

TR/11/93 October 1993

INTRODUCING NEW CONSTRUCTS FOR DATA
MODELLING AND COLUMN GENERATION

IN LP MODELLING LANGUAGES

 C. Lucas, G. Mitra and S. Moody
 and B. Kristjansson

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/334842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INTRODUCING NEW CONSTRUCTS FOR

DATA MODELLING AND COLUMN GENERATION

IN LP MODELLING LANGUAGES

by

C. Lucas, G. Mitra and S. Moody
Brunel University, Uxbridge, Middlesex, UK

U.K.

and

Bjarni Kristjansson
Maximal Software, Iceland

October 1993

Keywords

Linear Programming Modelling, Linear Programming Modelling Languages, Language

Syntax, Linear Programs in Declarative Form, Databases, Relational Database Constructs,

Column Generation, Objects, Methods, Procedures

w9253375

Introducing New Constructs for Data Modelling and Column Generation in LP
Modelling Languages

Contents

0. Abstract

1. Background and Introduction

2. The Declarative Structure of an LP Modelling Language: MPL

3. Relational Data Models

3.1 Constructs connecting LP Modelling Languages with Relational Databases

3.2 MPL extended syntax - database connection

4. Procedural Forms and Column Generation

4.1 Column Generation in LP Modelling

4.2 Multicommodity Network Flow: An Example of Column Oriented Modelling

4.3 Column Structure - Procedural Rules for Generation

4.4 MPL Extended Syntax for Column Generation

5. Discussion

6. Acknowledgements

7. References

0. Abstract

Through popular implementation of structured query language (SQL) and query-by-example

(QBE) relational databases have become the de-facto industry standard for data modelling.

We consider the indices, sets, and the declarative form of Linear Programming (LP)

modelling languages and introduce new constructs which provide direct link to the database

systems. The models constructed in this way are data driven and display a dynamic

structure. We then show how this approach can be naturally extended to include column

generation features stated in procedural forms within an otherwise declarative modelling

paradigm.

1. Background & Introduction

The software support for the solution of optimization problems has advanced rapidly in the last

two decades and in order to make use of this software, models representing an

optimization problem must be presented in a machine readable form to the optimizer. For

an LP model the declarative statement, known as the "modeler's form" (Fourer, 1983), is

suitable for model description, documentation, easy modification and is comprehensible.

Unfortunately, until recently the dominance of sparse simplex (SSX) (Levkovitz & Mitra,
1993) solvers and their requirement to have the constraint matrix specified in column order
meant that the "algorithms form" (Fourer, 1983) has to be taken into account. This form

depends on the data structure used in the implementation of algorithms and typically the

constraints had to be presented in a column-wise representation of the non-zero elements of
the matrix. To obtain this, a suitable input format had to be defined and today the most well

established and the defacto standard is the MPS format (IBM, 1976). For the purpose of

modelling, the sparse and column oriented data definition of MPS is most inadequate. It is
now acknowledged that algebraic and specially equational forms provide an easier and more

understandable model definition. A few algebraic languages have been designed to support
these equational forms. In addition to this essential feature LP Modelling Languages today
have other important and well established roles in Mathematical Programming such as rapid

application development and model investigation. Today there are many systems in

existence which provide essential modelling support. For example, AMPL (Fourer,Gay &

Kernighan, 1987), GAMS (Bisschop & Meeraus, 1982), AIMMS (Bisschop, 1993), LPL

(Hurlimann, 1987), LP-MODEL (Ashford & Daniel, 1987), MPL (Kristjansson, 1993),

MODLER (Greenberg, 1991b), SML (Geoffrion, 1992a & 1992b), for a review of such

systems see (Steiger & Sharda, 1993), (Greenberg, 1991a).

Most modelling systems provide a language in which the user can specify models in a

declarative algebraic form and the system automatically transcribes this model and creates

a matrix definition for the optimizer. Although this provides the modeller with a powerful

computer based tool we can identify at least two main deficiencies of these systems. Firstly,
the algebraic statement of the model and the actual data for the problem are usually kept

separate so that the definitive problem may be distinguished from particular instances of the

1

problem. Most modelling languages employ data tables which are created externally and

communicated as (ascii) text files. Usually within a modelling language, altering the
dimensions of a problem invalidates the given data and model instance and requires changes

to be made manually to the data. This is not altogether desirable and a more flexible

approach to the data definition is required. Since it is standard practice to use databases for
information storage and retrieval in industry there is a clear need for the integration of

modelling languages with relational databases (RDBs). Some modelling systems have recently

introduced such connections (Baker, 1993) but this is relatively new and much work is

needed to maintain a consistent approach and user-friendly modelling environment. By

extending the syntax of the modelling language MPL (Kristjansson, 1991) with new

constructs which makes use of the existing well known RDB structures, we provide a
method of connecting corporate databases with a modelling system. Secondly, whilst most

LP models are stated declaratively, there are well known optimization problem classes, for
example, crew scheduling (Darby-Dowman & Mitra, 1985), vehicle scheduling (Christofides,
Mingozzi & Toth, 1979), (Fischer & Jaikumar, 1981), (Mitra, Lucas, Darby-Dowman &

Smith, 1994), cutting stock (Gilmore & Gomory, 1965),(Chambers & Dyson, 1976) contract
selection (Maros, Mitra & Moody, 1993) which require a procedural method to generate the
matrix columns, often called activities and typically representing legal duties, permitted

schedules, appropriate cutting patterns, alternative contract specifications. Currently no LP
modelling language is able to provide adequate support for constructing this class of models.

Traditionally column generation is carried out in a high level programming language and

cannot be connected to the sets, indices and constraint groups specified in declarative LP

modelling languages. We have introduced new language constructs which use the modern

programming concept of an object and provide the facility to define procedures and methods

connecting the indexing structure and constraints of the LP model. Through these syntactic
and operational extensions we have designed a modelling tool with much greater potential

and richer functionality, thereby extending the applicability of LP modelling systems to more
complex problem domains.

The rest of this paper is organized in the following way. In section 2 the declarative structure

of an LP modelling language is explained and its syntax is illustrated with an example of a

distribution problem with transshipment. In section 3 new constructs are introduced to

2

enable the modelling language to be connected to a database. The distribution example is

used to demonstrate the new syntax. Column generation is discussed in section 4 and new

constructs are introduced in the modelling language to permit the specification of procedural

rules. The distribution problem is extended to include multiple commodities and this

example is used to illustrate the new syntax and method of operation. Section 5 contains a
discussion and some concluding remarks.

