-world instances

    A hybrid algorithm for the vehicle routing problem with three-dimensional loading constraints and mixed backhauls

    Get PDF
    In this paper, a variant of the vehicle routing problem with mixed backhauls (VRPMB) is presented, i.e. goods have to be delivered from a central depot to linehaul customers, and, at the same time, goods have to be picked up from backhaul customers and brought to the depot. Both types of customers can be visited in mixed sequences. The goods to be delivered or picked up are three-dimensional (cuboid) items. Hence, in addition to a routing plan, a feasible packing plan for each tour has to be provided considering a number of loading constraints. The resulting problem is the vehicle routing problem with three-dimensional loading constraints and mixed backhauls (3L-VRPMB)

    Simple and practical optimization approach based to solve a truck load and delivery problem at long haul distances with heterogenous products

    Get PDF
    This paper proposes an optimization based approach for solving the logistic processes of deliveries scheduling and product accommodation during loading with a heterogeneous fleet of vehicles. The approach focuses on the case of products with “low density values” and high heterogeneous volume and weight, and with traveling large distances to different zones, in which transportation costs constitute a important proportion of total logistic costs. The proposed approach consists of a two-phase strategy: The first uses a “Cutting Stock Problem” formulation to define utilization areas inside trucks assigned to each product family. This task is achieved by minimizing the long-haul transportation costs as a function of the vehicle size, considering a set of predefined solutions for feasible and efficient loading obtained as a result of the accumulated experience. The second phase consists of Bin Packing Problem version with a known number of bins, which were previously determined in the first phase of the approach. In this phase, different orders from a set of customers are assigned to each truck by obeying the predefined utilization areas per product category obtained in the first phase while minimizing the number of visits of each truck. The results show that the model addresses the analyzed problem in an efficient manner, which is reflected in reasonable resolution times and costs from a practical implementation perspective. Additionally, it is observed that long-haul delivery costs and vehicle utilization tend to improve with the increase of the utilized number of patterns even when the execution time is incremented.MaestríaMagister en Ingeniería Civi
    • 

    corecore