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Abstract

We consider a combination of the capacitated vehicle routing prob-

lem and a class of additional loading constraints involving a parallel

machine scheduling problem. The work is motivated by a real-world

transportation problem occurring to a wood-products retailer, which

delivers its products to a number of customers in a specific region.

We solve the problem by means of two different metaheuristics algo-

rithms: a Tabu Search and an Ant Colony Optimization. Extensive

computational results are given for both algorithms, on instances de-

rived from the vehicle routing literature and on real-world instances.
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1 Introduction

We discuss a combinatorial optimization problem that combines packing

and routing aspects, and which is directly derived from a real-world trans-

portation problem occurring at a large Austrian wood-products retailer.

The company operates in Eastern Austria and delivers different types of

wood-products for further use in the building industry, as supporting or

construction material, or in the production of furniture. The customers

are mainly building sites, do-it-yourself stores, furniture producers and

similar.

Although the company delivers different products, including logs and

timber for furniture companies, their main interest concerns the optimiza-

tion of the deliveries of chipboards. The chipboards are delivered daily to

a large set of customers by means of special vehicles. The minimization

of the driving distance is of particular interest to the company. We can

distinguish between different board types like chipboards or fibre boards.

For planning issues they can be grouped into four main types:

• long chipboards: the most common ones, used in the building sites as

construction material, or cut to produce short chipboards;

• short chipboards: used mainly in the furniture production;

• chipboards for doors: used in the construction of doors or similar prod-

ucts;

• heavy-use chipboards: used mainly in the building sites as supporting

material.
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Loading/unloading operations are normally performed by means of

forklift trucks. For this reason the chipboards of the same type are grouped

together and placed on a pallet. Long chipboards are as long as three pal-

lets, while heavy-use chipboards have the same length as one pallet. The

other chipboards have smaller dimensions: two chipboards for doors or

three short chipboards, respectively, can be placed together side by side

on a single pallet. All chipboards have the same width of the pallet, but

they have in general different heights. In Figure 1–(a) we illustrate the

heights and lengths of the four types of chipboards and of the pallet. We

use the term item to define a group of chipboards of the same type with

a pallet requested by a customer. Each item has the width and length of

a pallet and a height given by the sum of the height of the pallet and the

height obtained by loading together the chipboards of the same type.

It is important to group chipboards of the same type into a unique item,

because this allows both the use of a single pallet, saving space in the

vehicle, and the use of a single trip of the forklift trucks from the vehicle to

the customer’s warehouse. Only in the case in which the height of an item

would exceed the height of the vehicle, the chipboards are placed into two

(or more) items, the first of which is as high as possible. In Figure 1–(b) we

show an item with eight chipboards for doors and an item with 12 short

chipboards.

The resulting optimization problem consists thus in delivering a set of

items to a set of customers, with the aim of satisfying the requests of all

the customers with minimum routing cost. An illustrative example is de-

picted in Figure 2, in which two vehicles serve five customers demanding

a total of 18 items.
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Figure 1: (a) Dimensions of the types of chipboards and of the pallet. (b)
Examples of chipboards and pallets grouped together to form items.

To deliver the items, a fleet of suitable vehicles is available. These ve-

hicles are identical, and have an opening through the widest part of the

truck, that can make easier the loading/unloading operations (i.e., all the

length of the vehicle can be used by forklift trucks for accessing items).

Further, a vehicle has the same width as a pallet and can contain up to

three pallets along its length. Because of this particular configuration, the

vehicles can be loaded by forming up to three different piles of items, (i.e.,

up to three different sequences of items placed on top of each other). Long

items use all the three piles at the same level, while the other types of items

use a single pile.

Hence, the original three-dimensional loading problem can be reduced

to a suitably defined one-dimensional problem. An example is given in

Figure 3, were we present a feasible loading for the items associated to the

route with customers 1,2 and 3 of Figure 2.
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Figure 2: An example of the multi-pile-vehicle routing problem. Ik
i is the

k−th item of the i−th customer.

We are interested in the practical case in which the unloading oper-

ations can be performed without having to move items of customers that

will be visited later along the route. This requirement is usually referred to

sequential loading of the items and is frequently encountered in real-world

transportation. In Figure 3 we can see how the unloading operations of

customers 1,2 and 3 can be performed by picking the items from the top

of the piles.

Because of this sequential loading requirement, we may be forced to

leave unused space between the items. We can note this aspect in Figure

3-(a), where the dashed area shows the unused space which is left between

the items of customer 3 and those of customer 2. This situation occurs
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Figure 3: A feasible loading for route (1, 2, 3) of Figure 2.

frequently, since long items produce “cuts” between the loaded items, i.e.,

they divide all the piles into two separated parts. To allow the stability of

the upper part, some bulk material is needed. This support can be created

through other pieces of wood, or iron beams or other padding devices.

Once the supported items have been delivered, these devices are removed

and do not represent an obstacle for the successive unloading operations.

In Figure 3 we also note that the area between the items of customer 1 and

the top of the vehicle is simply left empty.

We disregard the constraint on the weight capacity of the vehicle, since

it is never active in the real transportation problem. Indeed, the heaviest

cargo (that can be obtained by loading only long-chipboards) would have

a weight of 15 tons, which does not represent a problem since the vehicle

weight capacity is 17 tons. For similar reasons also the weight stability of

the cargo in the vehicle is disregarded.

In this work we will refer to this particular routing and loading prob-

lem as to the Multi-Pile Vehicle Routing Problem (MP-VRP). The MP-VRP is

naturally an NP-hard problem since it generalizes the Capacitated Vehi-

cle Routing Problem (CVRP). Indeed the two problems are equivalent if
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a single pile is available in the vehicles. The MP-VRP is also particularly

difficult because of the loading requirements. For this reason, and also for

the interest of the company in having a fast algorithm, we found it conve-

nient to resort to metaheuristic algorithms. We thus developed and tested

two different approaches: Tabu Search and Ant Colony Optimization.

The MP-VRP combines vehicle routing problems with packing and

scheduling problems. Many exact and heuristic algorithms have been

developed for the Vehicle Routing Problem (VRP). Concerning exact ap-

proaches we refer to the surveys by Laporte and Nobert [24] and Toth and

Vigo [35]. In the book edited by Toth and Vigo [37], the chapters of Toth

and Vigo [36], Naddef and Rinaldi [29], and Bramel and Simchi-Levi [3]

cover, respectively, branch-and-bound, branch-and-cut and set covering

approaches. Recent results were provided, e.g., by Baldacci et al. [2], with

an algorithm based on a two-commodity formulation, by Letchford and

Salazar [26] through branch-and-cut, and by Fukasawa et al. [16] through

branch-and-cut-and-price. From the heuristic point of view good results

were obtained, e.g., by Gendreau et al. [18] and by Toth and Vigo [38]

through Tabu Search, by Prins [31] and Mester and Bräysy [28] through

evolution strategies, and by Reimann et al. [32] with an Ant Colony Op-

timization heuristic. Recent surveys devoted to heuristics for the VRP are

the ones by Laporte and Semet [25], Gendreau et al. [21] and Cordeau and

Laporte [10].