2. The Declarative Structure of an LP Modelling Language: MPL

The modelling of LP problems can be formally achieved through three logical steps. In

step one, the subscripts and their ranges are specified: these are essentially the sets and

dimensions of the model. In step two, the data tables and model decision variables are
defined in terms of these subscripts. In step three, the model constraints are specified in a

row-wise fashion connecting the previously defined data table entries and decision variables.
(Lucas & Ultra, 1988, p365).

MPL (or Mathematical Programming Language) is a modelling system which enables
problems to be formulated in a declarative form and after executing the model statements it
generates an input file (eg MPS file) for an optimizer. The key features of MPL are
described in the MPL Users Guide (Kristjansson, 1991, pl.2 -1.4).

The structure of MPL reflects the above mentioned modelling strategy. A problem

expressed in MPL is divided into sections by the use of keywords and has the following

format:

TITLE The problem name.
 INDEX Index sets which define the dimensions of the problem.
 DATA Scalars, datavectors, datafiles.
 DECISION Vector decision variables.
 MACRO Macros for repetitive parts.

MODEL
 MAX (or MIN) The objective function.
 SUBJECT TO The constraints.
 BOUNDS Simple upper and lower bounds.
 FREE Free variables.
 INTEGER Integer variables.

3

 BINARY Binary (0/1) variables.
 SOS1 Special Ordered Set (Type 1) variables
 SOS2 Special Ordered Set (Type 2) variables

 END

Apart from the objective function (distinguished by the keyword MAX or MIN) and the
constraints (identified by the keywords SUBJECTED TO), all sections are optional.

Distribution Problem

To illustrate the basic syntax of the language consider a single product distribution problem

with transshipment.

Subscripts, Ranges

i ∈ I denotes factories

j ∈ J denotes depots

k ∈ K denotes customers

Decision Variables

xij denotes the quantity sent from factory i to depot j

x'ik denotes the quantity sent from factory i to customer k

x"jk denotes the quantity sent from depot j to customer k

Coefficients

cij denotes the unit cost for distribution between factory i and depot j

c'ik denotes the unit cost for distribution between factory i and customer k

c"jk denotes the unit cost for distribution between depot j and customer k

fi denotes the capacity of factory i

dj denotes the maximum monthly throughput for depot j

rk denotes the monthly requirement for customer k

Linear Constraint Relations

 Minimize cost ∑ ∑∑ ∑∑∑
∈ ∈∈ ∈∈ ∈

++=
Jj Kk

jkjk
Ii Kk

ikik
Ii Jj

ijij
'''''' xcxcxc

4

subject to

Ii,fxx i
Kk

ik
Jj

j
'

i
∈≤+ ∑∑

∈∈

Jj,dx i
Ii

ij ∈≤∑
∈

Kk,rxx k
Jj

jk
Ii

ik ''' ∈≥+∑∑
∈∈

Jj,0xx
Kk

jk
Ii

ij
'' ∈=− ∑∑

∈∈

Kk,Jj,Ii,0x,x,x jk
''

ik
'

ij ∈∈∈∀≥

Consider a simple instance of this model taken from Williams (1990) where a company has
two factories and four depots. It sells its product to six customers each of whom may
be supplied either from a depot or direct from the factory. Not all the routes between
factories, depots and customers exist; the cost data for these routes are not supplied and the
corresponding decision variables are not defined. The company has to pay distribution costs
(in £s per ton) for the deliveries (factory_dept_cost, factory_customer_cost and
depot_customer_cost). In a simple model routes which are not possible are allocated a high
cost in the data tables (9000) and the corresponding decision variables are excluded using
except where statements. Each factory has a monthly capacity (factory_capacities) and
each depot has a maximum monthly throughput which cannot be exceeded
(depot_capacities). In addition each customer has a monthly requirement which must be
met (customer_requirements). The company wishes to find a distribution pattern which
minimizes cost. The model is stated in MPL in figure 1.

TITLE Distribution;

INDEX

 factories := (Liverpool, Brighton);

 depots := (Newcastle, Birmingham, London, Exeter);

 customers := (cl,c2,c3,c4,c5,c6);

DATA

 FactoryCap[factories] := [Liverpool, 150000,
 Brighton, 200000];

 DepotCap[depots] := [Newcastle, 70000,
 Birmingham, 50000,
 London, 100000,

5

Exeter, 40000];
CustomerReq[customers] := [c1, 50000,

 c2, 10000,
 c3, 40000,
 c4, 35000,
 c5, 60000,
 c6, 20000];

FactoryDepotCost[factories,depots] :=
 [Liverpool, Newcastle, 0.5,
 Liverpool, Birmingham, 0.5,
 Liverpool, London, 1.0,
 Liverpool, Exeter, 0.2,
 Brighton, Birmingham, 0.3,
 Brighton, London, 0.5,
 Brighton, Exeter, 0.2];

FactoryCustCost[factories,customers] :=
 [Liverpool, c1, 1.0,
 Liverpool, c3, 1.5,
 Liverpool, c4, 2.0,
 Liverpool, c6, 1.0,
 Brighton, c1, 2.0] ;

DepotCustCost[depots,customers] :=
 [Newcastle, c2, 1.5,
 Newcastle, c3, 0.5,
 Newcastle, c4, 1.5,
 Newcastle, c6, 1.0,
 Birmingham, c1, 1.0,
 Birmingham, c2, 0.5,
 Birmingham, c3, 0.5,
 Birmingham, c4, 1.0,
 Birmingham, c5, 0.5,
 London, c2, 1.5,
 London, c3, 2.0,
 London, c5, 0.5,
 London, c6, 1.5,
 Exeter, c3, 0.2,
 Exeter, c4, 1.5,
 Exeter, c5, 0.5,
 Exeter, c6, 1.5];

DECISION VARIABLES
 FactoryDepotQty[factories,depots] → FD WHERE (FactoryDepotCost);
 FactoryCustQty[factories,customers] → FC WHERE (FactoryCustCost);
 DepotCustQty[depots,customers] → DC WHERE (DepotCustCost);

