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0. Abstract 

Through popular implementation of structured query language (SQL) and query-by-example

(QBE) relational databases have become the de-facto industry standard for data modelling.

We consider the indices, sets, and the declarative form of Linear Programming (LP) 

modelling languages and introduce new constructs which provide direct link to the database 

systems. The models constructed in this way are data driven and display a dynamic

structure. We then show how this approach can be naturally extended to include column 

generation features stated in procedural forms within an otherwise declarative modelling 

paradigm. 



1. Background & Introduction 

 

The software support for the solution of optimization problems has advanced rapidly in the last 

two decades and in order to make use of this software, models representing an 

optimization problem must be presented in a machine readable form to the optimizer. For

an LP model the declarative statement, known as the "modeler's form" (Fourer, 1983), is 

suitable for model description, documentation, easy modification and is comprehensible. 

Unfortunately, until recently the dominance of sparse simplex (SSX) (Levkovitz & Mitra, 
1993) solvers and their requirement to have the constraint matrix specified in column order 
meant that the "algorithms form" (Fourer, 1983) has to be taken into account. This form 

depends on the data structure used in the implementation of algorithms and typically the 

constraints had to be presented in a column-wise representation of the non-zero elements of 
the matrix. To obtain this, a suitable input format had to be defined and today the most well 

established and the defacto standard is the MPS format (IBM, 1976). For the purpose of 

modelling, the sparse and column oriented data definition of MPS is most inadequate. It is 
now acknowledged that algebraic and specially equational forms provide an easier and more 

understandable model definition. A few algebraic languages have been designed to support 
these equational forms. In addition to this essential feature LP Modelling Languages today 
have other important and well established roles in Mathematical Programming such as rapid 

application development and model investigation. Today there are many systems in 

existence which provide essential modelling support. For example, AMPL (Fourer,Gay & 

Kernighan, 1987), GAMS (Bisschop & Meeraus, 1982), AIMMS (Bisschop, 1993), LPL 

(Hurlimann, 1987), LP-MODEL (Ashford & Daniel, 1987), MPL (Kristjansson, 1993), 

MODLER (Greenberg, 1991b), SML (Geoffrion, 1992a & 1992b), for a review of such 

systems see (Steiger & Sharda, 1993), (Greenberg, 1991a). 

 

Most modelling systems provide a language in which the user can specify models in a 

declarative algebraic form and the system automatically transcribes this model and creates

a matrix definition for the optimizer. Although this provides the modeller with a powerful 

computer based tool we can identify at least two main deficiencies of these systems. Firstly, 
the algebraic statement of the model and the actual data for the problem are usually kept 

separate so that the definitive problem may be distinguished from particular instances of the 
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problem. Most modelling languages employ data tables which are created externally and 

communicated as (ascii) text files. Usually within a modelling language, altering the 
dimensions of a problem invalidates the given data and model instance and requires changes

to be made manually to the data. This is not altogether desirable and a more flexible

approach to the data definition is required. Since it is standard practice to use databases for 
information storage and retrieval in industry there is a clear need for the integration of 

modelling languages with relational databases (RDBs). Some modelling systems have recently 

introduced such connections (Baker, 1993) but this is relatively new and much work is

needed to maintain a consistent approach and user-friendly modelling environment. By 

extending the syntax of the modelling language MPL (Kristjansson, 1991) with new 

constructs which makes use of the existing well known RDB structures, we provide a 
method of connecting corporate databases with a modelling system. Secondly, whilst most

LP models are stated declaratively, there are well known optimization problem classes, for 
example, crew scheduling (Darby-Dowman & Mitra, 1985), vehicle scheduling (Christofides, 
Mingozzi & Toth, 1979), (Fischer & Jaikumar, 1981), (Mitra, Lucas, Darby-Dowman &

Smith, 1994), cutting stock (Gilmore & Gomory, 1965),(Chambers & Dyson, 1976) contract 
selection (Maros, Mitra & Moody, 1993) which require a procedural method to generate the 
matrix columns, often called activities and typically representing legal duties, permitted

schedules, appropriate cutting patterns, alternative contract specifications. Currently no LP 
modelling language is able to provide adequate support for constructing this class of models. 

Traditionally column generation is carried out in a high level programming language and

cannot be connected to the sets, indices and constraint groups specified in declarative LP

modelling languages. We have introduced new language constructs which use the modern 

programming concept of an object and provide the facility to define procedures and methods 

connecting the indexing structure and constraints of the LP model. Through these syntactic 
and operational extensions we have designed a modelling tool with much greater potential

and richer functionality, thereby extending the applicability of LP modelling systems to more 
complex problem domains. 

 

The rest of this paper is organized in the following way. In section 2 the declarative structure

of an LP modelling language is explained and its syntax is illustrated with an example of a 

distribution problem with transshipment. In section 3 new constructs are introduced to 
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enable the modelling language to be connected to a database. The distribution example is

used to demonstrate the new syntax. Column generation is discussed in section 4 and new

constructs are introduced in the modelling language to permit the specification of procedural

rules. The distribution problem is extended to include multiple commodities and this

example is used to illustrate the new syntax and method of operation. Section 5 contains a 
discussion and some concluding remarks. 

 

2. The Declarative Structure of an LP Modelling Language: MPL 

 

The modelling of LP problems can be formally achieved through three logical steps. In

step one, the subscripts and their ranges are specified: these are essentially the sets and

dimensions of the model. In step two, the data tables and model decision variables are 
defined in terms of these subscripts. In step three, the model constraints are specified in a

row-wise fashion connecting the previously defined data table entries and decision variables. 
(Lucas & Ultra, 1988, p365). 

 

MPL (or Mathematical Programming Language) is a modelling system which enables 
problems to be formulated in a declarative form and after executing the model statements it 
generates an input file (eg MPS file) for an optimizer. The key features of MPL are 
described in the MPL Users Guide (Kristjansson, 1991, pl.2 -1.4). 

