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Abstract. A graph on at least k + 1 vertices is said to have global con-
nectivity k if any two of its vertices are connected by k independent paths.
The local connectivity of two vertices is the number of independent paths
between those specific vertices. This dissertation is concerned with pairwise
connectivity notions, meaning that the focus is on local connectivity relations
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overview about how uniformly k-connected and uniformly k-edge-connected
graphs are related and provide a complete constructive characterization of
uniformly 3-connected graphs, complementing classical characterizations by
Tutte. Besides a tight bound on the number of vertices of degree three in
uniformly 3-connected graphs, we give results on how the crossing number
and treewidth behaves under the constructions at hand. The second central
concern is to introduce and study cut sequences of graphs. Such a sequence is
the multiset of edge weights of a corresponding Gomory-Hu tree. The main
result in that context is a constructive scheme that allows to generate graphs
with prescribed cut sequence if that sequence satisfies a shifted variant of the
classical Erdős-Gallai inequalities. A complete characterization of realizable
cut sequences remains open. The third central goal is to investigate the spec-
tral properties of matrices whose entries represent a graph’s local connectivi-
ties. We explore how the spectral parameters of these matrices are related to
the structure of the corresponding graphs, prove bounds on eigenvalues and
related energies, which are sums of absolute values of all eigenvalues, and
determine the attaining graphs. Furthermore, we show how these results
translate to ultrametric distance matrices and touch on a Laplace analogue
for connectivity matrices and a related isoperimetric inequality.
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Prof. Dr. Dragan Stevanović for reviewing my thesis and for introducing me
to the topic of connectivity matrices and their spectral properties.

I also owe a lot to my co-authors. Some cornerstones of this work would
not have been possible without the online math sessions I had with Dr. Uwe
Schwerdtfeger and Dr. Manuel Streicher during the pandemic. Particular
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Introduction

Connectivity properties belong to the fundamental concepts studied in graph
theory. We say that a graph on at least k + 1 vertices is k-connected if there
are k independent, meaning internally vertex disjoint, paths between any two
of its vertices. Likewise, a graph on at least two vertices is called k-edge-
connected if any two vertices are connected by k edge-disjoint paths. Such
concepts are often referred to as global connectivity measures, as they require
to be satisfied by all vertex pairs. While these concepts certainly provide im-
portant structural information about the strength of connectivity in a graph,
they often provide only a rather rough picture of a graph’s connectivity prop-
erties. For example, the graph in Figure 1 is connected, but not 2-connected,
because it contains a vertex of degree one. So the graph at hand has the
same connectivity as a tree, although, intuitively, we may say that both
graphs are far from being connected in a comparable way. From the perspec-
tive of network reliability, such a global connectivity measure corresponds to
a worst-case analysis. Only one pair of poorly connected vertices causes a low
global connectivity value. On the other hand, the local connectivity of two
vertices is defined as the number of independent paths between those specific
vertices. Likewise, the local edge-connectivity is the number of edge-disjoint
paths between two vertices. In Figure 1, the local connectivity of v and w is
one, the local edge-connectivity is two. Those are quite precise measures of
connectivity for the respective vertices. But, in general, it tells little about
the rest of the graph.
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Figure 1: A graph and its Gomory-Hu tree

This dissertation is concerned with what we call pairwise connectivity rela-
tions. This means that we are interested in local connectivities, but within
the questions we tackle, we typically require local connectivity relations for a
number of or all pairs of vertices. This is why the connectivity notions we are
concerned with have both local and global flavors. The main interest of this
work is to contribute to the theory of such pairwise connectivity measures.

The structure of this work

Following the introduction, Chapter 2 introduces basic concepts and connec-
tivity notions that we make use of throughout our investigation. A particular
interest is in Menger’s Theorem [81] and several of its versions, presented
by Diestel [35] or Göring [55]. Furthermore, we discuss the rich proper-
ties of Gomory-Hu trees [50], for which there exist now algorithms of nearly
quadratic running time due to the remarkable progress by Chen, Kyng, Liu,
Peng, Gutenberg, and Sachdeva [21], Abboud, Krauthgamer, Li, Panigrahi,
Saranurak, and Trabelsi [1] or Zhang [109]. The subsequent topics of this dis-
sertation are organized according to how restrictive the pairwise connectivity
relations are that we are concerned with.

We begin with uniform connectivity in Chapter 3. A uniformly k-connected
graph is a graph on at least k + 1 vertices where each pair of vertices is
connected by k independent paths, and no pair is connected by more than
k independent paths. A graph on at least two vertices is called uniformly
k-edge-connected if any two of its vertices are connected by k and not more
than k edge-disjoint paths. The graph in Figure 1 is far from being uni-
formly connected, but the block containing v is uniformly 2-connected as
well as uniformly 2-edge-connected. The vertex version of this concept is
studied by Beineke, Oellermann, and Pippert [5], the edge version is stud-
ied independently by Kingsford and Marçais [70]. A purpose of this chap-
ter is to show how both concepts are related [Example 20, Theorem 22].
A key contribution is a constructive characterization of uniformly 3-connected
graphs [Theorem 35], which complements classical results by Tutte [102, 103].
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This has several applications. For example, it allows to answer questions
about the minimum number of vertices of minimum degree in uniformly
3-connected graphs [Theorem 37]. For minimally k-connected graphs, this pa-
rameter is studied extensively by Halin [60], Mader [77], or Schmidt [90]. We
also discuss how crossing numbers and treewidths behave under the construc-
tions at hand [Theorem 39, Theorem 51]. The latter is of importance as many
hard combinatorial problems admit polynomial time algorithms if the input
graph has bounded treewidth, as discussed by Arnborg and Proskurowski [3]
or Kleinberg and Tardos [72, Chapter 10].

In Chapter 4, we do not require the same connectivity between each pair of
vertices, but we investigate graphs for which we prescribe, possibly different,
cut values. For this purpose, we introduce a graph’s cut sequence. This is
the multiset of edge weights of a corresponding Gomory-Hu tree. The cut
sequence of the graph in Figure 1 is 4, 3, 3, 2, 2, 2, 1. Although, in general,
a graph allows for different Gomory-Hu trees, which can be listed using an
approach of Yamada, Kataoka, and Watanabe [106], we check that a graph’s
cut sequence is uniquely determined [Corollary 59]. Furthermore, we discuss
the classical characterization of degree sequences by Erdős and Gallai [40]
and tackle the question whether there is an analogous criterion for a graph’s
cut sequence. For this purpose, we review conditions under which graphs
are maximally local-edge-connected. These graphs, surveyed by Hellwig and
Volkmann [65], satisfy that for any vertex pair the local edge-connectivity
equals the minimum of the respective degrees. Building on the construc-
tive characterization of graphic sequences by Tripathi, Venugopalan, and
West [101], this chapter’s central result is a constructive scheme that allows
to generate graphs for a prescribed cut sequence if such a sequence satis-
fies a shifted variant of the classical Erdős-Gallai inequalities [Theorem 67,
Theorem 73].

In Chapter 5, we do not strictly prescribe connectivity values, but change
our perspective to that of spectral graph theory. We investigate a graph’s
connectivity matrix, which is the matrix whose off-diagonal v-w entry is the
maximum number of independent v-w paths and whose diagonal entries are
set to zero. We study the relations between the spectral parameters of such
matrices and how they are linked to the structural properties of the under-
lying graph. We aim for eigenvalue bounds, ask for which graphs they are
attained, and investigate certain energies. For a given matrix, its energy is
the sum of the absolute values of its eigenvalues. The interest in these in-
variants stems from applications in chemical graph theory, as described by
Li, Shi, and Gutman [76, Chapter 2]. Many more energy variants and ap-
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Introduction

plications are surveyed by Gutman and Furtula [54]. A central element of
Chapter 5 is a conjecture raised by Shikare, Malavadkar, Patekar, and Gut-
man [93]. The authors ask, whether the energy of the connectivity matrix is
bounded by 2(n− 1)2, where n is the order of the respective graph. While we
present mostly negative results with respect to this conjecture [Theorem 81,
Figures 39 and 40], the situation is more tractable for edge-connectivity
matrices, whose off-diagonal entries represent the number of edge-disjoint
paths. The entries of such a matrix C = [cij] satisfy the so-called ultrametric
inequality, meaning that cik ≥ min{cij, cjk} for all i, j, k ∈ {1, . . . , n}. This
relation turns out to be useful for proving key results of this chapter. For
edge-connectivity matrices, we obtain the above bound [Theorem 91], dis-
cuss several facts about the eigenvalues and eigenvector structure, and give
a refined estimate for the energy [Theorem 94]. Furthermore, we discuss
some links to matrices whose structure is similar to that of edge-connectivity
matrices [Corollary 99]. For example, the inverse local connectivities satisfy
the conditions of an ultrametric, that is a metric where addition in the trian-
gle inequality is replaced by taking a maximum. Such distances are natural
measures when data exhibits some sort of hierarchical structure, as discussed
by Murtagh, Downs, and Contreras [82] or Chehreghani [59]. Finally, we
introduce a Laplace analogue for connectivity matrices and adapt a proof
of Chung [24] to verify a version of Cheeger’s inequality [20] for this spe-
cific Laplace matrix [Theorem 100]. This may open the way to new research
questions concerning respective spectral graph partitioning properties.

Publications related to this work

Parts of this dissertation are already published in the following articles.
[58] Frank Göring, Tobias Hofmann, and Manuel Streicher

Uniformly connected graphs
Journal of Graph Theory, 101(2):210–225, 2022.

[66] Tobias Hofmann and Uwe Schwerdtfeger
Edge-connectivity matrices and their spectra
Linear Algebra and its Applications, 640:34–47, 2022.

[57] Frank Göring and Tobias Hofmann
Properties of uniformly 3-connected graphs
arXiv:2211.16966, 2023.

Since one of the purposes of Chapter 2 is to provide basic terminology and
connectivity concepts, there is some natural overlap with respective passages
of [58], [66], and [57]. That being said, the vast majority of Chapter 2 is
compiled specifically for this dissertation.
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In Chapter 3, Sections 3.1, 3.2, and 3.3, though completely revised and sup-
plemented by several new illustrations, essentially contain the material of [58].
Section 3.4 is based on [57], extended by some proofs of preliminary results
and additional illustrations.

The results of Chapter 4 appear in this dissertation for the first time.

Sections 5.1 and 5.2 overlap with [66] in some basic terms and concepts as
well as the discussion around Figure 39, but largely contain new material.
Section 5.3 is a revised version of [66]. A few passages of Section 5.4, in
particular, Corollary 99 can also be found in [66].
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Graph Connectivity

Contents
2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Menger’s Theorem . . . . . . . . . . . . . . . . . . . 16
2.3 Gomory-Hu trees . . . . . . . . . . . . . . . . . . . . 18

One of the most basic questions one can ask about a graph is whether it
is connected. Furthermore, we may take a closer look and be interested in
how strong it is tied together or how the strength of the connectivity varies
over the graph. Section 2.1 is intended to provide a solid foundation for
such questions. An aspect that we shall think about particularly is how to
measure connectivity. One possibility is to count the minimum number of
vertices whose deletion disconnects a given graph. Another approach is to
determine the minimum number of independent paths between each pair of its
vertices. The fact that these perspectives are actually two sides of the same
coin is the substance of Menger’s Theorem [81]. Section 2.2 is devoted to this
duality statement, which is perhaps the most fundamental tool for proving
connectivity properties. We discuss a short proof and focus on some variants
of Menger’s Theorem that we make use of throughout this investigation. For
answering our questions about edge-connectivity, we intensively work with
Gomory-Hu trees of graphs. In section 2.3, we therefore treat some contents
of the work of Gomory and Hu [50].
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Chapter 2 | Graph Connectivity

2.1 Basic concepts

We define a graph to be an ordered pair G = (V, E) consisting of a finite vertex
set V and an edge set E ⊆ {{v, w} : v, w ∈ V with v ̸= w} with V ∩ E = ∅.
For an edge {v, w}, we often make use of the shorthand vw. The occur-
ring v and w are called endvertices of vw. All graphs in this work neither
contain directed edges nor contain loops, which means edges of the form vv.
Our definition of a graph also does not permit multiple edges. In some places,
however, allowing multiple edges will be a useful practice. There we use the
term multigraph for an ordered pair (V, E) of a nonempty finite set V and a
finite set E together with a function E → {vw : v, w ∈ V with v ̸= w}, which
specifies for each edge its two endvertices. In this context, an edge is not de-
termined uniquely by its endvertices. We nevertheless use here too vw to
address some particular edge whose endvertices are v and w.

Graph theoretical terminology that we do not explicitly define in this work
follows the standard introduced by Diestel [35]. We focus in this section on
those concepts that are of particular interest to our considerations. So let us
take a graph G. Its vertex set is addressed by V (G) and its edge set by E(G).
A subgraph of G is a graph (X, F ) where X ⊆ V (G) and F ⊆ E(G). We call
a subgraph (X, F ) induced if it contains all edges vw ∈ E(G) with v, w ∈ X
and refer to it by G[X]. A clique is a vertex set C ⊆ V (G) where G[C]
is a complete subgraph of G, where a complete graph is a graph in which
every pair of vertices is joined by an edge. For another graph H, we de-
note by G ∪· H the graph whose vertex set is V (G) ∪· V (H) and whose edge
set is E(G) ∪· E(H). For a vertex set X ⊆ V (G) we define G−X to be the
graph on vertex set V (G) \X and edge set {vw ∈ E(G) : v /∈ X and w /∈ X}.
When subtracting only one vertex v ∈ V (G), we may write G− v instead
of G− {v}. For an edge set F ⊆ {vw : v, w ∈ V (G) with v ̸= w} we ad-
dress the graph (V (G), E(G) \ F ) by G− F and the graph (V (G), E(G) ∪ F )
by G + F . For an edge e ∈ E(G) we write G− e instead of G− {e} and G + e
instead of G + {e}. Contracting e = vw yields the graph G/e on vertex
set (V (G) \ {v, w}) ∪ {ve} and edge set{

xy ∈ E(G) : xy ∩ vw = ∅
}
∪
{
vex : vx ∈ E(G) \ {e} or wx ∈ E(G) \ {e}

}
.

Similarly, contracting a vertex set X ⊆ V (G) yields the graph G/X by iden-
tifying all vertices in X to one vertex x, omitting all edges in G[X], and
replacing each edge vw where v ∈ X and w /∈ X by xw. We call a graph H
minor of the graph G if it can be obtained from G by contracting edges and
deleting edges or vertices.

14



Section 2.1 | Basic concepts

We denote EG(X, Y ) := {vw ∈ E(G) : v ∈ X and w ∈ Y } for X, Y ⊆ V (G).
In particular, we use the shorthand EG(X) := E(X, V (G) \X). For a ver-
tex v ∈ V (G) we write EG(v) := EG(v, V (G) \ {v}), denote the neighbor-
hood of v by NG(v) := {w ∈ V (G) : vw ∈ E(G)}, and the degree of v by
degG(v) := |NG(v)|. In these notations, we omit to address the respective
graph in the index if there is no need for a reference.

A path is a graph P = (V, E) whose vertex set V = {v1, . . . , vk} is nonempty
and whose edge set is of the form E = {vivi+1 : i ∈ {1, . . . , k − 1}}. This def-
inition allows for paths consisting of a single vertex. Often, we refer to a path
by its sequence of vertices v1 . . . vk. As for edges, we may call v1 and vk the
endvertices of P and say that P connects v1 and vk or leads from v1 to vk,
which means it also leads from vk to v1. Note that all paths in this work are
undirected objects, although our notation and use of language may occasion-
ally suggest something else, as it can be useful to mentally focus on one spe-
cific direction. For a path Q = w1 . . . wℓ with V (P ) ∩ V (Q) = ∅, we address
the path formed via V (P ) ∪ V (Q) and E(P ) ∪ E(Q) ∪ {vkw1} by P Q or by
Pw1 . . . wℓ. Similar path concatenations are denoted analogously. A cycle
is a graph P + vkv1 where P = v1 . . . vk is a path and k ≥ 3. For vertex
sets X and Y , a path P = v1 . . . vk is called X-Y path if V (P ) ∩X ={v1}
and V (P ) ∩ Y ={vk}. By Wn we address the wheel graph on n ≥ 4 vertices
that results from a cycle on n− 1 vertices by adding a new vertex adjacent
to all other vertices.

A set S ⊆ V (G) ∪ E(G) separates two vertex sets X, Y ⊆ V (G) if each X-Y
path contains some element of S. We say the set S ⊆ (V (G) \ {v, w}) ∪ E(G)
separates two vertices v, w ∈ V (G) if S separates {v} and {w}. A subset
of vertices S ⊆ V (G) is a separator if it separates two vertices. A subset
of vertices S ⊆ V (G) \ {v, w} is a v-w separator, if it separates the ver-
tices v, w ∈ V (G). A graph G is called connected if any two vertices of G
are connected by a path. We refer to a connected induced subgraph C
of G as a component of G if it is not contained in any connected sub-
graph H of G with |V (H)| > |V (C)|. For k ∈ N := {1, 2, . . .} the graph G is
k-connected if |V (G)| ≥ k + 1 and G− S is connected for any set S ⊆ V (G)
with |S| ≤ k − 1. A cut in G is an edge set E(S, V (G) \ S) where S is a
nonempty proper subset of V (G). We refer to S and V (G) \ S as the sides
of the cut. For two vertices v, w ∈ V (G), a v-w cut is a cut in G such that v
and w are in different sides. A bridge is a cut containing exactly one edge.
A vertex whose deletion increases the number of components is called cutver-
tex. A maximal connected subgraph without a cutvertex is called block. So
a block is either an isolated vertex, a bridge with its incident vertices, or a
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Chapter 2 | Graph Connectivity

maximal 2-connected subgraph. We refer to the latter as nontrivial block.
For k ∈ N a graph G is called k-edge-connected if G− F is connected for any
set F ⊆ E(G) with |F | ≤ k − 1. To shorten notation, we use the terms k-cut
or k-separator to indicate that they contain k ∈ N elements. We call a vertex
set X ⊆ V (G) independent if none of its vertices are adjacent. We say two
or more paths are independent if every vertex that is contained in more than
one path is an endpoint of all paths it is contained in. Two or more paths
are edge-disjoint if the edge sets of any pair of these paths are disjoint. For
a set X ⊆ V (G) and a vertex v ∈ V (G) \X we call a set of v-X paths v-X
fan if any two of the paths only have the vertex v in common.

2.2 Menger’s Theorem

Menger’s Theorem [81] is one of the corner stones of graph theory and plays
an important role in this investigation. An overview about several versions
and proof strategies is given by Diestel [35, Secion 3.3], from where we take
Theorems 2 to 5. The subsequent proof of Menger’s Theorem is based on
an edge contraction argument, given by Göring [56]. When in the following
we contract an edge e of a graph G that is incident to a vertex from some
vertex set V ⊆ V (G), we denote the vertex appearing by contraction by ve

and regard it as a vertex of V (G). Also note that Menger’s Theorem holds
for graphs and multigraphs, as is presented by Göring [56]. We make use of
the respective references when treating uniformly edge-connected graphs in
Chapter 3, as their definition allows for multiple edges. This is, however, the
only occasion in this work where we allow for multiple edges.

Theorem 1. Let G be a graph or multigraph and consider two vertex sets
V, W ⊆ V (G). Then the minimum cardinality of a vertex set S separating V
and W equals the maximum cardinality of a set of disjoint V -W paths.

Proof. Clearly, the number of disjoint V -W paths cannot be larger than the
minimum cardinality of a vertex set separating V and W . So we have to
show that if a minimum vertex set separating V and W is of cardinality k,
then there are k disjoint V -W paths. If E(G) = ∅, then |V ∩W | = k and we
find k disjoint V -W paths, consisting each of a single vertex in V ∩W . Let
now G be a graph that is a counterexample to our claim with minimal |E(G)|.
Consider an edge e = xy ∈ E(G). Because there are less than k disjoint V -W
paths in G, also G/e contains less than k such paths. So in G/e there is a
vertex set S separating V and W with |S| < k. We know that ve ∈ S, as
otherwise S separates V and W also in G. Then T := (S \ {ve}) ∪ {x, y} is a

16



Section 2.2 | Menger’s Theorem

vertex set separating V and W in G and thus |T | = |S|+ 1 = k. Furthermore,
each vertex set separating V and T in G− e, and likewise each vertex set
separating T and W in G− e, also separates V and W in G and thus contains
at least k vertices. So we find k disjoint V -T paths and k disjoint T -W paths,
meeting only in T , because T separates V and W . This provides k disjoint
V -W paths in G, contradicting that G is a counterexample to our claim.

We also use Menger’s Theorem in the following fan version.

Theorem 2. Given a graph G, a vertex set W ⊆ V (G) and a vertex
v ∈ V (G) \W , the minimum cardinality of a set of vertices separating v
and W in G equals the maximum number of paths building a v-W fan in G.

Proof. The claim follows by Theorem 1 for the vertex sets N(v) and W .

Theorem 3 is a local vertex version and Theorem 4 a local edge version of
Menger’s Theorem. Global vertex and edge versions follow with Theorems 5
and 6, which we use in particular when characterizing uniformly connected
and uniformly edge-connected graphs in Chapter 3.

Theorem 3. Given a graph G and two nonadjacent vertices v,w∈V (G), the
minimum cardinality of a vertex set S ⊆ V (G) \ {v, w} separating v and w
in G equals the maximum number of independent v-w paths in G.

Proof. The claim follows by Theorem 1 for the vertex sets N(v) and N(w).

Theorem 4. Consider a graph or multigraph G and two vertices v, w ∈ V (G).
Then the minimum cardinality of an edge set S ⊆ E(G) separating v and w
in G equals the maximum number of edge-disjoint v-w paths in G.

Proof. Define the line graph of G on vertex set E(G) in which two ver-
tices e, f ∈ E(G) are adjacent if e and f share an endvertex in G. The
sets E(v) and E(w) are edge sets in G and vertex sets in the corresponding
line graph. Applying Theorem 1 for them proves our claim.

Theorem 5. For a number k ∈ N, a graph G on at least k + 1 vertices is
k-connected if and only if there are k independent paths connecting any two
vertices of G.

Proof. If there are k independent paths connecting any two vertices of G,
then G contains at least k + 1 vertices and cannot be separated by less than k
vertices. So we only have to show that in a k-connected graph each pair
of vertices is connected by k independent paths. In view of Theorem 3,
assume, for contradiction, that there are two adjacent vertices v, w ∈ V (G)
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Chapter 2 | Graph Connectivity

connected by not more than k − 1 independent paths in G and hence not
more than k − 2 independent paths in G− vw. Again Theorem 3 says that
there is a set S with |S| ≤ k − 2 separating v and w in G− vw. Because G
contains at least k + 1 vertices, there is some x ∈ V (G) \ (S ∪ {v, w}). The
set S separates x from v or w in G− vw. But then S ∪ {v} separates x
from w or S ∪ {w} separates x from v in G. This is a contradiction to G
being k-connected, because |S ∪ {v}| = |S ∪ {w}| ≤ k − 1.

Theorem 6. For a number k ∈ N, a graph or multigraph G is k-edge-
connected if there are k edge-disjoint paths connecting any two vertices of G.

Proof. The claim is a consequence of Theorem 4.

2.3 Gomory-Hu trees

A graph’s minimum cut capacities carry rich structural properties. In what
follows, we take a look at some of the relationships, on which also Gomory
and Hu build on in their seminal article [50].

Lemma 7. Consider a graph G and three distinct vertices v, w, x ∈ V (G).
Then the minimum cut capacities cvw, cvx, and cxw satisfy the so-called ul-
trametric inequality

cvw ≥ min{cvx, cxw}.

Proof. Suppose the assertion is false. Then there are vertices v, w, x ∈ V (G)
satisfying cvw < min{cvx, cxw}. This means there exist nonempty vertex
sets S, T ⊆ V (G) such that S ∪ T = V (G), S ∩ T = ∅, v ∈ S, w ∈ T , and
|E(S, T )| = cvw. The vertex x has to be contained either in S or in T .
If x ∈ S, then we obtain the contradiction cxw ≤ cvw, because then the edge
set E(S, T ) is of cardinality cvw and separates x and w. If x ∈ T , we obtain
the contradiction cvx ≤ cvw, because then E(S, T ) separates x and v.

Lemma 8. Consider numbers cij ≥ 0, for i, j ∈ {1, . . . , n}, that satisfy
ciℓ ≥ min{cij, cjℓ} for all i, j, ℓ ∈ {1, . . . , n}. Then for k ∈ {1, . . . , n}

c1k ≥
k

min
i=2

ci−1,i.

Proof. Lemma 7 serves as an induction base. Assuming our statement to be
true for k − 1 instead of k, we conclude by induction that

k
min
i=2

ci−1,i = min
{ k−1

min
i=2

ci−1,i, ck−1,k

}
≤ min{c1,k−1, ck−1,k} ≤ c1k. □
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Section 2.3 | Gomory-Hu trees

Lemma 9. Consider numbers cij ≥ 0, for i, j ∈ {1, . . . , n}, satisfying cij = cji

and ciℓ ≥ min{cij, cjℓ} for all i, j, ℓ ∈ {1, . . . , n}. Then for cvw ≤ cvx ≤ cwx

there holds cvw = cvx.

Proof. We are given that cvw ≤ cvx. So we just have to show that cvw ≥ cvx.
Applying the ultrametric inequality, we obtain

cvw ≥ min{cvx, cxw} = min{cvx, cwx} = cvx. □
To determine a minimum cut between two vertices, we may use methods
based on network flows, which is justified by the max-flow min-cut theorem
of Ford and Fulkerson [46]. If we are interested in the minimum cuts between
all pairs of a set of vertices V , we might do this naively by performing

(
|V |
2

)
maximum flow computations. In [50], however, Gomory and Hu showed
that there is a tree structure, called Gomory-Hu tree, that neatly encodes
all the minimum cuts of a graph and that indeed |V | − 1 maximum flow
computations suffice to generate that tree.

Definition 10. Let G = (V, E) be a graph. A Gomory-Hu tree for G is a
tree T = (V, F ) where for each edge e = vw ∈ F the graph T − e contains
a component on vertex set W such that E(W ) is a v-w cut of minimum
capacity in G.

Having Lemma 8 at hand, we restate in the following lemma how to obtain
a minimum s-t cut for some pair of vertices s and t from a graph’s Gomory-
Hu tree. Our goal for the remainder of this section is to review that there
indeed exists a Gomory-Hu tree for any given graph. We largely follow the
presentation by Schrijver [91, Section 15.4].

Lemma 11. Let (V, E) be a graph and let (V, F ) be a corresponding
Gomory-Hu tree. Consider also two vertices s, t ∈ V and the unique path P
connecting s and t in T . Furthermore, let vw be an edge of minimum
weight cvw in E(P ). Then cst = cvw and denoting one of the two compo-
nents of T − vw by W the edges E(W ) form a minimum s-t cut in G.
Proof. Lemma 8 says that cst ≥ cvw. On the other hand, the edges E(W )
form an s-t cut, which implies cst ≤ |E(W )| ≤ cvw.

Lemma 12. For a graph G and all vertex sets U, W ⊆V (G) there holds

(i) |E(U)|+ |E(W )| = |E(U \W )|+ |E(W \ U)|
+ 2|E(U ∩W, V (G) \ (U ∪W ))| and

(ii) |E(U)|+ |E(W )| = |E(U ∪W )|+ |E(U ∩W )|+ 2|E(U \W, W \ U)|.

Proof. Both statements follow directly by double counting the edges of G.
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In particular, the equations from Lemma 12 provide the estimates

|E(U)|+ |E(W )| ≥ |E(U \W )|+ |E(W \ U)| and
|E(U)|+ |E(W )| ≥ |E(U ∪W )|+ |E(U ∩W )|

for vertex sets U, W ⊆ V (G) for a graph G. A set function satisfying the sec-
ond inequality is called submodular, which we may interpret as a diminishing
returns property. This is why such functions have not only technical value
when proving the following graph-theoretical statement, but occur quite nat-
urally in a variety of applications.

Lemma 13. Consider a graph G and for two vertices s, t ∈ V (G) a minimum
s-t cut E(U) with s ∈ U . Then for two vertices v, w ∈ U , there is a minimum
v-w cut E(W ) such that W ⊆ U .

Proof. Let E(X) be a minimum v-w cut. If necessary, rename w into v,
and v into w, so that v ∈ X. Furthermore, we assume s ∈ X, as we may
consider V \X instead of X. Then E(U ∩X) and E(U \X) are v-w cuts.
If t /∈ X, we obtain that E(U ∪X) is an s-t cut. So |E(U ∪X)| ≥ |E(U)|.
By statement (ii) of Lemma 12,

|E(X)| ≥ |E(U ∩X)|+ |E(U ∪X)| − |E(U)| ≥ |E(U ∩X)|.

Thus E(U ∩X) is a minimum v-w cut. If t ∈ X, we obtain that E(X \ U)
is an s-t cut, because s ∈ U . This implies |E(X \ U)| ≥ |E(U)|. By state-
ment (i) of Lemma 12,

|E(X)| ≥ |E(U \X)|+ |E(X \ U)| − |E(U)| ≥ |E(U \X)|.