MODEL

MIN cost = SUM(factories,depots: FactoryDepotCost * FactoryDepotQty) +
SUM(factories,customers: FactoryCustCost * FactoryCustQty) +
SUM(depots,customers: DepotCustCost * DepotCustQty);

SUBJECT TO

 FactoryCapacity[factories] → FCAP :
 SUM(depots: FactoryDepotQty) + SUM(customers: FactoryCustQty)

6

 <= FactoryCap;

DepotCapacity[depots] → DCAP :

SUM(factories: FactoryDepotQty) <= DepotCap;

DepotBalance[depots] → DBAL :

SUM(customers: DepotCustQty) = SUM(factories: FactoryDepotQty);

CustomerRequirement[customers] → CREQ :

SUM(factories: FactoryCustQty) + SUM(depots: DepotCustQty)

= CustomerReq;

END

Figure 2.1 Distribution example in MPL

Throughout the MPL model, meaningful names of any length may be used to aid

documentation. There are three index sets in this model, namely factories, depots and
customers. All subsequent vectors are defined in terms of these index sets. The data for this
problem has been embedded in the model definition, but it is also possible (and preferable)

to store these externally and refer to them in the MPL model with the keyword DATAFILE.
The data is in sparse format; dense format is also possible. Decision variables are provided
with stubs (for example "→ FD") which are abbreviations which enable the user to have
control of the MPS names generated by MPL. (Stubs are also used in the constraint section.)

The WHERE clauses enclosed in brackets limit the number of variables being defined: variables

are only created when the appropriate values exist in the data tables defined previously. The
objective is to minimize cost which is the total distribution cost. The keyword SUM defines

a summation to be carried out over the indices specified in the ensuing brackets and delimited
by a colon. The four mathematical operators: addition, subtraction, multiplication and

division, are represented by the usual symbols: + ,-,*, /, respectively.

The constraint FactoryCapacity defines two constraints: one for each factory. This

constraint states that the total quantities shipped out from the factories to the depots or
customers cannot exceed the factories' capacities. There is a similar constraint for the depots'

capacities. The DepotBalance constraint ensures that at each depot, the quantities that arrive
from the factories are all shipped out to customers: ie. there is no storage, loss or gain. The

7

final constraint requires that the customers' requirements are satisfied.

Having defined the model in this manner using MPL's editor, the user selects the pulldown
menu to optimize the model. This provides only a brief overview of the structure and syntax
of MPL. For more detailed information see the user guide (Kristjansson, 1991).

3. Relational Data Models

3.1 Constructs connecting LP Modelling Languages with Relational Databases

The structures of RDBs are well known and understood: for a review see Date (1981),

Ullman (1982), Butler, Bloor & Bleach (1990). In Lucas, Mitra, Moody & Kristjansson

(1993) we discuss connection of MPL with an RDB system. The constructs which connect
RDBs with< LP modelling languages may be divided into three groups: constructs for
performing set operations (such as union, intersection and difference), constructs for
performing database operations (such as projection, selection and join) and constructs for
importing and exporting sets and data.

Set operations such as union, intersection and difference are already well defined constructs

in MPL: see (Lucas,Mitra, Moody & Kristjansson, 1993). Relational operators act on the
tuples (rows) or attributes (columns) of database tables. For example, consider the following
database table.

FC Route ID Factory Name Customer ID Cost
FC1 Liverpool C1 1.0
FC2 Liverpool C3 1.5
FC3 Liverpool C4 2.0
FC4 Liverpool C6 1.0
FC5 Brighton C1 2.0

Table fcrout

This table provides information about the routes from factories to customers. The primary

key "FC Route ID" is shown underlined.

The selection operator "selects" (horizontally) a subset of the tuples in a table. For example,

to obtain all customers supplied by the Liverpool factory directly, a selection of all tuples

8

(rows) of table fcrout for which the attribute Factory Name has value Liverpool is carried

out resulting in the following table:

FC Route ID Factory Name Customer ID Cost
FC1 Liverpool C1 1.0
FC2 Liverpool C3 1.5
FC3 Liverpool C4 2.0
FC4 Liverpool C6 1.0

 Liverpool's customers

The select operator is unary and therefore cannot be used to choose tuples from more than

one relation. The degree of the relation resulting from a select operation is the same as that

of the original relation since it has the same attributes. Selections are commutative so a
sequence of selections may be carried out in any order.

The projection operator, on the other hand, makes a vertical selection of a relation, choosing
some attributes (columns) and eliminating others. If it were necessary to use only certain
attributes of a relation, the project operator is used to "project" the relation over these

attributes. For example, suppose it was required to obtain a set of all customers that may be

supplied directly by factories. Then a project operation from the table fcrout over the

attribute Customer ID would achieve this, resulting in the following table. Customer C1 is
supplied by both factories but this value is not duplicated in the resulting table. This ensures
that the result of a project operation is also a relation.

Customer ID
C1
C3
C4
C6

Customers supplied directly by factories

The project operator is also unary and has degree equal to the number of attributes specified

in the projection list. If some attributes projected are non-key attributes then it is possible that
some duplication will occur and will therefore have to be eliminated. The number of tuples

in a relation resulting from a projection is less than or equal to the number of tuples in the
original relation. If the projection list includes the key of the relation, then the resulting table
will have the same number of tuples as the original. Projections are not commutative.

9

The join operator is used to combine related tuples from two relations into one relation. For

example, the tables dcrout and depcap below provide information about the routes from

depots to customers, and the capacity of depots, respectively.

DC Route ID Depot Name Customer ID Cost
DC1 Newcastle C2 1.5
DC2 Newcastle C3 0.5
DC3 Newcastle C4 1.5
DC4 Newcastle C6 1.0
DC5 Birmingham C1 1.0
DC6 Birmingham C2 0.5
DC7 Birmingham C3 0.5
DC8 Birmingham C4 1.0
DC9 Birmingham C5 0.5
DC10 London C2 1.5
DC11 London C3 2.0
DC12 London C5 0.5
DC13 London C6 1.5
DC14 Exeter C3 0.2
DC15 Exeter C4 1.5
DC16 Exeter C5 0.5
DC17 Exeter C6 1.5

 Table dcrout

Depot Name Max Thoughput
Newcastle

Birmingham
London
Exeter

70 000
50 000
100 000
40 000

 Table depcap

Suppose it is necessary to have a limit on the amount a customer may receive from a depot
(assuming it receives the depot's total stock and the depot is operating at full capacity). Then

a join of these two tables is required such that the depot name in both tables are matched.