The problem of loading the items into a vehicle is strictly related to two

of the most well known problems in combinatorial optimization: the Bin

Packing Problem (BPP), and the parallel processor scheduling problem (denoted

as the P||Cmax problem in the three-field notation by Graham et al. [22]).
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The BPP calls for the packing of items of a given weight into the minimum

number of bins with a limited weight capacity. Exact procedures were

proposed by Martello and Toth [27] and Scholl et al. [34] through branch-

and-bound, and by Vanderbeck [39] through column generation. For a

survey on heuristic and approximation algorithms we refer to Coffman

et al. [8]. More recent heuristic results were presented, e.g., by Fleszar

and Hindi [14] through variable neighborhood search, by Alvim et al. [1]

through tabu search, and by Brugger et al. [4] by means of an Ant Colony

Optimization procedure.

For the P||Cmax problem a branch-and-bound algorithm was presented

by Dell’Amico and Martello [12], while a multi-exchange neighborhood

search algorithm was provided by Frangioni et al. [15].

This is not the first time in which the two optimization areas of rout-

ing and packing are studied together. Iori et al. [23] presented a par-

ticular VRP in which the demands of the customers were composed by

rectangular weighted items, which had to be loaded on vehicles having a

two-dimensional surface, and delivered with minimum routing cost. The

problem, defined as the Two-Dimensional Loading CVRP (2L-CVRP), was

solved by means of a branch-and-cut algorithm, iteratively calling an in-

ner branch-and-bound for the solution of the loading subproblem. The

2L-CVRP was later addressed by Gendreau et al. [20] through heuristics

and tabu search. Finally, the generalization to the three-dimensional case

was studied by Gendreau et al. [19], who proposed a Tabu Search for the

routing aspect, with a nested Tabu Search for the loading part, and used it

to solve real-world instances.

Although the MP-VRP is motivated by a real-world application, it can
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be seen as a very general loading and routing problem. For this reason, in

the following sections we describe both the problem and the algorithm in

the most general way. We then return to the original application in Section

6.3, where we address specific real-world instances.

The remainder of the paper is organized as follows. In Section 2 we

formally present the transportation problem addressed. The solution ap-

proaches are discussed in Section 3, where we present heuristic and dy-

namic programming approaches for determining a feasible loading for one

vehicle, and in Section 4 and Section 5, where we describe a Tabu Search

algorithm and an Ant Colony Optimization procedure for the combined

routing and loading problem. Extensive computational results are given

in Section 6, both on instances derived from the CVRP literature and on

real-world instances. Finally in Section 7 we draw some conclusions.

2 Problem Description

In the MP-VRP we are given a complete undirected graph G = (V0, E),

where V0 = V
⋃{0}, V = {1, . . . , n} is the set of vertices corresponding

to customers i and 0 is the vertex corresponding to the depot. Each edge

(i, j) has an associated routing cost cij, for (i, j) ∈ E. We are given a fleet of

identical vehicles, having a maximum height H and p piles for the loading

of the items.

Each customer i has a demand consisting of mi items. We denote by Ik
i

the k−th item demanded by the i−th customer (i = 1, . . . , n; k = 1, . . . , mi).

The height of Ik
i is denoted by hk

i and is a positive integer value. The length

of Ik
i (i.e., the number of piles needed for loading the items in the vehicle)

is denoted by lk
i . For the long items lk

i = p, while for all the other items



10

lk
i = 1. The set of items demanded by a given customer i is defined by

I(i) = {Ik
i : k = 1, . . . , mi}. Without loss of generality we suppose that the

items in I(i) are sorted by decreasing length, breaking ties by decreasing

height (i.e., the first item is the long one, if demanded, and then the other

items are the short ones, sorted by decreasing value of height). We also

define M = ∑
n
i=1 mi as the total number of items in an instance.

Finally we define a route r = (r1, r2, . . . , rt) as an ordered sequence

of customers and I(r) =
⋃

ri∈r I(ri) as the total set of items to be loaded

in the vehicle traveling along the route r. For each route r we have to

determine if a feasible loading of the items in I(r) into a single vehicle

exists. This subproblem arises when looking for the set or routes of lowest

cost and deserves a formal definition. We define the One Vehicle Loading

Problem (1-VLP) as follows: given a route r, and a corresponding set of

items I(r), determine a loading of the items into a single vehicle such that

the following conditions are respected:

a) the items do not overlap;

b) the items are completely contained into up to p piles;

c) when visiting a customer, all his items must be unloaded without

having to move items of customers visited later on along the route;

d) the height of the resulting loading is minimum.

By defining h(r) as the solution of the 1-VLP (i.e., the height of the load-

ing associated to the route r), we can determine if r is feasible by checking

h(r) against the vehicle height H (see, e.g., Figure 3). Note that conditions

a) and b) derive by the loading requirements. Condition c) derives instead
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by the sequential loading constraint, and imposes that, for each pile, the

items must be sorted by increasing order of visit from the top to the bot-

tom.

We can now formalize the complete routing and loading problem. The

MP-VRP calls for the deliveries of the items I(i) demanded by each cus-

tomer i (i = 1, . . . , n) through a set s of routes r with the aim of minimizing

the total routing cost

z(s) = ∑
r∈s

c(r) (1)

where c(r) is the routing cost of route r. The routes in the solution have to

be 1-VLP feasible and with height h(r) ≤ H.

3 Solution of the 1-VLP

3.1 Complexity of the 1-VLP

We first note that the 1-VLP is a difficult problem since it generalizes the

P||Cmax scheduling problem. Consider the case in which all the items have

length lk
i = 1: determining the minimum height h(r) in a 1-VLP instance is

equivalent to finding the minimum makespan in a P||Cmax instance. The

most relevant difference between the two problems lies in the presence of

the long items. These items produce a cut of the loading in the piles and,

because of the sequential loading constraint, divide the items of the cus-

tomers according to the sequence of visit along the route. This interesting

property reduces the complexity of the problem (see Lemma 1 below) and

can be used to produce a fast heuristic (see Subsection 3.2 below) and a

dynamic programming (see Subsection 3.3 below).
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We thus initially focus on the case in which every customer asks for a

long item (i.e., l1
i = p for i = 1, . . . , n) and define this problem as the 1-

VLP(ℓ). We use the term pair to denote a couple of consecutive customers

in a route, say ri and ri+1, such that the short items of ri are loaded on top

of his long item, and the short items of ri+1 are loaded at the bottom of his

long item. A good loading for this pair is the one for which the combined

height of the short items of the two customers is a minimum, and can

be obtained in a preprocessing phase for each couple of customers (see

Section 3.2 below). A loading configuration, i.e., a loading pattern of the

items into the vehicle, can be defined by considering all the different pairs

that can be formed with consecutive customers in route r.