So E(U \X) is a minimum v-w cut, which concludes our proof.

Theorem 14. Each graph has a corresponding Gomory-Hu tree.

Proof. Consider a graph G and define a partial Gomory-Hu tree on a sub-
set of vertices X ⊆ V (G) as a pair consisting of a tree (X, F ) and a parti-
tion {Cx : x ∈ X} of V (G) satisfying the following conditions.

(i) For each x ∈ X holds x ∈ Cx.
(ii) For each edge e = vw ∈ F the graph (X, F \ {e}) contains a component

on vertex set W such that E(∪x∈W Cx) is a minimum v-w cut in G.

Our goal is to show that there is a partial Gomory-Hu tree for each X ⊆ V (G).
This in particular implies the existence of a Gomory-Hu tree for the graph G.
For |X| = 1, it is trivial to find a corresponding partial Gomory-Hu tree.
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Section 2.3 | Gomory-Hu trees

Let us proceed inductively for |X| > 1 and consider a minimum cut E(W )
that separates at least two vertices of X. Contracting V (G) \W to one
vertex v1 provides a graph G1. The graph G1, by induction, has a partial
Gomory-Hu tree on X1 := X ∩W that we denote by (X1, F 1), {C1

x : x ∈ X1}.
On the other hand, contracting W to one vertex v2 provides a graph G2 and a
respective partial Gomory-Hu tree (X2, F 2), {C2

x : x ∈ X2} for X2 := X \W .

Denoting a vertex x1 ∈ X1 such that v1 ∈ C1
x1 and a vertex x2 ∈ X2 such

that v2 ∈ C2
x2 , we define F := F 1 ∪ F 2 ∪ {x1x2}, Cx1 := C1

x1 \ {v1}, as well
as Cx := C1

x for all x ∈ X1 \ {x1}. Furthermore, we set Cx2 := C2
x2 \ {v2},

and Cx := C2
x for all x ∈ X2 \ {x2}. It remains to be shown that (X, F ),

{Cx : x ∈ X} is a partial Gomory-Hu tree on X. Property (i) is satisfied
by definition. Property (ii) follows for all e ∈ F \ {x1x2} by Lemma 13.
For e = x1x2, we have ∪x∈W Cx = W . Recalling that E(W ) is chosen to
be a minimum cut that separates at least two vertices from X, we obtain
that E(W ) is a minimum x1-x2 cut, which is what remained to be shown.

Along the way, the previous proof also describes an algorithm to construct
a Gomory-Hu tree, which requires |V | − 1 minimum cut computations. In
practical implementations, often a variant by Gusfield [52] is used, which in-
volves the same amount of minimum cut computations, but is easier to imple-
ment. Ford and Fulkerson’s max-flow min-cut theorem [46] says that the nec-
essary minimum cut values can be obtained by maximum flow computations.
Building on these insights, the algorithm of Edmonds and Karp [38] succes-
sively looks for shortest augmenting paths in an appropriately constructed
auxiliary network to compute a maximum flow in running time O(|V ||E|2).
Dinitz’ algorithm [36] improves this to O(|V |2|E|), by determining blocking
flows in a so-called level graph. Another competitive approach is the push-
relabel algorithm by Goldberg and Tarjan [49], also involving O(|V |2|E|)
running time. The recent breakthrough by Chen, Kyng, Liu, Peng, Guten-
berg, and Sachdeva [21] provides the first algorithm that allows maximum
flow computations in almost linear time. The introduced techniques, com-
bined with the insights from Abboud, Krauthgamer, Li, Panigrahi, Saranu-
rak, and Trabelsi [1] or Zhang [109], also allow for an |E|1+O(1) time algorithm
to compute Gomory-Hu trees. Notwithstanding this theoretical milestone,
there remains a lot of work to be done, as the constants hidden in the above
Landau notation are currently too large for practical use.
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This chapter deals with the concept of uniform graph connectivity. It is
in a sense the sharpest connectivity measure that we study in this work.
Beginning with the central definitions, we investigate how they relate to other
connectivity and regularity notions in Section 3.1. As it is the case with other
connectivity concepts, uniform connectivity too can be related to vertex or
edge separation. Section 3.2 is concerned with the relations between these
two types, which in earlier studies have been introduced independently. A key
result of this section is that for k ≤ 3 every uniformly k-connected graph is
uniformly k-edge-connected, whereas for k > 3 we find an infinite family of
examples for which this inclusion does not hold. In Section 3.3, we proceed
with constructions for both uniformly k-connected and uniformly k-edge-con-
nected graphs in cases where k ≤ 3 and describe how these ideas are related
to classical characterizations by Tutte. Section 3.4 concludes this chapter
with applications of our constructive results. In particular, we give a tight
bound on the number of vertices of minimum degree in uniformly 3-connected
graphs and address questions about their treewidths and crossing numbers.
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Chapter 3 | Uniform Connectivity

3.1 Basic terms and relations

At the heart of this chapter are the following two connectivity concepts.

Definition 15. For a number k ∈ N, a graph G on at least k + 1 vertices is
called uniformly k-connected if any two vertices of G can be connected by k
and not more than k independent paths.

Definition 16. For a number k ∈ N, a multigraph G on at least two vertices
is called uniformly k-edge-connected if any two vertices of G can be connected
by k and not more than k edge-disjoint paths.

When suppressing the parameter k in these terms, we mean graphs that are
uniformly k-connected or multigraphs that are uniformly k-edge-connected
for some k ∈ N. Also note that Definition 16 is one of the few places in this
work where we explicitly refer to multigraphs. For those we may use termi-
nology that we introduced for graphs. All the terms we need naturally extend
to this setting. One reason to allow multiple edges here is to be in line with
the definition of uniformly edge-connected graphs given by Kingsford and
Marçais [70], who contributed considerably to understanding the structure of
uniformly 3-edge-connected graphs. Another reason is that this reveals an in-
teresting difference between uniform vertex- and edge-connectivity. Whereas
allowing multiple edges in the latter case adds structural aspects, using the
word multigraph in Definition 15 actually would not make any difference,
which is discussed in more detail at the beginning of Section 3.2.

Now let us turn to some examples. Figure 2 displays a tree on the left and
indeed trees on at least two vertices are exactly the uniformly 1-connected
graphs which are exactly the graphs that are uniformly 1-edge-connected.
Each of these three classes is defined to contain precisely the graphs on at
least two vertices in which each pair of vertices is connected by a unique
path. All further examples in Figure 2 are uniformly edge-connected and
all but the hourglass graph on the right are also uniformly connected. This
may immediately invoke the question of whether there are graphs that are
uniformly connected but not uniformly edge-connected, which is one of the

Figure 2: Small uniformly edge-connected graphs
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major topics that we discuss in Section 3.2. Note also that all graphs in Fig-
ure 2 are connected, as one is the smallest value that we allow for the param-
eter k in our definitions. To let them also comprise uniformly 0-connected or
uniformly 0-edge-connected graphs is a matter of taste. But this would in-
clude merely those graphs without any edges at all. Beyond small examples,
checking a graph to be uniformly connected or uniformly edge-connected re-
quires to know the number of independent or edge-disjoint paths for all pairs
of vertices. Those can be calculated efficiently by the classical approach of
Even and Tarjan [43], which is based on network flows.

A very useful fact about our classes is that Menger’s Theorem provides a con-
cise dual characterization for them. It says that a graph G on at least k + 1
vertices is uniformly k-connected if and only if for each two nonadjacent
vertices v, w ∈ V (G) there is a minimum v-w separator of cardinality k in
V (G) \ {v, w} and for each two adjacent vertices v, w ∈ V (G) there is a min-
imum v-w separator of cardinality k − 1 in V (G) \ {v, w}. Similarly, a multi-
graph G on at least two vertices is uniformly k-edge-connected if and only if
for each two vertices v, w ∈ V (G) there is a minimum v-w cut of cardinality k.
Let us also record here that a uniformly k-connected graph is k-connected
and a uniformly k-edge-connected multigraph is k-edge-connected.

Though the definitions of uniformly connected and uniformly edge-connected
graphs are very similar, both classes have initially been studied indepen-
dently. Uniformly connected graphs are introduced by Beineke, Oellermann,
and Pippert in their work about the average connectivity of a graph [5]. Mo-
tivated by the fact that a graph’s connectivity is a lower bound for its average
connectivity, they are concerned with uniformly connected graphs as those
for which this bound is attained. As it is our interest in Section 3.3, their
focus is on constructions that preserve uniform connectivity and produce
infinite families of uniformly connected graphs. Uniformly edge-connected
graphs, on the other hand, have first been studied by Kingsford and Marçais
in [70], calling them exactly edge-connected. They too are concerned with
constructive characterizations for uniformly edge-connected graphs.

A link between uniform connectivity and the topics discussed in Chapter 5
arises from Corollary 92. There we prove a tight bound on the energy, this
means the sum of the absolute values of the eigenvalues, of a graph’s edge-
connectivity matrix. It turns out that the bound that we study there, is sharp
for uniformly edge-connected graphs. From the perspective of spectral graph
theory, it is therefore natural to ask about the structure of these graphs. This
is a typical procedure, as it helps to understand how certain graph structures
are related to the spectral parameter in mind.
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Figure 3: A minimally and critically connected graph that is neither uniformly
connected nor uniformly edge-connected

To gain a clearer picture of the graph classes introduced, we shall next discuss
relationships to other common connectivity concepts. For this purpose, we re-
call that a graph is called minimally k-connected if it is k-connected and delet-
ing any of its edges results in a graph that is no longer k-connected. A graph is
called critically k-connected if it is k-connected and deleting any of its vertices
leaves a graph that is no longer k-connected. Minimally k-edge-connected
and critically k-edge-connected multigraphs are defined analogously and we
may omit the parameter k if it is not relevant.

The following Theorem is a slight generalization of a result of Beineke, Oeller-
mann, and Pippert [5]. They show how uniform connectivity is related to
minimal and critical connectivity. And in fact, their reasoning can easily be
adopted to the case of uniformly edge-connected graphs. They also provide
the example in Figure 3, which demonstrates that a graph can be both min-
imally and critically connected without having to be uniformly connected.

Theorem 17. A uniformly k-edge-connected multigraph is

(i) minimally k-edge-connected for k ≥ 1 and
(ii) critically k-edge-connected for k ≥ 2.

A uniformly k-connected graph is

(iii) minimally k-connected for k ≥ 1 and
(iv) critically k-connected for k ≥ 2.

Proof. We prove only statement (i), because the others can be shown analo-
gously. Suppose, for the sake of contradiction, that there is some uniformly
k-edge-connected multigraph G that is not minimally k-connected. So it
contains an edge e = vw ∈ E(G) such that G− e remains k-edge-connected.
Thus Theorem 4 says that v and w are connected by k edge-disjoint paths
in G− e. But then G contains k + 1 edge-disjoint paths between v and w,
because the edge vw itself forms another such path. This contradicts that G
is uniformly k-connected and thus proves our claim.
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Note that it is indeed necessary to formulate the statements about critical
connectivity for k ≥ 2 only. This is because trees are uniformly 1-connected
and uniformly 1-edge-connected, but neither critically connected nor criti-
cally edge-connected, as they remain connected when deleting a leaf.

As uniform connectivity requires the same strength of connectivity between
all vertex pairs of a graph, it can also be understood as a regularity measure.
However, regularity by degree is not implied by uniform connectivity, for
which Figure 2 shows a few examples. But if a graph is regular, then we
have a very accurate picture.

Lemma 18. Let G be a k-regular graph. Then

(i) G is uniformly k-connected if and only if G is k-connected and
(ii) G is uniformly k-edge-connected if and only if G is k-edge-connected.

Proof. As G is k-regular, it can contain at most k independent and at most k
edge-disjoint paths between every pair of its vertices. Conversely, Theorem 6
says that there are at least k edge-disjoint paths between every pair of vertices
if and only if G is k-edge-connected, which proves statement (ii). Further-
more, a k-regular graph has at least k + 1 vertices. So Theorem 5 says that
there are at least k independent paths between any pair of vertices if and
only if G is k-connected, which proves statement (i).

This very concise description encourages us to focus essentially on irreg-
ular graphs when characterizing uniformly edge-connected and uniformly
connected graphs in Section 3.3. It also sheds light on relations to some
other graph classes. For example, the edge graphs of simple k-dimensional
polytopes are k-connected, and hence k-edge-connected, by Balinski’s Theo-
rem [4] and the word simple just means that their edge graphs are regular. So
Lemma 18 says that those are uniformly k-connected and uniformly k-edge-
connected. Also distance regular graphs, studied for example by Brouwer,
Cohen, and Neumaier [15] are in particular regular. Furthermore, Brouwer
and Koolen [17] prove distance regular graphs of degree k to be k-connected,
and thus also k-edge-connected. So Lemma 18 says that those graphs are
uniformly k-connected and uniformly k-edge-connected. But note that the
converse inclusions do not hold because uniformly connected or uniformly
edge-connected graphs do not have to be regular by degree.

A term that might be easily confused with our notion is that of k-uniform
connectivity. Notionally, the only difference to uniform k-connectivity is that
Chartrand and Zhang [19] attach the parameter k at another place. But they
call a graph G to be k-uniformly connected if it is of order n ≥ 2 and if for
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Relevant shortest paths

132 142 1 2
314 31 41 
324 32 42 

× 3

× 2

Figure 4: A path-regular graph that is not uniformly connected

1

2

34 

Relevant shortest paths

132 134 34 234
134 234 

Figure 5: A uniformly connected graph that is not path-regular

some integer k with 1 ≤ k ≤ n− 1 for every two distinct vertices v, w ∈ V (G)
there is a v-w path of length k in G. The diamond, which is the graph re-
sulting from the complete graph on four vertices by deleting some edge,
is 2-uniformly connected, but certainly not uniformly k-connected or uni-
formly k-edge-connected, for any k. Conversely, a path on three vertices
is uniformly connected and uniformly edge-connected, but there is no k for
which it is k-uniformly connected.

Another regularity concept whose name and definition suggests some overlap
with uniform connectivity is a graph’s path-regularity introduced by Matula
and Dolev [78]. Their definition involves shortest path lists that may contain
multiple copies of certain paths. Furthermore, only those lists are of relevance
for which each pair of vertices are the endvertices of the same number of
paths. Then a graph is said to be edge-path-regular if there exists such a list
in which each edge occurs in the same number of paths. The table in Figure 4
contains a list of shortest paths of length two that contains six times each
pair of endvertices. Note that for such lists we can always specify paths of
lengths zero and one that meet the criteria of the preceding definition. This
is why these paths are typically omitted in this context. As the list given in
Figure 4 contains each edge the same number of times, we can identify the
corresponding graph as edge-path-regular. However, the graph obviously is
neither uniformly edge-connected nor uniformly connected. Figure 5, on the
other hand, shows a tree and thus a uniformly edge-connected and uniformly
connected graph for which we cannot provide a list of shortest paths that
certifies path-regularity. To see that, we first observe that the shortest paths
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in the list in Figure 5 are uniquely determined, because the corresponding
graph is a tree. To meet the requirement that each pair of vertices are
the endvertices of the same number of paths, we may only choose multiple
copies of the entire list. Thus we always find that the edge 34 appears more
often than the other edges. In addition to edge-path-regular graphs, the
authors in [78] analogously define vertex-path-regular graphs. Those too do
not include our classes, because a path on three vertices is not vertex-path-
regular. On the other hand, it is not too difficult to see that the Cartesian
product of the wheel graph on five vertices and the path on two vertices
is neither uniformly edge-connected nor uniformly connected, whereas it is
vertex-path-regular by [78, Figure 2 and Theorem 7].

3.2 Uniform vertex- versus edge-connectivity

In this section, we work out the relations between uniformly connected and
uniformly edge-connected graphs. A first difference between Definition 15
and 16 is that the latter allows multiple edges, in line with the definition
given by Kingsford and Marçais [70]. Remarkably, the following Lemma says
that we may replace the word graph by multigraph in Definition 15 and yet
shall never see multiple edges in uniformly connected graphs.

Lemma 19. If a k-connected multigraph contains two vertices v and w that
are joined by parallel edges, then v and w are connected by at least k + 1
independent paths.

Proof. To obtain a contradiction, suppose there is a graph G containing
two vertices v and w that are joined by parallel edges, but not connected
by more than k independent paths. Deleting all edges between v and w
in G leaves not more than k − 2 independent paths between v and w in
the resulting graph that we denote by H. By Theorem 1, H contains
a v-w separator S ⊆ V (H) \ {v, w} = V (G) \ {v, w} with |S| ≤ k − 2. The
definition of k-connectedness requires G to have at least k + 1 vertices. So H
too contains at least k + 1 vertices and H − S contains more than two com-
ponents or one of its components contains more than one vertex. So S ∪ {v}
or S ∪ {w} is a separator in G with |S ∪ {v}| = |S ∪ {w}| ≤ k − 1, which
contradicts our prerequisite that G is k-connected.

This section’s key fact is that for k ≤ 3 any uniformly k-connected graph is
uniformly k-edge-connected. Before we turn to its proof, let us investigate a
family of counterexamples in case k > 3.
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S |S|=k−1

T |T |=kv w

Figure 6: Constructing uniformly connected but not uniformly edge-
connected graphs

Example 20. Let us consider for k ≥ 4 graphs Gk on a vertex set of
the form S ∪· T where |S| = k − 1 and |T | = k and let the induced sub-
graph Gk[T ] be a tree with at least two inner vertices. This means we
require Gk to contain two vertices whose degree in Gk[T ] is larger than one.
All the remaining edges of Gk shall result from joining each vertex in S with
all vertices in T . In other words, we define N(s) = T for each vertex s ∈ S.
Now let us take a look at Figure 6, where this example is illustrated. De-
picted there solid is the result for k = 4, which is the only case where the
constructed graph is uniquely determined, because the only tree on four ver-
tices with two inner vertices is a path and for k > 4 such a tree is not uniquely
determined. Note that, as expected, our example does not work for k < 4,
because we cannot find a corresponding tree containing two inner vertices.

The claim to be proven is that for all k ≥ 4 a graph Gk is not uniformly
k-edge-connected, but uniformly k-connected.

Proof. Denoting two inner vertices of Gk[T ] by v and w, we find k − 1 edge-
disjoint paths of the form vsw for s ∈ S and further paths of the form vxsyw
for vertices x ∈ N(v), y ∈ N(w), and s ∈ S. In total, we count a number
of k − 1 + min{|N(v)|, |N(w)|} ≥ k + 1 edge-disjoint paths. So Gk is not
uniformly k-edge-connected.

Only the inner vertices of Gk[T ] are possible candidates to be connected by
more than k independent paths, because all the other vertices are of degree k.
But two vertices v, w ∈ T can be separated by deleting S and some element
of the unique path connecting v and w in Gk[T ]. So no two vertices in Gk

are connected by more than k independent paths.
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To conclude that Gk is uniformly k-connected, it remains to be shown that Gk

is k-connected. Because each vertex in S is adjacent to all vertices in T , a
minimum separator of Gk contains either S or T . So a minimum separator
of Gk contains at least k vertices, because |S| = k − 1 and S itself does not
separate G and |T | = k. Thus Gk is k-connected.

In fact, Figure 6 shows us the smallest uniformly k-connected graph that
is not uniformly k-edge-connected. This is because such an example has to
contain at least two vertices that are connected by k + 1 edge-disjoint paths
and thus have to be of degree at least k + 1. So for k ≥ 4 suitable graphs
clearly cannot have five or fewer vertices. If there are two vertices of degree
five on six vertices, then those vertices are connected by five independent
paths. So the degree sequence 5, 5, 4, 4, 4, 4, belonging to the graph drawn
solid in Figure 6, contains smallest possible values and this example therefore
contains fewest possible edges. To prove that for k ≤ 3 there is no uniformly
k-connected graph that is not uniformly k-edge-connected takes a bit more
effort. We begin with the following fact about fans in k-connected graphs.

Lemma 21. Consider a k-connected graph G where k ∈ N. For distinct
vertices v, w ∈ V (G), consider subgraphs Gv ⊆ G− w and Gw ⊆ G− v such
that V (Gv) ∪ V (Gw) = V (G) and E(Gv) ∪ E(Gw) = E(G). Furthermore, let
S := V (Gv) ∩ V (Gw) be a separator of cardinality |S| = k. Then Gw contains
for each x ∈ S an x-S \ {x} fan consisting of min{|NGw(x)|, k − 1} paths.

Proof. Let us consider a vertex set T ⊆ V (Gw) \ {x} separating x and S \ {x}
in Gw. Our statement is implied by Theorem 2 if we manage to prove
that |T | ≥ min{|NGw(x)|, k − 1}. This is certainly true when |T | ≥ |NGw(x)|.
So let us suppose that |T | < |NGw(x)|. Then there is a vertex y ∈ NGw(x) \ T
separated by T from S \ {x}. Theorem 2 then says there is a y-S fan in G
that consists of k paths, because G is k-connected. These paths end in
pairwise distinct vertices of S and hence cannot contain vertices from Gv.
because T separates y and S \ {x}, it has to be of cardinality |T | ≥ k − 1,
what remained to be shown.

Theorem 22. Consider a k-connected graph G where k ∈ {0, 1, 2, 3} that
contains two vertices connected by k + 1 edge-disjoint paths. Then G con-
tains vertices which are connected by k + 1 independent paths.

Proof. Let us first record that we can assume G to be a simple graph. This is
because G is k-connected and thus Lemma 19 says that parallel edges already
imply the existence of k + 1 independent paths. Furthermore, the statement
to be shown is certainly true for k = 0. So let k ∈ {1, 2, 3}, suppose that our
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v w
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S

Figure 7: A 3-connected graph containing two vertices which are connected
by four edge-disjoint paths

claim is true for k − 1 and take two vertices v, w ∈ V (G) which are connected
by k + 1 edge-disjoint paths.

In the case where vw ∈ E(G), the graph G− vw is still (k − 1)-connected
and there remain k edge-disjoint paths connecting v and w. We obtain by
induction that there exist k independent paths in G− vw. In G the edge vw is
another such path. So we find v and w to be connected by k + 1 independent
paths in G.

We now turn to the case where vw /∈ E(G). Suppose, for the sake of con-
tradiction, that v and w are not connected by k + 1 independent paths. In
view of Theorem 1, this means that G contains a v-w separator S of cardi-
nality |S| ≤ k, which we may choose as close as possible to v. More precisely,
we consider S ⊆ V (G) \ {v, w} to be the only {v}-S separator containing k
or fewer vertices. Referring to the component of G− S containing v by H,
we denote the subgraphs

Gv :=
(
V (H) ∪ S, E(H) ∪ E(H, S)

)
and

Gw := G− V (H).

With this setup, illustrated for k = 3 in Figure 7, we have Gv ⊆ G− w,
Gw ⊆ G− v as well as V (Gv) ∪ V (Gw) = V (G), E(Gv) ∪ E(Gw) = E(G),
V (Gv) ∩ V (Gw) = S, and |S| = k, which allows to employ Lemma 21 in what
follows. We also observe that the k + 1 edge-disjoint v-w paths given in G
contain k + 1 edge-disjoint v-S subpaths. Because |S| = k, there is one ver-
tex x ∈ S which is contained in two of these subpaths. Because G does not
contain parallel edges, the vertex x has two distinct neighbors in Gv and two
distinct neighbors in Gw. Denoting a neighbor of x in Gv that is not v by y,
we observe that y /∈ S, because we defined Gv not to contain edges between
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vertices of S. So the vertex set Y := S ∪ {y} is of cardinality |Y | = k + 1
and at least k + 1 vertices are required to separate Y from v, as we have
chosen S to be a separator of cardinality |S| ≤ k closest possible to v. So
Theorem 2 says that there is a v-Y fan in Gv consisting of k + 1 independent
paths, of which none can contain the edge xy. Consequently, there are k + 1
independent v-S paths and two of them have v and x as endpoints.

For |NGw(x)| ≥ 2 and k ≤ 3, we evaluate min{|NGw(x)|, k − 1} = k − 1. So
we find an x-S \ {x} fan in Gw consisting of k − 1 paths, by Lemma 21. As
is illustrated in Figure 7 for k = 3, these paths can be concatenated with
the k + 1 independent v-S paths which exist in Gv to obtain k + 1 indepen-
dent v-x paths in G.

The proof cannot work for k ≥ 4, because Figure 6 displays examples that
show that our statement does not hold in this case. And indeed, the step in
which we evaluate min{|NGw(x)|, k − 1} = k − 1 is not valid for |NGw(x)| ≥ 2
and k ≥ 4, which is why we cannot rely on Lemma 21 to find enough inde-
pendent paths. To conclude this section with an extra corollary, we employ
the following consequence of Menger’s Theorem.

Lemma 23. A graph which is k-connected and uniformly k-edge-connected
is uniformly k-connected.

Proof. Theorem 5 says that we find at least k independent paths between
each pair of vertices of a k-connected graph. On the other hand, there are
at most k independent paths between each pair of vertices, because those
are also edge-disjoint, of which we cannot have more than k in a uniformly
k-edge-connected graph.

Corollary 24. For k ≤ 3 a k-connected graph is uniformly k-connected if
and only if it is uniformly k-edge-connected.

Proof. This follows from Lemma 23 and Theorem 22.

3.3 Constructing uniformly connected graphs

In Section 3.1, we already observed that uniformly 1-connected graphs are
exactly the uniformly 1-edge-connected graphs which comprise exactly all
trees. The goal of this section is to continue with such descriptions. Whereas
uniformly k-connected and uniformly k-edge-connected graphs still have a
pretty neat structure for k = 2, their variety increases considerably for k ≥ 3.
In this case, constructive descriptions become all the more interesting.
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Figure 8: Illustration that uniformly 2-connected graphs are cycles only

Lemma 25. A graph is uniformly 2-connected if and only if it is a cycle.

Proof. A cycle certainly is uniformly 2-connected.

Conversely, a uniformly 2-connected graph G has at least three vertices and
is 2-connected. So it contains a cycle C as a subgraph. Suppose for the sake
of contradiction that G ̸= C. If there is a chord in C, then we immediately
find three independent paths in G. So there must be some vertex x not
contained in V (C). Because G is 2-connected, we know from Theorem 2
that there exists an x-{v, w} fan F for any two distinct vertices v, w ∈ V (C).
We find again three independent paths, which is illustrated in Figure 8 and
concludes our proof.

Let us continue with the following statements by Kingsford and Marçais [70],
which allow to characterize the class of uniformly 2-edge-connected graphs.

Theorem 26. A connected graph is uniformly k-edge-connected if and only
if each of its blocks is uniformly k-edge-connected.

Proof. We observe first that each path connecting any two vertices that are
contained in the same block of a graph must be completely contained in this
block. This shows already that a uniformly k-edge-connected graph contains
only uniformly k-edge-connected blocks.

Now let G be a connected graph whose blocks are all uniformly k-edge-con-
nected. As paths between two vertices v and w that belong to the same block
have to be completely contained in this block, we are sure to find exactly k
edge-disjoint paths connecting v and w. So let us consider the remaining case
where v is in a block Bv other than the block Bw in which w is contained. For
this purpose, let P be the unique path connecting Bv and Bw in the block-
cutpoint tree of G. We denote c0 = v and cℓ = w as well as the cut-vertices
of G on P that are not in {v, w} by c1, . . . , cℓ−1, where these vertices shall
be sorted in the order in which they appear when traversing P from v to w.
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Figure 9: The structure of uniformly 2-edge-connected graphs

For i ∈ {1, . . . , ℓ} each path that connects ci−1 with ci in G only contains
edges of the unique block in G that contains both ci−1 and ci. Because
each block of G is uniformly k-edge-connected, we find k edge-disjoint paths
between ci−1 and ci that we denote by P 1

i , . . . , P k
i . Those can be concatenated

to k edge-disjoint paths

ℓ⋃
i=1

P 1
i , . . . ,

ℓ⋃
i=1

P k
i

that connect v and w. There also cannot be more than k edge-disjoint paths
between v and w, as this already requires at least k + 1 edge-disjoint paths
between c0 and c1, which contradicts the fact that the corresponding block
is uniformly k-edge-connected. So we conclude that G is uniformly k-edge-
connected.

Corollary 27. A connected graph is uniformly 2-edge-connected if and only
if each of its blocks is a cycle.

Proof. Certainly, any connected graph whose blocks are cycles is uniformly
2-edge-connected.

Let now G be a uniformly 2-edge-connected graph. By Theorem 26, each
block B of G is uniformly 2-edge-connected. If B is 2-connected, then B
is a cycle by Lemma 23 and Lemma 25. Otherwise, B is a graph with two
vertices that are joined by two edges, which is also a cycle.