 

The structure of MPL reflects the above mentioned modelling strategy. A problem

expressed in MPL is divided into sections by the use of keywords and has the following

format: 

TITLE   The problem name. 
       INDEX  Index sets which define the dimensions of the problem. 
       DATA  Scalars, datavectors, datafiles. 
       DECISION Vector decision variables. 
       MACRO  Macros for repetitive parts. 
 
MODEL 
         MAX (or MIN) The objective function. 
         SUBJECT TO The constraints. 
         BOUNDS Simple upper and lower bounds. 
         FREE  Free variables. 
         INTEGER Integer variables. 
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    BINARY        Binary (0/1) variables. 
     SOS1        Special Ordered Set (Type 1) variables 
     SOS2        Special Ordered Set (Type 2) variables 

         END 
 
 
Apart from the objective function (distinguished by the keyword MAX or MIN) and the 
constraints (identified by the keywords SUBJECTED TO), all sections are optional. 

  

Distribution Problem 

To illustrate the basic syntax of the language consider a single product distribution problem

with transshipment. 

Subscripts, Ranges 

i ∈ I  denotes factories 

j ∈ J  denotes depots 

k ∈ K  denotes customers 

 
Decision Variables 

xij    denotes the quantity sent from factory i to depot j 

x'ik   denotes the quantity sent from factory i to customer k 

x"jk    denotes the quantity sent from depot j to customer k 

 
Coefficients 

cij   denotes the unit cost for distribution between factory i and depot j 

c'ik   denotes the unit cost for distribution between factory i and customer k 

c"jk  denotes the unit cost for distribution between depot j and customer k 

fi     denotes the capacity of factory i 

dj    denotes the maximum monthly throughput for depot j 

rk    denotes the monthly requirement for customer k 

 
Linear Constraint Relations 

  Minimize cost ∑ ∑∑ ∑∑∑
∈ ∈∈ ∈∈ ∈

++=
Jj Kk

jkjk
Ii Kk

ikik
Ii Jj

ijij
'''''' xcxcxc  
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Ii,fxx i
Kk

ik
Jj

j
'
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∈≤+ ∑∑

∈∈
 

Jj,dx i
Ii

ij ∈≤∑
∈

 

Kk,rxx k
Jj

jk
Ii

ik ''' ∈≥+∑∑
∈∈

 

Jj,0xx
Kk

jk
Ii

ij
'' ∈=− ∑∑

∈∈
 

Kk,Jj,Ii,0x,x,x jk
''

ik
'

ij ∈∈∈∀≥  

Consider a simple instance of this model taken from Williams (1990) where a company has
two factories and four depots. It sells its product to six customers each of whom may
be supplied either from a depot or direct from the factory. Not all the routes between 
factories, depots and customers exist; the cost data for these routes are not supplied and the 
corresponding decision variables are not defined. The company has to pay distribution costs
(in £s per ton) for the deliveries (factory_dept_cost, factory_customer_cost and 
depot_customer_cost). In a simple model routes which are not possible are allocated a high 
cost in the data tables (9000) and the corresponding decision variables are excluded using
except where statements. Each factory has a monthly capacity (factory_capacities) and
each depot has a maximum monthly throughput which cannot be exceeded 
(depot_capacities). In addition each customer has a monthly requirement which must be
met (customer_requirements). The company wishes to find a distribution pattern which
minimizes cost. The model is stated in MPL in figure 1. 
 

TITLE Distribution; 
 

INDEX 

        factories   := (Liverpool, Brighton); 

        depots      := (Newcastle, Birmingham, London, Exeter); 

        customers := (cl,c2,c3,c4,c5,c6); 

DATA 

        FactoryCap[factories]  :=  [Liverpool, 150000, 
          Brighton,     200000]; 
 

        DepotCap[depots]         :=   [Newcastle,     70000, 
          Birmingham,  50000, 
           London,       100000, 
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Exeter,  40000]; 
CustomerReq[customers]    :=   [c1, 50000, 

     c2, 10000, 
     c3, 40000, 
     c4, 35000, 
     c5, 60000, 
     c6, 20000]; 

FactoryDepotCost[factories,depots]  := 
     [Liverpool, Newcastle, 0.5, 
       Liverpool, Birmingham, 0.5, 
       Liverpool, London,  1.0, 
       Liverpool, Exeter,  0.2, 
      Brighton, Birmingham, 0.3, 
       Brighton, London,  0.5, 
       Brighton, Exeter,  0.2]; 

FactoryCustCost[factories,customers]  := 
     [Liverpool, c1, 1.0, 
      Liverpool,    c3, 1.5, 
      Liverpool, c4, 2.0, 
      Liverpool, c6, 1.0, 
      Brighton, c1, 2.0] ; 

DepotCustCost[depots,customers] := 
      [Newcastle,     c2, 1.5, 
       Newcastle,     c3, 0.5, 
       Newcastle,     c4, 1.5, 
       Newcastle,     c6, 1.0, 
       Birmingham,  c1, 1.0, 
       Birmingham,  c2, 0.5, 
       Birmingham,  c3, 0.5, 
       Birmingham,  c4, 1.0, 
       Birmingham,  c5, 0.5, 
       London,          c2, 1.5, 
       London,          c3, 2.0, 
       London,          c5, 0.5, 
       London,          c6, 1.5, 
       Exeter,          c3, 0.2, 
       Exeter,          c4, 1.5, 
       Exeter,          c5, 0.5, 
       Exeter,          c6, 1.5]; 
 
DECISION VARIABLES 
       FactoryDepotQty[factories,depots]      → FD WHERE (FactoryDepotCost); 
       FactoryCustQty[factories,customers]   → FC WHERE (FactoryCustCost); 
       DepotCustQty[depots,customers]         → DC WHERE (DepotCustCost); 
 
