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a b s t r a c t

The intersection graph of a collection C of sets is the graph on
the vertex set C, in which C1, C2 ∈ C are joined by an edge if
and only if C1 ∩ C2 ≠ ∅. Erdős conjectured that the chromatic
number of triangle-free intersection graphs of n segments in the
plane is bounded from above by a constant. Here we show that
it is bounded by a polylogarithmic function of n, which is the
first nontrivial bound for this problem. More generally, we prove
that for any t and k, the chromatic number of every Kk-free
intersection graph of n curves in the plane, every pair ofwhich have
at most t points in common, is at most (ct

log n
log k )

c log k, where c is an
absolute constant and ct only depends on t .We establish analogous
results for intersection graphs of convex sets, x-monotone curves,
semialgebraic sets of constant description complexity, and sets
that can be obtained as the union of a bounded number of sets
homeomorphic to a disk.

Using a mix of results on partially ordered sets and planar
separators, for large k we improve the best known upper bound
on the number of edges of a k-quasi-planar topological graphwith n
vertices, that is, a graph drawn in the plane with curvilinear edges,
no k of which are pairwise crossing. As another application, we
show that for every ε > 0 and for every positive integer t , there
exist δ > 0 and a positive integer n0 such that every topological
graph with n ≥ n0 vertices, at least n1+ε edges, and no pair of
edges intersecting in more than t points, has at least nδ pairwise
intersecting edges.
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1. Introduction

For a graph G, the independence number α(G) is the size of the largest independent set, the clique
number ω(G) is the size of the largest clique, and the chromatic number χ(G) is the minimum number
of colors needed to properly color the vertices of G. To compute or to approximate these parameters
is a notoriously difficult problem [20,37,24]. In this paper, we study some geometric versions of the
question.

The intersection graph G(C) of a family C of sets has vertex set C and two sets in C are adjacent
if they have nonempty intersection. The independence number of an intersection graph G(C) is
often referred to, in the literature, as the packing number of C. It is well known that the problem
of computing this parameter, even for intersection graphs of families of very simple geometric
objects such as unit disks or axis-aligned unit squares, is NP-hard [19,26]. Due to applications in VLSI
design [25], data mining [9,10,27], map labeling [3], and elsewhere, these questions have generated a
lot of research. In particular, starting with the work of Hochbaum and Maas [25], several polynomial
time approximation schemes (PTAS) have been found in special settings [3,9,11].

Motivated by applications in graph drawing and in geometric graph theory, here we establish
lower bounds for the independence numbers of intersection graphs of families of curves in the
plane. Following [43], some algorithmic aspects of this approach were explored in [4]. Obviously,
α(G) ≥ n/χ(G) holds for every graph Gwith n vertices. Therefore, any upper bound on the chromatic
number yields a lower bound for the independence number. It will be more convenient to formulate
our results in this more general setting.

The study of the chromatic number of intersection graphs of segments and their relatives in
the plane was initiated by Asplund and Grünbaum [7] almost half a century ago. Since then, this
topic has received considerable attention [5,23,28,31–33,38,46]. In particular, a classical question
of Erdős [22,32,38] asks whether the chromatic number of all triangle-free intersection graphs of
segments in the plane is bounded by a constant. It is known that there exist such graphs with
chromatic number 8. In the first half of this paper, we provide upper bounds on the chromatic number
of intersection graphs of families of curves in the plane in terms of their clique number. In particular,
we prove that every triangle-free intersection graph of n segments in the plane has chromatic number
at most polylogarithmic in n. Most of our results generalize to intersection graphs of families of
planar regions whose boundaries do not cross in too many points (e.g., semialgebraic sets of bounded
description complexity) and to families of convex bodies in the plane; see Section 1.1.

In the second half of the paper, we apply our results to improve on the best known upper bounds
on the maximum number of edges of k-quasi-planar topological graphs. The terminology and the
necessary preliminaries will be explained in Section 1.2.

1.1. Upper bounds on the chromatic number of intersection graphs

A (simple) curve in the plane is the range of a continuous (bijective) function f : I → R2 whose
domain is a closed interval I ⊂ R. A family of curves in the plane is t-intersecting if every pair of
curves in the family intersect in at most t points.

The following theorem gives an upper bound on the chromatic number of the intersection graph
of any t-intersecting family of n curves with no clique of order k.

Theorem 1.1. If G is a Kk-free intersection graph of a t-intersecting family of n curves in the plane, then

χ(G) ≤


ct
log n
log k

c log k

,

where ct is a constant in t and c is an absolute constant.

In other words, for every family C of n curves in the plane with no pair intersecting in more than

t points and no k curves pairwise crossing, each curve can be assigned one of at most

ct

log n
log k

c log k
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colors such that no pair of curves of the same color intersect. Here, and throughout the paper, unless
it is indicated otherwise, all logarithms are assumed to be to the base 2.

Taking δ such that ϵ = cδ log ct
δ
and noting that α(G) ≥

n
χ(G)

for every graph Gwith n vertices, we
have the following corollary of the previous theorem.

Corollary 1.2. For each ϵ > 0 and positive integer t, there is δ = δ(ϵ, t) > 0 such that if G is an
intersection graph of a t-intersecting family of n curves in the plane, then G has a clique of size at least nδ

or an independent set of size at least n1−ϵ .

This is in strong contrast with general graphs, as Erdős [12] showed that for each integer n ≥ 2
there is a graph on n vertices which does not have a clique or independent set with more than 2 log n
vertices (in fact, a random graph on n vertices almost surely has this property).