This results in a wider table, as shown below.

10

DC Route ID Depot Name Customer ID Cost Max Throughput

DC1 Newcastle C2 1.5 70 000
DC2 Newcastle C3 0.5 70 000
DC3 Newcastle C4 1.5 70 000
DC4 Newcastle C6 1.0 70 000
DC5 Birmingham C1 1.0 50 000
DC6 Birmingham C2 0.5 50 000
DC7 Birmingham C3 0.5 50 000
DC8 Birmingham C4 1.0 50 000
DC9 Birmingham C5 0.5 50 000
DC10 London C2 1.5 100 000
DC11 London C3 2.0 100 000
DC12 London C5 0.5 100 000
DC13 London C6 1.5 100 000
DC14 Exeter C3 0.2 40 000
DC15 Exeter C4 1.5 40 000
DC16 Exeter C5 0.5 40 000
DC17 Exeter C6 1.5 40 000

 Limit on the amount a customer may receive from a depot

Thus this join operation is equivalent to performing a cartesian product of the tuples of the

tables dcrout with the tuples of the relation depcap but only when the combination satisfies

the join condition. When the join condition involves, as in this case, an equality comparison
the join operator is known as an equijoin. The attributes used in the join are known as join

attributes. Note that there is no repetition of the join attribute depot name as this would be

superfluous. A join operator which removes the second attribute in an equijoin condition (as

in this example) is called a natural join. To perform a natural join it is required that the join

attributes have the same name.

These three relational operators (selection,projection and natural join) play a fundamental role

in the manipulation of information stored in a database. MPL and indeed many other

modelling language syntaxes require new constructs in order to deal with these operations.

3.2 MPL extended syntax - database connection

As stated earlier in most modelling languages it is usual to store data tables externally in flat

files. In order to connect the modelling language to a database it is necessary to import and

export database tables in the modelling language. This means that it should be possible to

define index sets which are keys of a database table and to specify subsets (or

11

multidimensional sets). Some modelling languages handle subsets, but few deal with the

specification of keys as index sets in the model.

In order to make use of the RDB structure, MPL is extended to incorporate the relation

operators described in section 3.1 and new constructs are introduced to enable:

(i) the specification of RDB keys as index sets in the model;

(ii) the specification of subsets (multi-dimensional sets);

(iii) data to be imported from a database into MPL;

(iv) the specification of selection, projection and joins in defining index sets, data tables

and constraints.

The syntax and use of these constructs are explained in this section by considering the

distribution example introduced previously. Assume the data for this model is stored in the

following database tables. The keys for each table are underlined.

Database Tables

Factory Name Capacity
Liverpool 150 000
Brighton 200 000

 Table factcap

Depot Name Max Throughput
Newcastle 70 000

Birmingham 50 000
London 100 000
Exeter 40 000

 Table depcap

Customer ID Monthly Requirement
C1 50 000
C2 10 000
C3 40 000
C4 35 000
C5 60 000
C6 20 000

 Table custreq

12

FD Route ID Factory Name Depot Name Cost

FD1 Liverpool Newcastle 0.5
FD2 Liverpool Birmingham 0.5
FD3 Liverpool London 1.0
FD4 Liverpool Exeter 0.2
FD5 Brighton Birmingham 0.3
FD6 Brighton London 0.5
FD7 Brighton Exeter 0.2

 Table fdrout

FC Route ID Factory Name Customer ID Cost
FC1 Liverpool C1 1.0
FC2 Liverpool C3 1.5
FC3 Liverpool C4 2.0
FC4 Liverpool C6 1.0
FC5 Brighton C1 2.0

 Table fcrout

DC Route ID Depot Name Customer ID Cost
DC1 Newcastle C2 1.5
DC2 Newcastle C3 0.5
DC3 Newcastle C4 1.5
DC4 Newcastle C6 1.0
DC5 Birmingham C1 1.0
DC6 Birmingham C2 0.5
DC7 Birmingham C3 0.5
DC8 Birmingham C4 1.0
DC9 Birmingham C5 0.5
DC10 London C2 1.5
DC11 London C3 2.0
DC12 London C5 0.5
DC13 London C6 1.5
DC14 Exeter C3 0.2
DC15 Exeter C4 1.5
DC16 Exeter C5 0.5
DC17 Exeter C6 1.5

 Table dcrout

The MPL model for this example is provided in figure 3.2.1.

13

TITLE
 Distribution;

INDEX
 factories := DATABASE("factcap", "Factory Name");
 depots := DATABASE("depcap", "Depot Name");
 customers := DATABASE("custreq", "Customer ID");
 FDRoutes[factories,depots] := DATABASE("fdrout");
 FCRoutes[factories,cutomers] := DATABASE("fcrout");
 DCRoutes[depots,customers] := DATABASE("dcrout");

DATA
 FactoryCap[factories] := DATABASE("factcap","Capacity");
 DepotCap[depots] := DATABASE("depcap", "Max Throughput");
 CustomerReq[customers] := DATABASE("custreq","Monthly Requirements");

 FactoryDepotCost[FDRoutes] := DATABASE("fdrout","Cost");
 FactoryCustCost[FCRoutes] := DATABASE("fcrout","Cost");
 DepotCustCost[DCRoutes] := DATABASE("dcrout","Cost");

DECISION VARIABLES
 FactoryDepotQty[FDRoutes] → FD WHERE (FactoryDepotCost);
 FactoryCustQty[FCRoutes] → FC WHERE (FactoryCustCost);
 DepotCustQty[DCRoutes] → DC WHERE (DepotCustCost);

MODEL
 MIN cost = SUM(factories,depots: FactoryDepotCost * FactoryDepotQty) +
 SUM(factories,customers: FactoryCustCost * FactoryCustQty) +
 SUM(depots,customers: DepotCustCost * DepotCustQty);
SUBJECT TO
 FactoryCapacity[factories] → FCAP :

 SUM(FDRoutes.depots: FactoryDepotQty)
 + SUM(FCRoutes.customers: FactoryCustQty)

 <= FactoryCap;

 DepotCapacity[depots] → DCAP :
 SUM(FDRoutes.factories: FactoryDepotQty) <= DepotCap;

 DepotBalance[depots] → DBAL :

 SUM(DCRoutes.customers: DepotCustQty)
 = SUM(FDRoutes.factories : FactoryDepotQty);

 CustomerRequirement[customers] → CREQ :

 SUM(FCRoutes.factories: FactoryCustQty)
 + SUM(DCRoutes.depots: DepotCustQty)
 = CustomerReq;
END

 Figure 3.2.1 Distribution example in MPL with database connection.