MODEL 

MIN cost = SUM(factories,depots: FactoryDepotCost * FactoryDepotQty) + 
SUM(factories,customers: FactoryCustCost * FactoryCustQty) +         
SUM(depots,customers: DepotCustCost * DepotCustQty); 

SUBJECT TO 

       FactoryCapacity[factories]  → FCAP : 
       SUM(depots: FactoryDepotQty) + SUM(customers: FactoryCustQty) 
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    <= FactoryCap; 

DepotCapacity[depots] → DCAP : 

SUM(factories: FactoryDepotQty)  <=  DepotCap; 

 

DepotBalance[depots] → DBAL : 

SUM(customers: DepotCustQty)  =  SUM(factories: FactoryDepotQty); 

CustomerRequirement[customers] → CREQ : 

SUM(factories: FactoryCustQty)    +   SUM(depots: DepotCustQty) 

= CustomerReq; 

END 

Figure 2.1 Distribution example in MPL  

Throughout the MPL model, meaningful names of any length may be used to aid 

documentation. There are three index sets in this model, namely factories, depots and 
customers. All subsequent vectors are defined in terms of these index sets. The data for this 
problem has been embedded in the model definition, but it is also possible (and preferable)

to store these externally and refer to them in the MPL model with the keyword DATAFILE. 
The data is in sparse format; dense format is also possible. Decision variables are provided 
with stubs (for example "→ FD") which are abbreviations which enable the user to have 
control of the MPS names generated by MPL. (Stubs are also used in the constraint section.)

The WHERE clauses enclosed in brackets limit the number of variables being defined: variables

are only created when the appropriate values exist in the data tables defined previously. The 
objective is to minimize cost which is the total distribution cost. The keyword SUM defines

a summation to be carried out over the indices specified in the ensuing brackets and delimited 
by a colon. The four mathematical operators: addition, subtraction, multiplication and

division, are represented by the usual symbols: + ,-,*, /, respectively. 

 

The constraint FactoryCapacity defines two constraints: one for each factory. This

constraint states that the total quantities shipped out from the factories to the depots or 
customers cannot exceed the factories' capacities. There is a similar constraint for the depots' 

capacities. The DepotBalance constraint ensures that at each depot, the quantities that arrive 
from the factories are all shipped out to customers: ie. there is no storage, loss or gain. The 
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final constraint requires that the customers' requirements are satisfied. 

 

Having defined the model in this manner using MPL's editor, the user selects the pulldown 
menu to optimize the model. This provides only a brief overview of the structure and syntax 
of MPL. For more detailed information see the user guide (Kristjansson, 1991). 

 

 

3. Relational Data Models 

3.1  Constructs connecting LP Modelling Languages with Relational Databases 

The structures of RDBs are well known and understood: for a review see Date (1981),

Ullman (1982), Butler, Bloor & Bleach (1990). In Lucas, Mitra, Moody & Kristjansson

(1993) we discuss connection of MPL with an RDB system. The constructs which connect 
RDBs with< LP modelling languages may be divided into three groups: constructs for 
performing set operations (such as union, intersection and difference), constructs for 
performing database operations (such as projection, selection and join) and constructs for 
importing and exporting sets and data. 

 

Set operations such as union, intersection and difference are already well defined constructs

in MPL: see (Lucas,Mitra, Moody & Kristjansson, 1993). Relational operators act on the 
tuples (rows) or attributes (columns) of database tables. For example, consider the following 
database table. 

 

FC Route ID Factory Name Customer ID Cost 
FC1 Liverpool C1 1.0 
FC2 Liverpool C3 1.5 
FC3 Liverpool C4 2.0 
FC4 Liverpool C6 1.0 
FC5 Brighton C1 2.0 

Table fcrout 

This table provides information about the routes from factories to customers. The primary

key "FC Route ID" is shown underlined. 

 

The selection operator "selects" (horizontally) a subset of the tuples in a table. For example,

to obtain all customers supplied by the Liverpool factory directly, a selection of all tuples 
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(rows) of table fcrout for which the attribute Factory Name has value Liverpool is carried 

out resulting in the following table: 

 

FC Route ID Factory Name Customer ID Cost 
FC1 Liverpool C1 1.0 
FC2 Liverpool C3 1.5 
FC3 Liverpool C4 2.0 
FC4 Liverpool C6 1.0 

                   Liverpool's customers 
 
The select operator is unary and therefore cannot be used to choose tuples from more than

one relation. The degree of the relation resulting from a select operation is the same as that

of the original relation since it has the same attributes. Selections are commutative so a 
sequence of selections may be carried out in any order. 

 

The projection operator, on the other hand, makes a vertical selection of a relation, choosing 
some attributes (columns) and eliminating others. If it were necessary to use only certain 
attributes of a relation, the project operator is used to "project" the relation over these

attributes. For example, suppose it was required to obtain a set of all customers that may be 

supplied directly by factories. Then a project operation from the table fcrout over the

attribute Customer ID would achieve this, resulting in the following table. Customer C1 is 
supplied by both factories but this value is not duplicated in the resulting table. This ensures 
that the result of a project operation is also a relation. 

 

Customer ID 
C1 
C3 
C4 
C6 

    

Customers supplied directly by factories 

The project operator is also unary and has degree equal to the number of attributes specified

in the projection list. If some attributes projected are non-key attributes then it is possible that 
some duplication will occur and will therefore have to be eliminated. The number of tuples

in a relation resulting from a projection is less than or equal to the number of tuples in the 
original relation. If the projection list includes the key of the relation, then the resulting table 
will have the same number of tuples as the original. Projections are not commutative. 
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The join operator is used to combine related tuples from two relations into one relation. For

example, the tables dcrout and depcap below provide information about the routes from

depots to customers, and the capacity of depots, respectively. 