Let us consider the number fn of these possible loading configurations

for the 1-VLP(ℓ). An upper bound is always given by fn ≤ 2n−2, since

the bottom customer should have the long item at the bottom and the cus-

tomer on the top should have the long item on the top. However only

some of these loadings are reasonable, e.g., it would not make sense that

several subsequent customers have the long items on the top or on the

bottom.

Lemma 1 Complexity of the 1-VLP(ℓ): the number of reasonable loading con-

figurations, fn, of n customer demands can be computed by the recursion

fn+1 = fn−2 + fn−1 (2)

with starting values f1 = 1, f2 = 1.

Proof. Clearly, f1 = 1, f2 = 1, f3 = 2, and f4 = 2, since with 3 customers

the customer in the middle has 2 options to be packed and with 4 cus-

tomers either 2 pairs are formed or the 2 intermediate customers form a
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pair. Now a recursion for fn can be derived by induction. Given f1, ... , fn

we now compute fn+1. There are two possibilities. Case 1: customer rn+1

is not combined with customer rn. This is only reasonable if customers

rn and rn−1 form a pair. Hence, there are fn−2 possibilities for arranging

the first n − 2 customers (see also the left hand side of Figure 4). Case

2: customer rn+1 is combined with customer rn. Then there remain fn−1

possibilities for the first n − 1 customers (see also the right hand side of

Figure 4). Hence, in total there are fn+1 = fn−2 + fn−1 possible loadings.

rn+1

rn

rn−1

Loading of r1 to rn−2Loading of r1 to rn−1

Case 2Case 1

Figure 4: Possible combinations of customers.

Together with the above initial conditions we obtain

n 5 10 15 20 25 30
fn 3 12 49 200 816 3329

which could, indeed, be enumerated. However, since the loading routine

is called very often during the metaheuristic approaches, it is essential to

compute a loading pattern in a much shorter time. This can be done either

by means of simple heuristics or using dynamic programming.
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3.2 A simple heuristic for the 1-VLP(ℓ)

Denote hi as the minimum height of the loading of customer i alone on the

p piles. Denote also hi,j as the minimum height of a pair, obtained by load-

ing together the items of customers i and j, computed through the following

algorithm: 1) load the long item demanded by customer i, if any; 2) load

the short items demanded by customers i and j, if any, through a branch-

and-bound procedure derived from the one proposed by Dell’Amico and

Martello [12]; 3) load the long item demanded by customer j, if any. These

values are computed in a pre-processing phase. The hi values are com-

puted in a similar way.

The values obtained are then used in a heuristic algorithm that we de-

note by HL. Consider a route r of length t, HL gives a heuristic h(r) value

by computing

h(r) =
t/2

∑
i=1

hr2i−1,r2i
(3)

if t is even, or

h(r) = min

{

hr1
+

(t−1)/2

∑
i=1

hr2i,r2i+1
;
(t−1)/2

∑
i=1

hr2i−1,r2i
+ hrt

}

(4)

if t is odd. Equation (4) takes into consideration the minimum value that

can be produced by loading separately either the first or the last customer

in r. The HL approach gives very quickly an approximated value for the

loading of a route and proved to be very useful in the metaheuristic search

process (see Sections 4 and 5 below).

For evaluating the HL behavior, let us define the worst case performance

ratio of a heuristic algorithm A as the minimum value WCP(A) such that

WCP(A) ≥ UB(I)/z(I) for any instance I of a problem, where z(I) is the
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optimal solution of the instance and UB(I) is the heuristic solution found

by the algorithm A.

Lemma 2 Worst case performance of HL: for the 1-VLP(ℓ), a tight upper

bound on the worst case performance ratio of HL is WCP(HL) ≤ 2.

Proof. First, note that the heuristic solution value UB found by HL is not

greater than the sum of the heights hri
of all the customers, thus

UB(I) ≤
2p

∑
i=1

hri
. (5)

Second, a valid lower bound can be found by considering the following

relaxation. Suppose the number of customers is even (if it is odd, one can

always add a dummy customer with hi = 0). Since each customer asks for

a long item, at most two customers can be placed side by side at the same

level. When loading two customers i and j together, the resulting height is

at least equal to the maximum height of the two customers, thus

hi,j ≥ max
{

hi, hj

}

(6)

for i = 1, . . . , n, j = 1, . . . , n, j 6= i. Relax this constraint too and suppose

that (6) is always satisfied with equality. In this case the best possible situ-

ation arises when the highest customer is placed together with the second

highest customer, the third one with the fourth one and so on. Now drop

the constraint on the sequential loading, sort the customers by decreasing

values of hri
and store the corresponding indices in o(i) (i.e., ho(1) is the

highest height of a customer). The value

LB(I) = ho(1) + ho(3) + . . . ho(2p−1) =
p

∑
i=1

ho(2i−1) (7)
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is thus a valid lower bound for the problem. Since ho(i) ≥ ho(i+1) for i =

1, . . . , n − 1, we can also limit the value of the lower bound by

LB(I) ≥ 1/2
2p

∑
i=1

ho(i) = 1/2
2p

∑
i=1

hri
(8)

and consequently WCP(HL) = 2 is a valid worst case performance ratio

for HL for the 1-VPP(ℓ).

We finally note that this value is tight. Consider indeed an instance

with four customers. Each customer demands a long item of height δ.

Moreover the first and the fourth customer demand a short item of height

ε and the second and third customer demand a short item of height 1.

For small values of ε, the optimal solution consists in loading together

the second and third customers, obtaining h(r) = 1 + 2ε + 4δ. HL loads

instead the first and second customers together, and the third and fourth

customers, obtaining h(r) = 2 + 4δ. Thus 2 + 4δ/(1 + 2ε + 4δ) → 2 for

ε → 0, δ → 0 and the performance is tight.

3.3 Solving the 1-VLP(ℓ) using dynamic programming

If a better solution of the 1-VLP(ℓ) is needed, it can be computed using a

dynamic programming approach (DP), that exploits the natural step struc-

ture within the problem.

Proposition 3 The optimal loading for a route with n customers can be com-

puted in linear time with effort

2 (n − 2) ∗ additions + (n − 2) ∗ comparisons

Proof. This is done by induction. Let L(r1, . . . , rn) be the optimal load-

ing height of the partial route (r1, . . . , rn). We start with L(r1) = hr1
and
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L(r1, r2) = hr1,r2 . With 3 customers, the middle customer is either com-

bined with the top or the bottom customer, i.e., L(r1, r2, r3) = min{L(r1) +

hr2,r3 , L(r1, r2) + hr3}. For extending the route to customer rn+1, we again

have to consider the 2 cases from Figure 4. Either the loading of the first n

customers remains unchanged and customer rn+1 is added on top (not

combined) leading to total height L(r1, . . . , rn) + hrn+1
, or customers rn

and rn+1 are combined to form a pair giving total height L(r1, . . . , rn−1) +

hrn,rn+1
. Taking the lower value of these two heights gives

L(r1, ..., rn) = min{L(r1, . . . , rn−2) + hrn−1,rn , L(r1, . . . , rn−1) + hrn}.