A Jordan region is a subset of the plane that is homeomorphic to a closed disk. We say that a Jordan
region γ contains another Jordan region β if β lies in the interior of γ . Define an r-region to be a subset
of the plane that is the union of at most r Jordan regions. Call these (at most r) Jordan regions of an
r-region the components of the r-region.

A crossing between a pair of Jordan regions is either a crossing between their boundaries or a
containment between them. A family of Jordan regions is t-intersecting if the boundaries of any two
of them intersect in at most t points. A family of r-regions is t-intersecting if the family of all of their
components is t-intersecting.

By slightly fattening curves in the plane, it is easy to see that if G is an intersection graph of a t-
intersecting family of curves, then G is also an intersection graph of a 4t-intersecting family of Jordan
regions. Theorem 1.1 and its proof generalize in a straightforward manner to intersection graphs of
t-intersecting families of Jordan regions. With a little more effort, we will generalize Theorem 1.1 to
intersection graphs of t-intersecting families of r-regions.

Theorem 1.3. If G is a Kk-free intersection graph of a t-intersecting family of n r-regions, then

χ(G) ≤


ct,r

log n
log k

cr log k

,

where ct,r only depends on t and r and c is an absolute constant.

A semialgebraic set in Rd is the locus of points that satisfy a given finite Boolean combination of
polynomial equations and inequalities in the d coordinates. The description complexity of such a set S
is the minimum κ such that there is a representation of S with dimension d at most κ , and with at
most κ equations and inequalities, each with degree at most κ (see [8]).

Asmentioned in [17], every semialgebraic set in the plane of constant description complexity is the
intersection graph of a t-intersecting family of r-regions, where r and t depend only on the description
complexity. Therefore, we have the following corollary of Theorem 1.3.

Corollary 1.4. If G is a Kk-free intersection graph of a family of n ≥ k2 semialgebraic sets in the plane of
description complexity d, then

χ(G) ≤


log n
log k

cd log k

,

where cd is a constant that only depends on d.

A curve in the plane is x-monotone if every vertical line intersects it in at most one point.
Equivalently, an x-monotone curve is the curve of a continuous function defined on an interval. A
pair of convex sets or x-monotone curves can have arbitrarily many intersection points between their
boundaries. Theorems 1.5 and 1.7 below are similar to Theorem 1.1, but for intersection graphs of
convex sets and x-monotone curves, respectively.
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Theorem 1.5. If G is a Kk-free intersection graph of n convex sets in the plane, then

χ(G) ≤


c
log n
log k

13 log k

,

where c is an absolute constant.

Taking δ such that ϵ = 13δ log c
δ
and noting that α(G) ≥

n
χ(G)

for every graph G with n vertices,
we have the following corollary of the previous theorem.

Corollary 1.6. For each ϵ > 0 there is δ = δ(ϵ) > 0 such that every intersection graph of n convex sets
in the plane has a clique of size at least nδ or an independent set of size at least n1−ϵ .

A result of a similar flavor was obtained by Larman et al. [34]. They showed that for every positive
integer k, every family of n convex sets in the plane has an independent set of size k or a clique of size
at least n/k4. Notice that Corollary 1.6 only applies in the case when the clique number is not too large
while the result of Larman et al. [34] only applies when the independence number is not too large.

Theorem 1.7. If G is a Kk-free intersection graph of n x-monotone curves in the plane, then

χ(G) ≤ (c log n)15 log k ,

where c is an absolute constant.

In Theorems 1.5 and 1.7, the constant factors in the exponent can be improved by more careful
calculation.

1.2. Applications to topological graphs

We next discuss a few applications of the above results to graph drawings, beginning with some
pertinent background. A topological graph is a graph drawn in the plane so that its vertices are
represented by points and its edges are represented by curves connecting the corresponding points
such that no curve passes through a point representing a vertex different from its endpoints. A
topological graph is simple if any pair of its edges have at most one point in common. A geometric
graph is a (simple) topological graph whose edges are represented by straight-line segments.

It follows by a simple application of Euler’s polyhedral formula that every planar graph of n vertices
has at most 3n − 6 edges. A topological graph is called k-quasi-planar if no k edges pairwise cross.
In particular, a 2-quasi-planar graph is just a planar graph. According to an old conjecture (see,
e.g., Problem 6 in [40]), for any positive integer k, there is a constant Ck such that every k-quasi-planar
topological graph on n vertices has at most Ckn edges. In the case where k = 3, Agarwal et al. [2]
proved this conjecture for simple topological graphs. Later Pach et al. [41] extended the result for all
topological graphs. More recently, Ackerman [1] has proved the conjecture for k = 4.

There also has been progress in the general case. Pach et al. [42] proved that every k-quasi-planar
simple topological graph on n vertices has at most ckn(log n)2k−4 edges. Plugging into the proof the
result of Agarwal et al. [2], this upper bound can be improved to ckn(log n)2k−6. Analogously, using the
result of Ackerman [1] instead, we obtain ckn(log n)2k−8. Valtr [49] proved that every k-quasi-planar
geometric graph on n vertices has atmost ckn log n edges. In [50], he extended this result to topological
graphs with edges drawn as x-monotone curves. Pach et al. [41] proved that every k-quasi-planar
topological graph with n vertices has at most ckn(log n)4k−12 edges, and by the result of Ackerman [1],
this can be improved to ckn(log n)4k−16.

The following theorem improves the exponent in the polylogarithmic factor from O(k) to O(log k)
for simple topological graphs.