 

DC Route ID Depot Name Customer ID Cost 
DC1 Newcastle C2 1.5 
DC2 Newcastle C3 0.5 
DC3 Newcastle C4 1.5 
DC4 Newcastle C6 1.0 
DC5 Birmingham C1 1.0 
DC6 Birmingham C2 0.5 
DC7 Birmingham C3 0.5 
DC8 Birmingham C4 1.0 
DC9 Birmingham C5 0.5 
DC10 London C2 1.5 
DC11 London C3 2.0 
DC12 London C5 0.5 
DC13 London C6 1.5 
DC14 Exeter C3 0.2 
DC15 Exeter C4 1.5 
DC16 Exeter C5 0.5 
DC17 Exeter C6 1.5 

 Table dcrout 
 
 

Depot Name Max  Thoughput 
Newcastle 

Birmingham 
London 
Exeter 

70 000 
50 000 
100 000 
40 000 

  Table depcap 
 

 

Suppose it is necessary to have a limit on the amount a customer may receive from a depot 
(assuming it receives the depot's total stock and the depot is operating at full capacity). Then

a join of these two tables is required such that the depot name in both tables are matched.

This results in a wider table, as shown below. 
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DC Route ID Depot Name Customer ID Cost Max Throughput 

DC1 Newcastle C2 1.5 70 000 
DC2 Newcastle C3 0.5 70 000 
DC3 Newcastle C4 1.5 70 000 
DC4 Newcastle C6 1.0 70 000 
DC5 Birmingham C1 1.0 50 000 
DC6 Birmingham C2 0.5 50 000 
DC7 Birmingham C3 0.5 50 000 
DC8 Birmingham C4 1.0 50 000 
DC9 Birmingham C5 0.5 50 000 
DC10 London C2 1.5 100 000 
DC11 London C3 2.0 100 000 
DC12 London C5 0.5 100 000 
DC13 London C6 1.5 100 000 
DC14 Exeter C3 0.2 40 000 
DC15 Exeter C4 1.5 40 000 
DC16 Exeter C5 0.5 40 000 
DC17 Exeter C6 1.5 40 000 

              Limit on the amount a customer may receive from a depot 

Thus this join operation is equivalent to performing a cartesian product of the tuples of the

tables dcrout with the tuples of the relation depcap but only when the combination satisfies

the join condition. When the join condition involves, as in this case, an equality comparison 
the join operator is known as an equijoin. The attributes used in the join are known as join 

attributes. Note that there is no repetition of the join attribute depot name as this would be 

superfluous. A join operator which removes the second attribute in an equijoin condition (as 

in this example) is called a natural join. To perform a natural join it is required that the join 

attributes have the same name. 

 

These three relational operators (selection,projection and natural join) play a fundamental role 

in the manipulation of information stored in a database. MPL and indeed many other 

modelling language syntaxes require new constructs in order to deal with these operations. 

 

3.2 MPL extended syntax - database connection 

As stated earlier in most modelling languages it is usual to store data tables externally in flat 

files. In order to connect the modelling language to a database it is necessary to import and 

export database tables in the modelling language. This means that it should be possible to 

define index sets which are keys of a database table and to specify subsets (or 
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multidimensional sets). Some modelling languages handle subsets, but few deal with the 

specification of keys as index sets in the model. 

 

In order to make use of the RDB structure, MPL is extended to incorporate the relation 

operators described in section 3.1 and new constructs are introduced to enable: 

(i) the specification of RDB keys as index sets in the model; 

(ii) the specification of subsets (multi-dimensional sets); 

(iii) data to be imported from a database into MPL; 

(iv) the specification of selection, projection and joins in defining index sets, data tables 

and constraints. 

 

The syntax and use of these constructs are explained in this section by considering the 

distribution example introduced previously. Assume the data for this model is stored in the 

following database tables. The keys for each table are underlined. 

Database Tables 

 

Factory Name Capacity 
Liverpool 150 000 
Brighton 200 000 

     Table factcap 
 
 

Depot Name Max Throughput 
Newcastle 70 000 

Birmingham 50 000 
London 100 000 
Exeter 40 000 

       Table depcap 
 
 

Customer ID Monthly Requirement 
C1 50 000 
C2 10 000 
C3 40 000 
C4 35 000 
C5 60 000 
C6 20 000 

    Table custreq 
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FD Route ID Factory Name Depot Name Cost 

FD1 Liverpool Newcastle 0.5 
FD2 Liverpool Birmingham 0.5 
FD3 Liverpool London 1.0 
FD4 Liverpool Exeter 0.2 
FD5 Brighton Birmingham 0.3 
FD6 Brighton London 0.5 
FD7 Brighton Exeter 0.2 

                   Table fdrout 
 

FC Route ID Factory Name Customer ID Cost 
FC1 Liverpool C1 1.0 
FC2 Liverpool C3 1.5 
FC3 Liverpool C4 2.0 
FC4 Liverpool C6 1.0 
FC5 Brighton C1 2.0 

          Table fcrout 
 

DC Route ID Depot Name Customer ID Cost 
DC1 Newcastle C2 1.5 
DC2 Newcastle C3 0.5 
DC3 Newcastle C4 1.5 
DC4 Newcastle C6 1.0 
DC5 Birmingham C1 1.0 
DC6 Birmingham C2 0.5 
DC7 Birmingham C3 0.5 
DC8 Birmingham C4 1.0 
DC9 Birmingham C5 0.5 
DC10 London C2 1.5 
DC11 London C3 2.0 
DC12 London C5 0.5 
DC13 London C6 1.5 
DC14 Exeter C3 0.2 
DC15 Exeter C4 1.5 
DC16 Exeter C5 0.5 
DC17 Exeter C6 1.5 

