6 research outputs found

    Tight bounds for planar strongly connected Steiner subgraph with fixed number of terminals (and extensions)

    Get PDF
    (see paper for full abstract) Given a vertex-weighted directed graph G=(V,E)G=(V,E) and a set T={t1,t2,
tk}T=\{t_1, t_2, \ldots t_k\} of kk terminals, the objective of the SCSS problem is to find a vertex set H⊆VH\subseteq V of minimum weight such that G[H]G[H] contains a ti→tjt_{i}\rightarrow t_j path for each i≠ji\neq j. The problem is NP-hard, but Feldman and Ruhl [FOCS '99; SICOMP '06] gave a novel nO(k)n^{O(k)} algorithm for the SCSS problem, where nn is the number of vertices in the graph and kk is the number of terminals. We explore how much easier the problem becomes on planar directed graphs: - Our main algorithmic result is a 2O(k)⋅nO(k)2^{O(k)}\cdot n^{O(\sqrt{k})} algorithm for planar SCSS, which is an improvement of a factor of O(k)O(\sqrt{k}) in the exponent over the algorithm of Feldman and Ruhl. - Our main hardness result is a matching lower bound for our algorithm: we show that planar SCSS does not have an f(k)⋅no(k)f(k)\cdot n^{o(\sqrt{k})} algorithm for any computable function ff, unless the Exponential Time Hypothesis (ETH) fails. The following additional results put our upper and lower bounds in context: - In general graphs, we cannot hope for such a dramatic improvement over the nO(k)n^{O(k)} algorithm of Feldman and Ruhl: assuming ETH, SCSS in general graphs does not have an f(k)⋅no(k/log⁡k)f(k)\cdot n^{o(k/\log k)} algorithm for any computable function ff. - Feldman and Ruhl generalized their nO(k)n^{O(k)} algorithm to the more general Directed Steiner Network (DSN) problem; here the task is to find a subgraph of minimum weight such that for every source sis_i there is a path to the corresponding terminal tit_i. We show that, assuming ETH, there is no f(k)⋅no(k)f(k)\cdot n^{o(k)} time algorithm for DSN on acyclic planar graphs.Comment: To appear in SICOMP. Extended abstract in SODA 2014. This version has a new author (Andreas Emil Feldmann), and the algorithm is faster and considerably simplified as compared to conference versio

    On Pairwise Graph Connectivity

    Get PDF
    A graph on at least k+1 vertices is said to have global connectivity k if any two of its vertices are connected by k independent paths. The local connectivity of two vertices is the number of independent paths between those specific vertices. This dissertation is concerned with pairwise connectivity notions, meaning that the focus is on local connectivity relations that are required for a number of or all pairs of vertices. We give a detailed overview about how uniformly k-connected and uniformly k-edge-connected graphs are related and provide a complete constructive characterization of uniformly 3-connected graphs, complementing classical characterizations by Tutte. Besides a tight bound on the number of vertices of degree three in uniformly 3-connected graphs, we give results on how the crossing number and treewidth behaves under the constructions at hand. The second central concern is to introduce and study cut sequences of graphs. Such a sequence is the multiset of edge weights of a corresponding Gomory-Hu tree. The main result in that context is a constructive scheme that allows to generate graphs with prescribed cut sequence if that sequence satisfies a shifted variant of the classical ErdƑs-Gallai inequalities. A complete characterization of realizable cut sequences remains open. The third central goal is to investigate the spectral properties of matrices whose entries represent a graph's local connectivities. We explore how the spectral parameters of these matrices are related to the structure of the corresponding graphs, prove bounds on eigenvalues and related energies, which are sums of absolute values of all eigenvalues, and determine the attaining graphs. Furthermore, we show how these results translate to ultrametric distance matrices and touch on a Laplace analogue for connectivity matrices and a related isoperimetric inequality