Theorem 1.8. Every k-quasi-planar topological graph with n vertices and no pair of edges intersecting in

more than t points has at most n

ct

log n
log k

c log k
edges, where c is an absolute constant and ct only depends

on t.
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It was shown in [6] that every complete geometric graph on n vertices contains at least
√
n/12

pairwise crossing edges. It was noted in [44] that the result of Pach et al. [42] implies that every
complete simple topological graph has at least c log n

log log n pairwise crossing edges. Pach and Tóth [44]
conjectured that there is δ > 0 such that every complete simple topological graph on n ≥ 5 vertices
has at least nδ pairwise crossing edges. Our next theorem settles this conjecture and generalizes the
result of Aronov et al. [6].

Theorem 1.9. For every ϵ > 0 and every integer t > 0, there exist δ > 0 and a positive integer n0 with
the following property. If G is a topological graph with n ≥ n0 vertices and at least n1+ϵ edges such that
no pair of them intersect in more than t points, then G has nδ pairwise crossing edges.

Notice that every lower bound on the independence number (and, hence, every upper bound on the
chromatic number) of intersection graphs of curves yields an upper bound on the number of edges
of a topological graph. To see this, consider a topological graph G with n vertices. Delete from each
edge a small neighborhood around its endpoints, and take the intersection graph G′ of the resulting
curves. Any independent set in G′ corresponds to a planar subgraph of G, so that the independence
number of G′ is at most 3n − 6. Therefore, Theorem 1.8 follows from Theorems 1.1 and 1.9 follows
fromCorollary 1.2. In the sameway, the conjecture that themaximumnumber of edges of a topological
graph with n vertices and no k pairwise crossing edges is Ok(n) would be a direct consequence of the
following general conjecture.

Conjecture 1.10. For every positive integer k, there is ck > 0 such that every Kk-free intersection graph
of curves in the plane has an independent set of size ckn.

These results suggest that the extra restriction that curves connect vertices of a graph may be
unnecessary for many of the problems in geometric graph theory.

The following result improves the exponent in the polylogarithmic factor in the upper bound for
topological graphs from O(k) to O(log k).

Theorem 1.11. Every k-quasi-planar topological graph with n vertices has at most n (log n)c log k edges,
where c is an absolute constant.

We have the following immediate corollary.

Corollary 1.12. For each ϵ > 0, there is δ > 0 and n0 such that every topological graph with n ≥ n0
vertices and at least n1+ϵ edges has nδ/ log log n pairwise crossing edges.

A string graph is an intersection graph of curves in the plane. An incomparability graph of a partially
ordered set P has vertex set P and two elements of P are adjacent if and only if they are incomparable
in P . The proof of Theorem 1.11 uses a recent result of the authors showing that string graphs and
incomparability graphs are closely related.

In Section 2,we prove Theorems 1.1 and 1.3. In Section 3,we establish a separator theoremwhich is
used in the proof of Theorems 1.5 and 1.7. In Section 4, we establish Theorems 1.5 and 1.7. In Section 5,
we prove Theorem 1.11.

2. Proofs of Theorems 1.1 and 1.3

The proof of Theorem1.1 uses a separator theoremdue to the authors [14] (see Corollary 2.2 below)
and a Turán-type theorem from [17] on intersection graphs of curves (see Lemma 2.3).

A separator for a graph G = (V , E) is a subset V0 ⊂ V such that there is a partition V = V0 ∪V1 ∪V2
with |V1|, |V2| ≤

2
3 |V | and no vertex in V1 is adjacent to any vertex in V2. The well-known separator

theoremby Lipton and Tarjan [35] states that every planar graphwith n vertices has a separator of size
O(

√
n). By a beautiful theoremof Koebe [29], every planar graph can be represented as the intersection

graph of closed disks in the plane with disjoint interiors. Miller et al. [39] found a generalization of
the Lipton–Tarjan separator theorem to higher dimensions. They proved that the intersection graph
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of any family of n balls in Rd such that no k of them have a point in common has a separator of size
O(dk1/dn1−1/d) (see also [48]).

Fox and Pach [14] established the following generalization of the separator theorems of Lipton and
Tarjan and of Miller et al. [39] in two dimensions.

Theorem 2.1 ([14]). If C is a finite family of Jordan regions with a total of m crossings, then the
intersection graph of C has a separator of size O(

√
m).

The following result is a corollary of Theorem 2.1.

Corollary 2.2 ([14]). If C is a finite family of curves in the plane with a total of m crossings, then the
intersection graph of C has a separator of size O(

√
m).

The constant in the big-O notation in both Theorem 2.1 and Corollary 2.2 can easily be taken to be
100, though a detailed analysis of the proof gives a much better constant.

A bi-clique is a complete bipartite graphwhose two parts differ in size by atmost one. The following
theorem is the second main tool in the proof of Theorem 1.1.

Lemma 2.3 ([17]). For all ϵ > 0, every intersection graph of n curves in the plane with at least ϵn2 edges
and no pair of curves intersecting in more than t points contains a bi-clique of order at least ctϵcn, where
c is an absolute constant and ct > 0 depends only on t.

A family of graphs is said to be hereditary if it is closed by taking induced subgraphs. A family of
graphs F is normal if every graph G ∈ F is a proper induced subgraph of another graph G′

∈ F . For
any family F of graphs, let αF (n) = minG∈F ,v(G)=n α(G) and let χF (n) = maxG∈F ,v(G)=n χ(G). For
example, if F is a hereditary family and for every integer n there is a graph in F with clique number
at least n, then αF (n) = 1 and χF (n) = n. If F is a hereditary normal family, then it is easy to show
that αF and χF are monotonically increasing, subadditive functions of n. We have αF (n) ≥

n
χF (n) ,

as α(G) ≥
n

χ(G)
holds for every graph G with n vertices. The following lemma essentially shows that

the last inequality is tight apart from a logarithmic factor, that is, n log n
χF (n) is roughly an upper bound on

αF (n). More precisely, we have the following lemma.