14

The algebraic representation of this LP model first involves defining sets. For example, let

factories, depots, and customers denote the sets of factories, depots and customers

respectively in this example. In general index sets are derived from the keys of a database

table. Thus the syntax for defining index sets incorporates the keyword "DATABASE":

INDEX

set_name : = DATABASE ("database_table_name", "key");

For example, the index factories in figure 2 is defined to be the key attribute "Factory
Name" from the database table "FactCap". Subsequently, "factories", rather than "Factory

Name" can be used in the model, even in defining new indices. This avoids any unnecessary

repetition of long names and provides good documentation on how the index sets of the

model correspond to the database keys.

Subsets are also defined, for example FDRoutes represents the routes from factories to epots.

Subsets like these are represented in MPL by two (or more) dimensional sets, that

is sets of sets. The syntax is as follows:

INDEX

 set_name[set1,set2...] := DATABASE("database_table_name", set_name = "key") or

 set_name[set1,set2...] := DATABASE("database_table_name", "key");

where set1, set2,... are previously defined index sets. FDRoutes is defined from the

previously defined sets factories and depots and links between factories and depots are
only created for the entries in the database table fdrout. As this table has the same column

names as tables factcap and depcap (from which the index sets factories and depots
were created) there is no need to specify the column names again. FDRoutes is defined as
a projection of "Factory Name" and "Depot Name" taken from the database table "FDRout".

This index is a multi-dimensional set or, in relational terms, a multi-attribute (or composite)

key for the data tables and/or constraints which are as yet to be defined. Thus this subset
may be viewed as a relational table rather than as a set of routes from factories to depots.
Subsets are thus defined in figure 3.2.1 for all the routes. Multidimensional sets can also be

15

derived from several tables or subsets using the keywords WHERE FORSOME and IN see (Lucas,

Mitra, Moody & Kristjansson, 1993).

Data is imported from a database in a similar way. That is,

data_table_name[set1,set2…] :=

DATABASE("database_table_name", set_name = "attribute")

where set1,set2,.. are previously defined index sets. Data tables may also be derived by

manipulating pre-defined data tables, for example, the relational operation join may be

performed using the "IN" operator.

The values of the decision variables obtained from the optimization may be exported back

into the database using the keyword EXPORT. For example, the FactoryDepotQty values may

be exported back to the database table "fdrout" and become the attribute "Qty" as follows:

FactoryDepotQty[FDRoutes] → FD WHERE (FactoryDepotCost)

EXPORT T O DATABASE("fdrout", "Qty");

For a more detailed description of these new constructs, in particular in specifying the

relational operations when defining index sets, data tables and constraints see (Lucas, Mitra,

Moody & Kristjansson, 1993).

4. Procedural Forms and Column Generation

4.1 Column Generation in LP Modelling

Many LP models have an otherwise static structure reflecting generally the declarative nature

of such models. For instance in the distribution example considered earlier, or many other

resource allocation models such as assignment, transportation and production models, the

sources, the rates of production and so forth, determine the coefficients of the model. They

are usually specified within the model statement. There is, however, a large class of other

models in which the coefficients of the constraint matrix cannot be specified immediately by

the raw problem data. In these cases the model data needs to be processed by some rules or

procedures in order to derive the coefficient and usually the activities or columns of the LP

(or IP) constraint matrix.

16

4.2 Multi-commodity Network Flow: An Example of Column Oriented Modelling

Consider the extension of the distribution example introduced earlier to the case of multiple

commodities (products). Assume that there are various transportation options along each

possible route. For example on a route between a particular factory and depot there are

several choices concerning how a given vehicle may be loaded with different combinations

of products. Then a particular route with one product load combination needs to be

distinguished from the same route with a different combination, as seen in the index sets ℓij,

mik and njk defined in the following model.

Subscripts, Ranges

i = 1,2,..,I denotes factories

j = 1,2,..,J denotes depots

k = 1,2,..,K denotes customers

p = 1,2,..,P denotes products

ℓij = l,2,..,Lij denotes product load combinations for a route from factory i

 to depot j (i=1,2,..,I; j = 1,2,..,J)

mik = 1,2,..,Mik denotes product load combinations for a route from factory i

 to customer k (i=1,2,..,I; k=1,2,..,K)

njk = 1,2,..,Njk denotes product load combinations for a route from depot j

 to customer k (j =1,2,..,J; k=1,2,..,K)

Decision Variables

 denotes the number of vehicles with product load combination ℓ
ij

Xl ij

 denotes the number of vehicles with product load combination m
ikmX′ ik

 denotes the number of vehicles with product load combination n
jknX ′′ jk

 Sjp denotes the quantity of product p stored at depot j

Coefficients

 unit cost for the product load combination l
ij

Cl ij

 unit cost for the product load combination m
ikmC′ ik

17

 unit cost for the product load combination n
jknc ′′ jk

 amount of product p in the product load combination l
ijpl ij

 amount of product p in the product load combination m
ikpm′ ik

jkpn′′ amount of product p in the product load combination njk

 hjp cost of storage of product p at depot j

 Aip Maximum amount of product p that can be produced at factory i.

 Bjp Maximum handling capacity at depot j for product p.

 Dkp Customer k's demand for product p.