Summing up, for each of the customers from r3 to rn, two additions

and one comparison have to be performed.

Although the DP algorithm is capable of of finding better loadings than

HL, it will turn out in Section 6 that the improvement in the solution qual-

ity is only negligible.

3.4 Solving the 1-VLP

When we apply the HL or the DP algorithm (designed for the 1-VLP(ℓ))

from the previous subsections to the general 1-VLP, where not all cus-

tomers order large items, the worst case performance deteriorates:

Lemma 4 Worst case performance of HL and DP: If not all customers order

large items, a tight upper bound on the worst case performance ratio for both

algorithms, HL and DP, is WCP ≤ p.

Proof. We first note that the worst case performance ratio WCP(A) of ev-

ery heuristic algorithm A for the 1-VLP (and for the P||Cmax problem), is
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limited by p. Indeed, consider an instance in which the loading is perfect

(i.e., all the piles are used completely) and forms a height of value z. The

worst heuristic solution consists in assigning all the items to a single pile,

obtaining UB(I) = pz. Thus WCP(A) ≤ p is valid for every heuristic al-

gorithm A. This value is tight for HL. Indeed consider an instance with 2p

customers none of which order large items, in which the customers in odd

positions along the route (r1, r3, . . . , r2p−1) demand for a single short item

of height ε, and the customers in even positions (r2, r4, . . . , r2p) demand for

a single short item of height 1. For small values of ε, the optimal solution

consists in loading every couple of items in order into a single pile, obtain-

ing height z = 1 + ε. HL and DP instead obtain a sequence of p pairs of

value hi,j = 1, in which each item of height ε is loaded at the same level

of the following item of height 1. The resulting solution has h(r) = p and

thus WCP(HL) = p is tight for ε → 0.

Although this value is arbitrarily bad for p → ∞, the average perfor-

mance is quite satisfactory, as shown in Section 6 below.

With additional effort, a better solution for the 1-VLP can be computed

by exploiting the following idea: assume for the moment, that route r

contains only one sequence of consecutive customers (ri, . . . , rj) not or-

dering large items. Apply to this sequence the exact algorithm already

used for computing hi,j (see Section 3.2), and obtain the loading height

L
(

ri−1, ri, . . . , rj, rj+1

)

, i.e., the minimum height obtained when packing

first the long item of ri−1 then the short items of ri−1, . . . , rj+1 and then the

long item of rj+1. Then, 1) decompose the route in three parts, 2) compute

the heights of r1, . . . , ri−2 and rj+2, . . . , rt with the DP algorithm of Section
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3.3, and 3) add the height L
(

ri−1, . . . , rj+1

)

to obtain a valid upper bound

on the loading height.

This idea can be easily extended to the case in which more sequences

of customers not ordering long items are present. For each of these se-

quence evaluate two options: compute the height as in a normal pairing

process using heuristic HL, or compute the height with the procedure de-

scribed above. Then use the DP algorithm to both compute the heights of

the remaining parts of the route (i.e., those parts for which all customers

demand for long items), and to select the best of the two options for each

sequence with no long items.

The resulting algorithm, defined as HL2, can provide better loading

solutions than HL, but with a remarkable increase in the computational

effort required.

4 A Tabu Search Approach

We developed a Tabu Search approach that is focused at the minimization

of a modified objective function. Denoting s as the current solution, we

modify the objective function in Equation (1) by adding a penalty term.

The modified objective function can be expressed as

z′(s) = z(s) + αe(s), (9)

e(s) = ∑
r∈s

max{h(r) − H, 0}, (10)

where, for all the routes r in the solution s, we consider both the routing

cost c(r) and the excess of loading height (h(r) − H). If the excess is equal

to 0, then z′(s) is equal to the routing cost and we have reached a feasible
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solution. Otherwise the excess is penalized by a given parameter α. Dur-

ing the search process, according to the difficulty of the particular instance,

α is updated in order to give more or less importance to the loading pe-

nalization. In particular, if total excess height e(s) > 0 then α = α(1 + δ),

otherwise α = α/(1 + δ), with δ being a given parameter greater than 0.

The idea of accepting but penalizing infeasible solutions in a tabu-

search framework was first applied to the CVRP by Gendreau et al. [18],

leading to interesting results. The approach was later generalized for the

periodic and multi-depot CVRP by Cordeau et al. [9], and to the two- and

three-dimensional loading CVRP by Gendreau et al. [20, 19].

A starting heuristic solution is found by adapting to the MP-VRP the

Clarke and Wright [7] savings algorithm for the CVRP. In this algorithm

the initial solution consists of the assignment of each customer to a sepa-

rate route. Successively, for each pair of customers i and j the following

savings measure is calculated:

sij = ci0 + c0j − cij (11)

(recall that cij denotes the cost of edge (i, j) and 0 denotes the depot). Thus,

the values sij contain the savings of combining two customers i and j on

one route as opposed to serving them on two different routes. We accept

mergings of two routes into a unique route r only if this leads to an height

h(r) ≤ H. In this heuristic and during the following iterations of the search

process, the h(r) values are computed through algorithm HL of Section 3.

Let us consider the π(i) vertices that are closest to a given vertex i (i.e.,

those vertices connected to i by arcs (i, π(i)) having minimum cost among

the arcs leaving i). A move consists in removing a customer i from his
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current route and re-inserting it into another route containing at least one

of his π(i) neighbors. Both routes are re-optimized by means of the 4-opt

insertion procedure described in Gendreau et al. [17] for the Traveling

Salesman Problem.

At each iteration all the possible moves, obtained by removing each

customer and re-inserting it into all the possible routes, are computed. The

search is directed towards less explored regions by means of an additional

penalization factor. By denoting as φ the frequency in which a customer

has been assigned to a given route, a penalty term βφ is added to z(s), with

β being a parameter greater than 0. Among all the moves, the one leading

to the lowest value of z′(s) + βφ is selected and used to update the current

solution.

When a move is performed, reinserting the corresponding customer

into his former route is declared tabu for the next θ iterations, unless this

leads to an improvement in the incumbent solution. Finally, a simple tool

is adopted as intensification: each time a new incumbent solution is found,

during the next iteration the size of the neighborhood is doubled for each

customer i.

In order to set the parameters in the best possible way, the algorithm

was run in different configurations on the instances that will be presented

in Section 6.2 below. The Tabu Search proved to be very robust with re-

spect to the initial value of the parameter α, finally set to 10c/H, with c

being the average cost of the arcs. Other values tested were 1, c/H and

20c/H. The parameter δ was fixed to the value 1, which led to better com-

putational results than 0.01, 0.1, 0.5 and 2.