So we can get an impression of the structure of uniformly 2-edge-connected
graphs by taking a look at Figure 9. Note too that although the formulations
of Lemma 25 and Corollary 27 do not stress that point, they also describe how
to construct uniformly 2-connected and uniformly 2-edge-connected graphs.
As such constructive descriptions often allow further insight into a graph
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Figure 10: A vertex split that does not preserve uniform connectivity

class, we shall proceed in that direction. A famous characterization is Tutte’s
Wheel Theorem [102]. It says that any 3-connected graph is a wheel or
can be obtained from a wheel by successively adding edges between distinct
nonadjacent vertices and splitting vertices. This splitting construction is
allowed for any vertex x of degree at least four. All neighbors of x shall
be collected in two disjoint sets V and W such that |V | ≥ 2 and |W | ≥ 2.
Then splitting x means that it is replaced by two vertices v and w and
incident edges such that N(v) = V ∪ {w} and N(w) = W ∪ {v}, whereas
all further incidence relations remain unchanged. This construction though
preserving 3-connectivity does not preserve uniform connectivity. This can be
seen from Figure 10, which displays a vertex split that produces two vertices v
and w that are connected by four independent paths. Another attractive
characterization by Tutte describes how to build all 3-regular 3-connected
graphs. It is based on the following construction.

Definition 28. Joining two edges kℓ, vw ∈ E(G) of a 3-regular 3-connected
graph G means to take two new vertices x, y /∈ V (G) and to form the graph

G + x + y − kℓ− vw + kx + xℓ + vy + yw + xy.

 

k

ℓ

y

v

w

Figure 11: Joining the edges vw and kℓ
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Figure 12: Joining two graphs by the bridge construction

This construction is also illustrated in Figure 11. Also note that kℓ and
vw are two distinct edges, but they are allowed to share one endvertex.
Tutte [103, Chapter 12] characterized 3-regular 3-connected graphs exactly
as those that can be obtained from the complete graph on four vertices
by successively joining edges. This construction cannot produce all uni-
formly 3-connected graphs, as they comprise also non-regular ones, but it
preserves uniform connectivity, because 3-regular 3-connected graphs are uni-
formly 3-connected by statement (i) of Lemma 18. So the class of uniformly
3-connected graphs sits between those characterized by Tutte and we require
further constructions to produce them all.

Definition 29. For graphs G1 and G2 which contain vertices v1 ∈ V (G1)
and v2 ∈ V (G2) having both three neighbors, denoted by N(v1) = {x1, x2, x3}
and N(v2) = {y1, y2, y3}, by bridge construction we refer to forming(

(G1 − v1) ∪· (G2 − v2)
)

+ x1y1 + x2y2 + x3y3.

The set of all graphs obtained this way from G1 and G2, for any such v1
and v2, is denoted by G1⊕G2.

Definition 30. Let G be a graph containing distinct vertices v, w, x ∈ V (G)
and an edge vw ∈ E(G), that satisfies deg(u) = 3 for all u ∈ V (G) \ {x}
and deg(x) ≥ 3. For a vertex y /∈ V (G), by spoke construction we refer to
forming

(G + y)− vw + xy + vy + wy.

The set of all graphs obtained this way from G, for any such v, w, and x,
is denoted by ⊘ (G). Furthermore, we speak of a primary spoke construc-
tion if deg(x) = 3 holds above, and call it a secondary spoke construction
if deg(x) > 3.
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Figure 13: Expanding a graph by the spoke construction

At some points, we just say bridge for bridge construction or spoke for spoke
construction. Our goal now is to prove that these constructions preserve
uniform 3-connectivity and that they indeed suffice to construct all uniformly
3-connected graphs. Before entering into this discussion, let us recall the
following notion.

Definition 31. A degenerate cut is a cut having one side that contains a
single vertex.

Lemma 32. Let G1 and G2 be graphs and H be a graph in G1⊕G2.
Then H is uniformly 3-connected if and only if G1 and G2 are both uniformly
3-connected.

Proof. We are given H = (G1 − v1) ∪· (G2 − v2)) + x1y1 + x2y2 + x3y3. for dis-
tinct vertices v1, x1, x2, x3 ∈ V (G1) with N(v1) = {x1, x2, x3} and distinct
vertices v2, y1, y2, y3 ∈ V (G2) with N(v2) = {y1, y2, y3}.

We begin be assuming that G1 and G2 are both uniformly 3-connected and
showing that this implies H to be 3-connected. Consider first two ver-
tices v ∈ V (G1) and w ∈ V (G2). Having three independent v-v1 paths in G1,
we also have three independent v-{x1, x2, x3} paths in G1 − v1. Likewise,
there are three independent {y1, y2, y3}-w paths in G2 − v2. Combining these
paths with the edges x1y1, x2y2, and x3y3 gives three independent v-w paths
in H. So to prove that H is 3-connected, it remains to be shown that there
is no 2-separator for vertices v, w ∈ V (Gi), for i ∈ {1, 2}. We concentrate,
without loss of generality, on the case where v, w ∈ V (G1) and assume, for a
contradiction, that there is a v-w separator S ⊆ V (H) \ {v, w} of cardinal-
ity |S| = 2 in H. In G1 − S there is a v-w path P , because G1 is 3-connected.
If v1 /∈ V (P ), then P also exists in H − S, against our assumption that S
separates v and w in H. So all v-w paths in G1 − S have to contain v1. Cer-
tainly, this requires S ⊆ V (G1). But such a path P contains a subpath xiv1xj
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for certain i, j ∈ {1, 2, 3} with i ̸= j. We define Q as the path that results
from P by replacing the subpath xiv1xj by xiyiRyjxj for some yi-yj path R
in G2 − v2, which is well-defined because S ⊆ V (G1). The path Q exists
in H − S, which is a contradiction. So H is 3-connected.

To obtain that H is uniformly 3-connected, assume, for a contradiction, there
are vertices v, w ∈ V (H) that are connected by four independent paths. Fig-
ure 12, which illustrates the construction by which H arises, shows that there
cannot be four independent paths connecting a vertex in V (G1) with a vertex
in V (G2). So, without loss of generality, let v, w ∈ V (G1). Again, in view
of Figure 12, just one of four independent paths between v and w, can con-
tain vertices of G2. We denote this path by P and observe that it contains
a subpath of the form xiyiQyjxj for certain i, j ∈ {1, 2, 3} with i ̸= j and
some yi-yj path Q in G2 − v2. The path that is obtained by replacing the
subpath xiyiQyjxj in P by xiv1xj remains independent to the other three
paths between v and w and is contained in G1. This contradicts that G1 is
uniformly 3-connected and thus proves that H is uniformly 3-connected.

Now we assume that H is uniformly 3-connected and aim to prove that
then G1 and G2 have to be uniformly 3-connected as well. We focus only
on G1 as the following arguments apply to G2 analogously. To show that G1
is 3-connected, consider two arbitrary vertices v, w ∈ V (G1). For the case
where v1 ∈ {v, w}, we may consider v = v1 and observe that there are three
independent w-y1 paths in H. These paths induce a w-{x1, x2, x3} fan F
in G1. Including the edges x1v1, x2v1, x3v1 ∈ E(G1) to F shows that there are
three independent w-v1 paths in G1. This leaves us with the case v1 /∈ {v, w}.
In H the vertices v and w are connected by three independent paths. Only
one of them, say P , can contain vertices of G2. In P we can replace the
subpath xiyiQyjxj, where i, j ∈ {1, 2, 3} with i ̸= j and some yi-yj path Q
in G2 − v2, by xiv1xj to obtain a path contained in G1 that remains inde-
pendent of the other two paths between v and w. So G1 is 3-connected.

To show that G1 is indeed uniformly 3-connected, suppose there are ver-
tices v, w ∈ V (G1) connected by four independent paths in G1. As the degree
of v1 is three, we know that v1 /∈ {v, w}. If v1 is contained in none of the
four paths, then they exist in H as well, contradicting that H is uniformly
3-connected. So exactly one of the three independent paths contains a sub-
path of the form xiv1xj for some i, j ∈ {1, 2, 3} with i ̸= j. Replacing this
subpath by xiyiQyjxj for some yi-yj path Q in G2 − v2 shows that there are
four independent paths in H, which is again a contradiction and concludes
our proof.
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Lemma 33. Each graph in ⊘ (G) is uniformly 3-connected if G is a uniformly
3-connected graph.

Proof. We consider a graph H = G + y − vw + xy + vy + wy for distinct
vertices v, w, x ∈ V (G), an edge vw ∈ E(G) and a vertex y /∈ V (G) such
that deg(u) = 3 for all u ∈ V (G) \ {x}. We are given that G is a uni-
formly 3-connected graph. To show that also H is uniformly 3-connected,
we just need to prove that H is 3-connected, because only one of its vertices
is of degree larger then three, which is why two vertices in V (H) cannot be
connected by more than three independent paths.

Now let us consider two arbitrary vertices s, t ∈ V (G) = V (H) \ {y}. For
sure, we find three independent s-t paths in G, as G is 3-connected. If none
of these paths contains the edge vw, these three paths are present in H as
well. If one of these paths, say P , contains vw, we obtain a path Q in H
that results from P when replacing the edge vw by the subpath vyw. As
neither the vertex y nor the edges vy and yw exist in G, we find that Q is
independent of the other two paths. What remains to be checked is whether y
is connected to any other vertex t ∈ V (H) by three independent paths. Let
us assume, for contradiction, that there is a y-t separator S ⊆ V (H) \ {y, t}
of cardinality |S| = 2. In H − S the component of y contains besides y at
least one further vertex, because y has three neighbors in V (G). But this
shows that S separates two vertices from V (G) in H, which contradicts what
we have shown already. So H is 3-connected and the proof is complete.

Lemma 34. Let H be a graph in ⊘ (G) for some graph G. If H is uni-
formly 3-connected and if each 3-cut in H is degenerate, then also G is
uniformly 3-connected.

Proof. Let H = G + y − vw + xy + vy + wy be a uniformly 3-connected
graph for distinct v, w, x ∈ V (G), vw ∈ E(G) and y /∈ V (G) with deg(u) = 3
for all u ∈ V (G) \ {x}. We also know that each 3-cut in H is degenerate.
As in the proof of Lemma 33, we only have to show that G is 3-connected,
because at most one of its vertices is of degree larger than three.

Our first goal is to show that x is connected to all other vertices in V (G) by
three independent paths. To obtain a contradiction, suppose that some ver-
tex z ∈ V (G) can be separated from x by a set S = {s1, s2} ∈ V (G) \ {x, z}.
Let the component of G− S containing x be denoted by Gx and the com-
ponent containing z by Gz. This situation is illustrated in Figure 14. Both
vertices s1 and s2 are of degree three which implies

min
{
E
(
{si}, V (Gx)

)
, E
(
{si}, V (Gz)

)}
= 1 for i ∈ {1, 2}.
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Figure 14: A situation supposed in the proof of Lemma 34

So we may denote the single edge joining si with the respective component Gx

or Gz by ei, which is also depicted in Figure 14. This shows that there is
a cut {e1, e2} in G. In case vw /∈ {e1, e2}, then {e1, e2, xy} is a cut separat-
ing x and z in H. We know that all edges in this cut are incident to one
vertex of degree three, because we are given that H only contains degener-
ate 3-cuts. But the degree of x in H is larger than three and the edges e1
and e2 are not incident to y, because y /∈ V (G). This is a contradiction. In
case vw ∈ {e1, e2}, the cut {e1, e2, xy} \ {vw} ∪ {vy} separates x and z in H.
Against our assumption, this 3-cut is again not degenerate, because one of
its edges is not incident to y while the other two are.
To conclude that G is 3-connected, suppose, for contradiction, that there is
some separator S ⊆ V (G) of cardinality |S| = 2. We know that S has to
contain x, as otherwise S also separates x from some other vertex in V (G),
which is not possible according to our previous reasoning. However, if S
contains x, then S also is a separator in H, which contradicts the fact that H
is uniformly 3-connected.
The condition in Lemma 34 requiring only degenerate cuts may seem some-
what strange. Yet it is a crucial one. The graph H depicted on the left in
Figure 15 is uniformly 3-connected and is in ⊘ (G) for the graph G depicted
on the right in Figure 15. But H contains a non-degenerate 3-cut, which is
drawn in dashed lines there and indeed the graph G is not 3-connected, as
its highlighted vertices form a 2-separator. Now that we have investigated
in which sense the ⊕ and ⊘ constructions preserve uniform connectivity, we
may proceed to the main result of this section.
Theorem 35. Consider the following recursively defined inclusionwise min-
imal graph class C. Let each 3-connected 3-regular graph be in C. For G ∈ C
the class C has to contain each graph in ⊘ (G) and for G1, G2 ∈ C the class C
has to contain each graph in G1⊕G2. Then a graph is uniformly 3-connected
if and only if it is contained in C.
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Figure 15: An example showing that it is necessary for H to only contain
non-degenerate 3-cuts in Lemma 34

Proof. We know that each 3-connected 3-regular graph is uniformly 3-con-
nected by Lemma 18. Moreover, the ⊕ and ⊘ constructions preserve uniform
3-connectivity by Lemmas 32 and 33, respectively. This proves that each
graph in C is uniformly 3-connected.

To show that the class C contains indeed all uniformly 3-connected graphs,
we proceed by induction on the number of vertices. The smallest uniformly
3-connected graph is the complete graph on four vertices. It is contained in C,
as it is 3-connected and 3-regular, and it is the only uniformly 3-connected
graph on four vertices. So let G be an arbitrary uniformly 3-connected graph
with |V (G)| ≥ 5 and let us suppose that any graph on less than |V (G)|
vertices is contained in C.

We begin with the case in which G contains only degenerate 3-cuts. We
also consider G to be irregular, because otherwise G belongs to C already
by definition. Furthermore, we assume, for contradiction, that there are two
vertices s, t ∈ V (G) of degree larger than three. From Corollary 24, we know
that G is 3-edge-connected, and thus contains a 3-cut that separates s and t.
As we assume each 3-cut in G to be degenerate and because the degrees of s
and t are larger than three, we find that all edges of this 3-cut are incident to
one vertex in V (G) \ {s, t}. But then this vertex is an s-t separator, contra-
dicting that G is 3-connected. This shows that G contains exactly one vertex
of degree larger than three, which we call x. For a neighbor y of x we also
denote N(y) = {v, w, x}. Now suppose, for contradiction, that vw ∈ E(G).
Then G contains the triangle on {v, w, y} as a subgraph. Because all vertices
except x have degree three, we conclude that E({v, w, y}, V (G) \ {v, w, y})
contains exactly three edges, which separate x and {v, w, y}. Recalling
that deg(x) > 3, we found a 3-cut that is not degenerate, against our as-
sumption. Therefore, vw /∈ E(G) and hence H := G− y + vw is well-defined.
In consequence, G is a graph in ⊘ (H). Because all 3-cuts in G are de-
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generate, we obtain by Lemma 34 that H is uniformly 3-connected. Be-
cause |V (H)| < |V (G)|, our induction hypothesis says that H is contained
in C. This in turn implies that G is in C, as G is in ⊘ (H).

It remains the case in which G contains a 3-cut F = {e1, e2, e3} that is non-
degenerate. We begin by showing that the edges in F have no common end-
vertices. Now assume, for contradiction, that at least two edges in F have a
common endvertex x. Let those edges be e1 and e2. In G− F the edge e3 has
an endvertex y that is not contained in the component of x. Since y cannot be
incident to both edges e1 and e2 and x is not incident to e3, we find that {x, y}
is a separator in G, which is a contradiction to G being 3-connected. So the
edges in F have all distinct endvertices. We denote the two components
of G− F by X and Y and address for i ∈ {1, 2, 3} the endvertex of ei that is
contained in X by xi and the endvertex that is contained in Y by yi. Defining
for two vertices v1, v2 /∈ V (G) the graphs G1 := X + v1 + x1v1 + x2v1 + x3v1
and G2 := Y + v2 + y1v2 + y2v2 + y3v2, we obtain that G is in G1⊕G2. So
Lemma 32 implies that both graphs G1 and G2 are uniformly 3-connected.
By their construction they satisfy |V (G1)| < |V (G)| and |V (G2)| < |V (G)|.
Consequently, our induction hypothesis says that G1 and G2 are in C and
because G is in G1⊕G2, this shows that G is contained in C.

With this we achieved a concise description of the class of uniformly 3-
connected graphs. The strength of such a constructive characterization is
that it precisely describes how more complex graphs can be constructed from
smaller building blocks, which in turn comes in very useful when proving fur-
ther structural properties. This is what we focus on in the next section.

Before embarking on that, let us compare our constructive results for uni-
formly 3-connected graphs with the characterization of uniformly 3-edge-con-
nected graphs by Kingsford and Marçais [70]. Their construction builds on
the dumbbell graph, which consists of two vertices connected by three par-
allel edges. They prove that each uniformly 3-edge-connected graph can be
obtained from dumbbell graphs by successive block gluings and cycle expan-
sions. By gluing two graphs G1 and G2 we simply mean to build their union
and to replace two vertices v1 ∈ V (G1) and v2 ∈ V (G2) by a vertex v adjacent
to all neighbors of v1 and v2. By a cycle expansion we mean to replace a ver-
tex v of a graph by a cycle C containing c ≤ deg(v) vertices. One vertex of C
shall be adjacent to deg(v)− c + 1 neighbors of v and the remaining vertices
of C shall be adjacent to exactly one neighbor of v. Figure 16 illustrates how
to construct the wheel graph W5 from a smaller uniformly edge-connected
graph. As in this example, and beginning already with the dumbbell graph,
these constructions heavily rely on the existence of multiple edges. They also
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⇝

Figure 16: A cycle expansion producing a wheel graph

produce separators of cardinality one and two. So they do not preserve uni-
form vertex-connectivity. Conversely, the constructions from Definition 29
and 30 can certainly not produce all uniformly 3-edge-connected graphs, but
they preserve uniform edge-connectivity, because of Corollary 24 uniformly
3-connected graphs are also uniformly 3-edge-connected.

3.4 Properties of uniformly connected graphs

The complete graph on four vertices, which can also be regarded as the
wheel graph W4, is the smallest building block when constructing uniformly
3-connected graphs. It is the smallest uniformly 3-connected graph and, in
view of Theorem 35, belongs to the base class of 3-regular 3-connected graphs.
All further wheel graphs Wn on n ≥ 5 vertices can be obtained from ⊘ (Wn−1).
In this recursion, each ⊘ (Wn) gives a unique graph. But let us recall at this
point that the result of both ⊘ and ⊕ are sets of graphs. So to make the
nested use of these symbols precise, we introduce for a graph G and a set of
graphs H the conventions

H⊕G :=
⋃

H∈H
(H ⊕G) and ⊘ (H) :=

⋃
H∈H

⊘ (H).

In this section, we are concerned with structural properties of certain uni-
formly connected graphs. Let us begin to study which vertex degrees are
possible. Uniformly k-connected graphs clearly have minimum degree k and
the wheel graph on n vertices is an example showing that uniformly connected
graphs may contain a vertex of degree n− 1. For k < n− 1, however, no uni-
formly k-connected graph contains more than one vertex of degree n− 1, be-
cause otherwise we find the corresponding vertices to be connected by n− 1
independent paths. We may further ask how many vertices of minimum
degree can possibly exist. Formally, for a graph G we can ask for the param-
eter

ν(G) :=
∣∣∣{v ∈ V (G) : deg(v) = min

w∈V (G)
deg(w)

}∣∣∣.
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This question attracted wide interest in extremal graph theory. For example,
Kingsford and Marçais [71] showed for k ∈ N that a uniformly k-edge-con-
nected graph G satisfies ν(G) ≥ 2. A multigraph resulting from a path graph
on n vertices in which we replace each edge by exactly k parallel edges is an
example that attains this bound for general n. Minimally connected graphs
have also been studied extensively and all the results obtained in this context
also hold for uniformly k-connected as well as uniformly k-edge-connected
graphs. This is implied by Theorem 17, which states that graphs from both
classes are minimally k-connected. The starting point of these investiga-
tions is a result by Halin [60], who proved that each minimally k-connected
graph contains a vertex of degree k. Dirac [37] showed ν(G) ≥ (n + 4)/3
for minimally 2-connected graphs G on n vertices and Halin [61] proved
that ν(G) ≥ (2n + 6)/5 for minimally 3-connected graphs G on n vertices.
Both bounds are tight and are included as special cases of the inequal-
ity ν(G) ≥ ((k − 1)n + 2k)/(2k − 1) for minimally k-connected graphs G
on n vertices, given by Mader [77]. This result cannot be improved if we
are interested in formulas that only depend on a graph’s number of vertices.
However, Oxley [83] achieved stronger bounds depending on a graph’s num-
ber of vertices n and number of edges m. The question of whether Oxley’s
result is best possible has recently been answered by Schmidt [90], by pro-
viding the tight bound ν(G) ≥ max{(k + 1)n− 2m, ⌈(m− n + k)/(k − 1)⌉},
which deviates from Oxley’s result only for small m.

All mentioned results are valid for uniformly connected as well as uniformly
edge-connected graphs. We may see even stronger bounds for them, since
Figure 3 shows that minimally k-connected graphs neither have to be uni-
formly k-connected nor have to be uniformly k-edge-connected. Indeed, all
vertices contained in a uniformly 2-connected graph have to be of minimum
degree two, as we characterized those graphs exactly as cycles in Lemma 25.
In the following, our goal is to show a sharp bound on the number of vertices
of minimum degree for uniformly 3-connected graphs.

Recall that Definition 30 for forming ⊘ (G) requires that G has at most one
distinguished vertex x whose degree is allowed to exceed three. We introduced
the terms primary spoke if deg(x) = 3 in Definition 30 and secondary spoke
if deg(x) > 3. Also recall that Tutte’s edge joining construction, given in
Definition 28, is only defined for 3-regular 3-connected graphs. Tutte [103,
Chapter 12] characterized these graphs as exactly those that can be built
from the complete graph on four vertices by successively joining edges. So
the base class in Theorem 35 is built by edge joins, which is why their number
appears in the following counting statement.
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Theorem 36. A uniformly 3-connected graph on n vertices satisfies

n = 4 + 2t + 2b + p + s

if it is built from complete graphs on four vertices by a sequence of t edge
joins, b bridges, p primary spokes, and s secondary spokes.

Proof. The complete graph on four vertices is the smallest uniformly 3-con-
nected graph. It satisfies our statement, as in this case t = b = p = s = 0. So
let now G be a graph on n vertices and suppose our statement holds for all
graphs on less than n > 4 vertices.

At first, let us consider the case where G is constructed by a sequence that
ends with an edge join. This means G is built from a uniformly 3-connected
graph G′ with n = |V (G)| = |V (G′)|+ 2, because joining two edges adds two
new vertices. Denoting by t′ the number of edge joins that went into form-
ing G′, we have t = t′ + 1. We conclude by induction that

n = |V (G)| = |V (G′)|+ 2
= 4 + 2t′ + 2b + 2 + p + s

= 4 + 2t + 2b + p + s.

Analogously, we can treat the cases where the sequence from which G is
constructed ends with a primary or secondary spoke, as in both cases we
simply add one vertex, as is illustrated in Figure 13.

Finally, let G be constructed by a sequence that ends by employing a bridge.
This means that G is built out of two uniformly 3-connected graphs G1
and G2 satisfying n = |V (G)| = |V (G1)|+ |V (G2)| − 2 as well as t = t1 + t2,
b = b1 + b2 + 1, p = p1 + p2, and s = s1 + s2, where ti, bi, pi, si denote the
respective numbers of edge joins, bridges, primary spokes, and secondary
spokes used when constructing Gi, where i ∈ {1, 2}. This is also illustrated
in Figure 12. We conclude by induction that

n = |V (G)| = |V (G1)|+ |V (G2)| − 2
= 4 + 2t1 + 2b1 + p1 + s1 + 4 + 2t2 + 2b2 + p2 + s2 − 2
= 4 + 2(t1 + t2) + 2(b1 + b2 + 1) + (p1 + p2) + (s1 + s2)
= 4 + 2t + 2b + p + s. □

This allows to prove a bound on the number of vertices of minimum de-
gree in uniformly 3-connected graphs. Along the way, we obtain additional
conditions on the numbers of constructions required.
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Theorem 37. A uniformly 3-connected graph G on n vertices satisfies

ν(G) ≥ ⌈(2n + 2)/3⌉.

Proof. Theorem 36 establishes the equation

n = 4 + 2t + 2b + p + s. (1)

By definition, a primary spoke can only be used on 3-regular graphs and it
increases one of the degrees to four. Thus it can be used only once per graph
going into a bridge. This implies

b + 1 ≥ p ⇒ 2b ≥ 2p− 2. (2)

By combining Equations (1) and (2), we obtain

n ≥ 2 + 2t + 3p + s ≥ 2 + 3p ⇒ p ≤ ⌊(n− 2)/3⌋. (3)

We also observe that primary spokes are the only constructions through which
degrees can increase. In fact, per spoke, one degree increases by exactly one.
Thus,

ν(G) ≥ n− p ≥ ⌈(2n + 2)/3⌉, (4)

which is the statement to be shown.

The result we obtained is in fact best possible in terms of the number of
vertices. This is easily seen for n = 4. For n ∈ N, n ≥ 5, graphs of the form

(⌊(n−5)/3⌋⊕
i=1

W5

)
⊕ W5+(n+1 mod 3)

attain the bound stated in Theorem 37. Consider a graph G built according
to this scheme. Then its construction involves p = ⌊(n− 5)/3⌋+ 1 primary
spokes, required to form W5’s from W4’s. In view of Condition (4), we ob-
tain ν(G) ≥ n− p = n− (⌊(n− 5)/3⌋+ 1) = ⌈(2n + 2)/3⌉. Thus G indeed
attains the given bound. For an illustration, an example on n = 15 vertices,
where the above formula reads W5⊕W5⊕W5⊕W6, is displayed in Figure 17.
Naturally, we can move on asking for a complete description of the extremal
graphs, meaning those uniformly 3-connected graphs for which the bound of
Theorem 37 is attained. Also, we may ask for special properties this subclass
possesses. As it turns out, following these questions leads to further insights
into the constructions involved in forming uniformly 3-connected graphs. The
first property we focus on concerns the crossing number cro(G) of a graph G.
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Figure 17: A uniformly 3-connected graph on 15 vertices with minimum num-
ber of vertices of minimum degree

This is the smallest possible number of edge crossings when drawing G in a
plane. To prove that the bridge construction preserves this parameter, we
build on the following fact about graph embeddings, presented for example
by West [104, Chapter 6].

Lemma 38. For any edge set E of a face of some planar embedding of a
graph G, there is an embedding of G having E as edge set of the outer face.

Proof. Projecting a drawing of a graph stereographically onto the sphere
lets the edge sets of any face remain the same. By choosing the center of
projection inside the face bounded by E and projecting back onto the plane,
we obtain an embedding of G with E as the edge set of the outer face.

Theorem 39. If G = G1⊕G2 for some graphs G1 and G2, then

cro(G) ≤ cro(G1) + cro(G2).

Proof. Let G1 and G2 be two graphs with vertices v1 ∈ V (G1) and v2 ∈ V (G2)
whose neighborhoods are N(v1) = {x1, y1, z1} and N(v2) = {x2, y2, z2}. Fur-
thermore, let G be any graph of the form

G :=
(
(G1 − v1) ∪· (G2 − v2)

)
+ x1x2 + y1y2 + z1z2.

We begin by investigating some drawing of the graph G1 in the plane. Such
a drawing may have crossings. But replacing each existing crossing by a
new vertex gives us a planarization P . When forming P , some of the edges
in {x1v1, y1v1, z1v1} may have to be subdivided. By x′

1 we denote the vertex
on the former edge x1v1 including x1 but excluding v1 that is closest to v1.
The vertices y′

1 and z′
1 are defined analogously. Because deg(v1) = 3, two of

the three edges x′
1v1, y′

1v1, and z′
1v1 have to be contained in the same edge set

of a face of P . Let those two edges be denoted by x′
1v1 and y′

1v1. Lemma 38
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Figure 18: The bridge construction’s effect on crossings

then says that there is an embedding P ′ of P in which x′
1v1 and y′

1v1 are
contained in the edge set of the outer face. When replacing in P ′ those
vertices we had to introduce when planarizing G back to crossings, we obtain
a drawing of G1 where both edges x1v1 and y1v1 are incident to the outer
face. Moreover, by reflecting the resulting embedding of G1 across a line
through v1, we can choose the orientation of the edges x1v1 and y1v1. The
exact same reasoning holds for the graph G2. In short, there is no loss of
generality in assuming that G1 and G2 are drawn as in Figure 18.

Because the graphs we embedded are finite, there exist radii ε, δ > 0 for
which the discs Uε(v1) = {x ∈ R2 : ∥x− v1∥2 < ε} and Uδ(v2) do not contain
any x′

1, y′
1, z′

1, x′
2, y′

2, and z′
2. Let x′′

1 denote the intersection of the edge x1v1
with the boundary of the disc Uε(v1). Likewise, denote by x′′

2 the intersection
of the edge x2v1 with the boundary of Uδ(v2). The arising points form a polyg-
onal arc, leading from x1 to x′′

1 to x′′
2 to x2. Analogously, there are polygonal

arcs connecting y1 with y2 and z1 with z2. Since we are given a drawing of G1
and G2 as in Figure 18, all three polygonal arcs can be drawn without addi-
tional crossings. In other words, forming G = G1⊕G2 can be done without
adding additional crossings. Equivalently, cro(G) ≤ cro(G1) + cro(G2).

Our next goal is to study how the treewidths of input graphs behave under
the bridge construction. Let us therefore recall the following concepts.