              Table dcrout 
 
The MPL model for this example is provided in figure 3.2.1. 
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TITLE 
      Distribution; 
 
INDEX 
      factories                                           := DATABASE("factcap", "Factory Name"); 
      depots                                              := DATABASE("depcap",  "Depot Name"); 
      customers                                        := DATABASE("custreq", "Customer ID"); 
      FDRoutes[factories,depots]            := DATABASE("fdrout"); 
      FCRoutes[factories,cutomers]        := DATABASE("fcrout"); 
      DCRoutes[depots,customers]         := DATABASE("dcrout"); 
 
DATA 
      FactoryCap[factories]        := DATABASE("factcap","Capacity"); 
      DepotCap[depots]              := DATABASE("depcap", "Max Throughput"); 
      CustomerReq[customers]  := DATABASE("custreq","Monthly Requirements"); 
 
      FactoryDepotCost[FDRoutes]           :=  DATABASE("fdrout","Cost");  
      FactoryCustCost[FCRoutes]              :=  DATABASE("fcrout","Cost"); 
      DepotCustCost[DCRoutes]                :=  DATABASE("dcrout","Cost"); 
 
DECISION VARIABLES 
      FactoryDepotQty[FDRoutes]             →  FD WHERE  (FactoryDepotCost); 
      FactoryCustQty[FCRoutes]                →  FC WHERE  (FactoryCustCost); 
      DepotCustQty[DCRoutes]                  →  DC WHERE  (DepotCustCost); 
 
MODEL 
      MIN cost = SUM(factories,depots:         FactoryDepotCost * FactoryDepotQty) + 
                          SUM(factories,customers:   FactoryCustCost * FactoryCustQty) + 
                          SUM(depots,customers:       DepotCustCost * DepotCustQty); 
SUBJECT TO 
       FactoryCapacity[factories]     →  FCAP : 
 
       SUM(FDRoutes.depots: FactoryDepotQty) 
    + SUM(FCRoutes.customers: FactoryCustQty) 
 
       <=   FactoryCap; 
 
        DepotCapacity[depots]  → DCAP : 
        SUM(FDRoutes.factories:  FactoryDepotQty)  <= DepotCap; 
 
        DepotBalance[depots]   → DBAL : 
 
        SUM(DCRoutes.customers: DepotCustQty) 
     = SUM(FDRoutes.factories   : FactoryDepotQty); 
 
        CustomerRequirement[customers]   → CREQ : 
 
        SUM(FCRoutes.factories: FactoryCustQty) 
     + SUM(DCRoutes.depots: DepotCustQty) 
        =  CustomerReq; 
END 

                 Figure 3.2.1 Distribution example in MPL with database connection.    
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The algebraic representation of this LP model first involves defining sets. For example, let 

factories, depots, and customers denote the sets of factories, depots and customers 

respectively in this example. In general index sets are derived from the keys of a database 

table. Thus the syntax for defining index sets incorporates the keyword "DATABASE": 

 

INDEX 

set_name : =  DATABASE ("database_table_name",  "key"); 

For example, the index factories in figure 2 is defined to be the key attribute "Factory 
Name" from the database table "FactCap". Subsequently, "factories", rather than "Factory 

Name" can be used in the model, even in defining new indices. This avoids any unnecessary 

repetition of long names and provides good documentation on how the index sets of the 

model correspond to the database keys. 

 

Subsets are also defined, for example FDRoutes represents the routes from factories to epots. 

Subsets like these are represented in MPL by two (or more) dimensional sets, that

is sets of sets. The syntax is as follows: 

INDEX 

    set_name[set1,set2...]   := DATABASE("database_table_name", set_name = "key") or 

  set_name[set1,set2...]   := DATABASE("database_table_name",   "key"); 

where set1, set2,... are previously defined index sets. FDRoutes is defined from the 

previously defined sets factories and depots and links between factories and depots are 
only created for the entries in the database table fdrout. As this table has the same column 

names as tables factcap and depcap (from which the index sets factories and depots 
were created) there is no need to specify the column names again. FDRoutes is defined as 
a projection of "Factory Name" and "Depot Name" taken from the database table "FDRout". 

This index is a multi-dimensional set or, in relational terms, a multi-attribute (or composite) 

key for the data tables and/or constraints which are as yet to be defined. Thus this subset 
may be viewed as a relational table rather than as a set of routes from factories to depots. 
Subsets are thus defined in figure 3.2.1 for all the routes. Multidimensional sets can also be 
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derived from several tables or subsets using the keywords WHERE FORSOME and IN see (Lucas, 

Mitra, Moody & Kristjansson, 1993). 

 

Data is imported from a database in a similar way. That is, 

data_table_name[set1,set2…]   := 

DATABASE("database_table_name",  set_name =  "attribute") 

where set1,set2,.. are previously defined index sets. Data tables may also be derived by 

manipulating pre-defined data tables, for example, the relational operation join may be 

performed using the "IN" operator. 

 

The values of the decision variables obtained from the optimization may be exported back 

into the database using the keyword EXPORT. For example, the FactoryDepotQty values may 

be exported back to the database table "fdrout" and become the attribute "Qty" as follows: 

FactoryDepotQty[FDRoutes]                         →    FD WHERE (FactoryDepotCost) 

EXPORT  T O  DATABASE("fdrout", "Qty"); 

 

For a more detailed description of these new constructs, in particular in specifying the 

relational operations when defining index sets, data tables and constraints see (Lucas, Mitra, 

Moody & Kristjansson, 1993). 