Concerning the size of the neighborhood, π(i) was set equal to a value
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Π for each i = 1, . . . , n, where Π = min(25, n/5). Also the values min(20,

n/6) and min(30, n/4) were tested leading to worse results. Other values

independent from n were tested (namely 5, 7, 10, 15, 20, 25) but were dis-

regarded. A good choice for β proved to be the value n, while n2,
√

n, and

other values depending from M proved to be less efficient. The number

of iterations for which a move is declared tabu was set to θ = n/4, more

efficient than n2, n, n/2 and n/8.

Two versions of the algorithm were tested, a single start and a multi-

start. The multi-start version stops the Tabu Search after a given number

of iterations γ, and re-iterates the whole process starting with a different

heuristic solution (obtained by randomizing the initial heuristic). In con-

tradiction with what obtained in Gendreau et al. [19], for the MP-VRP the

best choice turned out to be the multi-start version. In this case the al-

gorithm proved to be sensitive to the variations of γ, which was finally

set to 50 000, after having tested 200 000, 100 000, 10 000 and other values

depending from n.

Finally, we decided to halt the algorithm after 250 000 iterations (i.e., 5

different starting points in the multi-start approach) or after a CPU time

limit of 2 hours, as this proved to be the best compromise between elapsed

time and quality of the solutions found.

5 Savings based Ant Colony Optimization

Based on the observation of real ants’ foraging behavior,the Ant Colony Op-

timization (ACO) was developed as a graph-based, iterative, constructive

metaheuristic by Dorigo et al. [13]. The main idea of ACO is that a popu-

lation of artificial ants repeatedly builds and improves solutions to a given
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instance of a combinatorial optimization problem. From one generation to

the next a joint memory is updated to guide the search of the successive

populations. The memory update is based on the solutions found by the

ants and more or less biased by their associated quality. The Savings based

ACO algorithm mainly consists of the iteration of three steps:

• generation of solutions by ants according to heuristic and pheromone

information;

• application of local search to each solution;

• update of the pheromone information.

In our approach the implementation of these three steps is based on the

framework presented by Reimann et al.[33], and is described in Section 5.1.

Then, in Section 5.2, we see how the ACO approach can be tailored for the

MP-VRP.

5.1 Standard Savings based Ant Colony Optimization

The solutions are constructed according to the well known savings algo-

rithm of Clarke and Wright [7]. The computed savings values are sorted in

decreasing order and stored in a list. In the iterative phase, partial routes

are combined by sequentially choosing feasible entries from this list. In

our case a combination is feasible if it does not violate the weight capacity

of the vehicle and if it leads to an height h(r) (computed through algorithm

HL of Section 3) not greater than H.

The decision making about combining customers is based on a proba-

bilistic rule that takes into account both the above mentioned savings val-

ues and the pheromone information. Let τij denote the pheromone concen-
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tration on the edge connecting customers i and j, representing how good

the combination of these two customers was in the previous iterations.

In each decision step of an ant, we consider the Π best combinations

still available, where Π is a parameter that represents the size of the neigh-

borhood. Let ΩΠ denote the set of Π neighbors, i.e., the Π feasible com-

binations (i, j) yielding the largest savings considered in a given decision

step, then the probability of choosing to combine customers i and j in one

route is given by (12) and (13):

Pij =











ξij

∑(h,l)∈ΩΠ
ξhl

if (i, j) ∈ ΩΠ

0 otherwise,

(12)

ξij = s
β
ijτ

α
ij (13)

where α and β bias the relative influence of the pheromone trails and the

savings values, respectively. Once no more feasible savings values are

available, the algorithm results in a (sub-)optimal set of routes connecting

all customers.

A solution obtained through this procedure is then subjected to a local

search in order to ensure local optimality. In our algorithm we sequentially

apply the move and swap neighborhood (see Osman [30]) between routes

to improve the clustering and the 2-opt algorithm (see Croes [11]) within

routes to improve the routing.

During the iterations, the pheromone is updated according to the rule

proposed by Bullnheimer et al. [5]. Its pheromone management centers

around two concepts borrowed from Genetic Algorithms, namely ranking

and elitism. Let 0 ≤ ρ ≤ 1 be the trail persistence and F the number of
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elitists (i.e., those ants leading to the best current solutions). Then, the

pheromone update scheme can be formally written as

τij = ρτij +
F−1

∑
q=1

∆τ
q
ij + F∆τ∗

ij . (14)

First, the best solution found by the ants up to the current iteration is

updated as if F ants had traversed it. The amount of pheromone laid by the

elitists is ∆τ∗
ij = ι, where ι is a small constant. Second, the F − 1 best ants

of the current iteration are allowed to lay pheromone on the edges they

traversed. The quantity laid by these ants depends on their rank r such

that the q-th best ant lays ∆τ
q
ij = (F − q) · ι. Edges belonging to neither

of those solutions just face a pheromone decay at the rate (1 − ρ), which

constitutes the trail evaporation.

5.2 Adaptation of the Savings-Based ACO to the MP-VRP

The savings-based ACO described above was adapted to solve the MP-

VRP by modifying three elements. First, a second heuristic measure was

introduced to consider the loading. Second, in combination with this heu-

ristic measure an additional pheromone matrix for the loading (denoted

as the loading pheromone matrix in the following) was also used. Third,

a pheromone update mechanism for the loading pheromone matrix was

adapted.

In order to take into account the loading information, we combine two

different measures. The first measure is given by the height hi,j of two

combined customers i and j. We prefer large values of hi,j, so as to load

first the customers with large demands (as done in the well known First

Fit Decreasing heuristic for the BPP). The idea for this measure is to prefer
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customer pairs which require more space on the truck than pairs that need

less. Thus, two combined orders with a larger height are more likely to

be chosen than two items with a smaller height. In addition to that mea-

sure, we consider the amount of bulk material needed to load together

two customers. It is reasonable to load customers i and j consecutively

on the same vehicle when few bulk material is required and therefore few

loading space is wasted. The most preferable customer pairs are those

whose combination results in a high loading height and simultaneously in

a low unused capacity (i.e., a low usage of bulk material). The value γij

stands for the amount of unused capacity when combining customer i and

j (i.e., the value of the required bulk material when combining customer i

and customer j). We then define the second measure for the loading as in

Equation (15):

γ′
ij = γmax − γij (15)

where γmax denotes the maximum amount of bulk material required be-

tween two customers in the current problem instance. (The γmax value is

computed in a preprocessing phase.)

We finally get the heuristic information pij for the loading by multiply-

ing the two heuristic measures (see Equation 16):

pij = γ′
ij · hij (16)

We found out that a multiplication of the two heuristic values provides

better results than an additive combination of them. We deal only with

feasible solutions, therefore a pair of two customers can only be added if

its inclusion does not violate the capacity of the vehicle.