Definition 40. A pair ({Xi : i ∈ I}, T = (I, F )) where T is a tree is a tree
decomposition of a graph G if for each node i ∈ I there is a bag Xi ⊆ V (G)
such that the following conditions are satisfied.

(i) Each vertex in V (G) is contained in some bag. Formally, ∪i∈IXi =V (G).
(ii) For each vw ∈ E(G) there exists a node i ∈ I with v, w ∈ Xi.
(iii) For each v ∈ V (G) the nodes in {i ∈ I : v ∈ Xi} induce a subtree of T .
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By the width of a tree decomposition ({Xi : i ∈ I}, T = (I, F )), we mean the
number maxi∈I |Xi| − 1. The treewidth tw(G) of a graph G is the minimum
width taken over all tree decompositions of G.

Note that we address the elements of V (G) as vertices and those of I as nodes.
We also build on the following fact, presented for example by Diestel [35,
Chapter 12].

Lemma 41. For a minor H of a graph G there holds tw(H) ≤ tw(G).

Proof. Consider a tree decomposition D := ({Xi : i ∈ I}, T = (I, F )) of the
graph G. By Definition 40, deleting any edge or vertex of G leaves D to be
a tree decomposition for the resulting minor H and hence tw(H) ≤ tw(G).

Consider now a minor H that is obtained from G by contracting an arbitrary
edge vw ∈ E(G). Denoting the vertex to which vw is contracted by x, we
define X ′

i := (Xi \ {v, w}) ∪ {x} for i ∈ I with {v, w} ∩Xi ̸= ∅ and X ′
i := Xi

for i ∈ I with {v, w} ∩Xi = ∅. Then ({X ′
i : i ∈ I}, T = (I, F )) is a tree de-

composition for H of width at most tw(G), so tw(H) ≤ tw(G).

Another important fact we make use of is the following clique containment
lemma, presented by Scheffler [89].

Lemma 42. Let ({Xi : i ∈ I}, T = (I, F )) be a tree decomposition of a
graph G. Then for each clique W ⊆ V (G) there is a node i ∈ I with W ⊆ Xi.

Proof. For cliques containing one or two vertices our claim holds by Condi-
tions (i) and (ii) of Definition 40. We proceed by induction on the number of
vertices contained in the respective cliques. So consider a clique W ⊆ V (G)
with |W | =: k ≥ 3 and let v ∈ W . By induction, for W ′ := W \ {v} there is a
node j ∈ I such that W ′ ⊆ Xj. If v ∈ Xj, then there is nothing left to show.
So suppose v /∈ Xj. By Condition (iii) of Definition 40, the subgraph Tv of T
that contains those nodes i ∈ I where v ∈ Xi forms a subtree of T . So there
is a unique {j}-V (Tv) path P in T . Denoting by ℓ the endvertex of P that
lies in V (Tv), we observe that W ⊆ Xℓ. This is because Condition (ii) of
Definition 40 requires that all edges of G[W ] have to be covered by some bag
and Condition (iii) of Definition 40 requires that that for each w ∈ W the
nodes {i ∈ I : w ∈ Xi} induce a subtree of T . So W ′ ⊆ Xi for each i ∈ V (P )
and W ⊆ Xℓ, as claimed.

In what follows, we show that the bridge construction preserves the treewidth
of the input graphs only under a certain condition. To this end, for a graph G,
we say a vertex v ∈ V (G) of deg(v) = 3 is safe if G admits a tree decompo-
sition of tw(G) in which there is a bag containing v together with two of
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v
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Figure 19: Attaching a wheel graph at an unsafe vertex

its neighbors. With Lemma 42 at hand, we may rephrase this as follows.
A vertex of degree three is safe if two of its neighbors are joined by an edge
or if two of its neighbors can be joined by an edge without increasing the
treewidth. If a vertex of degree three is not safe, we call it unsafe. Suppose
the vertex v, with neighborhood N(v) = {x, y, z}, in Figure 19 is unsafe in the
indicated graph G. If we now take the bridge construction to join G at v with
a wheel graph on four vertices, then the resulting graph has G + xy as minor.
In Figure 19, this can be checked by contracting the vertex pairs shaded in
gray. Consequently, the bridge construction can increase the treewidth. The
following theorem justifies the notion of a safe vertex.

Theorem 43. Let G1 and G2 be two graphs with vertices v1 ∈ V (G1) and
v2 ∈ V (G2) with N(v1) = {x1, y1, z1} and N(v2) = {x2, y2, z2}. Furthermore,
take any graph G of the form

G :=
(
(G1 − v1) ∪· (G2 − v2)

)
+ x1x2 + y1y2 + z1z2.

If max{tw(G1), tw(G2)} ≥ 3 and v1 as well as v2 are safe vertices, then

tw(G) = max{tw(G1), tw(G2)}.

Proof. To verify tw(G) ≥ max{tw(G1), tw(G2)}, it is enough to check that
both G1 and G2 are minors of G, because then Lemma 41 applies. Contract-
ing the vertices of G that originate from G2 to a single vertex gives G1 and
the same argument can be made for G2.

For the converse inequality, let ({Xi : i ∈ I1}, T1 = (I1, F1)) be a tree decom-
position of minimum width of G1 and ({Yj : j ∈ I2}, T2 = (I2, F2)) be a tree
decomposition of minimum width of G2. Because v1 and v2 are safe, we
can further assume that there is a node s ∈ I1 whose corresponding bag Xs

contains v1 and two of its neighbors. We may relabel them as x1 and y1
if necessary. Likewise, we can assume that there is a node t ∈ I2 whose
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Figure 20: Joining tree decompositions at bags of safe vertices if |F | = 1

corresponding bag Yt contains v2 and two of its neighbors. To verify the
inequality tw(G) ≤ max{tw(G1), tw(G2)}, we provide a tree decomposition
for G whose width does not exceed max{tw(G1), tw(G2)}. Whereas we were
free to label the neighbors of v1 in bag Xs by x1 and y1, we have to dis-
tinguish two cases according to how the vertices in Xs and Yt are joined by
edges in G. For the edge set F := E(G[Xs ∪ Yt])∩ {x1x2, y1y2, z1z2}, there
holds either |F | = 1 or |F | ≥ 2.

First, we focus on the case |F | = 1, where we address the neighbors of v2
in G2 that are contained in Yt by x2 and z2. Recalling that v1, v2 /∈ V (G), we
can safely replace these vertices, when defining

X ′
i := Xi \ {v1} ∪ {z2} for each i ∈ I1 with v1 ∈ Xi,

X ′
i := Xi for each i ∈ I1 with v1 /∈ Xi,

Y ′
j := Yj \ {v2} ∪ {y1} for each j ∈ I2 with v2 ∈ Yj,

Y ′
j := Yj for each j ∈ I2 with v2 /∈ Yj.

With this redefinition, we have not changed any bag’s cardinality. Taking
a new node v /∈ I1 ∪ I2, let us define the bag Xv := {x1, x2, y1, z2} as well as
the tree T := T1 ∪· T2 + v + sv + vt. Because |Xv| = 4, we conclude that

max
{

max
i∈I1
|Xi|, max

j∈I2
|Yj|

}
= max

{
max
i∈I1
|X ′

i|, max
j∈I2
|Y ′

j |, |Xv|
}
.

Herein, we used our assumption that max{tw(G1), tw(G2)} ≥ 3. What re-
mains to be shown is that D := ({X ′

i : i ∈ I1} ∪ {Y ′
j : j ∈ I2} ∪ {Xv}, T ) is a

tree decomposition of the graph G. Certainly, D satisfies Condition (i) of
Definition 40, because the only vertices we deleted when defining the bags
of D were v1 and v2, which are not contained in V (G). This is also the
reason why for each edge vw ∈ E(G1) ∪ E(G2) there exists a bag in D con-
taining v and w. Moreover, Condition (ii) of Definition 40 ensures that there
is some k ∈ I1 with v1, z1 ∈ Xk. This implies that z1, z2 ∈ X ′

k. Analogously,
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Figure 21: Joining tree decompositions at bags of safe vertices if |F | = 2

there exists an ℓ ∈ I2 with y1, y2 ∈ Y ′
ℓ . Because the endvertices of x1x2 are

both contained in Xv, Condition (ii) of Definition 40 holds. Condition (iii)
of Definition 40 certainly holds for vertices in V (G) \Xv. This is because T ,
by construction, is a tree that contains T1 and T2 as subtrees. Furthermore,
the only vertices that were deleted when forming D were v1 and v2, which
are not present in G, and the only vertices that were included in some bag
of D were those of Xv. This is also illustrated by Figure 20. We included z2
in each bag Xi that contained v1, represented by z2 inside a gray box with
subscript v1 in Figure 20. Consequently, {i ∈ I1 : z2 ∈ X ′

i} induces a sub-
tree of T1. Because {j ∈ I2 : z2 ∈ Y ′

j } = {j ∈ I2 : z2 ∈ Yj} induces a subtree
of T2 and the fact that z2 ∈ Xv, we see that the set of nodes whose bags
contain z2 induces a subtree of T . With Figure 20 at hand, it is easy to
argue analogously for the remaining vertices in Xv.

Let us now turn to the case |F | ≥ 2, in which we address the neighbors of v2
in G2 that are contained in Yt by x2 and y2. We set

X ′
i := Xi \ {v1} ∪ {z1} for each i ∈ I1 with v1 ∈ Xi,

X ′
i := Xi for each i ∈ I1 with v1 /∈ Xi,

Y ′
j := Yj \ {v2} ∪ {z1} for each j ∈ I2 with v2 ∈ Yj,

Y ′
j := Yj for each j ∈ I2 with v2 /∈ Yj.

Taking two new nodes v, w /∈ I1 ∪ I2, we define the bags Xv := {x1, y1, y2, z1},
Xw := {x1, x2, y2, z1} and the tree T := T1 ∪· T2 + v + w + sv + vw + wt. In-
vestigating Figure 21, we find that this defines a tree decomposition of G
whose width does not exceed max{tw(G1), tw(G2)}.

Note that although Theorem 43 shows cases in which the bridge construction
preserves the treewidth of the input graphs, in what follows, we face situations
where the respective vertices v1 and v2 at which we wish to join two graphs
are not safe. Moreover, general uniformly 3-connected graphs can be seen to
have large treewidth. In fact, this is already the case for 3-regular 3-connected
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Figure 22: Forming uniformly 3-connected graphs of arbitrary treewidth

graphs. The example in Figure 22, taken from Meeks [80], illustrates that
for any k ∈ N there are 3-regular 3-connected graphs containing a k × k grid
as minor. This is a graph on vertex set {1, . . . , k} × {1, . . . , k} and edge
set {(x1, y1)(x2, y2) : |x1 − x2|+ |y1 − y2| = 1}. Such a graph has treewidth k,
as is shown by Seymour and Thomas [92] or Bellenbaum and Diestel [6].
Together with Lemma 41, this implies that there are 3-regular 3-connected
graphs of treewidth k for k ≥ 3. Having worked out some facts about our
bridge construction, we now come back to our question about how extremal
uniformly 3-connected graphs look like. Let us have a look at the following
example to recall Conditions (1) to (4), which we obtained as a byproduct
of the proof of Theorem 37.

Example 44. Consider an extremal uniformly 3-connected graph on n = 10
vertices. According to Condition (4), when constructing such a graph, we
have to use as many primary spokes as possible. In view of Condition (3),
this means p = 2. Condition (1) then reads 4 = 2t + 2b + s and Condition (2)
requires b ≥ 1. So we obtain exactly three options, in which p = 2 and

t = 1, b = 1, s = 0 or t = 0, b = 2, s = 0 or t = 0, b = 1, s = 2.

A graph for the setting t = 1, b = 1, p = 2, s = 0 is illustrated in Figure 23.

Figure 23: An extremal uniformly 3-connected graph on ten vertices
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Our goal for the remainder of this section is to generalize the findings from
this example and so to obtain a precise picture of extremal uniformly 3-con-
nected graphs and some of their properties.

Lemma 45. Consider an extremal uniformly 3-connected graph containing
n = 3k + ℓ ≥ 5 vertices, for some k ∈ N \ {1} and ℓ ∈ {−1, 0, 1}, formed by
a number of t edge joins, b bridge constructions, p primary and s secondary
spokes. Then these quantities are related as follows.

(i) It holds that p = k − 1.
(ii) If ℓ = −1, then b = k − 2, t = 0, s = 0.
(iii) If ℓ = −0, then b = k − 2, t = 0, s = 1.
(iv) If ℓ = −1, then b = k − 1, t = 0, s = 0

or b = k − 2, t = 1, s = 0
or b = k − 2, t = 0, s = 2.

Proof. From (3) and (4), we know that forming an extremal graph involves

p = ⌊(n− 2)/3⌋ = ⌊(3k + ℓ− 2)/3⌋ = k + ⌊(ℓ− 2)/3⌋ = k − 1

primary spoke constructions, which verifies Claim (i). Condition (2) requires
that b ≥ p− 1 = k − 2 and so by Condition (1) it follows that

n = 4 + 2t + 2b + p + s

⇒ 3k + ℓ ≥ 4 + 2t + 2(k − 2) + k − 1 + s

⇒ 1 + ℓ ≥ 2t + s.

Also note that b ≤ k − 1, as otherwise the right hand side of Equation (1)
exceeds its left hand side. So b ∈ {k − 2, k − 1}. If ℓ = −1, we see from
above that b = k − 2, t = s = 0, which verifies Claim (ii). If ℓ = 0, it fol-
lows b = k − 2, t = 0, s = 1, which proves Claim (iii). It remains the case
where ℓ = 1. If b = k − 2, we obtain t = 0 and s = 2 or t = 1 and s = 0, which
are the last two alternatives in Claim (iv). If b = k − 1, then Condition (1)
requires t = s = 0, which is the remaining alternative in Claim (iv).

Example 46. Consider an extremal graph in whose construction an edge
join is involved. Recall that in Tutte’s characterization [103], and so in The-
orem 35, edge joins are only allowed to be used on 3-regular 3-connected
graphs. From Condition (i) of Lemma 45, we see that the construction of
any extremal graph on at least five vertices has to involve a primary spoke. So
all extremal graphs except W4 are nonregular. Consequently, when forming
extremal graphs, edge joins take only W4 as input. Up to graph isomorphism,
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Figure 24: Small extremal uniformly 3-connected graphs

the only possible outcomes of an edge join on W4 are the complete bipartite
graph K3,3 and the envelope graph, illustrated in the middle of Figure 24.
Those graphs, by a primary spoke construction, can give rise to the graphs
on the right in Figure 24. The dashed green edges drawn in the bottom right
graph are to be understood as alternatives, indicating the three nonisomor-
phic graphs that can be obtained from the envelope graph. The alternative
where edge f is added to the envelope graph is isomorphic to the graph in
the top right corner of Figure 24. This can be checked by investigating the
gray vertex labels. Furthermore, the alternative where edge e is added to the
envelope graph is isomorphic to the graph resulting from W4⊕W5. Similarly,
the envelope graph can be obtained via W4⊕W4, which is why nonplanar
extremal graphs can arise even without using edge joins.

Combining what we have learned about extremal uniformly 3-connected
graphs with our knowledge on how crossing numbers behave under the bridge
construction, we come to the following conclusion.

Theorem 47. An extremal graph G on n = 3k + ℓ ≥ 4 vertices, with k ∈ N
and ℓ ∈ {−1, 0, 1} satisfies cro(G) ≤ 1 and G is planar if n = 4 or ℓ ∈ {−1, 0}.

Proof. For n = 4, the only uniformly 3-connected graph is the complete graph
on four vertices, which is extremal and planar. So let G be an extremal graph
on n = 3k + ℓ ≥ 5 vertices, for some k ∈ N \ {1}.

If ℓ ∈ {−1, 0}, then Conditions (i) to (iii) of Lemma 45 say that G can be
formed by k − 1 primary spoke and k − 2 bridge constructions. If ℓ = 0,
an additional secondary spoke has to be used. Otherwise, no secondary
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spoke is involved. This means that G can be formed by using the bridge
construction recursively to combine wheels W5, and one W6, in any order, in
case ℓ = 0. By Theorem 39, we conclude that G is planar.

Let now ℓ = 1. From (i) and (iv) of Lemma 45, we know that forming G re-
quires k − 1 primary spoke constructions. If b = k − 1, then t = s = 0. This
means that G can be obtained by recursively using the bridge construction
to combine k − 1 wheels W5 with one W4 or, as we have seen in Example 46,
by combining k − 2 wheels W5 with one of the graphs in the bottom right
corner of Figure 24. This implies cro(G) ≤ 1, by Theorem 39.

Finally, let ℓ = 1 and b = k − 2. If t = 1, then s = 0 and G is obtained by
using the bridge construction recursively to combine wheels W5 with one of
the graphs on the right of Figure 24. If t = 0, then s = 2 and G can be
obtained by using the bridge construction recursively to combine wheels W5
with two W6 or one W7. In all cases, Theorem 39 implies cro(G) ≤ 1.

One may also notice a certain similarity between uniformly 3-connected
graphs and Halin graphs, of which Brandstadt, Le, and Spinrad [12] give
an overview. They are defined as those graphs that can be obtained by em-
bedding a tree in the plane that has no vertices of degree two and connecting
its leafs by a cycle without crossing any of the tree’s edges. We have already
met such a graph in Figure 17. Halin graphs are uniformly 3-connected, be-
cause any two of their vertices are connected by exactly three independent
paths, one along the inner tree and the other two along the enclosing cycle.
To check whether the converse inclusion holds, we may take nonplanar uni-
formly 3-connected graphs as counterexamples. But even planar extremal
ones may not be Halin graphs. For ℓ = −1, an example is given by Fig-
ure 25. Furthermore, from what we have seen in the previous proof, the
extremal graphs include those Halin graphs whose inner vertices are all of
degree four. In addition, if ℓ = 0, we can have one further inner vertex of
degree five. If ℓ = 1, we may have two additional vertices of degree five or
one of degree six.

Halin graphs are classical examples for graphs of low treewidth and so for a
graph class on which many hard combinatorial problems become tractable.
For example, Cornuéjols, Naddef, and Pulleyblank [28] discuss this in the
context of the travelling salesperson problem. Since extremal uniformly
3-connected graphs show a certain similarity to Halin graphs, we may ask
if they also possess a certain tree-like structure. Bodlaender [9] establishes
that the treewidth of Halin graphs is bounded by three. On the other hand,
Figure 22 illustrates that the treewidth of general uniformly 3-connected
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Figure 25: An extremal uniformly 3-connected graph that is not a Halin graph

graphs is unbounded. But since we observed in Example 46 and the proof
of Theorem 39 that the extremal graphs are built by successively joining a
relatively small set of building blocks by the bridge construction, this raises
the question of whether a small treewidth bound can be shown. However,
Theorem 43 only ensures that the bridge construction preserves treewidths
if the input graphs are joined at safe vertices. Figure 26 demonstrates that
unsafe vertices may appear in an extremal graph. The example shown there
is the graph from the bottom right corner of Figure 24, obtained when edge f
is inserted. In Figure 26, the vertex v has an independent neighborhood and
joining any of its neighbors gives rise to a K5 minor. The three possibili-
ties are indicated by dashed green lines. The respective K5 minor can be
obtained by contracting the vertex pairs shaded in gray. The graph without
any of the dashed green edges has treewidth three. To see this, delete in
the left example the vertices highlighted by gray circles. What remains is a
tree, for which we easily find a tree decomposition of width one. Putting the
highlighted vertices in all bags, gives rise to a tree decomposition of width
three. Furthermore, attaching a wheel graph on four vertices at v would in
fact increase the treewidth from three to four. This is what we discussed in
the context of Figure 19. But note that Figure 26 shows the only example for
a graph containing an unsafe vertex that we identified so far. Indeed, in the
remainder of this section, we verify that the treewidth of extremal graphs

v v v

Figure 26: An extremal uniformly 3-connected graph containing an unsafe
vertex v

58



Section 3.4 | Properties of uniformly connected graphs

is bounded. For this purpose, let us recall the notion of a line graph of a
graph G. This is the graph L(G) on vertex set E(G) whose vertices are adja-
cent exactly when they are incident in G. Harvey and Wood [63] investigate
treewidths of line graphs, for which they present the following fact.

Lemma 48. Any graph G satisfies

tw(G) ≤ 2 tw(L(G)) + 1.

Proof. If we replace each edge by both its endpoints in a tree decomposition
of L(G), then we obtain a tree decomposition of G. Recalling that a tree
decomposition’s width is the largest bag size minus one, this implies

tw(G) ≤ 2(tw(L(G))+1)−1 = 2 tw(L(G))+1. □

Bodlaender, Van Leeuwen, Tan, and Thilikos [11] show another useful fact
about a clique sum of two graphs G1 and G2. For two cliques S ⊆ V (G1)
and T ⊆ V (G2) with |S| = |T |, this is a graph that arises by forming G1 ∪· G2
and then identifying S and T .

Lemma 49. For graphs G1 and G2 with cliques S ⊆ V (G1) and T ⊆ V (G2)
such that |S| = |T |, a clique sum G of G1 ∪· G2 obtained by identifying S
and T satisfies

tw(G) = max{tw(G1), tw(G2)}.

Proof. Certainly, the graphs G1 and G2 are both subgraphs of G. This im-
plies tw(G) ≥ max{tw(G1), tw(G2)}, by Lemma 41.

For the converse relation, consider two minimum width tree decompositions
({Xi : i ∈ I1}, T1 = (I1, F1)) and ({Yj : j ∈ I2}, T2 = (I2, F2)) of G1 and G2,
respectively. By Lemma 42, there are nodes s ∈ I1 and t ∈ I2 with S ⊆ Xs

and T ⊆ Yt. So ({Xi : i ∈ I1} ∪ {Yj : j ∈ I2}, T1 ∪· T2 + st) defines a tree de-
composition of G whose width does not exceed max{tw(G1), tw(G2)}.

Lemma 50. Let G1 and G2 be two graphs with vertices v1 ∈ V (G1) and
v2 ∈ V (G2) with N(v1) = {x1, y1, z1} and N(v2) = {x2, y2, z2}. Furthermore,
take any graph G of the form

G :=
(
(G1 − v1) ∪· (G2 − v2)

)
+ x1x2 + y1y2 + z1z2.

Let further H a be a clique sum of L(G1) and L(G2) obtained by identifying
v1x1 with v2x2, v1y1 with v2y2, and v1z1 with v2z2. Then L(G) is a proper
subgraph of H.
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Figure 27: The bridge construction’s effect on the respective line graphs

Proof. Figure 27 shows the bridge construction and, alongside, how it acts
on the corresponding line graphs. We observe that joining G1 and G2 by
adding the edges x1x2, y1y2, and z1z2 translates to identifying v1x1 with
v2x2, v1y1 with v2y2, and v1z1 with v2z2 in the corresponding line graphs.
This is highlighted by the dashed green lines in Figure 27. Removing v1 in G1
and v2 in G2 has the effect of removing the edges {v1x1, v1y1}, {v1x1, v1z1},
and {v1y1, v1z1} in L(G1) and {v2x2, v2y2}, {v2x2, v2z2}, and {v2y2, v2z2}
in L(G2). So H can be obtained by building the clique sum of L(G1)
and L(G2) and then removing all edges of the subgraph induced by the clique
at which the clique sum is formed.

Theorem 51. Consider a class of graphs C that includes a base class con-
taining only graphs whose line graph’s treewidth is bounded by w. If all other
graphs in C can be obtained by employing the bridge construction iteratively,
then any G ∈ C satisfies

tw(G) ≤ 2w + 1.

Proof. This is a consequence of Lemmas 48, 49, and 50.

Corollary 52. Any extremal graph G satisfies tw(G) ≤ 13.

Proof. By Example 46 and our proof of Theorem 47, we find that the ex-
tremal graphs belong to a class that is generated by successively using the
bridge construction to join wheels on at most six vertices and the graphs

60



Section 3.4 | Properties of uniformly connected graphs

W6 L(W6) L(W6)

Figure 28: A wheel graph, its line graph, and a bramble certifying that the
line graph’s treewidth is bounded by six

illustrated in Figure 24. In view of Theorem 51, our claim follows if we man-
age to prove that those graph’s line graphs have treewidth at most six. At
first, investigate Figure 28. Deleting the vertices highlighted by gray circles
in the middle graph, we are left with a tree for which there is a tree decom-
position of width one. Putting the highlighted vertices in all bags, yields a
tree decomposition of width six. Line graphs of smaller wheels are minors of
the example we discussed. Whithin Figure 24, we essentially have to check
those graphs depicted in Figure 29. To see this, recall that the graph in the
bottom right corner of Figure 24 where edge e is included can be obtained
from W5 ⊕W4. Also recall that the graph in the top right corner is isomor-
phic to the graph in the bottom right corner where edge f is included. All
remaining graphs of Figure 24 are minors of those in Figure 29. As before,
for the depicted line graphs, the vertices highlighted by gray circles indicate
how to obtain a tree decomposition of width five.

Note that the bound tw(L(W6)) ≤ 6 is indeed best possible. To check this,
let us recall the notion of a bramble of a graph G, given by Seymour and
Thomas [92]. This is a set of connected mutually touching subgraphs of G.
Hereby, we say two subgraphs G1 and G2 touch each other if they have a com-
mon vertex or if there is an edge vw ∈ E(G) with v ∈ V (G1) and w ∈ V (G2).
The order of a bramble is the smallest size of a hitting set. This is a set of
vertices of G having a nonempty intersection with each of the bramble’s sub-
graphs. The bramble illustrated on the right in Figure 28 has five subgraphs
containing a single vertex, for each of the inner vertices, and five subgraphs
containing all but one outer vertex. Certainly, those subgraphs can only be
hit by at least seven vertices, which certifies the claimed treewidth bound
because a graph has treewidth at least k − 1 if and only if it has a bramble
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G1 G2

L(G1) L(G2)

Figure 29: Extremal graphs and corresponding line graphs

of order k. The latter result is known as treewidth duality theorem, which is
shown by Seymour and Thomas [92]. Statements as those in Theorem 43,
Theorem 51, or Corollary 52 have their value because a lot of computa-
tionally hard combinatorial problems on graphs become efficiently solvable
by dynamic programming methods if the treewidth of the given graph is
bounded. Bodlaender and Koster [10] provide an overview of the relevant al-
gorithmic techniques. In fact, our treewidth results imply that it is possible
to find an optimal coloring for an extremal graph in O(n) time. This is a
consequence of the work of Arnborg and Proskurowski [3] for general graphs
of bounded treewidth. Furthermore, uniformly 3-connected graphs, except
wheels on an even number of vertices, are indeed 3-colorable, which is shown
by Aboulker, Brettell, Havet, Marx, and Trotignon [2].

A problem that remains open is to determine the best upper bound C such
that tw(G) ≤ C holds for any extremal uniformly 3-connected graph G.
By Figures 26 and 19, we know that C ≥ 4. By Corollary 52, we know
that C ≤ 13.
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In this chapter, we ask which values can possibly occur as edge weights of
Gomory-Hu trees and we are interested in how to construct graphs for which
we prescribe such weights. While basic facts about Gomory-Hu trees can
be found in Section 2.3, we introduce the concept of a graph’s cut sequence
in Section 4.1. There, we verify that the cut sequence of a graph is de-
termined uniquely. In Section 4.2, we review basic facts about maximally
local-edge-connected graphs and discuss why this graph class is of interest
when investigating cut sequences. Revisiting the classical characterization of
degree sequences by Erdős and Gallai [40] at the beginning of Section 4.3,
we work towards a similar criterion for sequences of integer numbers to be
the cut sequence of a graph. Unlike for degrees, the sum of cut values does
not have to be even. However, the latter satisfy a related parity condition,
which we discuss in Section 4.3. Building on the constructive characteri-
zation of graphic sequences by Tripathi, Venugopalan, and West [101], we
demonstrate how to form graphs with prescribed cut sequence if they satisfy
a shifted variant of the classical Erdős-Gallai inequalities in Section 4.4.
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Chapter 4 | Prescribed Connectivity

4.1 Cut sequences

The following definition is the central concept that we study in this chapter.

Definition 53. A finite sequence of nonnegative numbers c1 ≥ . . . ≥ cn−1 is
called cut sequence if there is a Gomory-Hu tree for some graph on n vertices
that has the multiset of numbers c1, . . . , cn−1 as edge weights.

We refer to the numbers in a graph’s cut sequence as cut values. The
word multiset in this definition means that we have to regard the num-
bers c1 ≥ . . . ≥ cn−1 with their exact multiplicities. Note also that we con-
sider unweighted graphs without loops or multiple edges here. Many of the in-
vestigations about Gomory-Hu trees straightforwardly generalize to the case
of weighted graphs. However, the questions that we discuss in this chapter
are only meaningful in the case of unweighted graphs. This is because each
finite sequence of n− 1 numbers can be the edge weights of a Gomory-Hu
tree of a weighted graph. We may just take some tree with n− 1 edges and
write exactly the prescribed weights on its edges. In contrast, all attempts to
find an unweighted graph that has a Gomory-Hu tree with weights 2, 1, 1 are
in vain. Natural constraints for the values in a cut sequence are n− 1 ≥ c1
and cn−1 ≥ 0. If there are some cut values equal to zero, this just means
that the graph in question has several components, which can be consid-
ered independently. So formulating some statements in this chapter for the
case cn−1 ≥ 1 is not a loss of generality, but may help to simplify notation.