 

 

4. Procedural Forms and Column Generation 

 

4.1 Column Generation in LP Modelling 

Many LP models have an otherwise static structure reflecting generally the declarative nature 

of such models. For instance in the distribution example considered earlier, or many other 

resource allocation models such as assignment, transportation and production models, the 

sources, the rates of production and so forth, determine the coefficients of the model. They 

are usually specified within the model statement. There is, however, a large class of other 

models in which the coefficients of the constraint matrix cannot be specified immediately by 

the raw problem data. In these cases the model data needs to be processed by some rules or 

procedures in order to derive the coefficient and usually the activities or columns of the LP 

(or IP) constraint matrix. 
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4.2 Multi-commodity Network Flow:  An Example of Column Oriented Modelling 

Consider the extension of the distribution example introduced earlier to the case of multiple 

commodities (products). Assume that there are various transportation options along each 

possible route. For example on a route between a particular factory and depot there are 

several choices concerning how a given vehicle may be loaded with different combinations 

of products. Then a particular route with one product load combination needs to be 

distinguished from the same route with a different combination, as seen in the index sets ℓij, 

mik and njk defined in the following model. 

 

Subscripts, Ranges 

i = 1,2,..,I              denotes factories 

j = 1,2,..,J              denotes depots 

k = 1,2,..,K           denotes customers 

p = 1,2,..,P            denotes products 

ℓij = l,2,..,Lij           denotes product load combinations for a route from factory i 

       to depot j                                            (i=1,2,..,I; j = 1,2,..,J) 

mik = 1,2,..,Mik      denotes product load combinations for a route from factory i 

        to customer k                                    (i=1,2,..,I; k=1,2,..,K) 

njk = 1,2,..,Njk        denotes product load combinations for a route from depot j 

       to customer k                                    (j =1,2,..,J; k=1,2,..,K) 

Decision Variables 

     denotes the number of vehicles with product load combination ℓ
ij

Xl ij 

    denotes the number of vehicles with product load combination  m
ikmX′ ik 

    denotes the number of vehicles with product load combination n
jknX ′′ jk 

    Sjp  denotes the quantity of product p stored at depot j 

 

Coefficients 

     unit cost for the product load combination l
ij

Cl ij 

    unit cost for the product load combination m
ikmC′ ik 
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                 unit cost for the product load combination n
jknc ′′ jk 

    amount of product p in the product load combination l
ijpl ij 

    amount of product p in the product load combination m
ikpm′ ik 

jkpn′′  amount of product p in the product load combination njk 

    hjp  cost of storage of product p at depot j 

    Aip  Maximum amount of product p that can be produced at factory i. 

    Bjp  Maximum handling capacity at depot j for product p. 

    Dkp  Customer k's demand for product p. 

 

Linear Constraint Relations 

Minimize cost = 

∑∑+∑∑ ∑ ′′′′+∑∑ ∑ ′′+∑∑ ∑
j p

jpsjph
j k jkn

jknxjknc
i k ikm

ikmxikmcijx
i j ijl ij

c ll       (4.2.1) 

subject to 

Factory availability 

p,iipAmx
k m

pmRx
j

pR
ik

ik

ikij

ij

ij
∀∀≤′′+∑ ∑∑∑ l

l
l           (4.2.2) 

Depot Capacity 

p,jjpB
i

xpR
ij

ijij
∀∀≤∑∑

l
ll              (4.2.3) 

      Depot Balance 

j,pjps
j n

nxpnR
i

xpR
jk

ijjk

ij

ijij
∀∀=′′′′−∑∑∑∑

l
ll             (4.2.4) 

     Demand 

p,kkpD
j n

nxpnR
i

mx
m

pmR
jk

jkjkik

ik

ik
∀∀=′′′′+′′ ∑∑∑∑            (4.2.5) 

 

4.3 Column Structure - Procedural Rules for Generation 

For the problem introduced in the previous section consider an instance defined by the data 

sets given in Tables 4.3.1 to Table 4.3.5. Table 4.3.1 contains the capacities of factories for 
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the four product ranges; Table 4.3.2 shows the throughput capacities of the depots for each 
of the four products; the customer demands for the four products are presented in Table 
4.3.3 and Table 4.3.4 displays the dimensions of the product containers and vehicles. We 

have simplified the vehicle loading problem by assuming that all containers are trolleys which 

are placed in the vehicles and cannot be stacked. 

 

Following permissible product combinations and the size restrictions, different vehicle 

loading strategies can be computed and are summarized in Table 4.3.5. 

 

Manufacturing capacity of factory 

Factory Product 1 Product 2 Product 3 Product 4 

Liverpool 50,000 70,000 10,000 20,000 

Brighton 50,000 70,000 80,000 0 

 

       Table 4.3.1 

 

handling capacity of depots 

Depot Product 1 Product 2 Product 3 Product 4 

Newcastle 20,000 20,000 10,000 20,000 

Birmingham 10,000 20,000 10,000 10,000 

London 25,000 25,000 25,000 25,000 

Exeter 10,000 0 30,000 0 

 

       Table 4.3.2 
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Demand for products 

Customer Product 1 Product 2 Product 3 Product 4 

C1 10,000 20,000 10,000 10,000 

C2 10,000 0 0 0 

C3 0 15,000 0 20,000 

C4 0 0 35,000 0 

C5 30,000 20,000   5,000   5,000 

C6   5,000   5,000 10,000 0 

 

       Table 4.3.3 

 

 

 product containers and vehicle sizes 

 Width Length 

Product 1 1 1 

Product 2 1 2
11  

Product 3 2
11  2 

Product 4 2 2
12  

Vehicle 3 10 

 

Table 4.3.4 
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product load for each route 

Route 

Factory-Depot 

Product 1 Product 2 Product 3 Product 4 

Liverpool-Newcastle 30 0 0 0 

Liverpool-Newcastle 0 18 0 0 

Liverpool-Newcastle 3 18 0 0 

Liverpool-Newcastle 0 0 10 0 

Liverpool-Newcastle 0 0 0 8 

Liverpool-Newcastle 12 12 0 0 

Liverpool-Newcastle 6 2 2 4 

Liverpool-Newcastle 0 2 6 2 

. . . . . 