The weighted attractiveness value of ξi,j is modified in such a way that
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also the lost capacity and the total height of the combination of the two

customers is taken into account by integrating the value pij and the corre-

sponding pheromone information τ
p
ij (see Equation (17)). The pheromone

value τ
p
ij represents the pheromone information for the loading part of the

problem and is the second modification of the standard ACO: high values

τ
p
ij for each couple of customers i and j represent the fact that it is reason-

able to combine them together, because this lead to good results during

the previous iterations.

Hence, the probability of choosing to combine customers i and j in one

route is given again by (12), but with the following modification:

ξi,j = δ
[

(si,j)
β(τr

i,j)
α
]

+ (1 − δ)
[

(pi,j)
β(τ

p
i,j)

α
]

(17)

where, by introducing the parameter δ ∈ [0, 1], it is possible to put more

weight on the routing information and less on the loading information or

vice versa.

For the update of the two pheromone matrices we use two objectives.

The first objective is the original one (see ( 1)), which is used to update the

routing pheromone τr
i,j as described in (14). For the update of the packing

pheromone τ
p
i,j we use the total packing height

∑
r∈S

h(r) (18)

as the objective function.

The third modification affects the pheromone update. We modified the

pheromone update for our MP-VRP in the following way. We determine

not only the F best solutions of the current population for the current iter-

ation with respect to the routing, but additionally we consider also the F
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best solutions concerning the loading. In addition to that, the elitist ants

for the loading are only allowed to update the pheromone matrices when

the solution found has the same number of vehicles as the current best

solution found so far.

The settings of the parameters presented by Bullnheimer et al. [5] for

the rank based Ant System in general, and by Reimann et al. [33]) for the

Savings based Ant System in particular prove to be a good choice also for

the MP-VRP. We use a neighborhood size (Π) equal to n/4, and 6 elitist

ants (F = 6). The population size of the ants is set to n/2. The values α

and β are set to α = β = 5. The initial pheromone value is set to 2. The

value ι for the pheromone update is set to ι = 0.0005. Finally, we use a

trail persistence rate of ρ = 0.95.

6 Computational Results

We describe the computational tests which we performed in order to com-

pare the solution quality and performance of the two approaches described

in Sections 4 and 5. Both algorithms were coded in C and and run on a

Pentium IV 2600 MHz.

6.1 Test Setting

The metaheuristic algorithms have been tested both on the a test set ob-

tained by modifying instances from the CVRP literature and on a real-

world test set. The instances of the first test set can be downloaded from

the internet at http://www.univie.ac.at/bwl/prod/.

We generated random problem instances in the following way (see Ta-

bles 1 and 2). The number of customers and the graph (V, E) are taken
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from the first seven VRP instances given by Christofides et al. [6], and

are denoted as CMT01-CMT07. The instances 8 − 14 in [6] have the same

structure than the first seven and differ only in an additional route length

constraint, and therefore have not been considered in this work.

We developed a problem generator for the different demands. We in-

troduced three different customer types: a minimum demand customer,

who orders a small quantity of the different products (e.g., a handyman),

a mean demand customer, who orders a reasonable quantity of the dif-

ferent products, and a maximum demand customer (e.g., a do-it-yourself

store), who orders a large quantity of the different products, respectively.

The amounts of different chipboards for the different customer types are

given in Table 1 (e.g., a minimum demand customer orders between 0 and

2 long chipboards). The ordered amounts are drawn according to a uni-

form distribution in the intervals given, and reflect real-world typical de-

mands. We considered the following heights: the height of a pallet is 5, the

height of the long (respectively short, doors and heavy-use) chipboards is

5 (respectively 1, 1 and 3), and the loading height of a truck is 200.

Table 1: Demands for the three different types of customers.

min. demand mean demand max. demand

long chipboards 0 ≤ d < 2 4 ≤ d < 6 7 ≤ d ≤11
short chipboards 0 ≤ d < 9 9 ≤ d < 15 21 ≤ d ≤ 33
chipboards for doors 0 ≤ d < 8 8 ≤ d < 12 16 ≤ d ≤ 22
heavy use chipboards 0 ≤ d < 2 4 ≤ d < 6 8 ≤ d ≤ 11

For each original instance we generated three different order combina-

tions by considering different percentages in the assignment of a customer

to a type of order (see Table 2). Each combination is denoted as a class (and

referred to as cl in the following tables). Note that in all the instances we



30

Table 2: Three different configurations of customer orders.

Class min. demand mean demand max. demand
1 40% 10% 50%
2 33% 34% 33%
3 10% 80% 10%

created, each client demands for a number of short items which is lower

or equal to the number of piles, because this is the most usual condition in

the real-world situation.

In addition, we also compared the approaches by applying them to

real-world data. The real-world data were provided by a large Austrian

wood products retailer located 100 kilometers north of Vienna. For the

locations of the customers we used the real customer location data of a

typical week in the rural regions around Vienna (depicted in Figure 5). The

real demands of the customers were slightly modified for privacy reasons.

We generated five problem instances by modifying the demands and re-

assigning them randomly to the different customers.

We generated the routing costs cij between each pair of customers as

the Euclidean distances between their coordinates. We note that both al-

gorithms work for CVRPs with general cost matrices and not only for the

Euclidean CVRP.

6.2 Results on randomly created instances

In Table 3 we present the results obtained by running our algorithms on in-

stances derived from the CVRP literature. The first columns give the name

of the original instance, the number of customers, the class and the total

number of items, respectively. For the Tabu Search algorithm we report the

solution quality zTS, the required runtime in seconds when the best solu-
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Figure 5: Customer locations for the real-world instances.

tion was found (secinc) and the total runtime of the algorithm sectot. We

recall that the Tabu Search algorithm was halted after two hours of run-

time or 250 000 iterations. Concerning the ACO, since it is a randomized

algorithm we performed 10 repetitions for each instance. We report the

minimum, average and maximum solution value (zmin
ACO, zACO and zmax

ACO,

respectively), the minimum, average and maximum runtime in seconds

when the best solution was found (secmin
inc , secinc and secmax

inc , respectively)

and the minimum, average and maximum total runtime (secmin
tot , sectot and

secmax
tot , respectively). The ACO algorithm was halted after two hours of

runtime or 100 000 iterations (note that the maximum time limit of two

hours is reached only for the instances with 199 customers).

We can see that for the small problems the Tabu Search algorithm out-

performs the ACO algorithm, whereas for the larger problems the ACO

algorithm finds better results. The ACO algorithm outperforms the Tabu
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Table 3: Performance of the Tabu Search and Ant Colony Optimization algorithms on instances from the CVRP litera-
ture.