Figure 30 shows a graph on the left side and two corresponding Gomory-
Hu trees in the middle and on the right side. The figure illustrates that
a Gomory-Hu tree is not necessarily a subgraph of the graph from which
it originates. We also see that a graph’s Gomory-Hu tree is in general not
unique. Yet this does not carry over to cut sequences. Remarkably, they are
uniquely determined for a given graph. To prove this fact is the goal of the
remainder of this section. For this purpose, we first recall the cycle property
of maximum spanning trees, presented by Jungnickel [69], for example.
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Figure 30: A graph and two corresponding Gomory-Hu trees
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Theorem 54. Consider a connected graph G with edge weights c ∈ RE(G).
A spanning tree T has maximum weight if and only if for all e ∈ E(G) \ E(T )
it holds that

ce ≤ cf for all f ∈ CT (e)

where CT (e) denotes the unique cycle in T + e.

Proof. Let T be a spanning tree of maximum weight and suppose for a
contradiction that there is an edge e ∈ E(G) \ E(T ) such that ce > cf for
some f ∈ CT (e). Then T − e + f is a spanning tree whose weight is larger
than the weight of T , against our assumption.

For the reverse statement, let us write E := E(T ) and choose among all span-
ning trees of maximum weight the tree T ′ = (V (G), E ′) for which |E ′ \ E|
is smallest possible. If |E ′ \ E| = 0, then E = E ′ and T is indeed a span-
ning tree of maximum weight of G. We shall argue that the remaining
case |E ′ \ E| > 0 contradicts the extremal choice of T ′. For this purpose,
take an edge e = vw ∈ E ′ \ E. In T ′ − e we find two components whose
vertex sets shall be denoted by V and W such that v ∈ V and w ∈ W .
We observe that CT (e) \ {e} forms a path in T with endpoints v and w.
This path contains an edge f ̸= e joining a vertex from V with a vertex
from W . As we are given that ce ≤ cf , we find that the graph (V (G), E ′′)
where E ′′ := E ′ \ {e} ∪ {f} is again a spanning tree of maximum weight.
However,

|E ′′ \ E ′| = |E ′ \ E| − 1,

which contradicts the choice of T and concludes the proof.

Theorem 54 can be used to prove the following observation by Gomory and
Hu [50], which connects Gomory-Hu trees with certain maximum spanning
trees. This link in turn shall be useful to rephrase our question about the
uniqueness of a graph’s cut sequence as a question about the uniqueness of
a maximum spanning tree’s multiset of edge weights.

Theorem 55. Consider a graph G and a weighted complete graph K on
the same vertex set V (G) in which each edge vw is assigned the minimum
capacity of a v-w cut cvw in G. Then each Gomory-Hu tree of G is a spanning
tree of maximum weight of K.

Proof. A Gomory-Hu tree T of a graph G is defined on the vertex set V (G).
So it is certainly a spanning tree of K. It remains to be shown that T is of
maximum weight. So let us take an arbitrary edge e = vw ∈ E(G) \ E(T )
and verify the condition of Theorem 54. For each f ∈ CT (e) \ {e} we obtain
in T − f two components whose vertex sets shall be denoted by V and W

65



Chapter 4 | Prescribed Connectivity

such that v ∈ V and w ∈ W . By the definition of a Gomory-Hu tree, we
have cf = |E(V, W )| and because ce = cvw is the capacity of a minimum v-w
cut, we obtain that

ce = cvw ≤ |E(V, W )| = cf ,

which was to be shown.

Theorem 55 says that our question of whether the cut sequence of a graph is
uniquely determined rests on proving that all maximum spanning trees of a
graph have exactly the same multiset of edge weights. Another consequence
of Theorem 54 is that it implies the correctness of Algorithm 1. This is a
variant of Kruskal’s [75] algorithm, which is a greedy algorithm, originally
formulated for the minimum spanning tree problem, whose principle idea can
be adapted for the generation of maximum spanning trees as well.

Algorithm 1
Input: graph G = (V, E), edge weights c ∈ RE(G)

Output: maximum spanning tree (V, F ) of G
1: F := ∅
2: while E ̸= ∅ do
3: Choose e ∈ E of largest weight c(e)
4: E ← E \ {e}
5: if (V, F ∪ {e}) is a forest then
6: F ← F ∪ {e}

Theorem 56. For a graph G = (V, E) and edge weights c ∈ RE(G), Algo-
rithm 1 correctly outputs a maximum spanning tree T = (V, F ).

Proof. Our goal is to show that Algorithm 1 produces a tree that satisfies
the conditions of Theorem 54. Suppose, for contradiction, that there is an
edge e ∈ E \ F for which ce > cf for some f ∈ CT (e). Then e is processed
before f in the while loop of Algorithm 1. Denote by F ′ ⊆ F the set of edges
that Algorithm 1 added to T up to the state where e is processed. Because
then f /∈ F ′, there is no cycle in (V, F ′ ∪ {e}). But then e is to be included
in the set of edges of T , contrary to our assumption that e ∈ E \ F .

Kruskal’s algorithm possesses a number of remarkable properties, about
which Cormen, Leiserson, Rivest, and Stein [27, Section 21] give an overview.
Among them are Theorems 57 and 58, which enable to verify the uniqueness
of a graph’s cut sequence.
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Theorem 57. For a graph G = (V, E) and edge weights c ∈ RE(G), Algo-
rithm 1 is able to find each maximum spanning tree of G.

Proof. Let us suppose, for contradiction, that there is a maximum span-
ning tree T = (V, F ) of G that cannot be the output of Algorithm 1. It
is within the scope of Algorithm 1 to choose among those edges of largest
weight whenever possible an edge belonging to F in State 3. So let us sup-
pose this behavior and let T ′ = (V, F ′) be a resulting output of Algorithm 1.
By our initial assumption, there is an edge f ∈ F \ F ′. Denote by F ′′ ⊆ F ′

the set of edges that Algorithm 1 added to T up to the state where f is
processed. We know that (V, F ′′ ∪ {f}) contains a cycle C, because f /∈ F ′.
Furthermore, all edges in C have larger weight than f , as we assumed that
Algorithm 1 prefers to choose f whenever possible. So we observe for an ar-
bitrary edge e ∈ E(C) \ E(T ) that ce > cf where f ∈ CT (e). By Lemma 54,
this contradicts that T is a maximum spanning tree, concluding the proof.

For how to enumerate all maximum spanning trees of a graph algorithmi-
cally, see Eppstein [39] or Yamada, Kataoka, and Watanabe [106]. To our
discussion, Theorem 57 contributes the fact that we can assume a maximum
spanning tree to be generated by Algorithm 1 when aiming to verify some of
its properties. This is the strategy in the proof of the following statement.

Theorem 58. For a graph G = (V, E) and a vector of weights from RE, all
maximum spanning trees have the same edge weights with exactly the same
multiplicities.

Proof. Denoting by c1, . . . , ck the distinct weights appearing on the edges
of G, we proceed by induction on their number k. In the base case k = 1, all
spanning trees of G have exactly the same weight and thus our claim is true.

Now let k > 1 and suppose that our statement is true for k − 1 distinct
weights. Furthermore, let T = (V, F ) be an arbitrary maximum spanning
tree of G. By Theorem 57, we can assume that T is produced by Algorithm 1.
The graph which is obtained by deleting those edges from G whose weight
is at most ck shall be denoted by G′ = (V, E ′) where E ′ := {e ∈ E : ce > ck}.
Similarly, denote the tree T ′ = (V, F ′) with F ′ := {e ∈ F : ce > ck}. When
generating T , Algorithm 1 processes the edges from E ′ earlier than those of
weight ck. Consequently, Algorithm 1 builds first the components of T ′ until
they span the components of G′ and the components of T ′ are of maximum
weight, as otherwise T cannot be of maximum weight. By induction, we
know that T has the same multiset of edge weights on the components of G′

as all other maximum spanning trees of G. After Algorithm 1 has processed
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all edges from E ′, there remain only edges of weight ck to choose from in
State 3. So T has the same multiset of edge weights as all other maximum
spanning trees of G, because they all have to have the same total weight.

Corollary 59. A graph’s cut sequence is uniquely determined.

Proof. By Theorem 55, each Gomory-Hu tree is a maximum spanning tree of
a certain weighted complete graph and Theorem 58 says that all maximum
spanning trees of a graph have exactly the same multiset of edge weights.

4.2 Maximally local-edge-connected graphs

We already pointed out that the values in a cut sequence c1 ≥ . . . ≥ cn−1
naturally satisfy n− 1 ≥ c1 and cn−1 ≥ 0. Having these bounds at hand, we
may ask whether they can be attained simultaneously.

Lemma 60. Consider a graph G with cut sequence c1 ≥ . . . ≥ cn−1 and
let ck = n− 1 for some k ∈ {1, . . . , n− 1}. Then cn−1 ≥ k.

Proof. If c1 = . . . = ck = n− 1, then a Gomory-Hu tree of G contains k
pairwise distinct edges viwi, where i ∈ {1, . . . , k}, of weight n− 1. So for
each i ∈ {1, . . . , k} there have to be n− 1 edge-disjoint vi-wi paths in G. This
implies that all the vertices vi and wi are adjacent to all vertices in V (G). Be-
cause the edges viwi are pairwise distinct, we find at least k + 1 vertices in G
which are adjacent to all vertices in V (G). This shows that G is k-connected,
which is the same as c1 ≥ k.

If in particular c1 = n− 1, then the respective graph is 2-connected or c1 ≥ 2.
So two values of the n− 1 numbers in a cut sequence have to have the same
value. We shall also see that there are graphs on any number of vertices that
have only two repeated cut values.

Let us proceed with a few concepts that play a crucial role in the subsequent
observations. A graph G is called maximally edge-connected if its minimum
degree δ(G) equals its edge-connectivity λ(G) and it is called maximally
local-edge-connected if cvw = min{dv, dw} for all vertices v, w ∈ V (G). Such
graphs are surveyed by Hellwig and Volkmann [65]. A dominating vertex is
a vertex that is adjacent to all other vertices in V (G). Threshold graphs, first
introduced by Chvátal and Hammer [26], are graphs that can be generated
from an empty graph by recursively adding isolated vertices or dominating
vertices. In other words, a threshold graph on n vertices can be encoded by a
sequence b1, . . . , bn with bi ∈ {0, 1} requiring that in iteration i we shall add
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an isolated vertex if bi = 0 and we shall add a dominating vertex if bi = 1.
Starting from the empty graph, the value of b1 clearly does not matter, which
is why we may start such a sequence with some placeholder symbol ϵ. This is
also illustrated in Figure 31. Defining the distance d(v, w) between two ver-
tices v and w as the number of edges in a shortest path from v to w, the diam-
eter of a graph G is diam(G) := max{d(v, w) : v, w ∈ V (G)}. The following
statement relates a graph’s diameter with its local-edge-connectivity.

Lemma 61. A graph G with diam(G)≤ 2 is maximally local-edge-connected.

Proof. Taking two arbitrary vertices v, w ∈ V (G), we only have to verify
that cvw ≥ dv or cvw ≥ dw, because cvw ≤ min{dv, dw} is certainly fulfilled.
Denoting a minimum v-w cut by S, we find in G− S two components whose
vertex sets shall be denoted by V and W such that v ∈ V and w ∈ W . Our
first goal is to prove that each vertex in V or each vertex in W is incident
to at least one edge in S. Suppose that not all vertices in W are incident
to some edge in S. If there is also a vertex x ∈ V not incident to some edge
in S, then d(x, y) ≥ 3, contrary to our prerequisite that diam(G) ≤ 2.

We may assume, without loss of generality, that V is the set containing only
vertices that are incident to at least one edge in S. Setting

S1 := {xy ∈ E(G) : x = v and y ∈ W} and
S2 := {xy ∈ E(G) : x ∈ V \ {v} and y ∈ W},

we obtain S = S1 ∪ S2, S1 ∩ S2 = ∅, and |S2| ≥ |V \ {v}|, because we know
that each vertex in V \ {v} is incident to at least one edge in S2. Conse-
quently,

dv = |{xy ∈ E(G) : x = v}|
= |{xy ∈ E(G) : x = v and y ∈ W}|

+ |{xy ∈ E(G) : x = v and y ∈ V \ {v}}|
≤ |S1|+ |V \ {v}|
≤ |S1|+ |S2| = |S| = cvw,

which concludes our proof.
The previous statement and further conditions under which graphs are max-
imally local-edge-connected can be found in the survey by Hellwig and Volk-
mann [65], although referring to an unpublished manuscript for a proof of
the above statement. The beginning of our proof is inspired by arguments of
Chartrand, Lesniak, and Zhang [18, Theorem 4.7]. Their reasoning, however,
only demonstrates that the edge-connectivity λ(G) of a graph G is equal to
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its minimum degree δ(G) if diam(G) ≤ 2. This is implied by Lemma 61,
because then

λ(G) = min
v,w∈V (G)

cvw = min
v,w∈V (G)

min{dv, dw} = δ(G).

However, the statement that a graph is maximally local-edge-connected is
stronger than the statement that it is maximally edge-connected. For an
example, consider some tree T containing two vertices v and w whose degrees
are at least two. Then cvw = 1 ̸= 2 ≤ min{dv, dw} and so T is not maximally
local-edge-connected, but certainly λ(T ) = 1 = δ(T ) and so T is maximally
edge-connected. Let us proceed with further consequences of Lemma 61,
which appear to be quite useful in what follows.

Corollary 62. Graphs containing a dominating vertex are maximally local-
edge-connected.

Proof. A dominating vertex in a graph G provides a path of length at most
two between each two vertices in V (G). This implies diam(G) ≤ 2 and our
claim follows by Lemma 61.

Corollary 63. Threshold graphs are maximally local-edge-connected.

Proof. Let us observe first that the condition cvw = min{dv, dw} is always
fulfilled if one of the vertices v or w is an isolated vertex. So when verifying a
graph to be maximally local-edge-connected, we may omit isolated vertices.
Now consider a threshold graph G encoded by the binary sequence b1, . . . , bn.
We may assume that bn = 1, because otherwise G contains isolated vertices.
From bn = 1, we know that G contains a dominating vertex. So our claim
follows by Corollary 62.

Our interest in maximally local-edge-connected graphs when discussing cut
sequences originates from the following lemma. In its proof, we use the term
star graph. This is a tree containing one dominating vertex.

Lemma 64. Consider a maximally local-edge-connected graph G with de-
gree sequence d1 ≥ . . . ≥ dn and cut sequence c1 ≥ . . . ≥ cn−1. Then di = ci−1
for i ∈ {2, . . . , n}.

Proof. Let us address the vertices of G whose degrees are d1 ≥ . . . ≥ dn

by v1, . . . , vn, respectively. Our claim is that the star graph T on ver-
tex set {v1, . . . , vn} and edge set {v1v2, v1v3, . . . , v1vn} with weight di for
edge v1vi for i ∈ {2, . . . , n} is a Gomory-Hu tree for G. Because G is max-
imally local-edge-connected, we obtain for an arbitrary edge v1w ∈ E(T )
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Figure 31: A threshold graph encoded by ϵ, 1, 0, 1, 0, 1, 0, 1 and a correspond-
ing Gomory-Hu tree having cut values 1, 2, 3, 4, 4, 5, 6

that cv1w = min{dv1 , dw} = dw. Deleting v1w from T produces two compo-
nents on vertex sets {w} and V \ {w}. The edges E({w}, V \ {w}) form
a v1-w cut of minimum capacity in G. So T is a Gomory-Hu tree for G. This
immediately implies that di = ci−1 for i ∈ {2, . . . , n}.

This lemma is our key tool to prove a parity condition for cut sequences in
Section 4.3. It also allows to provide graphs, on any number of vertices, that
have only two repeated cut values. For n ∈ N consider the threshold graph
encoded by the sequence b1, . . . , bn where bi := 1 if i ≡ n mod 2 and bi := 0
otherwise. We obtain a threshold graph whose degree sequence is of the
form

n− 1, n− 2, . . . , ⌊n/2⌋+ 1, ⌊n/2⌋, ⌊n/2⌋, ⌊n/2⌋ − 1, . . . , 2, 1,

which is also illustrated in Figure 31. By Corollary 63, the constructed graph
is maximally local-edge-connected. So Lemma 64 says that we just have to
omit the value n− 1 in the above sequence in order to obtain the cut sequence
of the given threshold graph. Apart from their role in this example, threshold
sequences, meaning degree sequences of threshold graphs, possess a variety
of further interesting properties. First studied by Chvátal and Hammer [26]
in the context of integer programming, Hammer, Ibaraki, and Simeone [62]
showed that threshold sequences are in a sense the least graphic ones. This
means, they are exactly those that satisfy the classical Erdős-Gallai inequal-
ities [40] as equalities. Lemma 64 additionally says that in this case we can
easily read off the corresponding cut sequence. In the following sections,
we shall go on asking about the connections between degree sequences, cut
sequences and the Erdős-Gallai inequalities.
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4.3 Erdős-Gallai characterizations

In order to recognize cut sequences and eventually to construct graphs with
prescribed cut values, we aim for conditions that characterize cut sequences.
As our results show parallels to the Erdős-Gallai theorem [40], we shall begin
by reviewing their landmark result on the structure of degree sequences.
They precisely describe when a sequence of integer numbers is the degree
sequence of a graph. We call such sequences graphic and say that a graph
having a specific sequence of numbers as its degrees realizes that sequence.
Since the original proof of Erdős and Gallai [40], various techniques have been
used to reproduce their result. Berge [8, Chapter 6] uses arguments based on
network theory. Other short proofs are given by Choudum [22] or Tripathi,
Venugopalan, and West [101]. We recall the latter, because its algorithmic
nature fits perfectly with our subsequent discussion.

Theorem 65. A sequence of integer numbers d1 ≥ . . . ≥ dn ≥ 0 is graphic
if and only if their sum ∑n

i=1 di is even and the Erdős and Gallai inequalities

k∑
i=1

di ≤ k (k − 1) +
n∑

i=k+1
min{k, di}

hold for all k ∈ {1, . . . , n}.

Proof. For the necessity, let us consider a graph G and denote its vertices
by v1, . . . , vn such that d1 ≥ . . . ≥ dn. The fact that the sum ∑n

i=1 di is even
is known as Handshaking Lemma and follows by counting the edges of G
twice, which was first shown by Euler in his seminal article [42] on the Seven
Bridges of Königsberg. The adjacency matrix of G has the structure




v1 vk vk+1 vn
v1 0

vk 0
vk+1

vn



.

≤ k(k − 1)

≤ min{k, dk+1}
...
≤ min{k, dn}

Summing over the first k columns yields the left hand side of the k-th
Erdős-Gallai inequality. As indicated in the matrix, this sum is bounded
by k(k − 1) +∑n

i=k+1 min{k, di}, which was to be shown.
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Algorithm 2
Input: graphic sequence d1 ≥ . . . ≥ dn ≥ 1
Output: realizing graph (V, E)

1: V ← {v1, . . . , vn}
2: E ← ∅
3: for t = 1, . . . , n do
4: while deg(vt) < dt do
5: if vtvi /∈ E for some vi with deg(vi) < di then ▷ Case 1
6: E ← E ∪ {vtvi}
7: else if vtvi /∈ E for some i < t then ▷ Case 2
8: Choose w ∈ N(vi) \ (N(vt) ∪ {vt})
9: if dt − deg(vt) ≥ 2 then ▷ Case 2.1

10: E ← (E \ {viw}) ∪ {vivt, vtw}
11: else ▷ Case 2.2
12: Choose k > t such that d(vk) < dk

13: E ← (E \ {vkvt, viw}) ∪ {vivt, vtw}
14: else if deg(vk) ̸= min{t, dk} for some k > t then ▷ Case 3
15: Choose i < t such that vivk /∈ E
16: Choose w ∈ N(vi) \ (N(vt) ∪ {vt})
17: E ← (E \ {viw}) ∪ {vivk, vtw}
18: else ▷ Case 4
19: Choose w ∈ N(vi) \ (N(vt) ∪ {vt})
20: Choose x ∈ N(vj) \ (N(vt) ∪ {vt}) ▷ x = w is allowed
21: E ← (E \ {viw, vjx}) ∪ {vivj, vtw}

For the converse case, suppose that we are given a sequence of integer num-
bers d1 ≥ . . . ≥ dn ≥ 0 that satisfies the Erdős-Gallai inequalities and whose
sum is even. Also assume that dn ≥ 1, because zeros in such a sequence are
realized just by adding isolated vertices. Our claim is that Algorithm 2, ini-
tializing a graph (V, E) on n isolated vertices, successively adapts (V, E) to
realize the given sequence. The parameter t, ranging from 1 to n, denotes
the position in the sequence that the algorithm is working on. Our goal is to
show that for any position t, in any case of the algorithm’s subordinate while
loop, the gap dt − deg(vt) is reduced, whereas we maintain that deg(vi) = di

for i < t. So Algorithm 2 only terminates with a realization of d1 ≥ . . . ≥ dn.

We observe first that, while the algorithm is working at position t, the vertex
set St := {vt+1, . . . , vn} remains independent. To check this, note that when
updating E, in lines 6, 10, 13, 17, or 21, only two of the new edges do not
have vt as an endvertex. The first exception is vivk in Case 3, where i < t,
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the second is vivj in Case 4, where i < j < t. So all new edges have at least
one endvertex that is not in St, as claimed.

To see that Algorithm 2 maintains deg(vi) = di for i < t, we consider again
the updates of E in the respective cases. Case 1 certainly behaves as claimed.
In Case 2.1 all degrees, except that of vt, are preserved. In Case 2.2, the
update preserves the degrees of vi and w, while it increases the degree of vt

and decreases the degree of vk, which is allowed because k > t. In Case 3, the
degrees of vi and w are preserved, and the degrees of vt and vk are increased,
which is allowed because k > t. In Case 4, the degrees of vi and vj are
preserved, the degree of vt is increased, and the degree of x is decreased. The
latter is in accordance with our claim, because x /∈ N(vt) ∪ {vt} and so it is
in St, as otherwise Case 2 applies.

Finally, let us check that while deg(vt) < dt, there is some case that applies
to reduce the respective gap dt − deg(vt). Case 1 certainly works as intended.

Case 2 applies if we are not in Case 1 and if vtvi /∈ E for some i with i < t. By
the fact that deg(vi) = di ≥ dt > deg(vt), a vertex w ∈ N(vi) \ (N(vt) ∪ {vt})
can be chosen. If dt − deg(vt) ≥ 2, then Subcase 2.1 applies and dt − deg(vt)
can be reduced as described in line 10. Otherwise, dt − deg(vt) = 1 and
because the sum

n∑
i=1

di −
n∑

i=1
deg(vi) =

n∑
i=t

di −
n∑

i=t

deg(vi)

is even, there is a k > t with deg(vk) < dk. Furthermore, vk is adjacent to vt,
because otherwise Case 1 applies. So we can reduce the gap dt − deg(vt) as
described in line 17.

If neither Case 1 nor Case 2 applies, then v1, . . . , vt−1 ∈ N(vt). We are in
Case 3 if, in addition, there is some k > t such that deg(vk) ̸= min{t, dk}.
In fact, we have deg(vk) < min{t, dk}, because deg(vk) ≤ dk and deg(vk) ≤ t,
as St is independent. We also know that vtvk ∈ E, because otherwise Case 1
applies. Furthermore, there is an i with i < t such that vivk /∈ E, because
deg(vk) < t. By deg(vi) > deg(vt), there is some w ∈ N(vi) \ (N(vt) ∪ {vt})
to reduce dt − deg(vt) as described in line 17.

Case 4 applies if none of the Cases 1 to 3 applies. Suppose first that there
are i < j < t with vivj /∈ E. Also, vi, vj ∈ N(vt), as otherwise Case 1 ap-
plies. By deg(vi) ≥ deg(vj) > deg(vt), we find w ∈ N(vi) \ (N(vt) ∪ {vt}) as
well as x ∈ N(vj) \ (N(vt) ∪ {vt}). Note that w, x ∈ St, as otherwise Case 1
applies. The gap dt − deg(vt) can be reduced as specified in line 21.
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Now consider the situation where none of the Cases 1 to 3 applies and
where vivj ∈ E for all i < j < t. Then the vertices v1, . . . , vt are pairwise
adjacent and deg(vk) = min{t, dk} for k > t. Because St is independent, we
obtain

n∑
i=1

deg(vi) = t(t− 1) +
n∑

k=t+1
min{t, dk},

which, by the first part of this proof, says that deg(vt) is already at maximum
and so deg(vt) = dt.

So the proof of Tripathi, Venugopalan, and West [101] actually yields a bit
more than is claimed in Theorem 65. Algorithm 2 not only establishes the
existence of a realizing graph but also shows how to construct it. Our next
goal is to discuss related conditions for cut sequences. Probably the simplest
requirement in Theorem 65 is that degree sequences have to add up to an
even number. However, this is not the case for cut values. This can already
be observed from the graph consisting of two vertices connected by an edge,
whose cut sequence is just 1. Nevertheless, cut values satisfy a somewhat
similar parity condition, for whose proof we build on the following fact.

Lemma 66. Consider a graph G with cut sequence c1 ≥ . . . ≥ cn−1. An
edge e ∈ E(G) is a bridge in G if and only if e is an edge of weight one in any
corresponding Gomory-Hu tree of G. In particular, the maximal ℓ ∈ N ∪ {0}
with cn−ℓ = . . . = cn−1 = 1 gives the number of bridges in G.

Proof. We consider some Gomory-Hu tree T of G. For any bridge vw ∈ E(G)
there is a unique cut E(V, W ) = {vw} in G that we denote such that v ∈ V
and w ∈ W . Assuming, for contradiction, that vw /∈ E(T ), there must be
another edge xy ∈ E(T ) representing the cut E(V, W ). So xy has at least one
endvertex not in common with vw, say x /∈ {v, w}, and T − xy contains two
components on vertex sets V and W , denoted such that x ∈ V and y ∈ W .
There is a unique path P in T that leads from v to x. By Lemma 11,
each edge with smallest weight on P induces a minimum v-x cut C in G.
Because P is a subpath of the unique path leading from v to x to y to w,
in which possibly y = w, we conclude that C also separates v and w. This
implies that vw ∈ C. But C \ {vw} is a v-x cut, as otherwise v or x must be
contained in W , contradicting the minimality of C. This proves that each
bridge in G appears as an edge in T . Clearly, its weight is one.

Suppose conversely that there is an edge vw ∈ E(T ) whose weight is one,
but with vw /∈ E(G). Then there exists a cut E(V, W ) with |E(V, W )| = 1,
which we denote such that v ∈ V and w ∈ W . So E(V, W ) contains a single
edge xy ̸= vw with x ∈ V and y ∈ W whose deletion disconnects G. In other
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words, the edge xy is a bridge in G and so xy ∈ E(T ), by our reasoning from
above. As there is a unique, possibly empty, path P that connects v and x
in T [V ] as well as a unique, possibly empty, path Q that connects w and y
in T [W ], we find a cycle P + vw + Q + xy in T , contradicting that T is a
tree. Consequently, vw is contained in E(G) and so it is a bridge.

Theorem 67. Consider a graph G with cut sequence c1 ≥ . . . ≥ cn−1 satis-
fying c1 = n− 1− ℓ > 1 where ℓ := |{ci : ci = 1}|. Then the following state-
ments hold.

(i) The graph G has only one nontrivial block that contains n− ℓ vertices.
(ii) The sum ∑n−1−ℓ

i=2 ci is even.

Proof. Condition c1 = n− 1− ℓ > 1 says that there are vertices v, w ∈ V (G)
that are connected by n− 1− ℓ > 1 edge-disjoint paths. These paths can
only exist when v has at least n− 1− ℓ neighbors. This requires that there
is a nontrivial block in G containing |N(v) ∪ {v}| ≥ n− ℓ vertices. To con-
clude statement (i), denote by n1 the number of vertices of the largest block
of G and suppose, for contradiction, that there is another nontrivial block
on n2 ≥ 3 vertices. As the parameter ℓ, by Lemma 66, counts the number
of bridges in G and because two different blocks in G can share at most one
vertex, we obtain n1 ≤ n− ℓ− (n2 − 1) ≤ n− ℓ− 2, which contradicts the
fact that there is a block containing n− ℓ vertices.

Let us turn to statement (ii). By statement (i), there is only one nontrivial
block B in G that contains n− ℓ vertices and because c1 = n− 1− ℓ > 1,
there are two vertices v and w in B which are connected by n− 1− ℓ edge-
disjoint paths. In other words, both v and w are dominating vertices in B.
Also note that no pair of vertices of B is connected by any path that uses any
of the bridges of G. So the cut sequence of B is c1 ≥ . . . ≥ cn−1−ℓ. Denoting
the degree sequence of B by d1 ≥ . . . ≥ dn−ℓ, Corollary 62 and Lemma 64 im-
ply that ci−1 = di for i ∈ {2, . . . , n− ℓ}. We also have d1 = d2 = n− 1− ℓ,
because there are n− 1− ℓ edge-disjoint paths between v and w. Conse-
quently,

n−1−ℓ∑
i=2

ci =
n−ℓ∑
i=3

di =
n−ℓ∑
i=1

di −
(
d1 + d2

)
= 2 |E(B)| − 2(n− 1− ℓ),

which is an even sum and thus proves statement (ii).