Lemma 2.4. If F is a hereditary normal family of graphs, then for all n, χF (n) ≤


n

αF (n)


⌈log n⌉.

Proof. Let G ∈ F with n vertices. For simplicity, we will assume that n = 2i is a perfect power of
2, although the proof works as well for n not a power of 2. The proof is by a straightforward greedy
algorithm: take amaximum independent set of vertices inG and color its elementswith the first color.
Then pick a maximum independent set from the graph induced by the uncolored vertices and color
its elements with the second color, and continue picking out maximum independent sets from the
remaining uncolored vertices until all vertices are colored.

We first give an upper bound on the number of colors used to color half of the vertices of G. Each
of the color classes used to color the first half of the vertices of G has size at least αF (n/2). Hence, the
number of colors used in coloring half of the vertices of G is at most ⌈

n/2
αF (n/2)⌉ ≤ ⌈

n
αF (n)⌉, where the

inequality follows from subadditivity of αF . Therefore, to color all but at most n/2k vertices of G, we
use at most

k−1
j=0 ⌈

n/2j

αF (n/2j)
⌉ ≤ k⌈ n

αF (n)⌉ colors. Taking k = log n, we can properly color all vertices
using at most ⌈n/αF (n)⌉ log n colors. �

By Lemma 2.4, to establish Theorem 1.1, it suffices to prove the following result. Lipton and
Tarjan [36], using their separator theorem for planar graphs and a divide and conquer approach,
established an approximation algorithm for the independent set problem in planar graphs. The
following theorem uses an elaboration of this approach.
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Theorem 2.5. If G = (V , E) is a Kk-free intersection graph of a t-intersecting family of n curves in the
plane, then

α(G) ≥ n

ct
log n
log k

−c log k

,

where c is an absolute constant and ct only depends on t.
Proof. Let S0 = {V } be the family consisting of a single set, V . At step i (i = 1, 2, . . .), for each
W ∈ Si−1 with |W | = 1, we have W ∈ Si, and we replace each W ∈ Si−1 satisfying |W | ≥ 2 by either
one or two subsets of W such that the resulting family Si consists of pairwise disjoint subsets of V
and no edge of G connects two vertices belonging to distinct members W ′,W ′′

∈ Si. We proceed as
follows.

Let ϵ = 10−8t−1


log k
log n

3
. If the subgraph of G induced by W ∈ Si−1 has at least ϵ|W |

2 edges,
then apply Lemma 2.3 to obtain disjoint subsets W1 and W2 with |W1| = |W2| ≥ ctϵc

|W | such that
every vertex in W1 is adjacent to every vertex in W2. We may assume without loss of generality that
the clique number of the subgraph of G induced by W1 is at most the clique number of the subgraph
induced byW2, so that the clique number of the subgraph induced byW1 is at most half of the clique
number of the subgraph of G induced byW . In this case, in Si we replaceW by W1.

If the subgraph of G induced by W has fewer than ϵ|W |
2 edges, then apply Corollary 2.2 to obtain

two disjoint subsetsW1,W2 ⊂ W such that

|W | − |W1| − |W2| ≤ 100

tϵ|W |2 = 100

√
tϵ|W |,

|W1|, |W2| ≤ 2|W |/3, and no vertex in W1 is adjacent to any vertex in W2. In this case, we replace
W ∈ Si−1 by W1 and W2.

Following this procedure, we build a tree of subsets of V , with V being its root, so that the vertices
of the tree at height i are the members of Si. Any vertex W of the tree with |W | = 1 is a leaf, and any
vertex W of the tree with |W | ≥ 2 has either one or two children, which are subsets of W . Any path
in this tree connecting the root V to a leaf has fewer than log2 k nodes W with at least ϵ|W |

2 edges;
each of these nodes has precisely one child. This is because each W with one child has the property
that the clique number of the child is at most a half of the clique number ofW . Since the size of a child
Wi is at most 2/3 times the size of its parentW , the height of the tree is at most log3/2 n. The union of
the leaves of this tree is therefore an independent set in G of order at least

(1 − 100t1/2ϵ1/2)log3/2 n(ctϵc)log kn ≥ 4−100t1/2ϵ1/2 log3/2 n(ctϵc)log kn

≥ k−1/10

10−3(t−1ct)1/3

log k
log n

3c log k

n,

where the first inequality uses the fact that 1 − x ≥ 4−x holds for 0 ≤ x ≤ 1/2. This completes the
proof, noting that for Theorem 2.5, we have to pick ct and c different from the constants ct and c that
we used from Lemma 2.3. �

The proof of Theorem1.3 is a variant of the above argument.Weneed the following straightforward
generalization of Lemma 2.3.

Lemma 2.6 ([17]). The intersection graph of any t-intersecting family of n Jordan regions with at least
ϵn2 edges contains a bi-clique of size at least ctϵcn, where c is an absolute constant and ct > 0 depends
only on t.

By Lemma 2.4, to prove Theorem 1.3, it suffices to establish the following result.