Linear Constraint Relations

Minimize cost =

∑∑+∑∑ ∑ ′′′′+∑∑ ∑ ′′+∑∑ ∑
j p

jpsjph
j k jkn

jknxjknc
i k ikm

ikmxikmcijx
i j ijl ij

c ll (4.2.1)

subject to

Factory availability

p,iipAmx
k m

pmRx
j

pR
ik

ik

ikij

ij

ij
∀∀≤′′+∑ ∑∑∑ l

l
l (4.2.2)

Depot Capacity

p,jjpB
i

xpR
ij

ijij
∀∀≤∑∑

l
ll (4.2.3)

 Depot Balance

j,pjps
j n

nxpnR
i

xpR
jk

ijjk

ij

ijij
∀∀=′′′′−∑∑∑∑

l
ll (4.2.4)

 Demand

p,kkpD
j n

nxpnR
i

mx
m

pmR
jk

jkjkik

ik

ik
∀∀=′′′′+′′ ∑∑∑∑ (4.2.5)

4.3 Column Structure - Procedural Rules for Generation

For the problem introduced in the previous section consider an instance defined by the data

sets given in Tables 4.3.1 to Table 4.3.5. Table 4.3.1 contains the capacities of factories for

18

the four product ranges; Table 4.3.2 shows the throughput capacities of the depots for each
of the four products; the customer demands for the four products are presented in Table
4.3.3 and Table 4.3.4 displays the dimensions of the product containers and vehicles. We

have simplified the vehicle loading problem by assuming that all containers are trolleys which

are placed in the vehicles and cannot be stacked.

Following permissible product combinations and the size restrictions, different vehicle

loading strategies can be computed and are summarized in Table 4.3.5.

Manufacturing capacity of factory

Factory Product 1 Product 2 Product 3 Product 4

Liverpool 50,000 70,000 10,000 20,000

Brighton 50,000 70,000 80,000 0

 Table 4.3.1

handling capacity of depots

Depot Product 1 Product 2 Product 3 Product 4

Newcastle 20,000 20,000 10,000 20,000

Birmingham 10,000 20,000 10,000 10,000

London 25,000 25,000 25,000 25,000

Exeter 10,000 0 30,000 0

 Table 4.3.2

19

Demand for products

Customer Product 1 Product 2 Product 3 Product 4

C1 10,000 20,000 10,000 10,000

C2 10,000 0 0 0

C3 0 15,000 0 20,000

C4 0 0 35,000 0

C5 30,000 20,000 5,000 5,000

C6 5,000 5,000 10,000 0

 Table 4.3.3

 product containers and vehicle sizes

 Width Length

Product 1 1 1

Product 2 1 2
11

Product 3 2
11 2

Product 4 2 2
12

Vehicle 3 10

Table 4.3.4

20

product load for each route

Route

Factory-Depot

Product 1 Product 2 Product 3 Product 4

Liverpool-Newcastle 30 0 0 0

Liverpool-Newcastle 0 18 0 0

Liverpool-Newcastle 3 18 0 0

Liverpool-Newcastle 0 0 10 0

Liverpool-Newcastle 0 0 0 8

Liverpool-Newcastle 12 12 0 0

Liverpool-Newcastle 6 2 2 4

Liverpool-Newcastle 0 2 6 2

.

.

.

Brighton-Exeter 0 2 6 2

Table 4.3.5

The procedure for generating feasible loading schedules is shown in pseudocode in figure

4.3.6. This pseudo-procedure computes for all three types of routes (factories - customers,

factories - depots and depots - customers) the corresponding loading schedules. After

initialization, a routine (feasible products) is called which establishes permissible products
in this route. Then the recursive routine (generate load combination) is called which

computes all possible load combinations (vehicle loading strategies) for this given route.

These vehicle loading strategies are then used in turn to construct the column of the matrix.

21

product_load_combination

do for all factories
 do for all depots

feasible_routes
generate_load_combinations(starting product)

 end for all
end for all
 .
 .
 .
generate_load_combinations
do for all possible products
 see_if_product_fits(possible_products, productmix,widths,lengths)
 if (fits) then

update (productmix, route_costs)
generate_routes_for_feasible_products (this product)

 endif
end for all

 Figure 4.3.6 Pseudocode for generating feasible loading schedules

Consider factory 1 and depot 3 and the index ℓ13 representing a particular load combination.

The decision variable denotes the number of vehicles assigned with this load
13

xl

combination. Consider the coefficients of this variable appearing in the objective function

(4.2.1) and the restrictions (4.2.2) - (4.2.5). The coefficients of the column , (ℓ
13

xl 13=7) are

computed using loading strategy given in row 7 of Table 4.3.5. The actual structure of
this column is set out in figure 4.2.7.

22

Figure 4.3.7 column structure for 713 xx =l

23

(4.2.4)

(4.2.3)

(4.2.2)

(4.2.1)

4.4 MPL extended syntax for column generation

Most modelling languages are declarative and are unable to handle procedural features such

as the column generation described in the previous section. In many real applications the

coefficients are of a dynamic nature and are only known when the data values in the data

tables are supplied and the rule base is interpreted using the rule parameters.

The MPL syntax is therefore extended to include dynamic structures by introducing objects.

Objects typically have attributes such as input and output data as well as methods for

returning the requested information. In figure 4.4.1 the example described in the previous

section is shown in MPL using this extended syntax. It is assumed as in the earlier example

that all the data is held in a database. The extra index set products is introduced as this

is a multi-commodity problem.

A new section 'OBJECT' is introduced in MPL. This has the effect of (i) declaring an object

to the MPL system; and (ii) allowing subsequent communication with the declared object via

appropriate methods. An object is made up of 3 sections: namely data which connects the

object to data tables in the database; methods which provides a mechanism for

communicating required items of information to and from the object; and procedures which

provide a set of interpretative rules and instructions for computing the method values.

In the illlustrative MPL example shown in figure 4.4.1, annotation (1), the object

PRODCOMBO, is declared and is followed by calls to initialization and generation methods

(PRODCOMBO.init, PRODCOMBO.generate).

An additional index section, annotation (2), defines dynamic index sets. These sets are

dynamic in the sense that their members are unknown until the necessary procedures have

been executed. The syntax for defining a dynamic index by calling a method within an
object is as follows:

INDEX

 setname [set 1, set 2….] FROM object name.method name;

where set 1, set2,…are previously defined index sets and object_name and method_name

refer to a previously defined object and one of its methods. In the statement

fdloads FROM PRODCOMBO.fd_pos_ind;

24

the index set fdloads represents the set of all permissible load combinations that could occur

on the routes between factories and depots and at this stage is independent of the routes.

fcloads and dcloads are similar sets of load combinations for factory-customer and depot-

customer routes. fdloadroutes is a two-dimensional index set which connects a particular load

combination with the routes it applies to. This index set is also dynamic since the
necessary information is determined by the object PRODCOMBO.