We now turn to sufficient conditions on integer sequences to be cut sequences,
beginning with the following simple but quite useful observation.
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Lemma 68. Consider for a sequence of natural numbers c1 ≥ . . . ≥ cn−1
the shifted sequence defined by di := ci − 1 for i ∈ {1, . . . , n− 1}. Then the
sequence c1 ≥ . . . ≥ cn−1 satisfies the shifted Erdős-Gallai inequalities

k∑
i=1

ci ≤ k2 +
n−1∑

i=k+1
min{k, ci − 1}

for all k ∈ {1, . . . , n− 1} if and only if the sequence d1 ≥ . . . ≥ dn−1 satisfies
the Erdős-Gallai inequalities for all k ∈ {1, . . . , n− 1}.

Proof. If the sequence c1 ≥ . . . ≥ cn−1 satisfies the shifted Erdős-Gallai in-
equalities, then we obtain for all k ∈ {1, . . . , n− 1} that

k∑
i=1

di =
(

k∑
i=1

ci

)
− k ≤ k2 − k +

n−1∑
i=k+1

min{k, ci − 1}

= k (k − 1) +
n−1∑

i=k+1
min{k, di}.

The other direction follows analogously.

This relation is a first key tool that we use when constructing graphs with
prescribed cut values in the following section.

4.4 Constructing graphs with prescribed cut
values

Let us begin our constructive attempts with an example. It is easy to verify
that the sequence 4, 4, 3, 3, 3 satisfies the shifted Erdős-Gallai inequalities.
So the sequence 3, 3, 2, 2, 2 satisfies the Erdős-Gallai inequalities. Note that
we do not have to check the latter directly, it suffices to apply Lemma 68.
Even more, the numbers 3, 3, 2, 2, 2 add up to an even sum. So the se-
quence 3, 3, 2, 2, 2 is graphic. For those sequences, Algorithm 2 constructs a
realizing graph G. Adding a dominating vertex to G, provides a graph G′

whose degree sequence is 5, 4, 4, 3, 3, 3. The resulting graph G′, by Corol-
lary 62, is maximally local-edge-connected. Therefore, Lemma 64 ensures
that 4, 4, 3, 3, 3 is the cut sequence of G′. So we have found that 4, 4, 3, 3, 3
is a cut sequence and we know how to construct a realizing graph. But this
procedure, which is illustrated in Figure 32, has one crucial requirement.
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4, 4, 3, 3, 3
Lemma 68

3, 3, 2, 2, 2

Corollary 62

Lemma 64 Algorithm 2

Figure 32: Constructing a graph whose cut sequence is 4, 4, 3, 3, 3

It works only if the shifted sequence, 3, 3, 2, 2, 2 in this case, adds up to an
even sum. If this is not the case, then we can perform the following modifi-
cation to still obtain a graphic sequence.

Lemma 69. Consider an integer sequence d1 ≥ . . . ≥ dn ≥ 0 with d1 ≥ 1
that satisfies the Erdős-Gallai inequalities. Furthermore, define the num-
bers d′

t := dt − 1 for t := max{i : di = d1} and d′
i := di for i ∈ {1, . . . , n} \ {t}.

If the sum ∑n
i=1 di is odd, then the sequence d′

1 ≥ . . . ≥ d′
n is graphic.

Proof. If ∑n
i=1 di is odd, then ∑n

i=1 d′
i = (∑n

i=1 di)− 1 is even. To verify
that d′

1 ≥ . . . ≥ d′
n is graphic, it hence remains to be checked if this sequence

satisfies the k Erdős-Gallai inequalities. If k ∈ {t, . . . , n}, then dt occurs only
on their left side and we obtain that

k∑
i=1

d′
i =

(
k∑

i=1
di

)
− 1 ≤ k (k − 1)− 1 +

n∑
i=k+1

min{k, di}

< k (k − 1) +
n∑

i=k+1
min{k, d′

i}.

So let k ∈ {1, . . . , t − 1} for the remainder of our proof. In the case dt > k,
we obtain d′

t ≥ k and thus min{k, di} = min{k, d′
i} for all i. Consequently,

k∑
i=1

d′
i =

k∑
i=1

di ≤ k (k − 1) +
n∑

i=k+1
min{k, di}

= k (k − 1) +
n∑

i=k+1
min{k, d′

i}.
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If dt < k, we have d′
1 = . . . = d′

t−1 < k, because t = max{i : di = d1}. Thus,

k∑
i=1

d′
i ≤

k∑
i=1

(k − 1) = k (k − 1) ≤ k (k − 1) +
n∑

i=k+1
min{k, d′

i}.

So only the case dt = k remains. Then the left hand side of the k-th Erdős-
Gallai inequality reads

k∑
i=1

d′
i =

k∑
i=1

k = k(k − 1) + k

and we are left to verify that ∑n
i=k+1 min{k, d′

i} ≥ k. For this purpose, we
use the relation d′

k+1 ≥ d′
t = k − 1, which holds because k < t. Furthermore,

we know that ∑n
i=k+2 min{k, d′

i} ≥ 1, as otherwise d1 = . . . = dt = dk+1 = k
and dk+2 = . . . = dn = 0. But then

n∑
i=1

di =
k+1∑
i=1

k = k(k + 1)

is an even number, contrary to our assumption. This implies
n∑

i=k+1
min{k, d′

i} = min{k, d′
k+1}+

n∑
i=k+2

min{k, d′
i}

≥ k − 1 +
n∑

i=k+2
min{k, d′

i} ≥ k,

which is the last relation to be shown.

Let us summarize what we obtained so far. If we are given a sequence of
natural numbers c1 ≥ . . . ≥ cn−1 which satisfy the shifted Erdős-Gallai in-
equalities, then either the shifted sequence di := ci − 1, i ∈ {1, . . . , n− 1},

s

v

w

 

Figure 33: A graph containing a dominating vertex s whose cut sequence
2, 2, 1, 1 is changed to 2, 2, 2, 1 by replacing edges vw and sx by vx and wx
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is already graphic or we can adjust it as described in Lemma 70 to obtain
a graphic sequence. When proceeding in the latter case as illustrated in
Figure 32, then we obtain a graph whose cut sequence is close to the se-
quence c1 ≥ . . . ≥ cn−1 we are aiming for. The modification from Lemma 69,
however, causes some cut value to be too low by one. In what follows, we
discuss constructions to correct this deficiency.

Lemma 70. Consider a graph G that contains a dominating vertex s and
whose degree sequence is n− 1 = d1 > d2 ≥ . . . ≥ dn. If there is a vertex x
with degG(x) ≥ d2 − 1 so that for some edge vw ∈ E(G) there is vx /∈ E(G)
and wx /∈ E(G), then the graph

G′ :=
(
V (G), (E(G) \ {vw, sx}) ∪ {vx, wx}

)
realizes the cut sequence degG′(x) ≥ d2 ≥ . . . ≥ dn where d2 ≥ . . . ≥ dn is to
be read without one number for degG(x).

Proof. From vx /∈ E(G) and wx /∈ E(G), we know that v ̸= s and w ̸= s as
well as degG(x) ≤ n− 3. So the graph G′ is well-defined. The edge exchange
that transforms G into G′ is illustrated in Figure 33. It preserves the degrees
of v and w, increases the degree of x by one, and decreases the degree of s
by one. So n− 2 ≥ degG′(x) ≥ d2 ≥ . . . ≥ dn is the degree sequence of G′,
where d2 ≥ . . . ≥ dn is to be read without one number for degG(x). We
now aim to show that G′ is maximally local-edge-connected, because then
Lemma 64 implies our claim.

We consider two arbitrary vertices i, j ∈ V (G′) and denote them such that
degG′(i) ≤ degG′(j). Our goal is to show that there exists a set of degG′(i)
edge-disjoint i-j paths in G′. Note that we cannot use Corollary 62 for
that purpose, because G′ does not contain the edge xs and so there is no
dominating vertex in G′. Consider the set of paths

ij if ij ∈ E(G′),
iyj for y ∈ NG′(i) ∩NG′(j),
iyszj for y ∈ NG′(i) \ (NG′(j) ∪ {j, s}) and suitable

z ∈ NG′(j) \ (NG′(i) ∪ {i, s}).

The first two groups are well-defined for all i, j ∈V (G′). The third group es-
tablishes the required local edge-connectivity unless x∈NG′(i)\(NG′(j)∪{j})
or [x∈NG′(j)\(NG′(i)∪{i}) and degG′(i) = degG′(j)]. Indeed, all vertices ex-
cept x are adjacent to s and NG′(s) = V (G′) \ {s, x}. Even if j = s, the
set NG′(i) \ (NG′(s) ∪ {s}) is empty whenever x /∈ NG′(i) and if i = s, we
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have degG′(s) = n− 2 = degG′(j) and NG′(s) = NG′(j) unless x ∈ NG′(j). If
i = s and x ∈ NG′(j), then swap i and j and consider the remaining case.

We are left with the situation where i ∈ V (G′) \ {s, x} and j ∈ V (G′) \ {x}
with degG′(i) ≤ degG′(j) and x ∈ NG′(i) \ (NG′(j) ∪ {j}). In this case, all
paths iyszj of the third group can be constructed except for y = x. For
that path, there also remains some z = u ∈ NG′(j) \ (NG′(i) ∪ {i, s}) that
we can choose suitably. If NG′(x) ∩ (NG′(j) \ (NG′(i) ∪ {i})) ̸= ∅, we may
assume u to be within this set and then ixuj is a feasible path. Otherwise, by
degG′(x) ≥ degG′(j) ≥ degG′(i), there is some t ∈ NG′(x) \ (NG′(i) ∪NG′(j))
and with it we obtain the feasible path ixtsuj. Indeed, if x has no neigh-
bors in (NG′(j) \ (NG′(i) ∪ {i})) there is such a t, because i is adjacent to s,
whereas x is not. This shows that G′ is maximally local-edge-connected,
which is what remained to be shown.

With Lemma 70 at hand, we have a tool to adapt the cut sequence of certain
graphs while retaining their local edge-connectivity. However, it is not al-
ways possible to perform the edge exchange described in Lemma 70, because
for the vertex x ∈ V (G) with degG(x) ≥ d2 − 1 there might be no suitable
edge vw ∈ E(G) with vx /∈ E(G) and wx /∈ E(G). An example for this sit-
uation is depicted in Figure 34. So we have to look for exchange operations
that also work in such a situation.

Lemma 71. Consider a graph G containing a dominating vertex s with de-
gree sequence n− 1 = d1 > d2 ≥ . . . ≥ dn ≥ 2 and suppose that there is a ver-
tex x with n− 3 ≥ degG(x) ≥ d2 − 1 that is adjacent to at least one endver-
tex of each edge of G. Furthermore, let v, w ∈ V (G) \ {x, s} be two vertices
such that vx /∈ E(G) and wx /∈ E(G). If there are vertices v′ ∈ NG(v) \ {s}
and w′ ∈ NG(w) \ (NG(v′) ∪ {v′, s}), then the graph

G′ :=
(
V (G), (E(G) \ {sx, vv′, ww′}) ∪ {vx, wx, v′w′}

)
realizes the cut sequence degG′(x) ≥ d2 ≥ . . . ≥ dn, where d2 ≥ . . . ≥ dn is to
be read without one number for degG(x).

Proof. First of all, note that there are suitable vertices v, w ∈ V (G) \ {x, s}
with vx /∈ E(G) and wx /∈ E(G), because degG(x) ≤ n− 3. If there are ver-
tices v′ ∈ NG(v) and w′ ∈ NG(w) \ (NG(v′) ∪ {v′}), then G′ is well-defined.
The edge exchange that transforms G into G′, which is illustrated in Fig-
ure 34, decreases the degree of s by one, increases the degree of x by one and
preserves all other degrees. So n− 2 ≥ degG′(x) ≥ d2 ≥ . . . ≥ dn, where one
number for degG(x) is deleted in d2 ≥ . . . ≥ dn, is the degree sequence of G′.
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s
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v′
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Figure 34: A graph containing a dominating vertex s whose cut sequence
3, 3, 3, 2, 2 is changed to 4, 3, 3, 2, 2 by replacing sx,vv′, ww′ by vx,wx, v′w′

It remains to be shown that G′ is maximally local-edge-connected, because
then Lemma 64 implies our claim.

Let us verify that diam(G) ≤ 2 to show that G′ is maximally local-edge-
connected. First, observe that d(y, z) ≤ 2 for all y, z ∈ V (G′) \ {s, x}, be-
cause the paths ysz are present in G′. Furthermore, we have d(s, y) = 1 for
all y ∈ V (G′) \ {s, x} and d(s, x) = 2, because there is the path xvs. Now
consider an arbitrary vertex y ∈ V (G′) \ {s}. As degG′(y) ≥ dn ≥ 2, there
is an edge e incident to y but not to s. Because x is adjacent to at least
one endvertex of e in G, this is also true for e in G′, because x only loses
the adjacency to s when building G′ and the newly added edges vx, wx,
and v′w′ do not harm, either. This provides an x-y path of length at most
two. So diam(G′) ≤ 2 and Lemma 61 can be applied.

Once again, Lemma 71 might not always be applicable. Fortunately, there is
a third exchange idea that can be employed if the previous ones fail.

Lemma 72. Consider a graph G containing a dominating vertex s with
degree sequence n− 1 = d1 > d2 ≥ . . . ≥ dn ≥ 2 and suppose that there is
a vertex x with n− 3 ≥ degG(x) ≥ d2 − 1 that is adjacent to at least one
endvertex of each edge of G. Let W := V (G) \ (NG(x) ∪ {x}) and let v ∈ W .
If NG(W ) forms a clique, then the graph

G′ :=
(
V (G), (E(G) \ {sv}) ∪ {xv}

)
realizes the cut sequence degG′(x) ≥ d2 ≥ . . . ≥ dn, where d2 ≥ . . . ≥ dn is to
be read without one number for degG(x).
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s

C
v

 

Figure 35: A graph containing a dominating vertex s whose cut sequence
4, 4, 3, 3, 2, 2 is changed to 5, 4, 3, 3, 2, 2 by replacing sv by xv

Proof. First, note that |W | ≥ 2, because degG(x) ≤ n− 3. Also note that W
is independent, as otherwise x is adjacent to some vertex in W . The set
C := NG′(W ) \ {s, x} ⊆ NG′(x) is nonempty, as v is not adjacent to s in G′

and degG′(v) ≥ dn ≥ 2. Furthermore, C forms a clique in G′, because NG(W )
is a clique in G. We also know that x is adjacent to all neighbors of v, in G
and G′, because x is adjacent to at least one endvertex of each edge of G and
so of G′. This implies degG′(x) > degG′(v), as x is adjacent to s but v is not.
Also, denote a neighbor of v in C by v′ ∈ C and recall that xv′ ∈ E(G′).

The edge exchange that transforms G into G′, which is illustrated in Fig-
ure 35, decreases the degree of s by one, increases the degree of x by one,
and preserves all other degrees. So n− 2 ≥ degG′(x) ≥ d2 ≥ . . . ≥ dn, where
one number for degG(x) is deleted in d2 ≥ . . . ≥ dn, is the degree sequence
of G′. It remains to be shown that G′ is maximally local-edge-connected,
because then Lemma 64 implies our claim.

For two arbitrary vertices i, j ∈ V (G′), denoted such that degG′(i) ≤ degG′(j),
our goal is to provide a set of degG′(i) edge-disjoint i-j paths. Consider

ij if ij ∈ E(G′),
iyj for y ∈ NG′(i) ∩NG′(j),
iyszj for y ∈ NG′(i) \ (NG′(j) ∪ {j, s}) and suitable

z ∈ NG′(j) \ (NG′(i) ∪ {i, s}).

The first two groups are well-defined for all i, j ∈V (G′). The third group es-
tablishes the required local edge-connectivity unless v∈NG′(i)\(NG′(j)∪{j})
or [v∈NG′(j)\(NG′(i)∪{i}) and degG′(i) = degG′(j)]. Indeed, all vertices ex-
cept v are adjacent to s and NG′(s) = V (G) \ {s, v}. Even if j = s, the
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set NG′(i) \ (NG′(s) ∪ {s}) is empty whenever v /∈ NG′(i) and if i = s, we
have degG′(s) = n− 2 = degG′(j) and NG′(s) = NG′(j) unless v ∈ NG′(j).

So for the remaining proof, let i ∈ V (G′) \ {s, v} and j ∈ V (G′) \ {v} with
degG′(i) ≤ degG′(j), and v ∈ NG′(i) \ (NG′(j) ∪ {j}). Because of the degree
condition and the fact that i is adjacent to v but j is not, we obtain that
NG′(j) \ (NG′(i) ∪ {i}) ̸= ∅, in all following cases.

Case 1: i = x. Consider some w ∈ NG′(j) \ (NG′(x) ∪ {x}) ⊆ W . We have
w /∈ C. Recall that W is independent, degG′(w) ≥ 2, and w is not adjacent
to x. This implies that w has a neighbor w′ ∈ C, possibly w′ = v′.

Subcase 1.1: j = s. We find the feasible paths
xvv′ws if w′ = v′,

xvv′w′ws if w′ ̸= v′,

xs,

xys for y ∈ NG′(x) \ {v, s}.

Subcase 1.2: j ̸= s. This case is only relevant when degG′(x) = degG′(j).
Furthermore, j ̸= v′, because j /∈ NG′(v). We provide the feasible paths

xvv′swj if v′j ∈ E(G′),
xvv′wj if v′j /∈ E(G′) and v′ = w′,

xvv′w′wj if v′j /∈ E(G′) and v′ ̸= w′,

xj if xj ∈ E(G′),
xyj for y ∈ NG′(x) ∩NG′(j),
xyszj for y ∈ NG′(x) \ (NG′(j) ∪ {j, v, s}) and suitable

z ∈ NG′(j) \ (NG′(x) ∪ {x, w, s}).

Note that we carefully select exactly one of the first three paths so that it
does not share an edge with any path of the last two groups.

Case 2: i ̸= x. Note that i ∈ C, because v ∈ NG′(i) and v ∈ W . This implies
that ix ∈ E(G′)

Subcase 2.1: j = s. Consider the following paths

ivxzs, if xz ∈ E(G′) for some z ∈ NG′(s) \ (NG′(i) ∪ {i})
is if is ∈ E(G′),
iys for y ∈ NG′(i) \ {v, s}.
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These paths verify the required local-edge-connectivity unless x is not ad-
jacent to some vertex in NG′(s) \ (NG′(i) ∪ {i}). But then x is adjacent
to all vertices in NG′(i), because degG′(x) ≥ degG′(i). Consider a vertex
z ∈ NG′(s) \ (NG′(i) ∪ {i}) and recall that degG′(z) ≥ dn ≥ 2. Because x is
adjacent to at least one endvertex of each edge of G′, the vertex z must be
adjacent to some u ∈ NG′(i) = NG′(x), and we provide the paths

ivxuzs,

is if is ∈ E(G′),
iys for y ∈ NG′(i) \ {v, s}.

Subcase 2.2: j ̸= s. Recall that if xj /∈ E(G′), then x is adjacent to all neigh-
bors of j. Let us specify the feasible paths

ivxszj for a suitable z ∈ NG′(j) \ (NG′(i) ∪ {i, v, x, s}) if xj ∈ E(G′),
ivxzj for a suitable z ∈ NG′(j) \ (NG′(i) ∪ {i, v, s}) if xj /∈ E(G′),
ij if ij ∈ E(G′),
iyj for y ∈ (NG′(i) ∩NG′(j)),
iyszj for y ∈ NG′(i) \ (NG′(j) ∪ {j, v, s}) and suitable z ∈ NG′(j)

In all cases, we obtain that G′ is maximally local-edge-connected.

Now we are ready to summarize the findings of this section.

Theorem 73. Consider natural numbers c1 ≥ . . . ≥ cn−1 that satisfy the
shifted Erdős-Gallai inequalities for all k ∈ {1, . . . , n− 1}. Moreover, in case
c1 = n− 1− ℓ for ℓ := |{ci : ci = 1}|, let the sum ∑n−1−ℓ

i=2 ci be even. Then
there is a graph that realizes the cut sequence c1 ≥ . . . ≥ cn−1.

Proof. First of all, suppose a graph G is found that realizes the cut se-
quence c1 ≥ . . . ≥ cn−1−ℓ. Then we can easily account for the remaining cut
values cn−ℓ ≥ . . . ≥ cn−1, which are equal to one. We can simply append ℓ
leafs to G. So we may assume that ℓ = 0, or equivalently that cn−1 ≥ 2.

Let us consider the sequence given by di := ci − 1 for i ∈ {1, . . . , n− 1}. Be-
cause c1 ≥ . . . ≥ cn−1 satisfies the shifted Erdős-Gallai inequalities, we know
by Lemma 68 that the sequence d1 ≥ . . . ≥ dn−1 satisfies the Erdős-Gallai
inequalities. In case their sum ∑n−1

i=1 di is even, we may follow the process
outlined in Figure 32. We can employ Algorithm 2 to generate a graph G
that realizes the degree sequence d1 ≥ . . . ≥ dn−1. If we add a dominating
vertex to G, we obtain a graph that realizes the cut sequence c1 ≥ . . . ≥ cn−1.
This is because of Corollary 62 and Lemma 64.
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In case the sum ∑n−1
i=1 di is odd, Algorithm 2 is not applicable directly. But

Lemma 69 ensures that the numbers d′
t := dt − 1 for t := max{i : di = d1}

and d′
i := di for i ∈ {1, . . . , n} \ {t} constitute a graphic sequence. For the

adapted sequence d′
1 ≥ . . . ≥ d′

n−1, Algorithm 2 outputs a realizing graph
to which we append a dominating vertex s to obtain the graph H. The
degree sequence of H is n− 1 > d′

1 + 1 ≥ . . . ≥ d′
n−1 + 1. This sequence

is almost the same as n− 1 > c1 ≥ . . . ≥ cn−1. The only differing number
is d′

t + 1 = ct − 1. Also note the assertion n− 1 > d′
1 + 1 built in the pre-

vious lines. Indeed, otherwise n− 1 = d′
1 + 1 = c1. Then ∑n−1

i=2 ci is even
and

n−1∑
i=1

di =
n−1∑
i=1

(ci − 1) =
n−1∑
i=2

ci + c1 − (n− 1) =
n−1∑
i=2

ci

is even as well. But then Algorithm 2 is applicable and we are not in the case
that we discuss in this paragraph. The key question remaining is whether
we can adapt the graph H to a graph whose cut sequence is c1 ≥ . . . ≥ cn−1.
There is a vertex x ∈ V (H) with degH(x) = d′

t + 1 = ct − 1 ≤ c1 − 1 ≤ n− 3
and degH(x) = d′

t + 1 ≥ d′
1, by the definition of t. In case there exists an

edge vw ∈ E(H) such that v, w /∈ NH(x), then Lemma 70 is applicable and
provides a graph realizing the cut sequence c1 ≥ . . . ≥ cn−1. In case there
is no such edge vw, then x is adjacent to at least one endvertex of each
edge of H. Denoting the vertex set W := V (H) \ (NH(x) ∪ {x}), we ob-
serve that |W | ≥ 2, because degH(x) ≤ n− 3. If for some i, j ∈ W there are
vertices i′ ∈ NH(i) and j′ ∈ NH(j) \ (NH(i′) ∪ {i′}), then Lemma 71 applies.
Otherwise, NH(W ) forms a clique and Lemma 72 applies. In all cases, we
know how to construct a graph realizing the cut sequence c1 ≥ . . . ≥ cn−1.

Let us recall that the constructions addressed in Lemmas 70, 71, and 72 and
consequently the constructions summarized in Theorem 73 all yield maxi-
mally local-edge-connected graphs. Such graphs are of particular interest in
the article [34] of Dankelmann and Oellermann. Calling a graphic sequence
edge-optimal if some realizing graph exists which is maximally local-edge-
connected, they raise the intriguing conjecture that all graphic sequences
with smallest term at least two are edge-optimal. As a byproduct of this
chapter, we obtain techniques for generating certain maximally local-edge-
connected graphs that possess additional connectivity properties. Although
the proposed ideas do not resolve the mentioned conjecture, they might serve
as tools for constructive approaches.

The program of this chapter is concluded by Theorem 73. It provides a class
of cut sequences for which we can generate a realizing graph. The question
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Figure 36: The structure of complete sun graphs

whether the conditions of Theorem 73 characterize all cut sequences has a
negative answer. Figure 36 provides examples that do not satisfy the shifted
Erdős-Gallai inequalities. The structure displayed there is that of com-
plete sun graphs, surveyed by Brandstadt, Le, and Spinrad [12, Chapter 7].
For a formal definition, take for k ∈ {3, 4, . . .} a graph G whose vertex set
V (G) := V ∪W is partitioned into V = {v1, . . . , vk} and W = {w1, . . . , wk},
and form the edge set as

E(G) :=
{
viwi, wiv(i mod k)+1 : i ∈ {1, . . . , k}

}
∪
{
vivj : i, j ∈ {1, . . . , k}

}
.

The cut sequences belonging to that class are of the form

k + 1, . . . , k + 1
k−1 times

, 2, . . . , 2
k times

.

For those, the left-hand side of the (k − 1)th shifted Erdős-Gallai inequality
exceeds the respective right-hand side by

k−1∑
i=1

(k + 1)− (k − 1)2 −
2k−1∑
i=k

min{1, k − 1} = k − 2.

An interesting open problem is to characterize those graphs that violate the
shifted Erdős-Gallai inequalities. One can observe that quite a few coun-
terexamples are split graphs, or are somewhat similar to them. A split graph
is a graph whose vertex set can be partitioned into a clique and an indepen-
dent set, which is the case for the example in Figure 36. It might be fruitful
to make precise how the counterexamples are related to that class.
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n connected graphs counterexamples fraction in %
1-5 31 0 0
6 112 2 1.79
7 853 13 1.52
8 11 117 109 0.98
9 261 080 831 0.32
10 11 716 571 6 790 0.06

1-10 11 989 764 7 745 0.06
n tested graphs edge probability fraction in %
20 1 000 000 0.2 ≪ 0.00
20 1 000 000 0.4 ≪ 0.00
20 1 000 000 0.6 ≪ 0.00
20 1 000 000 0.8 ≪ 0.00

Table 4.1: The fraction among connected graphs having a cut sequence vio-
lating the shifted Erdős-Gallai inequalities

Furthermore, the shifted Erdős-Gallai inequalities seem to characterize a
large proportion of graphs. When checking all connected graphs on up
to ten vertices, listed by McKay and Piperno [79], there appear 7 745 out
of 11 989 764 graphs that violate the shifted Erdős-Gallai inequalities. This
is a proportion of merely 0.065 % and the numbers in Table 4.1 indicate
that this percentage decreases for increasing order n. There are exact results
for n ∈ {1, . . . , 10} as well as results of some randomized tests for n = 20 and
varying probabilities for edges being present or not, as in the Erdős-Rényi
model [41]. Encouraged by these empirical results, we may ask whether
asymptotically all graphs satisfy the shifted Erdős-Gallai inequalities.

For another outlook, let us mention the field of complex network modeling,
where constructive approaches as that of this section are of value. When real-
world graphs are too large, hard to capture empirically, or simply unknown a
priori, as in molecule or drug design, a key idea is to extract desired features
and to generate representative network structures artificially. Such works are
conducted by Chung and Lu [25], or in a refined version by Brissette, Liu,
and Slota [14], where graphs with expected degree sequences are generated.
Moreover, Heath and Parikh [64] focus on graphs with tunable clustering
coefficients.
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In contrast to the previous chapters, our perspective on pairwise connectivity
here changes to that of spectral graph theory. We ask structural questions
about matrices whose entries reflect the pairwise connectivity relations. We
thoroughly introduce the relevant matrices in Section 5.1. As spectral graph
theory often relies on machinery from linear algebra, we collect the tools we
make use of in the Appendix. We apply them in Section 5.2 to learn about
the spectral properties of vertex-connectivity matrices. We focus on eigen-
value bounds, the attaining graphs, and a conjecture about the energy of
such matrices. Remarkably, analogues to certain questions that remain open
for vertex-connectivity matrices can all be resolved for edge-connectivity ma-
trices. This is what we investigate in Section 5.3. Finally, in Section 5.4, we
discuss how our results about connectivity matrices can be transferred to
specific distance matrices, whose entries satisfy similar conditions as those
of connectivity matrices. For an outlook, we touch on a version of Šoltés
problem [96] and a variant of Cheeger’s inequality [20], which suggests appli-
cations in spectral graph partitioning.
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5.1 Graph matrices

Spectral graph theory is an intriguing subject concerned with the relation-
ships between the structure of graphs and the spectral properties of matri-
ces associated with graphs, which we assume to be nonempty throughout
this chapter. The simplest relevant matrix is the adjacency matrix, defined
for a graph G on vertex set {v1, . . . , vn} as A = [aij] ∈ {0, 1}n×n having en-
tries aij = 1 if vivj ∈ E(G) and aij = 0 if vivj /∈ E(G). Denoting the diago-
nal matrix of vertex degrees by D := diag(deg(v1), . . . , deg(vn)), the Laplace
matrix of G is L := D − A. In applications, this matrix sometimes is used
in a normalized form L := D−1/2LD−1/2 and also the signless Laplace ma-
trix Q := D + A is investigated intensively, of which Cvetković and Simić
provide a comprehensive overview [29, 30, 31]. A general survey about spec-
tral graph theory is given by Spielman [97]. In-depth works on the theory of
graph spectra are the monographs of Chung [23], Brouwer and Haemers [16],
or Cvetković, Rowlinson, and Simić [32]. To mention just a few of the vari-
ous related applications, see Brin and Page [13] on how google ranks pages
according to the Perron-Frobenius eigenvector of the world wide web’s link
matrix. We refer to Spielman and Teng [98] for spectral clustering methods
and refer to Shuman, Narang, Frossard, Ortega, and Vandergheynst [94] for
an overview about the emerging field of signal processing on graphs. Note
that although the matrices from above are natural candidates for representing
a graph’s structure, the fundamental ideas of spectral graph theory are not
strictly bound to the given definitions. Different graph matrices emphasize
different structural properties, which we may aim to understand by spectral
analysis. Our focus here shall be on connectivity matrices, introduced by
Shikare, Malavadkar, Patekar, and Gutman [93].