Theorem 2.7. If G = (V , E) is a Kk-free intersection graph of a t-intersecting family of nr-regions, then

α(G) ≥ n

ct,r

log n
log k

−cr log k

,

where c is an absolute constant and ct,r depends only on t and r.
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Let It(n, k, r) be the minimum of α(G) taken over every Kk-free graph G that is an intersection
graph of a t-intersecting family of at least n r-regions. The proof of Theorem 2.7, which gives a lower
bound on It(n, k, r), is obtained by triple induction on n, k, and r . The proof of the nontrivial base case
r = 1 is essentially identical to the proof of Theorem 1.1, except that we use Lemma 2.6 instead of
Lemma 2.3 and Theorem 2.1 instead of Corollary 2.2. The other base cases, which are trivial, are when
n = 1 (in which case It(1, k, r) = 1), and when k = 2 (in which case It(n, 2, r) = n). The induction is
then straightforward, using the following lemma.

Lemma 2.8. For every positive integer t, there are constants ct > 0 and c such that the following is true.
For any δ > 0 and for any positive integers n, k, r, at least one of the following three inequalities hold.
1. It(n, k, r) ≥ It(ct r−cδcn, ⌈k/2⌉, r).
2. It(n, k, r) ≥ It(a, k, r) + It(b, k, r) where a + b ≥ n − 200δ1/2rt1/2n and a, b ≤ (1 −

1
3r )n.

3. It(n, k, r) ≥ It(n1, k, i) where n1 = It(n2, k, r − i), 1 ≤ i ≤ r − 1, and n2 = ⌈100δ1/2t1/2n⌉.

Proof. Let G = (V , E) be a Kk-free intersection graph of a t-intersecting family of n r-regions with
independence number α(G) = It(n, k, r). Let ϵn2 be the number of edges of G. LetC denote the family
of all the components, so |C| ≤ rn.

Case 1. ϵ ≥ δ. The family C has at most rn Jordan regions and at least ϵn2 intersecting pairs, so
applying Lemma 2.6, the intersection graph G(C) contains a bi-clique of size h ≥ ct(ϵ/r2)cn. Then G
contains a bi-clique of size at least h/r . The induced subgraph of at least one of the two vertex classes
of this bi-clique is K⌈k/2⌉-free. In this case, with a different value of c , the first of the three inequalities
is satisfied.

Case 2. ϵ < δ. By Theorem 2.1, there are disjoint subfamilies C1, C2 of C with |C1|, |C2| ≤
2
3n,

|C| − |C1| − |C2| ≤ 100
√

ϵr2tn2 < 100δ1/2rt1/2n,

and no Jordan region in C1 intersects any Jordan region in C2. For 0 ≤ i ≤ r , let Vi ⊂ V consist of all
those r-regions in V that have all of their components inC1 ∪C2 and exactly i components inC1. Note
that |V \

r
i=0 Vi| < 100δ1/2rt1/2n.

Case 2a. There is i ∈ {1, . . . , r −1} such that |Vi| ≥ 100δ1/2t1/2n. In this case, the components of Vi
in C1 form a t-intersecting family of i-regions. So there is a subfamily V ′

i ⊂ Vi of n1 := It(|V1|, k, i)r-
regions such that no pair of them have intersecting components in C1. Furthermore, there exists a
subfamily V ′′

i ⊂ V ′

i of It(n1, k, r − i)r-regions in Vi such that no pair of them have intersecting
components in C2. Hence, these r-regions form an independent set of size It(n1, k, r − i) in the
intersection graph.

Case 2b. |Vi| < 100δt1/2n for i ∈ {1, . . . , r − 1}. Since |Ci| ≤
2
3 |C| for i ∈ {1, 2}, then |V0| and |Vr |

each have cardinality atmost (1−
1
3r )n. Notice that every r-region in V0 is disjoint from every r-region

in Vr and |V0| + |Vr | ≥ n − 200δ1/2t1/2rn. Letting a = |V0| and b = |Vr |, we obtain an independent
set of size at least It(a, k, r) + It(b, k, r). �

Fixing δ = 10−8t−1r−4(
log k
log n )

3, applying triple induction on n, k, and r , using Lemma 2.8, we arrive
at Theorem 2.7, and hence also at Theorem 1.3.

3. A separator theorem for outerstring graphs

A family C of curves in the plane is said to be grounded if there is a closed (Jordan) curve γ such
that every member of C has one endpoint on γ and the rest of the curve lies in the exterior of γ . The
intersection graph of a collection of grounded curves is called an outerstring graph.

The members of a family C of n grounded curves can be cyclically labeled in a natural way,
according to the order of the endpoints of the curves along the ground γ . Start by assigning the label
0 to any member of C, and then proceed to label the curves clockwise, breaking ties arbitrarily, so
that the (i+ 1)-th member of C has label i ∈ Z. Define the distance d(i, j) between a pair of grounded
curves in C as the cyclic distance between their labels i, j ∈ Z. That is, let

d(i, j) := min(|i − j|, n − |i − j|).
Let [i, j] denote the cyclic interval of elements {i, i + 1, . . . , j}.
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Fig. 1. On the left: there are two curves, Ca and Cb , whose cyclic distance along L is at least n/3. On the right: the maximum
distance between any two arcs is less than n/3.

In this section, we prove the following separator theorem for outerstring graphs. We then show
that this result is best possible apart from the constant factor. In the next section, we will use this
separator theorem to prove Theorems 1.5 and 1.7.

Theorem 3.1. Every outerstring graph with m edges and maximum degree ∆ has a separator of size at
most 4min(∆,

√
m).

Notice that the upper bound on the size of the separator is theminimum of 4∆ and 4
√
m. We first

prove the following lemma, and then deduce Theorem 3.1. The idea of the proof of Lemma 3.2 was
also used in [16].

Lemma 3.2. Every outerstring graph with maximum degree ∆ has a separator of size at most 4∆.