. . . . . 

. . . . . 

Brighton-Exeter 0 2 6 2 

 

Table 4.3.5 

The procedure for generating feasible loading schedules is shown in pseudocode in figure 

4.3.6. This pseudo-procedure computes for all three types of routes (factories - customers, 

factories - depots and depots - customers) the corresponding loading schedules. After 

initialization, a routine (feasible products) is called which establishes permissible products 
in this route. Then the recursive routine (generate load combination) is called which 

computes all possible load combinations (vehicle loading strategies) for this given route. 

These vehicle loading strategies are then used in turn to construct the column of the matrix. 
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product_load_combination 
 
do for all factories 
       do for all depots 

feasible_routes 
generate_load_combinations(starting product) 

       end for all 
end for all 
    . 
    . 
    . 
generate_load_combinations 
do for all possible products 
       see_if_product_fits(possible_products, productmix,widths,lengths) 
       if (fits) then 

update (productmix, route_costs) 
generate_routes_for_feasible_products (this product) 

       endif 
end for all 
 
 

             Figure 4.3.6 Pseudocode for generating feasible loading schedules 
  
 

Consider factory 1 and depot 3 and the index ℓ13 representing a particular load combination. 

The decision variable denotes the number of vehicles assigned with this load 
13

xl

combination. Consider the coefficients of this variable appearing in the objective function 

(4.2.1) and the restrictions (4.2.2) - (4.2.5). The coefficients of the column , (ℓ
13

xl 13=7) are 

computed using loading strategy given in row 7 of Table 4.3.5. The actual structure of 
this column is set out in figure 4.2.7. 

 

 

 

 

 

 

 

 

 

 

22 



 
 

 

Figure 4.3.7 column structure for  713 xx =l   
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(4.2.2) 

(4.2.1) 



4.4 MPL extended syntax for column generation 

Most modelling languages are declarative and are unable to handle procedural features such 

as the column generation described in the previous section. In many real applications the 

coefficients are of a dynamic nature and are only known when the data values in the data 

tables are supplied and the rule base is interpreted using the rule parameters. 

The MPL syntax is therefore extended to include dynamic structures by introducing objects. 

Objects typically have attributes such as input and output data as well as methods for 

returning the requested information. In figure 4.4.1 the example described in the previous 

section is shown in MPL using this extended syntax. It is assumed as in the earlier example 

that all the data is held in a database. The extra index set products is introduced as this

is a multi-commodity problem. 

A new section 'OBJECT' is introduced in MPL. This has the effect of (i) declaring an object 

to the MPL system; and (ii) allowing subsequent communication with the declared object via 

appropriate methods. An object is made up of 3 sections: namely data which connects the 

object to data tables in the database; methods which provides a mechanism for 

communicating required items of information to and from the object; and procedures which 

provide a set of interpretative rules and instructions for computing the method values. 

In the illlustrative MPL example shown in figure 4.4.1, annotation (1), the object 

PRODCOMBO, is declared and is followed by calls to initialization and generation methods 

(PRODCOMBO.init, PRODCOMBO.generate). 

An additional index section, annotation (2), defines dynamic index sets. These sets are 

dynamic in the sense that their members are unknown until the necessary procedures have 

been executed. The syntax for defining a dynamic index by calling a method within an 
object is as follows: 

INDEX 

 setname [set 1, set 2….] FROM object name.method name; 

where set 1, set2,…are previously defined index sets and object_name and method_name 

refer to a previously defined object and one of its methods. In the statement 

fdloads FROM PRODCOMBO.fd_pos_ind; 
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the index set fdloads represents the set of all permissible load combinations that could occur 

on the routes between factories and depots and at this stage is independent of the routes. 

fcloads and dcloads are similar sets of load combinations for factory-customer and depot-

customer routes. fdloadroutes is a two-dimensional index set which connects a particular load 

combination with the routes it applies to. This index set is also dynamic since the 
necessary information is determined by the object PRODCOMBO. 

In the DATA section dynamic tables are created using a similar syntax and the same keyword 

FROM. The entries for these dynamic tables are also determined by the object 

PRODCOMBO. In annotation (3), the statement 

"FDprodload [fdloadroutes,products]FROM PRODCOMBO.fd_prodload_table" 

determines the entries for the data table FDprodload which represents the amount of a given 

product in a particular load combination on a specified route between a factory and a depot. 

The tables FDcost, FCcost and DCcost are also dynamic as their dimensions are defined by 

the dynamic sets previously introduced. 

Annotation (4), defines decision variables which use these previously discussed dynamic sets. 

The SUM operator is extended to cycle over these dynamic index sets. For example, 

annotation (5a) and (5b) illustrate the objective function (4.2.1) and the factory availability 

constraint (4.2.2) specified in MPL. 

TITLE 
      distribution 

INDEX 
      factories            := DATABASE("factcap", "Factory Name"); 
      depots            := DATABASE("depcap",  "Depot Name"); 
      customers            := DATABASE("custreq", "Customer ID"); 
      FDRoutes[factories,depots]      := DATABASE("fdrout"); 
      FCRoutes[factories,cutomers]  := DATABASE("fcrout"); 
      DCRoutes[depots,customers]   := DATABASE("dcrout"); 
      Products           := DATABASE("factcap", "Products"); 

OBJECT                        
      PRODCOMBO;                (1)  
      PRODCOMBO.init;                
      PRODCOMBO.generate;                          
                 