Definition 74. For a graph on vertex set {v1, . . . , vn} its connectivity matrix
is P = [pij] ∈ {0, . . . , n− 1}n×n where pii = 0 for i ∈ {1, . . . , n} and pij is the
maximum number of independent paths between vertices vi and vj for i ̸= j.
Analogously, the edge-connectivity matrix is C = [cij] ∈ {0, . . . , n− 1}n×n

where cii = 0 for i ∈ {1, . . . , n} and cij is the maximum number of edge-
disjoint paths between vertices vi and vj for i ̸= j.

Before we go on, let us think about how the matrices we introduced in Def-
inition 74 can be determined. The edge-connectivity matrix of a graph can
be read off directly from its Gomory-Hu tree, which always exists due to
Theorem 14. According to Lemma 11, for two vertices we just have to fol-
low the unique path connecting them in the Gomory-Hu tree and take the
smallest edge weight on that path. For the actual flow computations, there
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12

3

4  

P =




1 2 3 4  
1 0 2 2 1 1
2 2 0 2 1 1
3 2 2 0 2 2
4 1 1 2 0 2
 1 1 2 2 0




C =




1 2 3 4  
1 0 2 2 2 2
2 2 0 2 2 2
3 2 2 0 2 2
4 2 2 2 0 2
 2 2 2 2 0




Figure 37: The hourglass graph with its associated connectivity matrix P
and edge-connectivity matrix C

are several algorithms available, as we reviewed in the final paragraph of
Section 2.3. For the connectivity matrix we need another approach, be-
cause there is no analogue to Gomory-Hu trees for vertex separators, as
is pointed out by Benczúr [7]. To determine the connectivity matrix of a
graph G, one can employ the following procedure, proposed by Ford and
Fulkerson [47, Chapter 1]. We transform G into a directed graph D by re-
placing each edge vw by two directed edges (v, w) and (w, v). In a sec-
ond step, each vertex v ∈ V (D) is replaced by two copies vin and vout, con-
nected by an edge (vin, vout). All other edges (v, w) are replaced by (vout, win).
This construction is illustrated in Figure 38. Assigning capacity one to each
edge of D, we compute the number of independent paths between two ver-
tices v, w ∈ V (G) as the maximum flow value between vout and win in D.
This works as intended as a flow in D can pass a vertex vin only over the
edge (vin, vout). So each vertex can only be passed once.

In what follows, we rely on several facts from linear algebra, which are sum-
marized in the Appendix. For basic concepts and the spectral theorem for
symmetric matrices, we refer to Horn and Johnson [67, Chapters 0, 1, and 4].
To characterize extremal eigenvalues, we frequently use the principles by
Rayleigh [100] and Ritz [88]. Further tools originate from the work of Per-
ron [85] and Frobenius [48], of which Horn and Johnson [67, Chapter 8] give

⇝ ⇝

Figure 38: An auxiliary network for computing a graph’s connectivity matrix
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an overview. The latter theory in particular refers to irreducible matrices.
So let us recall that a matrix A is called reducible if it is of the form

P ⊤AP =
[
B 0
0 C

]

where B and C are square matrices of size at least one, 0 is a matrix contain-
ing only zeros and P is a permutation matrix. If a matrix is not reducible,
it is called irreducible. So matrices of size one are irreducible and the adja-
cency, connectivity, or edge-connectivity matrix of a graph on at least two
vertices is irreducible if and only if the graph is connected. Furthermore,
we call a matrix A = [aij] ∈ Rn×n nonnegative and write A ≥ 0 if aij ≥ 0 for
all i, j ∈ {1, . . . , n} as well as A > 0 if aij > 0 for all i, j ∈ {1, . . . , n}. For
another matrix B ∈ Rn×n we denote A ≥ B if A− B ≥ 0. Our next goal is
to see how the introduced matrix types are related.

Lemma 75. Let P = [pij] be the connectivity matrix and C = [cij] be the
edge-connectivity matrix of a graph with given vertex labeling. Then C ≥ P .

Proof. An independent i-j path is automatically edge-disjoint. So cij ≥ pij

for all i, j ∈ {1, . . . , n}, which confirms our claim.

We refer to the eigenvalues of a matrix A ∈ Rn×n by λ1(A) ≥ . . . ≥ λn(A).
The eigenvalues of the connectivity matrix of a graph G on n vertices are
addressed by ρ1(G) ≥ . . . ≥ ρn(G) and the eigenvalues of the corresponding
edge-connectivity matrix by γ1(G) ≥ . . . ≥ γn(G). Herein, we omit to specify
the respective matrices or graphs if there is no need for a reference. Another
spectral parameter that we investigate is the energy of a graph. This con-
cept is introduced by Gutman [53] as the sum of the absolute values of the
eigenvalues of a graph’s adjacency matrix. Since his seminal work, a variety
of applications and mathematical links have been discovered, of which Li,
Shi, and Gutman [76] or Gutman and Furtula [54] give an overview. The
roots of this subject stem from a correspondence between the orbital energy
of π-electrons in conjugated hydrocarbon molecules and the eigenvalues of
the adjacency matrix of a suitably constructed graph. Intuitively, one may
see the energy as a measure of complexity of the underlying graph structure,
potentially depending on specific edge weights, as in the case of connectiv-
ity matrices. This is discussed by Sinha, and de Weck [95] and has various
applications. Those range from measurements in space engineering, as de-
scribed by Pugliese and Nilchiani [87], to understanding network breakdowns
in Alzheimer’s disease, as discussed by Daianu, Mezher, Jahanshad, Hibar,
Nir, Jack, Weiner, Bernstein, and Thompsonas [33]. As the definition of a
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Section 5.2 | Spectra of vertex-connectivity matrices

graph’s energy, and so the investigations in that field, are not specifically
limited to the spectrum of the adjacency matrix, we here denote

E(A) :=
n∑

i=1
|λi(A)|

for a general symmetric matrix A ∈ Rn×n. To address the connectivity or
path energy of a graph G, we use the notion EP (G) := E(P (G)) and to ad-
dress its edge-connectivity or edge-path energy, we write EC(G) := E(C(G)).
For certain graph classes, it is not too hard to determine the corresponding
connectivity or edge-connectivity matrix spectra entirely.

Example 76. The connectivity matrix of a uniformly k-connected graph G
on n vertices is k(11⊤ − I) for appropriate matrix sizes. A basis of eigenvec-
tors for such a matrix is given by

1

1


,



1
−1
0

0


,



1
0
−1
0

0


, . . . ,



1
0

0
−1


.

The corresponding eigenvalues are ρ1 = k(n− 1) and ρ2 = . . . = ρn = −k.
Analogously, the eigenvalues of a uniformly k-edge-connected graph’s edge-
connectivity matrix are γ1 = k(n− 1) and γ2 = . . . = γn = −k.

5.2 Spectra of vertex-connectivity matrices

Let us now turn to the spectral properties of connectivity matrices. We
focus on eigenvalue bounds and discuss a conjecture about connectivity en-
ergy. For our first eigenvalue property, we define for a graph G and corre-
sponding connectivity matrix P = [pij] ∈ {0, . . . , n− 1}n×n the potential of
vertex i ∈ V (G) by

pi :=
n∑

j=1
pij.

Lemma 77. Let ρ be an eigenvalue of a connectivity matrix P with corre-
sponding eigenvector x = [x1, . . . , xn]⊤. Then

either
n∑

i=1
xi =

n∑
i=1

pixi = 0 or ρ =
(

n∑
i=1

pixi

)(
n∑

i=1
xi

)−1

.
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Proof. By summing over the entries of the vector Px, we get

1⊤Px =
n∑

i=1

(
n∑

j=1
pij

)
xi =

n∑
i=1

pixi

We are also given that x is an eigenvector to ρ. Thus 1⊤Px = 1⊤ρx = ρ1⊤x
and therefore

ρ
n∑

i=1
xi =

n∑
i=1

pixi,

which concludes the proof.

Shikare, Malavadkar, Patekar, and Gutman [93] provide for a connectiv-
ity matrix’ spectral radius ρ1 the bound (n− 1) ≤ ρ1 ≤ (n− 1)2. The lower
bound is attained if and only if the respective graph is a tree. The upper
bound is attained if and only if the respective graph is complete. An overview
about how the adjacency matrix’ spectral radius is linked with the under-
lying graph’s structure is given by Stevanović [99]. The Rayleigh principle
and Lemma 77 will help us to obtain a slight improvement of the result from
above. The attaining graphs are old friends from Chapter 3.

Theorem 78. Let G be a k-connected, ℓ-edge-connected graph on n vertices
whose minimum degree is δ, whose connectivity matrix has spectral radius ρ1,
and whose edge-connectivity matrix has spectral radius γ1. Then

k(n− 1) ≤ ρ1 ≤ 2|E(G)| − δ.

The lower bound is attained if and only if G is uniformly k-connected, the
upper bound is attained if and only if G is k-regular and k-connected. Fur-
thermore,

ℓ(n− 1) ≤ γ1 ≤ 2|E(G)| − δ.

The lower bound is attained if and only if G is uniformly ℓ-edge-connected,
the upper bound is attained if and only if G is ℓ-regular and ℓ-edge-connected.

Proof. We only prove the assertion concerning a graph’s connectivity ma-
trix [pij], because the statement about the edge-connectivity matrix fol-
lows completely analogously. Let us recall that pij ≤ min{deg(i), deg(j)}
for any i, j ∈ {1, . . . , n} and pii = 0 for any i ∈ {1, . . . , n}. This implies

pi =
n∑

j=1
pij ≤

n∑
j=1
j ̸=i

min{deg(i), deg(j)} ≤
n∑

j=1
j ̸=i

deg(j) ≤ 2|E(G)| − δ.

94



Section 5.2 | Spectra of vertex-connectivity matrices

Let now x be an eigenvector to ρ1 and observe that the connectivity matrix
of a connected graph is nonnegative and irreducible. Statement (ii) of Theo-
rem 106 says that x has only positive or only negative entries. So Lemma 77
implies

ρ1 =
(

n∑
i=1

pixi

)(
n∑

i=1
xi

)−1

≤
(

n∑
i=1

(
n∑

j=1
deg(j)− δ

)
xi

)(
n∑

i=1
xi

)−1

=
n∑

j=1
deg(j)− δ = 2|E(G)| − δ.

This inequality is sharp if and only if

pi =
n∑

j=1
pij =

n∑
j=1

deg(j)− δ = 2|E(G)| − δ for each i ∈ {1, . . . , n}. (⋆)

These equations are certainly satisfied for k-regular k-connected graphs. On
the other hand, suppose that (⋆) holds but we are given a connectivity ma-
trix where pij < deg(j) for some i and j. Therefore, because pih ≤ deg(h) for
all h ∈ {1, . . . , n}, relation (⋆) implies that deg(i) < δ, which is a contradic-
tion. So pij = deg(j) for all i, j ∈ {1, . . . , n}. Again (⋆) implies deg(i) = δ
for all i ∈ {1, . . . , n} and in turn pij = δ for all i, j ∈ {1, . . . , n}. So graphs
that attain the upper bound on ρ1 have to be k-regular and k-connected.
For the lower bound on ρ1, let us set y := 1√

n
1 and apply Theorem 104 to

obtain

ρ1 = max
x̸=0

x⊤P x

x⊤x
≥ y⊤P y

y⊤y
= 1

n
1⊤P 1

= 1
n

n∑
i=1

n∑
j=1

pij ≥
1
n

n∑
i=1

n∑
j=1
j ̸=i

k = k(n− 1).

Uniformly k-connected graphs attain this bound, as we have seen in Ex-
ample 76. On the other hand, if we are given a k-connected graph that is
not uniformly k-connected, then there exists some pij > k. But then the last
inequality in the above calculation is strict and the bound is not attained.

We proceed by investigating the energy of the connectivity matrix. Shikare,
Malavadkar, Patekar, and Gutman [93] first studied the connectivity energy,
established basic properties, and raised the following conjecture which moti-
vated larger parts of this section’s contents.
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Conjecture 79. The energy of a graph G on n vertices satisfies

EP (G) ≤ 2(n− 1)2.

The bound is attained if and only if G is a complete graph.

The following lower bound is a slight refinement of a result by Ilić and
Bašić [68] for connected graphs. We formulate it for k-connected and ℓ-edge-
connected graphs. The proof essentially uses Perron-Frobenius arguments.

Lemma 80. For a k connected and ℓ-edge-connected graph G on n vertices
there holds

2k(n− 1) ≤ EP (G).

The bound is attained if and only if G is uniformly k-connected. Furthermore,

2ℓ(n− 1) ≤ EC(G).

The bound is attained if and only if G is uniformly ℓ-edge-connected.

Proof. We only show the bound concerning the connectivity matrix P = [pij],
because the other bound follows analogously. The connectivity matrix of a
uniformly k-connected graph G on n vertices is k(11⊤ − I) for appropriate
matrix sizes. The eigenvalues of this matrix are k(n− 1) with multiplic-
ity one and −k with multiplicity n − 1, as we already observed in Exam-
ple 76. This adds up to EP (G) = 2k(n− 1). The connectivity matrix P of
any k-connected graph H satisfies P ≥ k(11⊤ − I). If H is not uniformly
k-connected, then there is some pij > k. By Corollary 107, we know that
that then ρ1 > k(n− 1) and because of ∑n

i=1 ρi = tr(P ) = 0, we conclude
that EP (H) ≥ 2ρ1 > 2k(n− 1).

A typical approach to prove upper bounds on graph energies is that of Koolen
and Moulten [74]. Ilić and Bašić [68] followed such an idea with a small error
in their proof. If we correct the argument, we obtain the following bound.

Theorem 81. For a graph G on n vertices with degree sequence d1≥ . . .≥dn

holds
EP (G) ≤

√√√√2n
n∑

i=1
(n− i)d2

i .

Proof. By the Cauchy-Schwarz inequality, we obtain

EP (G) = ρ1 +
n∑

i=2
ρi ≤ ρ1 +

√√√√(n− 1)
n∑

i=2
ρ2

i = ρ1 +
√

(n− 1)(tr(P 2)− ρ2
1).
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The trace of P 2 satisfies

tr(P 2) =
n∑

i=1

n∑
j=1

p2
ij = 2

n∑
i=1

n∑
j=i+1

p2
ij ≤ 2

n∑
i=1

n∑
j=i+1

min{di, dj}2

≤ 2
n∑

i=1

n∑
j=i+1

d2
i = 2

n∑
i=1

(n− i)d2
i =: t

Consequently, EP (G) ≤ f(ρ1) where f(x) := x +
√

(n− 1)(t− x2). Because
of 0 ≤ ρ1 and ρ2

1 ≤ tr(P 2) ≤ t, we analyze f for x ∈ [0,
√

t]. Let us determine

df(x)
dx

= 1− (n− 1)x√
(n− 1)(t− x2)

= 1−
√

n− 1x√
t− x2

.

So df(x)
dx

= 0 if and only if
√

t− x2 =
√

n− 1x, which is equivalent to t = nx2.
The solutions to this equation are x± = ±

√
t/n. The root x− is not contained

in [0,
√

t]. At x+, we evaluate

f(x+) =
√

t/n +
√

(n− 1)(t−
√

t/n
2
)

=
√

t/n +
√

(n− 1)(n− 1)t
n

=
√

t/n + (n− 1)
√

t/n = n
√

t/n =
√

tn.

Because f(0) =
√

(n− 1)t ≤
√

nt = f(x+) and f(
√

t) =
√

t ≤
√

nt = f(x+),
we conclude that max

x∈[0,
√

t]
f(x) = f(x+) and therefore

EP (G) ≤ f(x+) =
√

tn =
√√√√2n

n∑
i=1

(n− i)d2
i . □

However, the appearing vertex degrees di may well equal n− 1 and therefore
the preceding result allows in general only for the estimate√√√√2n

n∑
i=1

(n− i)d2
i ≤

√√√√2n
n∑

i=1
(n− i)(n− 1)2

=
√

2n(n− 1)2 n(n− 1)
2 = n(n− 1)3/2,

which exceeds the conjectured bound of 2(n− 1)2 for all n ∈ N. Or, to put
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 3 4 6

1

2

Figure 39: A graph for which D + P is not positive semidefinite

it positively, denoting the maximum degree by ∆ and setting√√√√2n
n∑

i=1
(n− i)∆2 =

√
2n∆2 n(n− 1)

2 = n∆
√

n− 1

equal to 2(n− 1)2, we find that Conjecture 79 holds for any graph whose
maximum degree satisfies ∆ ≤ 2(n− 1)3/2n−1. Another attempt, eventu-
ally ineffective, to approach Conjecture 79 can be summarized as follows.
Patekar and Shikare [84] suggest the matrix D + P as a connectivity analogue
for the signless Laplacian. Its classical variant D + A is positive semidef-
inite, implying λn(A) ≥ λn(−∆I + D + A) = −∆ + λn(D + A) ≥ −(n− 1),
where ∆ denotes the largest degree of the respective graph. If we had such a
bound on the smallest connectivity matrix eigenvalue, by ∑n

i=1 ρi = tr(P ) = 0,
we would obtain EP (G) ≤ 2∑n

i:ρi<0 |ρi| ≤
∑n

i=2 |ρn| ≤ 2(n− 1)2. But D + P
is not guaranteed to be positive semidefinite. This can be seen from the
graph in Figure 39 for which

P + D =



1 2 3 4 5 6
1 4 4 4 4 3 3
2 4 4 4 4 3 3
3 4 4 4 3 3 3
4 4 4 3 4 3 3
5 3 3 3 3 3 3
6 3 3 3 3 3 3


.

Because this matrix has a negative principal minor

det

4 4 4
4 4 3
4 3 4

 = det

4 0 0
4 0 −1
4 −1 0

 = 4 det
[

0 −1
−1 0

]
= −4,

it cannot be positive semidefinite. Also the slightly weaker hypothesis that
the minimum eigenvalue of P is bounded by at least −(n− 1) turns out
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1

2

3

4

 

6

7 8

9

P =




1 2 3 4  6 7 8 9
1 0         
2  0        
3   0       
4    0 6 6 7 7 7
    6 0 6 7 7 7
6    6 6 0 7 7 7
7    7 7 7 0 7 7
8    7 7 7 7 0 7
9    7 7 7 7 7 0




Figure 40: A graph whose corresponding connectivity matrix has an eigen-
value smaller than −(n− 1)

to be false, for which Figure 40 provides an example. Recalling Lemma 102,
this can be seen by investigating the matrix P + (n− 1)I, which has the
minor

det



8 6 6 7 7 7
6 8 6 7 7 7
6 6 8 7 7 7
7 7 7 8 7 7
7 7 7 7 8 7
7 7 7 7 7 8


= −4.

But note that, up to now, we identifed only examples where the smallest
eigenvalue is just slightly below the value −(n− 1). For the example above,
the smallest eigenvalue is about −8.06. So there seems to be some leeway to
the general lower bound known for the smallest eigenvalue of a real symmetric
matrix A whose entries are in a given interval [a, b]. Such a bound is shown by
Zhan [108]. For n ≥ 2, a < b, and |a| < b the smallest eigenvalue satisfies

λn(A) ≥

n(a− b)/2 if n is even,(
na−

√
a2 + (n2 − 1)b2

)
/2 if n is odd.

Up to simultaneous permutations of rows and columns, the attaining matrices
are [

a[11⊤]n
2

b [11⊤]n
2

b [11⊤]n
2

a[11⊤]n
2

]
if n is even,

[
a[11⊤]n−1

2
b [11⊤]n−1

2 , n+1
2

b [11⊤]n+1
2 , n−1

2
a[11⊤]n+1

2

]
if n is odd,
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where the subscripts denote the respective matrix sizes. In the case of con-
nectivity matrices, where a = 0 and b = n− 1, we obtain −(n− 1)n/2 if n is
even and −(n− 1)

√
(n2 − 1)/2 if n is odd. This bound is quadratic in n, in

contrast to the nearly linear behavior that we observed for graphs on up to ten
vertices. Also, the matrices attaining Zhan’s bound, for a = 0 and b = n− 1,
cannot be connectivity matrices, because an entry equal to n− 1 means that
there are two vertices connected by n − 1 independent paths, contradict-
ing a = 0. So there is room for improvement.

5.3 Spectra of edge-connectivity matrices

In contrast to connectivity matrices, edge-connectivity matrices possess cer-
tain structural properties which allow for stronger spectral estimates. This
allows to answer questions about the energy, whose analogues for connec-
tivity matrices remained open in the preceding section. Those properties
stem from the ultrametric inequality, established by Gomory and Hu [50],
which we discussed in Section 2.3. Our first goal in this section is to de-
velop an equivalent formulation for the ultrametric inequality that is more
amenable to our spectral considerations. In what follows, for a set X, we
denote by X2 := X ×X the Cartesian product. For X ⊆ {1, . . . , n}, we
denote by 1X the vector [x1, . . . , xn]⊤ where xi = 1 if i ∈ X and xi = 0 if
i /∈ X. For a matrix A ∈ Rn×n and index sets X, Y ⊆ {1, . . . , n}, we denote
by AXY := [aij]i∈X,j∈Y the submatrix that results from A by deleting the rows
of the index set {1, . . . , n} \X and columns of the index set {1, . . . , n} \ Y .
If X = Y , we write AX2 for AXY .
Definition 82. For a symmetric matrix C = [cvw] ∈ Rn×n and some num-
ber ℓ ∈ R we define the superlevel set of C for the level ℓ by

Sℓ(C) := {(i, j) ∈ {1, . . . , n}2 : cij ≥ ℓ}.

The matrix C is called block diagonally layered, or layered for short, if for
each level ℓ ∈ R there is a set Tℓ(C) of pairwise disjoint subsets of {1, . . . , n}
satisfying

Sℓ(C) =
⋃

X∈Tℓ(C)
X2.

Remark 83. By Definition 82, a layered matrix with distinct values of
entries ℓ0 < . . . < ℓk permits the decomposition

C = ℓ01{1,...,n}1
⊤
{1,...,n} +

k∑
i=1

∑
X∈Tℓi

(C)
(ℓi − ℓi−1)1X1

⊤
X .
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When setting si := ℓi − ℓi−1 for i ∈ {1, . . . , n} as well as s1 := ℓ0, we may also
write more compactly

C =
k∑

i=0

∑
X∈Tℓi

(C)
si1X1

⊤
X .

In fact, this decomposition into a sum of block diagonal matrices is the reason
for the term block diagonally layered.

Example 84. To become acquainted with the previous definition, let us
check for

C =


1 2 3 4

1 3 3 0 0
2 3 4 0 0
3 0 0 1 1
4 0 0 1 3

 that Sℓ(C) =



{1, 2, 3, 4}2 for ℓ ≤ 0,

{1, 2}2 ∪ {3, 4}2 for 0 < ℓ ≤ 1,

{1, 2}2 ∪ {4}2 for 1 < ℓ ≤ 3,

{2}2 for 3 < ℓ ≤ 4,

∅ for 4 < ℓ.

The corresponding decomposition into block diagonal matrices is

C =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

+


2 2 0 0
2 2 0 0
0 0 0 0
0 0 0 2

+


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

.

Theorem 85. A nonnegative layered matrix C = [cij] ∈ Rn×n is positive
semidefinite.

Proof. Let us denote all distinct values of entries of C by ℓ0 < . . . < ℓk. Be-
cause C is nonnegative, also the numbers si := ℓi − ℓi−1 for i ∈ {1, . . . , n}
and s1 := ℓ0 are nonnegative. Furthermore, the matrix 1X1

⊤
X is positive

semidefinite, because y⊤1X1
⊤
Xy = (1⊤

Xy)⊤(1⊤
Xy) = ∥1⊤

Xy∥2
2 ≥ 0 for y ∈ Rn.

In view of Remark 83,

C =
k∑

i=0

∑
X∈Tℓi

(C)
si1X1

⊤
X

is positive semidefinite, because it is a nonnegative linear combination of
positive semidefinite matrices.

The key to our spectral questions is the following link between layered ma-
trices and the ultrametric inequality, established by Gomory and Hu. Note
that in the subsequent statement we neither require the respective matrices
to stem from graphs nor that the diagonal entries have to be zero.
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Theorem 86. A symmetric matrix C ∈ Rn×n satisfies cik ≥ min{cij, cjk} for
all i, j, k ∈ {1, . . . , n} if and only if it is layered.

Proof. We begin by showing that a layered matrix C satisfies the ultrametric
inequality. So take arbitrary i, j, k ∈ {1, . . . , n} and set min{cij, cjk} =: ℓ.
Defining Tℓ(C) as in Definition 82, some X ∈ Tℓ(C) with (i, j) ∈ X2 has to
exist. This is because cij ≥ ℓ. Also, there is a set Y ∈ Tℓ(C) that contains j
and k, as cjk ≥ ℓ. Thus j ∈ X ∩ Y , which implies that X = Y , because the
sets in Tℓ(C) are pairwise disjoint. Consequently, the set X contains all three
indices i, j, and k. This implies that cik ≥ ℓ, which was to be shown.

Suppose now that C satisfies cik ≥ min{cij, cjk} for all i, j, k ∈ {1, . . . , n}. We
show that C is layered by induction on n, which is certainly true for n = 1.
For n ≥ 2 we set m := min{cij : i, j ∈ {1, . . . , n}}. Let k ∈ {1, . . . , n} be a
column of C that contains an entry equal to m. For it, we define

X := {i ∈ {1, . . . , n} : i ̸= k and cik = m} and Y := {1, . . . , n} \X.

We are given that ckk ≥ min{ckj, cjk} = cjk for all j, k ∈ {1, . . . , n}. As n ≥ 2,
this shows that X ̸= ∅. Furthermore, Y ̸= ∅, as k ∈ Y . We now take arbi-
trary i ∈ X and j ∈ Y and aim to show that cij = m. By the choice of i
and j, we have cik ≤ cjk. Herein, by the definition of X and Y , equality
is only possible if ckk = m and Y = {k}. So if j ̸= k, then cik < cjk and
thus cik ≥ min{cij, cjk} = cij. Altogether, we obtain cij ≤ cik ≤ cjk, which is
trivially fulfilled in the remaining case where j = k. By Lemma 9, we con-
clude that cij = cik = m. We have shown that, by a suitable simultaneous
permutation of rows and columns, C is of the form

C =
[ X Y

X A m11⊤

Y m11⊤ B

]

This implies that for ℓ > m the superlevel set Sℓ(C) is contained in X2 ∪ Y 2.
The submatrices A = CX2 and B = CY 2 satisfy the ultrametric inequality.
So they are layered, by induction. Consequently,

Sℓ(C) = Sℓ

(
CX2

)
∪ Sℓ

(
CY 2

)
for ℓ > m

and because Sm(C) = {1, . . . , n}, we obtain that C is layered.

The preceding proof also allows to verify that a layered matrix can have
at most 2n− 1 different entries, which is certainly true for n = 1. De-
noting the number of different entries a matrix can have by #(·), we see
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from the preceding proof that #(C) ≤ #(A) + #(B) + 1. Because A ∈ Rk×k

and B ∈ R(n−k)×(n−k) for some k ∈ {1, . . . , n− 1}, we conclude by induction
that #(C) ≤ 2k − 1 + 2(n− k)− 1 + 1 = 2n− 1. Lemma 7 states that the
off-diagonal entries of an edge-connectivity matrix satisfy the ultrametric in-
equality. Thus all entries except the diagonal ones exhibit a layered structure
and at most n− 1 different numbers can occur as matrix entries. This re-
sembles a classical result by Gomory and Hu [50], presented in connection
with Theorem 14, saying that n− 1 minimum cut computations suffice to
obtain the minimum cut values for all pairs of vertices of a graph.