Proof. Let G be the outerstring graph of a collectionC = {C0, . . . , Cn−1} of grounded curves, with this
cyclic labeling.Wemay assumewithout loss of generality that every curve intersects at least one other
curve, that is, G has no isolated vertices. Let (Ca, Cb) be a pair of intersecting curves whose distance is
maximum.

Case 1. d(a, b) ≥
n
3 ; see the left-hand side of Fig. 1. Let V0 be the set of curves that intersect at least

one of the curves Ca or Cb. Since Ca and Cb each intersect at most ∆ other curves, V0 has at most 2∆
elements. Let V1 consist of all curves in C \ V0 whose labels belong to the cyclic interval [a, b], and let
V2 consist of all curves inC \V0 whose labels belong to [b, a]. Notice that |V0| ≤ 2∆, |V1|, |V2| ≤

2
3 |C|,

and no curve in V1 intersects any curve in V2 because γ ∪Ca∪Cb contains a Jordan curve that separates
V1 from V2. Therefore, G has a separator of size at most 2∆.

Case 2. d(a, b) < n
3 ; see the right-hand side of Fig. 1. Let c ∈ Zn be defined by c ≡ b + ⌈

n
3⌉ (mod

n). We split this case into two subcases.
Case 2a. No curve Ce with e ∈ (b, c) intersects a curve Cf with f ∈ [c, a]. Let V0 denote the set of

curves in C that intersect at least one of the curves Ca, Cb. Since each member of C intersects at most
∆ other curves, V0 has at most 2∆ elements. Let V1 consist of all curves in C \ V0 whose labels belong
to the cyclic interval [a, b], let V2 consist of all curves in C \ V0 whose labels belong to (b, c), and let
V3 consist of all curves in C \ V0 whose labels belong to [c, a). No curve in V1 intersects a curve in
V2 ∪ V3 because γ ∪ Ca ∪ Cb contains a Jordan curve that separates V1 from V2 ∪ V3. Hence, |V0| ≤ 2∆,
|Vi| ≤

2
3 |C| for i ∈ {1, 2, 3}, and, for 1 ≤ i < j ≤ 3, no curve in Vi intersects any curve in Vj. Therefore,

by combining the Vi’s with i ≥ 1 into two sets, each of cardinality at most 2|C|/3, the graph G has a
separator of size at most 2∆.

Case 2b. There is a curve Ce with e ∈ (b, c) that intersects a curve Cf with f ∈ [c, a]. Without
loss of generality, we suppose e ∈ (b, c) and f ∈ [c, a] are such that Ce intersects Cf and d(e, f ) is
as large as possible. Let V0 denote the set of curves in C that intersect at least one of the curves Ca,
Cb, Ce, or Cf . Since each member of C intersects at most ∆ other curves, V0 has at most 4∆ elements.
Let V1 consist of all curves in C \ V0 whose labels belong to the cyclic interval [a, b], let V2 consist of
all curves in C \ V0 whose labels belong to (b, e], let V3 consist of all curves in C \ V0 whose labels
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belong to (e, f ], and let V4 consist of all curves in C \V0 whose labels belong to (f , a]. Clearly, we have
|V0| ≤ 4∆, |Vi| ≤

2
3 |C| for i ∈ {1, 2, 3, 4}, and, for 1 ≤ i < j ≤ 4, no curve in Vi intersects any curve

in Vj. Therefore, by combining the Vi’s with i ≥ 1 into two sets, each of cardinality at most 2|C|/3, the
graph G has a separator of size at most 4∆. �

Proof of Theorem 3.1. Let G be an outerstring graph withm edges. Delete vertices of G of maximum
degree one by one until the remaining induced subgraphG′ hasmaximumdegree atmost∆ :=

√
m/2.

LetD denote the set of deleted vertices. The cardinality ofD is atmostm/∆ = 2
√
m. By Lemma3.2,G′

has a separator V ′

0 of cardinality at most 4∆ = 2
√
m. Then the set V0 := D ∪V ′

0, which has cardinality
at most 4

√
m, is a separator for G. �

We now discuss two constructions which together show that apart from a constant factor of
4, Theorem 3.1 is best possible as a function of the maximum degree and number of edges of the
outerstring graph. A split graph is a graph whose vertex set can be partitioned into a clique and an
independent set. It is an easy exercise to show that every split graph is an outerstring graph. It is
also straightforward to check that for each ϵ > 0, there is Cϵ such that if Cϵn ≤ m ≤ n2/18, then
there is a split graph G with n vertices and at most m edges such that every separator for G has size
at least (1 − ϵ)

√
2m. Indeed, the desired split graph can be chosen, with high probability, to be the

random split graph whose vertex set V has n vertices and a partition V = A ∪ B into a clique A and
an independent set B with |A| = ⌈(1 − ϵ/2)

√
2m⌉, and for each vertex v ∈ A, the set of neighbors of

v in B is a random subset of ⌈ϵ
√
m/4⌉ vertices from B. It is also easy to check that for ∆ even and at

most n/3, the Cayley graph with vertex set Zn and two vertices are adjacent if and only if they have
cyclic distance at most ∆/2 is an outerstring graph and its smallest separator has size ∆. These two
constructions demonstrate that Theorem 3.1 is tight up to the constant factor.

Recall that the incomparability graph G = GP,< of a partially ordered set (P, <) is the graph with
vertex set P in which two vertices are connected by an edge if and only if they are incomparable by the
relation <. Since every incomparability graph is an outerstring graph (see [21,45,47]), it follows that
every incomparability graph G with maximum degree ∆ and m edges has a separator of size at most
4min(∆,

√
m). This can easily be improved upon as the separator size in an incomparability graph

can be bounded by a constant times the average degree.