Figure 4.4.1 Distribution example in MPL with column generation 
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INDEX 
!     dynamic index sets (Lij, Mik, Njk, ℓij, mik and njk)     
!     ---------------------          
   fdloads FROM PRODCOMBO.fd_pos_ind;      (2)    
   fcloads FROM PRODCOMBO.fc_pos_ind;        
   dcloads FROM PRODCOMBO.dc_pos_ind;        
   fdloadroutes[fdloads,fdroutes]  FROM PRODCOMBO.fd_load_r_ind; 
   fcloadroutes[fcloads,fcroutes]   FROM PRODCOMBO.fc_load_r_ind; 
   dcloadroutes[dcloads,dcroutes] FROM PRODCOMBO.dc_load_r_ind; 

DATA 
    FactoryCap[factories,products]   :=DATABASE("factcap","Capacity"); 
    DepotCap[depots,products]         :=DATABASE("depcap","Max Throughput"); 
    CustomerReq[customers,products]:=DATABASE("custreq","Monthly Requirements"); 
    StorageCost[depots,products]     :=DATABASE("depcap", "Storage Cost"); 

!     dynamic data tables )
jkpnR,

ikpmR,
ijplR,

jknc,
ikmc,ijc( ′′′′′′l          

!  ------------------------ 
 FDprodload[products,fdloadroutes] FROM RODCOMBO.fd_prodload_table      
 FCprodload[products,fcloadroutes] FROM PRODCOMBO.fc_prodload_table 
 DCprodload[products,dcloadroutes] FROM RODCOMBO.dc_prodload_table 
                           (3)   
  FDCost[fdloadroutes] FROM PRODCOMBO.fd-cost-table;           
  FCCost[fcloadroutes] FROM PRODCOMBO.fc_cost-table;           
  DCCost[dcloadroutes] FROM PRODCOMBO.fc_cost-table;;           

DECISION VARIABLES           
 FactoryDepotQty[products,fdloadroutes]→ FD WHERE (FDCost);            
 FactoryCustQty[products,fcloadroutes]  → FC WHERE (FCCost);            (4) 
 DepotCustQty[products,dcloadroutes]   → DC WHERE  (DCCost);          
 DepotStore[products,depots]       → DSt;             

MODEL 
 MIN cost =                  
 SUM(fdloadroutes.fdroutes.factories,fdloadroutes.fdroutes.depots:             
   FDCost * FactoryDepotQty) +            
 SUM(fcloadroutes.fcroutes.factories,fcloadroutes.fcroutes.customers:   
 FCCost * FactoryCustQty) +           
 SUM(dcloadroutes.dcroutes.depots, dcloadroutes.dcroutes.customers:          

DCCost * DepotCustQty);              

(5a) 

SUBJECT TO 

       FactoryCapacity[products,factories]  → FCAP :         (5b)  

 SUM(fdloadroutes.fdroutes.depots: FactoryDepotQty)             

     +SUM(fcloadroutes.fcroutes.customers:FactoryCustQty)          
                   
    <= FactoryCap;                

    DepotCapacity[products,depots]  →  DCAP : 
    SUM(fdloadroutes.fdroutes.factories: FactoryDepotQty)   <=  DepotCap; 

    DepotBalance[products,depots] → DEAL : 

    SUM(dcloadroutes.dcroutes.customers: DepotCustQty) 
 =SUM(fdloadroutes.fdroutes.factories: FactoryDepotQty); 
 
          Figure 4.4.1 continued Distribution example in MPL with column generation 
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 CustomerRequirement[products,customers] → CREQ : 
     
 SUM(fcloadroutes.fcroutes.factories: FactoryCustQty) 
          +SUM(dcloadroutes.dcroutes.depots: DepotCustQty) 
     
 = CustomerReq; 
END 

Figure 4.4.1 continued Distribution example in MPL with column generation 
 
 

PRODCOMBO OBJECT 
 
 
DATA 
 

factories 
depots 
customers 
products 
costs 
lengths 
widths 
     . 
     . 
     . 

 
 
 
 
METHODS 

init                !    initializes 
generate       !    executes the  
procedure 
fd_pos_ind   !    returns the 
factory_depot  position index 
fc_pos_ind 
. 
dc_pos_ind 
. 
fd_load_r_ind 
. 
fc_load_r_ind 
dc_load_r_ind 
         . 
         . 
         . 

 
PROCEDURES 

Product_load_combination 
 
do for all factories 
     do for all depots 
            feasible_products 
            generate_load_combinations 
     end for all 
end for all 
       . 
       . 
       . 

       Figure 4.4.2 Object PRODCOMBO 
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5. Discussion 

Connecting a relational database to a modelling language such as MPL is important for 

creating a rich LP modelling environment in which a generic model can be made truly data 

driven. This is achieved by importing the keys and table entries of relational tables as 

dynamic data items. We have extended the syntax of MPL and shown how this connection 
is made. 

For a long time column generation has been a neglected aspect within LP modelling systems. 

This is because it is difficult to integrate procedural knowledge within an otherwise 

declarative knowledge representation paradigm. Traditionally column generation was carried 

out within the solver environment, but this came at a cost of sacrificing model and solver 

independence. 

Creating optimization applications by exploiting robust commercial optimizers such as 

FortMP, CPLEX, OSL, see (Sharda, 1993), has now become established industrial practice: 

so the introduction of column generation functionality within the modelling language is much 

needed. VLSI routing, cutting stock, vehicle and crew scheduling, contract selection are a 

few examples of a wide range of optimization applications which call for modelling by 

column generation. Indeed in these examples the most challenging task of conceptualization 

and knowledge representation consists of identifying the rules and procedures governing the 

creation of the activities or the columns. 

In the simplest form these column generation procedures can be carried out within the 

database language and the range of indices and tables generated in this way can then be 

communicated to the modelling language. The key element in this context is to understand 

the dynamic nature of the column that we are generating by interpreting the procedural rules. 

By introducing objects, procedures and methods and providing a syntactic structure for 

connecting them to LP modelling languages we have taken this concept one step further and 

we are able to bring this genre of models to the modeller who is already familiar with 

declarative modelling languages such as MPL. 
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