Instance Tabu Search Ant Colony Optimization

(V, E) n cl M zTS secinc sectot zmin
ACO zACO zmax

ACO secmin
inc secinc secmax

inc secmin
tot sectot secmax

tot

CMT01 50 1 170 594.06 12.4 2966.9 594.06 594.56 596.98 1.2 4.9 6.4 11.9 12.3 12.9
2 180 620.91 312.7 2229.2 622.64 622.82 623.08 4.3 5.9 7.6 11.2 11.5 12.0
3 193 636.95 1261.8 1809.0 637.41 638.97 640.93 3.7 4.9 6.0 11.1 11.4 11.8

CMT02 75 1 278 990.51 119.1 2599.8 978.66 981.07 985.77 28.0 31.8 37.6 69.2 73.7 76.5
2 271 912.62 3409.6 3594.9 912.66 915.34 917.55 25.4 30.6 33.4 67.5 72.7 78.9
3 293 920.61 336.6 2694.8 916.48 917.84 922.86 22.0 29.6 37.3 67.0 72.4 75.1

CMT03 100 1 355 1209.46 3481.8 4885.6 1194.66 1208.72 1224.53 121.2 144.6 182.0 314.8 364.3 395.9
2 380 1247.54 2740.1 3585.3 1234.95 1242.87 1248.16 120.1 139.4 176.3 306.9 349.2 381.8
3 387 1196.15 3576.6 3994.0 1185.72 1187.49 1189.26 104.9 130.8 149.7 307.1 366.8 386.9

CMT04 150 1 529 1672.70 2660.6 7200.0 1648.39 1660.55 1676.81 1073.3 1599.5 3891.7 3139.3 3978.3 4316.6
2 548 1603.09 4925.4 7200.0 1566.90 1575.28 1580.15 1078.1 1513.0 3317.1 3122.7 3998.5 4351.7
3 580 1592.68 4902.5 7092.1 1578.06 1583.65 1589.18 1046.7 1269.7 1721.5 2881.9 3940.5 4233.7

CMT05 199 1 712 2107.49 1717.4 7200.1 2077.57 2085.68 2092.32 4518.1 5501.5 7200.0 7200.0 7200.0 7200.0
2 707 1879.00 6611.1 7200.0 1853.98 1863.42 1872.34 4680.2 5416.6 7200.0 7200.0 7200.0 7200.0
3 773 2042.28 4282.6 7200.0 1988.83 1999.74 2014.74 3823.0 5090.5 7200.0 7200.0 7200.0 7200.0

CMT06 120 1 421 2292.03 522.9 6406.4 2260.46 2269.56 2285.63 631.3 837.0 1237.1 1222.6 1466.8 1628.9
2 447 2122.34 1784.2 7200.0 2087.84 2107.66 2120.44 550.8 719.5 938.5 1113.4 1327.1 1533.4
3 467 2237.86 2855.0 4927.7 2186.59 2195.66 2203.58 468.8 666.5 928.3 1150.6 1368.7 1491.4

CMT07 100 1 346 1154.31 1944.3 5918.0 1142.78 1153.45 1161.34 128.7 150.2 234.2 278.0 302.9 331.9
2 375 1237.43 148.6 4088.1 1239.84 1248.83 1259.35 109.3 157.5 215.9 260.7 303.5 326.4
3 388 1183.18 3859.6 4052.3 1181.84 1182.92 1184.09 95.6 109.8 147.4 245.5 274.8 289.7

Average 1402.53 2450.7 4954.5 1385.25 1392.19 1399.48 887.4 1121.6 1660.4 1722.9 1899.8 1977.9
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Search algorithm by 0.7 % on all the 21 problem instances with respect

to solution quality, and in 16 out of the 21 problem instances it provides

better results. Finally, the ACO algorithm is generally faster than the Tabu

Search: it needs 1121.6 seconds (against 2450.7 seconds) to find the best so-

lution, and 1899.8 seconds (against 4954.5 seconds) to run to completion.

In Table 4 we present the results for each group of instances derived

from the same graph of the CVRP literature. On the small problem in-

stances the Tabu Search outperforms the ACO algorithm and provides a

solution quality of 0.2 % lower than the ACO algorithm. The Tabu Search

algorithm provides also better results for the 100 customer instances, while

for all the other instances the ACO algorithm finds better solutions.

Table 4: Average values per (V, E) instance (three instances per line).

Instance Tabu Search Ant Colony Optimization

(V, E) n zTS secinc sectot zmin
ACO zACO secinc sectot

CMT01 50 617.30 529.0 2335.0 618.04 618.78 5.2 11.7
CMT02 75 941.24 1288.4 2963.2 935.93 938.08 30.6 72.9
CMT03 100 1217.72 3266.2 4155.0 1205.11 1213.03 138.3 360.1
CMT04 150 1622.82 4162.8 7164.0 1597.78 1606.49 1460.8 3972.4
CMT05 199 2009.59 4203.7 7200.0 1973.46 1982.95 5336.2 7200.0
CMT06 120 2217.41 1720.7 6178.1 2178.30 2190.96 741.0 1387.5
CMT07 100 1191.64 1984.2 4686.1 1188.15 1195.07 139.2 293.7

Average 1402.53 2450.7 4954.5 1385.25 1392.19 1121.6 1899.8

In Table 5 we present the average performances for each class used

for the generation of the demands. We can see how the average solution

value found by the ACO always outperforms the one obtained by the Tabu

Search.

The above results were obtained by using the HL heuristic for solving

the 1-VLP. We have also recomputed the solutions to some instances by

solving the 1-VLP with the exact dynamic programming method of Sec-
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Table 5: Average values per class (seven instances per line).

Instance Tabu Search Ant Colony Optimization

cl M zTS secinc sectot zmin
ACO zACO secinc sectot

1 2503 1431.51 1494.1 5311.0 1413.80 1421.94 1181.4 1914.0
2 2314 1374.70 2847.4 5013.9 1359.83 1368.03 1140.4 1894.6
3 2203 1401.39 3010.7 4538.6 1382.13 1386.61 1043.1 1890.7

Average 1402.53 2450.7 4954.5 1385.25 1392.19 1121.6 1899.8

tion 3.3. We found out that the computation time was increased by about

100% while the solution quality was improved just by 0.18%, on average.

Also using algorithm HL2 of Section 3.4 proved to be less efficient, yield-

ing to a worsening of 3% in the average solution value. This was mainly

due to a substantial increase in the CPU time needed to compute the load-

ing patterns, and consequently to a reduction in the CPU time spent on

the routing part.

6.3 Results on real-world instances

In Table 6 we give the results obtained on instances derived from the real-

world transportation problem. In this case too we can note a difference

in the performance of the two algorithms. The ACO algorithm provides

the best solution value for four instances, but the difference in the average

solution quality in comparison with the Tabu Search is only 0.3 %. The

ACO is also much faster, since it needs on average a CPU time which is

1/100 of the CPU time needed by the Tabu Search.