Proposition 3.3. Every incomparability graph with n vertices and m edges has a separator of size at most
6m/n.

Proof. Let G = GP,< be an incomparability graph with n vertices and m edges. Pick any linear
extension of the partial order <. Suppose for simplicity that n is divisible by 3, and let P1, P2, P3 ⊂ P
denote the sets of vertices belonging to the lower, middle, and upper thirds of P with respect to this
linear ordering. Let v be an element of P2 whose neighborhood N(v) is as small as possible.

Obviously, we have
n
3
|N(v)| ≤


w∈P2

|N(w)| ≤


w∈P

|N(w)| = 2m,

so that |N(v)| ≤ 6m/n. On the other hand, the set N(v) is a separator for G. To see this, it is enough to
notice that any connected component of G \ N(v), other than the component consisting of the single
vertex v, lies either entirely below v in the linear extension of < or entirely above it. Indeed, for any
vertices w, w′

∈ V (G) \ N(v) such that w lies below v and w′ lies above it, we have w < z < w′,
so that ww′

∉ E(G). Therefore, any connected component of G \ N(v) belongs either to P1 ∪ P2 or to
P2 ∪ P3. In either case, it has at most 2n/3 elements. �

4. Proofs of Theorems 1.5 and 1.7

The following analogues of Lemma 2.3 for intersection graphs of convex sets and x-monotone
curves in the plane were obtained by the authors and Cs. Tóth in [18].

Lemma 4.1 ([18]). There is a constant c > 0 such that every intersection graph of n convex sets in the
plane with at least ϵn2 edges contains a bi-clique with at least cϵ2n vertices in each of its vertex classes.
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Lemma 4.2 ([18]). There is a constant c > 0 such that every intersection graph of n x-monotone curves
with at least ϵn2 edges contains a bi-clique with at least c ϵ2

log 1/ϵ
n

log n vertices in each of its vertex classes.

It was pointed out in [45], that a result of Fox [13] implies that the dependence on n in Lemma 4.2
is tight.

The proofs of Theorems 1.5 and 1.7 are so similar that we only include the proof of Theorem 1.5.
For the proof of Theorem 1.5, we may assume that the convex sets are closed convex polygons. This
is justified, since every intersection graph of finitely many convex sets in the plane is the intersection
graph of convex closed polygons, as observed in [18].

LetX(n, k) denote themaximumchromatic number over allKk-free intersection graphs of n convex
sets in the plane. Let V (n, k) denote the maximum chromatic number over all Kk-free intersection
graphs of n convex sets in the plane that each intersect the same vertical line L.

The following lemma relates V (n, k) and X(n, k).

Lemma 4.3. For all positive integers n and k, we have

X(n, k) ≤ X
n

2


, k


+ V (n, k).

Proof. Let C be a family of n convex polygons in the plane, and let x1 ≤ · · · ≤ xn denote the x-
coordinates of the leftmost points of the members of C. Let L be the vertical line x = x⌈

n
2 ⌉. Notice

that every convex set whose rightmost point has x-coordinate smaller than x⌈
n
2 ⌉ is disjoint from every

convex set whose leftmost point has x-coordinate larger than x⌈
n
2 ⌉. There are at most ⌊

n
2⌋ members

of C whose rightmost points have x-coordinates smaller than x⌈
n
2 ⌉ and at most ⌊

n
2⌋ members whose

leftmost points have x-coordinates larger than x⌈
n
2 ⌉. Hence, all members of C that do not intersect L

can be properly colored with X(⌊ n
2⌋, k) colors. The remaining members of C all intersect L, hence they

can be colored with V (n, k) colors. Thus, we have X(n, k) ≤ X(⌊ n
2⌋, k) + V (n, k). �

By iterating Lemma 4.3, we obtain

X(n, k) ≤

⌊log n⌋
i=0

V
 n

2i


, k


≤ (1 + log2 n)V (n, k).

LetG(n, k) denote themaximumchromatic number over allKk-free intersection graphs of n convex
sets in the plane that intersect a vertical line L and lie in the half-plane to the right of L.

Lemma 4.4. For all positive integers n and k, we have

V (n, k) ≤ G(n, k)2.

Proof. Let C = {C1, . . . , Cn} be a family of convex polygons that intersect a vertical line L : x = x0.
For 1 ≤ i ≤ n, let Li denote the intersection of Ci with the left half-plane {(x, y) : x ≤ x0}, and let
Ri denote the intersection of Ci with the right half-plane {(x, y) : x ≥ x0}. Let L = {L1, . . . , Ln} and
R = {R1, . . . , Rn}. Notice that the intersection graph of L can be properly colored with G(n, k) colors,
and the intersection graph of R can be properly colored with G(n, k) colors. Consider two proper
colorings c1 : L → {1, . . . ,G(n, k)} and c2 : R → {1, . . . ,G(n, k)} of the intersection graphs of L
and R. Assigning each convex set Ci, 1 ≤ i ≤ n, the color (c1(Li), c2(Ri)), we obtain a proper coloring
of C with G(n, k)2 colors. Hence, we have V (n, k) ≤ G(n, k)2. �

Every intersection graph of convex sets in the plane with the property that all of them intersect a
vertical line L and lie in the half-plane to the right of L is an outerstring graph. Therefore, to establish
the following lemma, wemay use the proof of Theorem 1.1, with the difference that Corollary 2.2 and
Lemma 2.3 have to be replaced by Theorem 3.1 and Lemma 4.1.

Lemma 4.5. There is a constant c > 0 such that G(n, k) ≤ (c log n
log k )

6 log k for all k and n with k ≤ n.

