464 research outputs found

    Coloring Kk-free intersection graphs of geometric objects in the plane

    Get PDF
    AbstractThe intersection graph of a collection C of sets is the graph on the vertex set C, in which C1,C2∈C are joined by an edge if and only if C1∩C2≠0̸. Erdős conjectured that the chromatic number of triangle-free intersection graphs of n segments in the plane is bounded from above by a constant. Here we show that it is bounded by a polylogarithmic function of n, which is the first nontrivial bound for this problem. More generally, we prove that for any t and k, the chromatic number of every Kk-free intersection graph of n curves in the plane, every pair of which have at most t points in common, is at most (ctlognlogk)clogk, where c is an absolute constant and ct only depends on t. We establish analogous results for intersection graphs of convex sets, x-monotone curves, semialgebraic sets of constant description complexity, and sets that can be obtained as the union of a bounded number of sets homeomorphic to a disk.Using a mix of results on partially ordered sets and planar separators, for large k we improve the best known upper bound on the number of edges of a k-quasi-planar topological graph with n vertices, that is, a graph drawn in the plane with curvilinear edges, no k of which are pairwise crossing. As another application, we show that for every ε>0 and for every positive integer t, there exist δ>0 and a positive integer n0 such that every topological graph with n≥n0 vertices, at least n1+ε edges, and no pair of edges intersecting in more than t points, has at least nδ pairwise intersecting edges

    Coloring intersection graphs of arc-connected sets in the plane

    Get PDF
    A family of sets in the plane is simple if the intersection of its any subfamily is arc-connected, and it is pierced by a line LL if the intersection of its any member with LL is a nonempty segment. It is proved that the intersection graphs of simple families of compact arc-connected sets in the plane pierced by a common line have chromatic number bounded by a function of their clique number.Comment: Minor changes + some additional references not included in the journal versio

    Triangle-free geometric intersection graphs with no large independent sets

    Get PDF
    It is proved that there are triangle-free intersection graphs of line segments in the plane with arbitrarily small ratio between the maximum size of an independent set and the total number of vertices.Comment: Change of the title, minor revisio

    Coloring non-crossing strings

    Full text link
    For a family of geometric objects in the plane F={S1,,Sn}\mathcal{F}=\{S_1,\ldots,S_n\}, define χ(F)\chi(\mathcal{F}) as the least integer \ell such that the elements of F\mathcal{F} can be colored with \ell colors, in such a way that any two intersecting objects have distinct colors. When F\mathcal{F} is a set of pseudo-disks that may only intersect on their boundaries, and such that any point of the plane is contained in at most kk pseudo-disks, it can be proven that χ(F)3k/2+o(k)\chi(\mathcal{F})\le 3k/2 + o(k) since the problem is equivalent to cyclic coloring of plane graphs. In this paper, we study the same problem when pseudo-disks are replaced by a family F\mathcal{F} of pseudo-segments (a.k.a. strings) that do not cross. In other words, any two strings of F\mathcal{F} are only allowed to "touch" each other. Such a family is said to be kk-touching if no point of the plane is contained in more than kk elements of F\mathcal{F}. We give bounds on χ(F)\chi(\mathcal{F}) as a function of kk, and in particular we show that kk-touching segments can be colored with k+5k+5 colors. This partially answers a question of Hlin\v{e}n\'y (1998) on the chromatic number of contact systems of strings.Comment: 19 pages. A preliminary version of this work appeared in the proceedings of EuroComb'09 under the title "Coloring a set of touching strings

    Conflict-Free Coloring of Planar Graphs

    Get PDF
    A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and v's neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number chi_CF(G) (the smallest k for which conflict-free k-colorings exist). We provide results both for closed neighborhoods N[v], for which a vertex v is a member of its neighborhood, and for open neighborhoods N(v), for which vertex v is not a member of its neighborhood. For closed neighborhoods, we prove the conflict-free variant of the famous Hadwiger Conjecture: If an arbitrary graph G does not contain K_{k+1} as a minor, then chi_CF(G) <= k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. We also give a complete characterization of the computational complexity of conflict-free coloring. Deciding whether chi_CF(G)<= 1 is NP-complete for planar graphs G, but polynomial for outerplanar graphs. Furthermore, deciding whether chi_CF(G)<= 2 is NP-complete for planar graphs G, but always true for outerplanar graphs. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs. For open neighborhoods, we show that every planar bipartite graph has a conflict-free coloring with at most four colors; on the other hand, we prove that for k in {1,2,3}, it is NP-complete to decide whether a planar bipartite graph has a conflict-free k-coloring. Moreover, we establish that any general} planar graph has a conflict-free coloring with at most eight colors.Comment: 30 pages, 17 figures; full version (to appear in SIAM Journal on Discrete Mathematics) of extended abstract that appears in Proceeedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 1951-196

    Coloring curves that cross a fixed curve

    Get PDF
    We prove that for every integer t1t\geq 1, the class of intersection graphs of curves in the plane each of which crosses a fixed curve in at least one and at most tt points is χ\chi-bounded. This is essentially the strongest χ\chi-boundedness result one can get for this kind of graph classes. As a corollary, we prove that for any fixed integers k2k\geq 2 and t1t\geq 1, every kk-quasi-planar topological graph on nn vertices with any two edges crossing at most tt times has O(nlogn)O(n\log n) edges.Comment: Small corrections, improved presentatio

    Applications of a new separator theorem for string graphs

    Get PDF
    An intersection graph of curves in the plane is called a string graph. Matousek almost completely settled a conjecture of the authors by showing that every string graph of m edges admits a vertex separator of size O(\sqrt{m}\log m). In the present note, this bound is combined with a result of the authors, according to which every dense string graph contains a large complete balanced bipartite graph. Three applications are given concerning string graphs G with n vertices: (i) if K_t is not a subgraph of G for some t, then the chromatic number of G is at most (\log n)^{O(\log t)}; (ii) if K_{t,t} is not a subgraph of G, then G has at most t(\log t)^{O(1)}n edges,; and (iii) a lopsided Ramsey-type result, which shows that the Erdos-Hajnal conjecture almost holds for string graphs.Comment: 7 page
    corecore