    Colorings of graphs, digraphs, and hypergraphs

    Get PDF
    Brooks' Theorem ist eines der bekanntesten Resultate ĂŒber GraphenfĂ€rbungen: Sei G ein zusammenhĂ€ngender Graph mit Maximalgrad d. Ist G kein vollstĂ€ndiger Graph, so lassen sich die Ecken von G so mit d Farben fĂ€rben, dass zwei benachbarte Ecken unterschiedlich gefĂ€rbt sind. In der vorliegenden Arbeit liegt der Fokus auf Verallgemeinerungen von Brooks Theorem fĂŒr FĂ€rbungen von Hypergraphen und gerichteten Graphen. Eine FĂ€rbung eines Hypergraphen ist eine FĂ€rbung der Ecken so, dass keine Kante monochromatisch ist. Auf Hypergraphen erweitert wurde der Satz von Brooks von R.P. Jones. Im ersten Teil der Dissertation werden Möglichkeiten aufgezeigt, das Resultat von Jones weiter zu verallgemeinern. KernstĂŒck ist ein Zerlegungsresultat: Zu einem Hypergraphen H und einer Folge f=(f_1,
,f_p) von Funktionen, welche von V(H) in die natĂŒrlichen Zahlen abbilden, wird untersucht, ob es eine Zerlegung von H in induzierte Unterhypergraphen H_1,
,H_p derart gibt, dass jedes H_i strikt f_i-degeneriert ist. Dies bedeutet, dass jeder Unterhypergraph H_i' von H_i eine Ecke v enthĂ€lt, deren Grad in H_i' kleiner als f_i(v) ist. Es wird bewiesen, dass die Bedingung f_1(v)+
+f_p(v) \geq d_H(v) fĂŒr alle v fast immer ausreichend fĂŒr die Existenz einer solchen Zerlegung ist und gezeigt, dass sich die AusnahmefĂ€lle gut charakterisieren lassen. Durch geeignete Wahl der Funktion f lassen sich viele bekannte Resultate ableiten, was im dritten Kapitel erörtert wird. Danach werden zwei weitere Verallgemeinerungen des Satzes von Jones bewiesen: Ein Theorem zu DP-FĂ€rbungen von Hypergraphen und ein Resultat, welches die chromatische Zahl eines Hypergraphen mit dessen maximalem lokalen Kantenzusammenhang verbindet. Der zweite Teil untersucht FĂ€rbungen gerichteter Graphen. Eine azyklische FĂ€rbung eines gerichteten Graphen ist eine FĂ€rbung der Eckenmenge des gerichteten Graphen sodass es keine monochromatischen gerichteten Kreise gibt. Auf dieses Konzept lassen sich viele klassische FĂ€rbungsresultate ĂŒbertragen. Dazu zĂ€hlt auch Brooks Theorem, wie von Mohar bewiesen wurde. Im siebten Kapitel werden DP-FĂ€rbungen gerichteter Graphen untersucht. Insbesondere erfolgt der Transfer von Mohars Theorem auf DP-FĂ€rbungen. Das darauffolgende Kapitel befasst sich mit kritischen gerichteten Graphen. Insbesondere werden Konstruktionen fĂŒr diese angegeben und die gerichtete Version des Satzes von HajĂłs bewiesen.Brooks‘ Theorem is one of the most known results in graph coloring theory: Let G be a connected graph with maximum degree d >2. If G is not a complete graph, then there is a coloring of the vertices of G with d colors such that no two adjacent vertices get the same color. Based on Brooks' result, various research topics in graph coloring arose. Also, it became evident that Brooks' Theorem could be transferred to many other coloring-concepts. The present thesis puts its focus especially on two of those concepts: hypergraphs and digraphs. A coloring of a hypergraph H is a coloring of its vertices such that no edge is monochromatic. Brooks' Theorem for hypergraphs was obtained by R.P. Jones. In the first part of this thesis, we present several ways how to further extend Jones' theorem. The key element is a partition result, to which the second chapter is devoted. Given a hypergraph H and a sequence f=(f_1,
,f_p) of functions, we examine if there is a partition of HH into induced subhypergraphs H_1,
,H_p such that each of the H_i is strictly f_i-degenerate. This means that in each non-empty subhypergraph H_i' of H_i there is a vertex v having degree d_{H_i'}(v

    Coloring Graphs with Constraints on Connectivity

    Get PDF
    A graph G has maximal local edge‐connectivity k if the maximum number of edge‐disjoint paths between every pair of distinct vertices x and y is at most k. We prove Brooks‐type theorems for k‐connected graphs with maximal local edge‐connectivity k, and for any graph with maximal local edge‐connectivity 3. We also consider several related graph classes defined by constraints on connectivity. In particular, we show that there is a polynomial‐time algorithm that, given a 3‐connected graph G with maximal local connectivity 3, outputs an optimal coloring for G. On the other hand, we prove, for urn:x-wiley:03649024:media:jgt22109:jgt22109-math-0001, that k‐colorability is NP‐complete when restricted to minimally k‐connected graphs, and 3‐colorability is NP‐complete when restricted to urn:x-wiley:03649024:media:jgt22109:jgt22109-math-0002‐connected graphs with maximal local connectivity k. Finally, we consider a parameterization of k‐colorability based on the number of vertices of degree at least urn:x-wiley:03649024:media:jgt22109:jgt22109-math-0003, and prove that, even when k is part of the input, the corresponding parameterized problem is FPT
    corecore