Putting together the last three lemmas, Theorem 1.5 follows.
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5. k-quasi-planar topological graphs

In [21], it is shown that every incomparability graph is a string graph. Recently, the authors have
proved the following theorem which implies that every dense string graph contain a dense subgraph
which is an incomparability graph.

Theorem 5.1 ([15]). There is a constant c1 such that for every collection C of n curves in the plane
whose intersection graph has ϵ|C|

2 edges, we can pick for each curve γ ∈ C a subcurve γ ′ such that
the intersection graph of {γ ′: γ ∈ C} has at least ϵc1 |C|

2 edges and is an incomparability graph. In
particular, every string graph on n vertices and ϵn2 edges has a subgraph with at least ϵc1n2 edges that is
an incomparability graph.

Theorem5.1 shows that string graphs and incomparability graphs are closely related. The following
result of the authors and Tóth shows that every dense incomparability graph contains a large balanced
complete bipartite graph.

Lemma 5.2 ([18]). Every incomparability graph I with n vertices and ϵn2 edges contains the complete
bipartite graph Kt,t with t ≥ c2 ϵ

log 1/ϵ
n

log n , where c2 is a positive absolute constant.

From Theorem 5.1 and Lemma 5.2, we have the following corollary.

Corollary 5.3. Every string graph with n vertices and ϵn2 edges contains the complete bipartite graph Kt,t
with t ≥ ϵc3 n

log n , where c3 is an absolute constant.

The bisection width b(G) of a graph G = (V , E) is the least integer for which there is a partition
V = V1 ∪ V2 such that |V1|, |V2| ≤

2
3 |V | and the number of edges between V1 and V2 is b(G). The pair-

crossing number pcr(G) of a graph G is the smallest number of pairs of edges that cross in a drawing
of G in the plane. For a graph G, let ssqd(G) =


v∈V (G) deg(v)2. We will use the following result of

Kolman and Matoušek [30].

Lemma 5.4 ([30]). Every graph G on n vertices satisfies

b(G) ≤ c4 log n


pcr(G) +


ssqd(G)


,

where c4 is an absolute constant.

Proof of Theorem 1.11. Define T (n, k) to be the maximum number of edges in a k-quasi-planar
topological graph with n vertices. We will prove by induction on n and k the upper bound

T (n, k + 1) ≤ n(log n)c5 log k

where c5 is a sufficiently large absolute constant, which implies Theorem 1.11.
Note that we have the simple bounds T (n, k) ≤

 n
2


, T (n, 1) = 0, and T (n, 2) = 3n − 6 for n ≥ 3.

The last bound is from the fact that every n-vertex planar graph has atmost 3n−6 edges. The induction
hypothesis is that if n′

≤ n and k′
≤ k and (n′, k′) ≠ (n, k), then T (n′, k′

+ 1) ≤ n′

log n′

c5 log k′ .
Let G = (V , E) be a k + 1-quasi-planar topological graph with n vertices and m = T (n, k + 1)

edges. Let F denote the intersection graph of the edge set of G, and let x denote the number of edges of
F , that is, the number of pairs of intersecting edges in G. Let y = 100c24 log4 n, where c4 is the absolute
constant in Lemma 5.4.

Case 1. x < m2

y . Note that x is an upper bound on the pair-crossing number of G. By Lemma 5.4,
there is a partition V = V1 ∪ V2 such that |V1|, |V2| ≤

2
3 |V |, and the number of edges between these

two sets satisfies

e(V1, V2) = b(G) ≤ c4(log n)
√

x +


ssqd(G)


.
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Note that by the convexity of the function f (z) = z2, we have ssqd(G) ≤
2m
n n2

= 2mn. If m < 2ny,
then we are done. Thus, we may assume thatm ≥ 2ny, and it follows that

√
x +


ssqd(G) ≤ 2my−1/2.

For i ∈ {1, 2}, the subgraph of G induced by Vi is also a k + 1-quasi-planar topological graph. Hence,

m ≤ T (|V1|, k + 1) + T (|V2|, k + 1) + e(V1, V2)

≤ T (|V1|, k + 1) + T (|V2|, k + 1) + 2cmy−1/2 log n.

Substituting in y = 100c21 log4 n, we have

m ≤


1 −

1
5 log n

−1

(T (|V1|, k + 1) + T (|V2|, k + 1)) .

Estimating T (|Vi|, k + 1) for i = 1, 2 by the bound guaranteed by the induction hypothesis, after
routine calculation we obtain that

T (n, k + 1) = m ≤


1 −

1
5 log n

−1 
|V1|(log |V1|)

c5 log k
+ |V2|(log |V2|)

c5 log k
≤ n(log n)c5 log k.

Case 2. x ≥
m2

y . So F , the intersection graph of the edge set of G, has x ≥
m2

y edges. Using the fact
that F is a string graph, Corollary 5.3 implies that F contains a Kt,t with

t ≥ y−c3
m

logm
≥ (log n)−c5m.

Hence, there are two sets of edges E1, E2 ⊂ E of size t such that every edge in E1 intersects every edge
in E2. Since G has no k+ 1 pairwise crossing edges, there is i ∈ {1, 2} such that the subgraph of Gwith
edge set Ei has no ⌊k/2⌋ + 1 pairwise intersecting edges. Therefore,

T (n, ⌊k/2⌋ + 1) ≥ t ≥ (log n)−c5T (n, k).

By the induction hypothesis, we have

T (n, k) ≤ (log n)c5T (⌊k/2⌋ + 1, n) ≤ (log n)c5n(log n)c5 log(⌊k/2⌋+1)
≤ n(log n)c5 log k,

completing the proof. �
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