In the DATA section dynamic tables are created using a similar syntax and the same keyword

FROM. The entries for these dynamic tables are also determined by the object

PRODCOMBO. In annotation (3), the statement

"FDprodload [fdloadroutes,products]FROM PRODCOMBO.fd_prodload_table"

determines the entries for the data table FDprodload which represents the amount of a given

product in a particular load combination on a specified route between a factory and a depot.

The tables FDcost, FCcost and DCcost are also dynamic as their dimensions are defined by

the dynamic sets previously introduced.

Annotation (4), defines decision variables which use these previously discussed dynamic sets.

The SUM operator is extended to cycle over these dynamic index sets. For example,

annotation (5a) and (5b) illustrate the objective function (4.2.1) and the factory availability

constraint (4.2.2) specified in MPL.

TITLE
 distribution

INDEX
 factories := DATABASE("factcap", "Factory Name");
 depots := DATABASE("depcap", "Depot Name");
 customers := DATABASE("custreq", "Customer ID");
 FDRoutes[factories,depots] := DATABASE("fdrout");
 FCRoutes[factories,cutomers] := DATABASE("fcrout");
 DCRoutes[depots,customers] := DATABASE("dcrout");
 Products := DATABASE("factcap", "Products");

OBJECT
 PRODCOMBO; (1)
 PRODCOMBO.init;
 PRODCOMBO.generate;

Figure 4.4.1 Distribution example in MPL with column generation

25

INDEX
! dynamic index sets (Lij, Mik, Njk, ℓij, mik and njk)
! ---------------------
 fdloads FROM PRODCOMBO.fd_pos_ind; (2)
 fcloads FROM PRODCOMBO.fc_pos_ind;
 dcloads FROM PRODCOMBO.dc_pos_ind;
 fdloadroutes[fdloads,fdroutes] FROM PRODCOMBO.fd_load_r_ind;
 fcloadroutes[fcloads,fcroutes] FROM PRODCOMBO.fc_load_r_ind;
 dcloadroutes[dcloads,dcroutes] FROM PRODCOMBO.dc_load_r_ind;

DATA
 FactoryCap[factories,products] :=DATABASE("factcap","Capacity");
 DepotCap[depots,products] :=DATABASE("depcap","Max Throughput");
 CustomerReq[customers,products]:=DATABASE("custreq","Monthly Requirements");
 StorageCost[depots,products] :=DATABASE("depcap", "Storage Cost");

! dynamic data tables)
jkpnR,

ikpmR,
ijplR,

jknc,
ikmc,ijc(′′′′′′l

! ------------------------
 FDprodload[products,fdloadroutes] FROM RODCOMBO.fd_prodload_table
 FCprodload[products,fcloadroutes] FROM PRODCOMBO.fc_prodload_table
 DCprodload[products,dcloadroutes] FROM RODCOMBO.dc_prodload_table
 (3)
 FDCost[fdloadroutes] FROM PRODCOMBO.fd-cost-table;
 FCCost[fcloadroutes] FROM PRODCOMBO.fc_cost-table;
 DCCost[dcloadroutes] FROM PRODCOMBO.fc_cost-table;;

DECISION VARIABLES
 FactoryDepotQty[products,fdloadroutes]→ FD WHERE (FDCost);
 FactoryCustQty[products,fcloadroutes] → FC WHERE (FCCost); (4)
 DepotCustQty[products,dcloadroutes] → DC WHERE (DCCost);
 DepotStore[products,depots] → DSt;

MODEL
 MIN cost =
 SUM(fdloadroutes.fdroutes.factories,fdloadroutes.fdroutes.depots:
 FDCost * FactoryDepotQty) +
 SUM(fcloadroutes.fcroutes.factories,fcloadroutes.fcroutes.customers:
 FCCost * FactoryCustQty) +
 SUM(dcloadroutes.dcroutes.depots, dcloadroutes.dcroutes.customers:

DCCost * DepotCustQty);

(5a)

SUBJECT TO

 FactoryCapacity[products,factories] → FCAP : (5b)

 SUM(fdloadroutes.fdroutes.depots: FactoryDepotQty)

 +SUM(fcloadroutes.fcroutes.customers:FactoryCustQty)

 <= FactoryCap;

 DepotCapacity[products,depots] → DCAP :
 SUM(fdloadroutes.fdroutes.factories: FactoryDepotQty) <= DepotCap;

 DepotBalance[products,depots] → DEAL :

 SUM(dcloadroutes.dcroutes.customers: DepotCustQty)
 =SUM(fdloadroutes.fdroutes.factories: FactoryDepotQty);

 Figure 4.4.1 continued Distribution example in MPL with column generation

26

 CustomerRequirement[products,customers] → CREQ :

 SUM(fcloadroutes.fcroutes.factories: FactoryCustQty)
 +SUM(dcloadroutes.dcroutes.depots: DepotCustQty)

 = CustomerReq;
END

Figure 4.4.1 continued Distribution example in MPL with column generation

PRODCOMBO OBJECT

DATA

factories
depots
customers
products
costs
lengths
widths
 .
 .
 .

METHODS

init ! initializes
generate ! executes the
procedure
fd_pos_ind ! returns the
factory_depot position index
fc_pos_ind
.
dc_pos_ind
.
fd_load_r_ind
.
fc_load_r_ind
dc_load_r_ind
 .
 .
 .

PROCEDURES

Product_load_combination

do for all factories
 do for all depots
 feasible_products
 generate_load_combinations
 end for all
end for all
 .
 .
 .

 Figure 4.4.2 Object PRODCOMBO

27

5. Discussion

Connecting a relational database to a modelling language such as MPL is important for

creating a rich LP modelling environment in which a generic model can be made truly data

driven. This is achieved by importing the keys and table entries of relational tables as

dynamic data items. We have extended the syntax of MPL and shown how this connection
is made.

For a long time column generation has been a neglected aspect within LP modelling systems.

This is because it is difficult to integrate procedural knowledge within an otherwise

declarative knowledge representation paradigm. Traditionally column generation was carried

out within the solver environment, but this came at a cost of sacrificing model and solver

independence.