This project was intended to show how an automated system of pack-

ing and routing could work. The management was quite impressed by

the efficient routing and packing achieved but at the moment they did not

want to devote any significant resources (with respect to money and time)
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in order to develop such an automated packing and routing system. Also

they did not want to provide the routes actually used by the trucks. How-

ever the management is now confident that such a system could be useful

and they will consider this as one of the next projects.

Table 6: Performance of the Tabu Search and Ant Colony Optimization
algorithms on real-world instances.

Instance Tabu Search Ant Colony Optimization

(V, E) n M zTS secinc sectot zmin
ACO zACO secinc sectot

WOOD01 76 142 1616.68 2694 7200.1 1594.88 1599.71 36.9 68.0
WOOD02 76 141 1483.94 7098.4 7200.0 1481.28 1491.98 49.8 76.8
WOOD03 76 142 1389.88 1234.8 7200.0 1384.73 1388.41 37.7 68.0
WOOD04 76 144 1485.71 6380.8 7141.6 1469.97 1477.19 41.0 72.1
WOOD05 76 184 1494.18 4190.4 6323.4 1484.82 1490.08 40.0 70.5

Average 1494.07 4319.78 7013.0 1483.14 1489.47 41.1 71.1

6.4 On the minimization of the number of vehicles

We finally present some results concerning the combined minimization of

the routing cost and of the number of vehicles for the ACO algorithm.

In Table 7 we give the results for different δ values (see Equation 17) in

the objective function of the ACO algorithm for the instances derived from

the CVRP literature. When only the routing is considered (i.e., δ = 1), on

average the solution value is 1392.19 and the number of vehicles used is

17.9. When we also consider the loading aspect in the solution construc-

tion phase (e.g., we put a weight of 10 % on the loading by considering

δ = 0.9) we can reduce the number of the required vehicles to 17.6, in spite

of an increase in the routing cost to 1488.67. If the weight on the loading

is increased further (20 %), we can reduce the required number of vehicles

to 17.5, but having an increase in the routing cost to 1582.25 on average.
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Table 7: Sensitivity analysis of different δ values in the ACO algorithm

0.8 0.85 0.9 0.95 1

cl zACO # zACO # zACO # zACO # zACO #

CMT01 1 603.86 7 599.91 7 598.90 7 595.93 7 594.56 7
2 749.27 7 716.74 7 684.29 7 652.88 7 622.82 7
3 645.62 8 645.00 8 642.71 8 641.04 8 638.97 8

CMT02 1 1038.94 13 1015.62 13 1002.00 13 988.67 13 981.07 13
2 1153.95 11 1121.80 11 1069.67 11 968.32 11.6 915.34 12
3 965.51 11.9 941.32 12 945.44 11.9 933.29 12 917.84 12

CMT03 1 1398.19 16 1375.17 16 1325.27 16 1251.93 16.8 1208.72 16.8
2 1401.42 17 1366.85 17 1331.62 17 1290.92 17 1242.87 17
3 1242.78 15.9 1240.03 15.9 1214.28 15.9 1201.69 15.9 1187.49 16

CMT04 1 1961.36 23.9 1840.52 24 1791.73 24 1717.85 24 1660.55 24.2
2 2049.09 22.4 1876.16 22.8 1784.74 23 1670.35 23 1575.28 23
3 1649.65 23 1638.20 23 1623.85 23 1597.02 23 1583.65 23

CMT05 1 2462.47 32 2342.48 32 2303.33 32 2171.84 32.2 2085.68 32.7
2 2418.68 27 2282.98 27 2037.21 27.8 1949.83 28 1863.42 28
3 2045.16 31 2055.26 31 2040.05 31 2018.12 31 1999.74 31.1

CMT06 1 2645.22 18 2606.11 18 2513.42 18 2433.85 18.4 2269.56 19
2 2429.27 18 2389.46 18 2333.19 18 2262.99 18 2107.66 18.1
3 2373.26 18.2 2292.42 18.6 2227.36 18.9 2202.02 18.9 2195.66 19

CMT07 1 1389.25 15 1350.00 15 1284.26 15 1213.65 15 1153.45 15.5
2 1355.52 16 1331.63 16 1295.07 16 1266.51 16 1248.83 16.5
3 1248.88 16 1233.66 16 1213.72 16 1198.37 16 1182.92 16

Average 1582.25 17.5 1536.25 17.5 1488.67 17.6 1439.38 17.7 1392.19 17.9

In Table 8 we give the same results for the real-world instances. When

we consider only the routing we have an average solution cost of 1489.47

and an average number of vehicles equal to 10. For δ = 0.9 the number of

required vehicles reduces to 9.7 but the routing cost increases to 1615.52.

Moreover, when δ = 0.8 the number of required vehicles reduces to 9.4

but the routing cost increases to 1746.33, on average.

7 Conclusion and Future Research

We presented a new combinatorial optimization problem deriving from a

real-world transportation case in which items have to be loaded on vehi-

cles and then delivered to customers with minimum total cost. The prob-
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Table 8: Sensitivity analysis of different δ values in the ACO algorithm

0.8 0.85 0.9 0.95 1

zACO # zACO # zACO # zACO # zACO #

WOOD01 1843.00 10 1786.53 10 1734.28 10 1668.05 10 1599.71 10
WOOD02 1773.28 9 1698.44 9 1649.77 9 1581.83 9 1491.98 10
WOOD03 1698.64 9 1647.41 9 1522.57 9.8 1453.55 10 1388.41 10
WOOD04 1790.20 9.2 1676.78 9.6 1608.61 9.7 1554.60 10 1477.19 10
WOOD05 1626.51 10 1598.39 10 1562.36 10 1541.98 10 1490.08 10

Average 1746.33 9.4 1681.51 9.5 1615.52 9.7 1560.00 9.8 1489.47 10

lem combines together the vehicle routing problem and the parallel pro-

cessor scheduling problem. We developed heuristics and implemented a

dynamic programming algorithm for solving the loading of a single ve-

hicle. These algorithms were integrated within two different metaheuris-

tic approaches, based on a Tabu Search and an Ant Colony Optimization

scheme, providing interesting results. We extended the standard Savings

based Ant System by using an additional memory for the optimization of

the loading of the vehicles. We performed a sensitivity analysis with the

Ant System and showed that an optimized packing reduces the number of

required vehicles by 6 %, but leads, for the real-world instances, to an in-

crease of 17 % in the route lengths. Both heuristics were tested on instances

derived from the literature and on instances derived from the real-world

problem.

We note that considering the more general case in which the length

of an item Ik
i could be 1 ≤ lk

i ≤ p would lead to a more complex two-

dimensional rectangular loading problem, similar to problem 2L addressed

by Iori et al. [23] for the 2L-CVRP. Since ACO provides good average re-

sults for the MP-VRP, as future research we will extend this approach and

study possible applications to the 2L-CVRP. As future research, we will



38

also investigate better heuristics and exact algorithms for the problem of

loading the items into a vehicle.
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