Creating optimization applications by exploiting robust commercial optimizers such as

FortMP, CPLEX, OSL, see (Sharda, 1993), has now become established industrial practice:

so the introduction of column generation functionality within the modelling language is much

needed. VLSI routing, cutting stock, vehicle and crew scheduling, contract selection are a

few examples of a wide range of optimization applications which call for modelling by

column generation. Indeed in these examples the most challenging task of conceptualization

and knowledge representation consists of identifying the rules and procedures governing the

creation of the activities or the columns.

In the simplest form these column generation procedures can be carried out within the

database language and the range of indices and tables generated in this way can then be

communicated to the modelling language. The key element in this context is to understand

the dynamic nature of the column that we are generating by interpreting the procedural rules.

By introducing objects, procedures and methods and providing a syntactic structure for

connecting them to LP modelling languages we have taken this concept one step further and

we are able to bring this genre of models to the modeller who is already familiar with

declarative modelling languages such as MPL.

28

6. Acknowledgements

The support of the UK Science and Engineering Research Council (SERC) is gratefully

acknowledged, who together with Numerical Algorithms Group (NAG) have supported Ms.

S. Moody's CASE studentship. We also thank Mr. B. Kristjansson of Maximal Software
Ltd for his advice and very enthusiastic collaboration with our research group.

7. References

 Ashford, R.W. & Daniel, R.C. (1987) LP-MODEL: XPRESS_LP's Model Builder,
 IMA Journal of Mathematics in Management 1, 163-176

 Baker, T.E. (1993), Graph based modelling with MIMI/G presented at APMOD93,
 Budapest, Hungary

 Bisschop, J.J. (1993), AIMMS Modelling System User Guide, prepared by Paragon
 Decision Technology B.V., Haarlem, Netherlands.

 Bisschop, J. & Meeraus, A. (1982), On the Development of a General Algebraic
 Modeling System in a Strategic Planning Environment, Mathematical Programming
 Study 20 pp 1-29.

 Butler M., R. Bloor & P. Beach, (1990), Database: An Evaluation and Comparison,
 Butler Bloor

 Chambers, M.L. & Dyson, R.G. (1976), The Cutting Stock Problem in the flat glass
 industry - selection of stock sizes Operational Research Quarterly, Vol.27 pp 949-957

 Christofides N., Mingozzi, A. & Toth, P. (1979) The Vehicle Routing Problem in
 Combinatorial Optimization, Wiley, London.

 Darby_Dowman, K. & G. MItra, (1985) An Extension of Set Partitioning with
 Application to Scheduling Problems, European Journal of Operational Research 21
 1985 200-205

 Date, C.J., (1981), An Introduction to Database Systems, 3rd edition, Addison-Wesley

 Fischer, M. & Jaikumar, R. (1981), A Generalized Heuristic for Vehicle Routing,
 Networks, 11, p109.

 Fourer, R. (1983), Modelling Languages versus Matrix Generators for Linear
 Programming ACM Transactions on Mathematical Software, Vol 9 No. 2 June 1983
 pp143-183

29

Fourer,R. D.M Gay,& B.W. Kernighan (1987) AMPL: A Mathematical Programming
 Language Computing Science Technical Report No. 133, January 1987 AT&T Bell
 Laboratories
Geoffrion A.M. (1992a), The SML Language for Structured Modeling: Levels 1 and 2
 Operations Research 40:1 38-57
Geoffrion A.M.(1992b), The SML Language for Structured Modeling: Levels 3 and 4
 Operations Research 40:1 58-75

Gilmore, P.C. & Gomory, R.E. (1965), Multi-stage Cutting Stock Problems of Two or
 More Dimensions Operations Research, Vol.13 pp 94-120.

Greenberg, H.J.(1991a) A Comparison of Mathematical Programming Modelling
 Systems March 1991 University of Colorado at Denver

Greenberg, H.J.(1991b) A Primer for MODLER : Modeling by Object Driven Linear
 Elemental Relations December 1991 University of Colorado at Denver

Hurlimann, T.& Kohlas, J. (1987), LPL Structured Language for Linear Programming
 Modelling, 10 55-63.

IBM World Trade Corporation (1976) IBM Mathematical Programming System
 Extended/370 (MPSX/370) Program Reference Manual, 2nd edn, IBM Publication No.
 SH19-1095-1 New York and Paris

Kristjansson, B. (1991) MPL Modelling System User Guide, Maximal Software Ltd,
 Iceland

Kristjansson, B. (1993) MPL Modelling System Release 3.0, Maximal Software Ltd.,
 Iceland

Levkovitz,R.& Mitra, G. (1993) Solution of Large Scale Linear Programs: A Review of
 Hardware, Software and Algorithmic Issues in Optimization in Industry, edited by T.A.
 Ciriani & R.C. Leachman, John Wiley & Sons, UK.

Lucas C. & G. Mitra (1988) Computer-Assisted Mathematical Programming
 (Modelling) System: CAMPS The Computer Journal Vol 31. No. 4.

Lucas, C., Mitra, G., Moody, S. & Kristjansson, B. (1993), Sets and Indices in Linear
 Programming Modelling and their Integration with Relational Data Models
 TR/02/93, Brunel University, Dept of Mathematics and Statistics, Uxbridge, UK.

Maros,I., Mitra, G. & Moody, S. (1993), Contract Portfolio Selection for an Electricity
Company, Technical Report in preparation at Brunel University, Uxbridge, UK.

30

Mitra, G. C.Lucas, K. Darby-Dowman & J.Smith (1994), Maritime Scheduling using
 Discrete Optimization and Artificial Intelligence Techniques in Practical Applications
of Optimization, edited by A. Sciomachen, John Wiley & Sons

Sharda, R. (1993), Linear & Discrete Optimization and Modeling Software, Unicom
 (UK) & Lionheart Publishing Inc. (USA)

Steiger D. & R. Sharda (1993) LP Modeling Languages for Personal Computers: A
 Comparison, Applied Mathematical Programming and Modelling, edited by G. Mitra
& I. Maros Annals of Operations Research, 43 1993, 195-216

Ullman, J.D., 1982, Principles of Database Systems, Computer Science Press

Williams, H.P. Model Building in Mathematical Programming, 3rd edition, John Wiley
 1990

31

	Cost
	PRODCOMBO