Theorem 87. Consider a graph G on n vertices, its edge-connectivity ma-
trix C = [cij], and set ci max := max{cij : j ∈ {1, . . . , n} \ {i}}. Then the ma-
trix C := C + diag(c1 max, . . . , cn max) is positive semidefinite.

Proof. All off-diagonal entries of the matrix C, and so of C, satisfy the ultra-
metric inequality by Theorem 7. By the definition of C = [cij], also cii ≥ cij

for all i, j ∈ {1, . . . , n}. Thus C is layered by Theorem 86. Because it is also
real and nonnegative, it is positive semidefinite by Theorem 85.

Theorem 87 also includes the fact that taking a graph’s edge-connectivity
matrix C = [cij] and adding its degree matrix D = diag(d1, . . . , dn) gives a
positive semidefinite matrix C + D. This is because cij ≤ min{di, dj} for
all i, j ∈ {1, . . . , n} and therefore ci max ≤ di for all i ∈ {1, . . . , n}. Note that
this is different from the situation with vertex-connectivity matrices, for
which Figure 39 shows a graph with indefinite matrix P + D. Furthermore,
layered matrices, and so edge connectivity matrices, make it easier to retrieve
some spectral information directly from the matrix entries.

Theorem 88. Consider a symmetric matrix C = [cij] ∈ Rn×n whose off-
diagonal entries satisfy the ultrametric inequality. The matrix C has an
eigenvalue cii − cij, where i, j ∈ {1, . . . , n} with i ̸= j, with corresponding
eigenvector ei − ej if and only if cii = cjj and cij is the maximum entry among
the off-diagonal elements of row i and column j.

Proof. Suppose C has an eigenvalue cii − cij with corresponding eigenvec-
tor ei − ej for some i, j ∈ {1, . . . , n}. Considering row k ∈ {1, . . . , n} \ {i, j}
of the eigenequation C(ei − ej) = (cii − cij)(ei − ej), we find cki − ckj = 0.
We conclude that cik = ckj = min{cik, ckj} ≤ cij, by the symmetry of C and
the ultrametric inequality. So cij is the largest off-diagonal entry of row i and
column j. Considering row j of the equation C(ei − ej) = (cii − cij)(ei − ej),
we find cji − cjj = −(cii − cij) and thus cii = cjj, what remained to be shown.
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For the other direction, let i, j ∈ {1, . . . , n} with i ̸= j and cii = cjj such
that cij is the maximum off-diagonal of row i and column j. Employing the
ultrametric inequality, we find for each k ∈ {1, . . . , n} with k ̸= i and k ̸= j
that

cik ≥ min{cij, cjk} = cjk ≥ min{cji, cik} = cik.

From this chain, we obtain cik = cjk and therefore

(
C (ei − ej)

)
k

=


0 if k ̸= i and k ̸= j,

cii − cij if k = i,

cji − cjj = cij − cii if k = j

So C has an eigenvalue cii − cij with corresponding eigenvector ei − ej.

Theorem 89. Consider a nonnegative symmetric matrix C = [cij] ∈ Rn×n

with only zeros on its diagonal whose off-diagonal entries satisfy the ultra-
metric inequality. Then the smallest eigenvalue of C satisfies

λn = −max
{
cij : i, j ∈ {1, . . . , n}

}
.

Proof. Let us consider indices k, ℓ ∈ {1, . . . , n} with k ̸= ℓ chosen such that
ck,ℓ = max{cij : i, j ∈ {1, . . . , n}} =: cmax. Theorem 88 implies that C has an
eigenvalue ckk − ckℓ = −cmax. Furthermore, the matrix cmaxI + C is nonneg-
ative and it is layered, by Theorem 86. So cmaxI + C is positive semidefinite,
by Theorem 85, and we obtain for the smallest eigenvalue of C that

λn(C) = λn(−ckℓI + ckℓI + C) = −ckℓ + λn(ckℓI + C) ≥ −ckℓ.

This implies that λn = −ckℓ.

Corollary 90. Consider a graph on n vertices and its corresponding edge-
connectivity matrix C = [cij]. Then the smallest eigenvalue of C satisfies

γn = −max
{
cij : i, j ∈ {1, . . . , n}

}
.

Proof. The matrix C is clearly nonnegative and has only zeros on its diagonal.
Furthermore, Lemma 7 says that the off-diagonal entries of edge-connectivity
matrices satisfy the ultrametric inequality. So Theorem 89 applies.

Note that this result implies the bound γn ≥ −(n− 1), whereas such a bound
does not hold for ρn. We can now proceed with a tight bound on the energy
of a graph’s edge-connectivity matrix.
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Theorem 91. Consider a nonnegative symmetric matrix C = [cij] ∈ Rn×n

with only zeros on its diagonal whose off-diagonal entries satisfy the ultra-
metric inequality and denote cmax := max{cij : i, j ∈ {1, . . . , n}}. Then

E(C) ≤ 2(n− 1)cmax.

Herein, equality holds if and only if C = cmax(11⊤ − I).

Proof. We are given that tr(C) = 0 and we assume that C has at least one
positive eigenvalue, as otherwise all eigenvalues must be zero, in which case
our statement is certainly true. Then, by Theorem 89,

E(C) =
n∑

i=1
|λi| = 2

n∑
i=1

λi<0

|λi| ≤ 2
n∑

i=1
λi<0

|λn|

= 2|{i ∈ {1, . . . , n} : λi < 0}| |λn|

≤ 2(n− 1)|λn| ≤ 2(n− 1)cmax,

which is the bound we stated. In Example 76, we determined the spec-
trum for matrices of the form cmax(11⊤ − I) and obtained λ1 = (n− 1)cmax
as well as λ2 = . . . = λn = −cmax, which shows that our bound is attained
for matrices of the form cmax(11⊤ − I). To see that those are the only at-
taining matrices, suppose first that C has two or more positive eigenval-
ues. Then E(C) = 2 |{i ∈ {1, . . . , n} : λi < 0}| |λn| ≤ 2(n− 2)cmax. In other
words, only matrices with exactly one positive eigenvalue can attain the up-
per bound on E(C). So consider a matrix A ̸= cmax(11⊤ − I) with only zeros
on its diagonal and maximum entry cmax that has exactly one positive eigen-
value. Because of tr(A) = 0, we have E(A) = 2λ1. The largest eigenvalue
of such a matrix satisfies λ1(A) < (n− 1)cmax, by Corollary 107. Conse-
quently, E(A) = 2λ1 < 2(n− 1)cmax. This shows that equality in the stated
bound holds only for matrices of the form cmax(11⊤ − I).

Corollary 92. Let G be a graph on n vertices with maximum local edge-
connectivity k, that is, containing no pair of vertices connected by more
than k edge-disjoint paths. Then its edge-connectivity energy satisfies

EC(G) ≤ 2k(n− 1).

Herein, equality holds if and only if G is uniformly k-edge-connected.

In the previous Theorem, the parameter k can be at most n− 1, providing us
with a general upper bound of 2(n− 1)2 on the energy of edge-connectivity
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matrices, which is the value from Conjecture 79 about the energy of vertex-
connectivity matrices. This bound is attained only for the complete graph
on n vertices. In fact, a complete graph’s edge-connectivity matrix also
attains the upper bound (n− 1)2 we found for the largest eigenvalue and si-
multaneously the lower bound −(n− 1) we found for the smallest eigenvalue.
This provides a tight upper bound on the spread of edge-connectivity matri-
ces, which is the largest distance between any two eigenvalues of a matrix,
specializing to s(A) := λ1(A)− λn(A) when A is a symmetric matrix.

Corollary 93. The spread of an edge-connectivity matrix C satisfies

s(C) ≤ (n− 1)(n− 2).

This answers a special case of an open problem formulated by Zhan [108,
Problem 2] for which Fallat and Xing [44] provide a more detailed conjecture.
There, the authors ask for the spread of a general symmetric matrix with
entries in a given interval. Note that our result is owed to the fact that
our bounds on the smallest and largest eigenvalue are attained by the same
matrix, which is a behavior one cannot expect in general.

Our next goal is to refine our energy results. For this purpose, let us recall
the notion of an equitable matrix partition, as presented by Brouwer and
Haemers [16, Chapter 2]. This is a partition of a matrix A of the form

A =


A11 A1k

Ak1 Akk


where Aij are blocks with constant row sums qij. The matrix defined by
Q := [qij]ki,j=1 is the corresponding equitable quotient matrix of A. You, Yang,
So, and Xi [107] show that the spectrum of Q is a subset of the spectrum
of A and that their spectral radii are the same if A is nonnegative.

Theorem 94. Consider a symmetric matrix C = [cij] ∈ Rn×n and denote
by ci max := max{cij : j ∈ {1, . . . , n} \ {i}} the largest off-diagonal entry for
each row i ∈ {1, . . . , n}. If the off-diagonal entries of C satisfy the ultrametric
inequality, then the following statements hold.

(i) With C we are given an equivalence relation on {1, . . . , n} via

i ∼ j :⇔ i = j or cij = ci max = cj max.

(ii) If i ∼ j and k ∼ ℓ, then cik = cjℓ. In other words, an entry cij depends
only on the equivalence classes of i and j.
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(iii) Denote by X1, . . . , Xm the equivalence classes induced by the relation∼.
If cii = cjj for all elements i, j ∈ {1, . . . , n} with i ∼ j, then the sub-
matrices CXiXj

form an equitable partition of C. The corresponding
equitable quotient matrix is Q = [qkℓ]mk,ℓ=1 where

qkℓ =

cij |Xℓ| if k ̸= ℓ, for some i ∈ Xk and j ∈ Xℓ,

cii + ci max(|Xℓ| − 1) if k = ℓ, for some i ∈ Xℓ.

(iv) Assume, in addition, that C is nonnegative and has only zeros on its
diagonal. Using c(Xk) to denote the common value ci max for i ∈ Xk, it
holds

E(C) = E(Q) + tr(Q) ≥ 2
m∑

k=1
(|Xk| − 1)c(Xk).

This inequality is attained if and only if Q has no negative eigenvalues.

Proof. Let us first prove Item (i). By definition, the relation ∼ is reflexive.
The symmetry follows directly from the symmetry of C. To verify transitivity,
let i ∼ j and j ∼ k. We assume that i, j, k are pairwise distinct, as otherwise
there is nothing to show. So we have ci max = cij = cj max = cjk = ck max and
by the ultrametric inequality, cij = min{cij, cjk} ≤ cik ≤ ci max = cij. This
shows that ∼ is transitive, because it implies cik = cij = ci max = ck max.

For statement (ii), let i ∼ j and k ∼ ℓ. So we have cij = ci max = cj max as
well as ckℓ = ck max = cℓ max. The ultrametric inequality and symmetry of C
invoke

cik ≥ min{ciℓ, cℓk} = ciℓ ≥ min{cij, cjℓ} = cjℓ

≥ min{cjk, ckℓ} = cjk ≥ min{cji, cik} = cik.

We find that this is actually a chain of equalities and that therefore cik = cjℓ.

For statement (iii), note that for k, ℓ ∈ {1, . . . , m} with k ̸= ℓ the submatrices
CXk Xℓ

, by Item (ii), have identical entries and therefore identical row sums.
In view of the relation ∼, for k ∈ {1, . . . , m} all off-diagonal entries of CX2

k

have the same value. The additional assumption in (iii) thus requires all
diagonal entries to have the same value. This implies the stated formula for
the entries qij of the corresponding equitable quotient matrix Q.

Finally, to verify statement (iv), consider an equivalence class X ={i1, . . . , is}
induced by the relation ∼. Then Theorem 88 says that C has s− 1 linearly
independent eigenvectors ei1 − eit , for t ∈ {2, . . . , s}, which all correspond to
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the eigenvalue −c(X) ≤ 0. In total, this contributes −(s− 1)c(X) to the
sum of nonpositive eigenvalues. Summation over all equivalence classes adds

m∑
k=1

(
(|Xk| − 1)c(Xi)

)
= tr(Q)

to the energy E(C). From the equivalence classes, we obtain, when counting
multiplicities, n−m nonpositive eigenvalues. The corresponding linearly
independent eigenvectors are of the form ei − ej with i ∼ j. The remaining m
eigenvectors can be chosen orthogonal to them. In other words, they can be
chosen constant on the classes Xk or, which is the same, of the form

x =
m∑

k=1
yk1Xk

for appropriate yk ∈ R.

Setting y = [y1, . . . , ym]⊤, the corresponding eigenequation Cx = λx is equiv-
alent to Qy = λy. So the remaining m eigenvalues of C, in particular the
positive ones, are those of Q. Consequently, E(C) = E(Q) + tr(Q). This
implies the statement to be shown, because E(Q) ≥ tr(Q), wherein equality
holds if and only if all eigenvalues of Q are nonnegative.

Corollary 95. The equitable quotient matrix Q of Theorem 94 is similar to
the symmetric matrix S = [skℓ] with

skℓ =

cij

√
|Xk||Xℓ| if k ̸= ℓ, for some i ∈ Xk and j ∈ Xℓ,

cii + ci max(|Xk| − 1) if k = ℓ, for some i ∈ Xk.

If S is positive semidefinite, the inequality in Theorem 94 is an equality.

Proof. For D := diag(
√
|Xk| : k ∈ {1, . . . , m}), we obtain S = DQD−1.

Example 96. We consider the graph from Figure 39. Its edge-connectivity
matrix is

C =



1 2 3 4 5 6
1 0 4 4 4 3 3
2 4 0 4 4 3 3
3 4 4 0 4 3 3
4 4 4 4 0 3 3
5 3 3 3 3 0 3
6 3 3 3 3 3 0


.

Partitioning the index set {1, . . . , n} into X1 = {1, 2, 3, 4} and X2 = {5, 6}
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yields the equitable matrix partition and quotient matrix

C =
[
CX2

1
CX1X2

CX2X1 CX2
2

]
, Q =

[
12 6
12 3

]
.

In view of Corollary 95, the matrix Q is similar to the symmetric matrix

S = DQD−1 =
[
2 0
0
√

2

][
12 6
12 3

][
1/2 0
0 1/

√
2

]
=
[
12 6

√
2

6
√

2 3

]
.

The block to X1 gives us the eigenvalue −4 and three linearly independent
eigenvectors e1 − e2, e2 − e3, and e3 − e4. From the block to X2, we read off
the eigenvalue −3 and eigenvector e5 − e6. This leads to the energy bound

E(C) ≥ 2
m∑

k=1
(|Xk| − 1)c(Xk) = 2((4− 1)4 + (2− 1)3) = 30.

We also know that this bound is not tight, because det(Q) = −36, and thus Q
has a negative eigenvalue. Nevertheless, the value we achieved is not all too
far from the actual energy E(C) = 15 + 3

√
41 ≈ 34.21.

5.4 Ultrametric distance matrices
Another perspective on the results of the previous section reveals itself when
replacing the local edge-connectivities by an ultrametric distance measure.
Consider a graph G on vertex set {1, . . . , n} = V (G) and let C = [cij] be
its edge-connectivity matrix. For two vertices i, j ∈ V (G) we define the
inverse connectivity distance, or flow distance, by d(i, j) := 1/cij if i ̸= j
and d(i, j) := 0 if i = j. To see how this distance is related to other re-
sistance distance notions, see Gurvich [51]. This measure satisfies a strong
triangle inequality, meaning that

d(i, k) = 1
cik

≤ 1
min{cij, cjk}

= max
{

1
cij

,
1

cjk

}
= max{d(i, j), d(j, k)}.

for all vertices i, j, k ∈ V (G). Indeed, the flow distance satisfies all the prop-
erties required to fit into the following distance concept.

Definition 97. An ultrametric distance d : V × V → R is a map satisfying
(i) d(i, j) ≥ 0 for all i, j ∈ V ,
(ii) d(i, j) = d(j, i) for all i, j ∈ V ,
(iii) d(i, j) = 0 if and only if i = j, where i, j ∈ V , and
(iv) d(i, k) ≤ max{d(i, j), d(j, k)} for all i, j, k ∈ V .
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Remark 98. Many notions used when studying shortest path distances in
graphs, or general metric spaces, naturally translate to the flow distance con-
cept. For example, for a flow distance d : V (G)× V (G)→ R on a graph G the
transmission of a vertex i ∈ V (G) can be defined as t(i) := ∑

j∈V (G)\{i} d(i, j).
The transmission of the graph G is then σ(G) := 1

2
∑

i∈V (G) t(i). For the short-
est path distance, the latter object is called Wiener index [105], denoted
by W (G), which is used in chemistry to describe the topological structure
of molecules. A challenging graph theoretical problem about transmission is
that of Šoltés [96]. He raised the problem to find all those graphs whose trans-
mission remains stable upon vertex removal. Formally, Šoltés problem is to
find all graphs G satisfying W (G) = W (G− v) for all vertices v ∈ V (G). Up
to now, this problem remains unsolved. Attempts towards its solution focus,
for example, on relaxing Šoltés condition to be satisfied for some, but not
all, vertices in V (G), as is done by Knor, Majstorović, and Škrekovski [73].
For the original problem, only the cycle on eleven vertices is known to sat-
isfy Šoltés condition for all its vertices. For the flow distance, we observe
a remarkably similar behavior. Denoting by Tn a tree on n vertices, we
determine

σ(Tn) = 1
2
∑

i∈V (Tn)
t(i) = 1

2
∑

i∈V (Tn)
(n− 1) = n(n− 1)

2

and for a cycle Cn on n vertices, we find

σ(Cn) = 1
2
∑

i∈V (Cn)
t(i) = 1

2
∑

i∈V (Cn)

n− 1
2 = n(n− 1)

4 .

For a given cycle, on n ≥ 3 vertices, Šoltés condition σ(G) = σ(G− v) reads
σ(Cn) = σ(Tn−1), which is equivalent to

n(n− 1)
4 = (n− 1)(n− 2)

2 .

Consequently, the only cycle that satisfies Šoltés condition for the flow dis-
tance is the cycle on n = 4 vertices. In fact, it is the only graph we know so
far, having investigated all graphs on at most ten vertices.

Now let us see how our results from section 5.3 carry over to the ultrametric
distance setting. We derive counterparts to Theorems 88 and 94.

Corollary 99. Consider an ultrametric distance d : V × V → R with dis-
tance matrix D = [d(i, j)]i,j∈V . Denoting the distance of i ∈ V to a nearest
point by di min := min{d(i, j) : j ∈ V \ {i}}, the following statements hold.
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(i) Two points i, j ∈ V , i ̸= j, are mutually nearest points, meaning that
d(i, j) ≤ d(i, k) and d(i, j) ≤ d(k, j) for any k ∈ V \ {i, j}, if and only
if D has an eigenvalue −d(i, j) with corresponding eigenvector ei − ej.

(ii) With D we are given an equivalence relation on V via

i ∼ j :⇔ i = j or d(i, j) = di min = dj min.

(iii) If i ∼ j and k ∼ ℓ, then d(i, k) = d(j, ℓ). In other words, an entry d(i, j)
depends only on the equivalence classes of i and j.

(iv) Denoting by X1, . . . , Xm the equivalence classes induced by the rela-
tion ∼, the submatrices DXiXj

form an equitable partition of D. The
corresponding equitable quotient matrix is Q = [qkℓ]mk,ℓ=1 where

qkℓ =

d(i, j)|Xℓ| if k ̸= ℓ, for some i ∈ Xk and j ∈ Xℓ,

di min(|Xℓ| − 1) if k = ℓ, for some i ∈ Xℓ.

(v) Using dmin(Xk) to denote the common value di min for i ∈ Xk, the ener-
gies of D and its equitable quotient matrix Q are related by

E(D) = E(Q) + tr(Q) ≥ 2
m∑

k=1
(|Xk| − 1)dmin(Xk).

This inequality is attained if and only if Q has no negative eigenvalues.

Proof. At first, observe that a matrix D = [d(i, j)]i,j∈V whose entries d(i, j)
originate from an ultrametric distance has only zeros on its diagonal. Fur-
thermore, because the entries d(i, j) satisfy the strong triangle inequality, we
obtain for all i, j, k ∈ V that

d(i, k) ≤ max{d(i, j), d(j, k)}
⇒ −d(i, k) ≥ −max{d(i, j), d(j, k)} = min{−d(i, j),−d(j, k)}.

So the entries of −D satisfy the ultrametric inequality and hence Theo-
rems 88 and 94 apply. Furthermore, observe that for mutually nearest
points i, j ∈ V , i ̸= j, the entry −d(i, j) is maximal among the off-diagonal
elements of row i and column j of −D = [−d(i, j)]. This directly implies
statements (ii) to (iv) of Corollary 99. To check statement (i), observe that,
by Theorem 88, an entry −d(i, j) is maximal among the off-diagonal ele-
ments of row i and column j of −D if and only if −D has an eigenvalue
−d(i, i)− (−d(i, j)) = d(i, j) with corresponding eigenvector ei − ej. This

111



Chapter 5 | Connectivity Matrices

holds exactly if D has an eigenvalue −d(i, j) with corresponding eigenvec-
tor ei − ej. Statement (v) of Corollary 99 can be shown completely analogous
to statement (iv) of Theorem 94. To see this, recall that D is nonnegative and
has only zeros on its diagonal. Also note that in the proof of statement (iv)
of Theorem 94 we do not work with the ultrametric inequality directly, but
only refer to Theorem 88 and the other statements of Theorem 94, whose
counterparts in Corollary 99 we have already verified.

Another example, where ultrametric distances arise comes from data anal-
ysis. Consider a complete graph G with nonnegative edge weights ω(e)
for e ∈ E(G). We may think about the vertices of G as data points and about
the edge weights as some pairwise distance measure. Furthermore, for a min-
imum spanning tree T of G and two vertices i, j ∈ V (T ) we denote by P (i, j)
the edge set of the unique path between i and j in T . Then d : V × V → R
where d(i, j) := maxe∈P (i,j) ω(e) for i ̸= j and d(i, j) := 0 for i = j is an ul-
trametric distance. Properties (i), (ii), and (iii) of Definition 97 are certainly
fulfilled and Property (iv) holds because

d(i, k) = max
e∈P (i,k)

ω(e)

≤ max
e∈P (i,j)∪P (j,k)

ω(e) = max
{
max
e∈P (i,j)

ω(e), max
e∈P (j,k)

ω(e)
}

= max{d(i, j), d(j, k)}.

Distance measures of such kind are called min-max distances and find their
application naturally when data inhabits some kind of hierarchical structure.
This is demonstrated, for example, by Murtagh, Downs, and Contreras [82],
who show how to find hierarchical clusters in very large, high dimensional
data sets, or by Chehreghani [59], who present an unsupervised representa-
tion learning approach, which is based on min-max distances.

Let us conclude this chapter with a glance at a Laplace analogue for connec-
tivity matrices and how it can be utilized for spectral graph partitioning. We
consider a graph G on vertex set V (G) = {1, . . . , n}. For its connectivity or
edge-connectivity matrix C = [cij] ∈ {0, . . . , n− 1}n×n, we define for a ver-
tex i ∈ {1, . . . , n} its potential by ci := ∑n

j=1,j ̸=i cij, as in the beginning of Sec-
tion 5.2. Writing those potentials in the diagonal matrix T = diag(c1, . . . , cn),
we define a graph’s Laplace connectivity matrix by L := T − C and denote
by L := T −1/2LT −1/2 = I − T −1/2CT −1/2 a normalized version. Those ma-
trices are positive semidefinite, because for any x ∈ Rn they satisfy

x⊤Lx = x⊤T −1/2LT −1/2x = y⊤Ly =
n∑

i,j=1
i<j

cij(yi − yj)2 ≥ 0,
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where y := T −1/2x. Furthermore, considering LT 1/21 = T −1/2L1 = 0, we ob-
tain that λ1 = 0 is an eigenvalue with corresponding eigenvector T −1/21.
Note that, in contrast to the rest of this work, we here follow the conven-
tion λ1 ≤ λ2 ≤ . . . ≤ λn, which is common practice for Laplace matrices. By
Lemma 101 and Theorem 105, we obtain

λ2 = inf
x∈Rn

x⊥T 1/21

x⊤Lx

x⊤x

= inf
y∈Rn

y⊥T1

y⊤Ly

(T 1/2y)⊤T 1/2y

= inf
y∈Rn

y⊥T1

∑n
i,j=1 : i<j cij (yi − yj)2∑n

i=1 ciy2
i

(R)

For a graph G and a subset of vertices S ⊆ V (G), we define the flow volume
by υ(S) := ∑

i∈S ci or υ(G) := ∑
i∈V (G) ci, respectively. The parameter

α(S) :=
∑

i∈S,j∈V (G)\S

cij

adds up the number of edge-disjoint paths from i ∈ S to j ∈ V (G) \ S over
all such vertex pairs and can be seen as a measure of connectivity between S
and the rest of the graph. The flow Cheeger ratio of a set S ⊆ V (G) balances
this by the flow volume of S and V (G) \ S, respectively. Formally, we define
it by

h(S) := α(S)
min{υ(S), υ(G)− υ(S)}

The flow Cheeger constant of a graph G is the parameter

h(G) := min
S⊆V(G)

h(S)

Adapting a proof of Chung [24] to the situation of connectivity matrices, we
obtain the following version of Cheeger’s inequality [20].

Theorem 100. For a connected graph G holds

h(G)2

2 ≤ λ2 ≤ 2h(G).
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Proof. We begin with the upper bound. Consider any S ⊆ V (G) and substi-
tute y = 1S − υ(S)

υ(G)1 in (R). This yields

λ2 ≤
∑

i∈V,j∈V (G)\S cij∑
i∈S ci

[
1− υ(S)

υ(G)

]2
+∑

i∈V (G)\S ci

[
− υ(S)

υ(G)

]2
= α(S)

υ(S)
[
1− υ(S)

υ(G)

]2
+
[

υ(G)− υ(S)
][

υ(S)
υ(G)

]2
= α(S)

υ(S)− 2υ(S)2

υ(G) + υ(S)3

υ(G)2 + υ(S)2

υ(G) −
υ(S)3

υ(G)2

= α(S) υ(G)
υ(S)(υ(G)− υ(S)) = α(S)

υ(S) + α(S)
υ(G)− υ(S)

≤ 2α(S)
min{υ(S), υ(G)− υ(S)} = 2h(S).

For the lower bound, consider an eigenvector y to λ2 and assume, without
loss of generality, that rows and columns of L are simultaneously permuted
such that y1 ≥ . . . ≥ yn and corresponding vertices are denoted by v1, . . . , vn.
Setting Sk := {1, . . . , k} and ℓ := max{k ∈ {1, . . . , n} : υ(Sk) ≤ υ(G)/2}, we
obtain

n∑
i=1

ciy
2
i = min

ξ∈R

n∑
i=1

ci(yi − ξ)2 ≤
n∑

i=1
ci(yi − yℓ)2.

Herein, we rely on the fact that ∑n
i=1 yici = 0. For i ∈ {1, . . . , n} let us denote

+
yi :=

yi − yℓ if yi ≥ yℓ,

0 if yi < yℓ

and −
yi :=

|yi − yℓ| if yi ≤ yℓ,

0 if yi > yℓ,

and assume (+
y ⊤L+

y )/(+
y ⊤+

y ) ≤ (−
y⊤L−

y)/(−
y⊤−

y), without loss of generality. We
obtain

λ2 =
∑n

i,j=1 : i<j cij (yi − yj)2∑n
i=1 ciy2

i

≥
∑n

i,j=1 : i<j cij (yi − yj)2∑n
i=1 ci(yi − yℓ)2

≥
∑n

i,j=1 : i<j cij

[
(+
yi −

+
yj)2 + (−

yi −
−
yj)2

]
∑n

i=1 ci

[+
yi

2 + −
yi

2
]

≥
∑n

i,j=1 : i<j cij (+
yi −

+
yj)2∑n

i=1 ci
+
yi

2
.

In the preceding line, we used the inequality a+b
c+d
≥ min{a

c
, b

d
}, which holds for
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any a, b ∈ R and c, d ∈ R \ {0}. Denoting η(Si) := min{υ(Si), υ(G)− υ(Si)}
for i ∈ {1, . . . , n}, recall that

h(G) = min
S⊆V(G)

h(S) ≤ h(Si) = α(Si)
min{υ(Si), υ(G)− υ(Si)}

= α(Si)
η(Si)

and thus α(Si) ≥ h(G)η(Si). We conclude that

λ2 ≥
∑n

i,j=1 : i<j cij (+
yi −

+
yj)2∑n

i=1 ci
+
yi

2

=

[∑n
i,j=1 : i<j cij (+

yi −
+
yj)2

][∑n
i,j=1 : i<j cij (+

yi + +
yj)2

]
[∑n

i=1 ci
+
yi

2
][∑n

i,j=1 : i<j cij (+
yi + +

yj)2
]

≥

[∑n
i,j=1 : i<j cij (+

yi
2 − +

yj
2)
]2

2
[∑n

i=1 ci
+
yi

2
][∑n

i,j=1 : i<j cij (+
yi

2 + +
yj

2)
] [

Cauchy-Schwarz
(a+b)2≤2(a2+b2)

]

=

[∑n
i,j=1 : i<j cij (+

yi
2 − +

yi+1
2 + +

yi+1
2 ∓ . . .− +

yj−1
2 + +

yj−1
2 − +

yj
2)
]2

2
[∑n

i=1 ci
+
yi

2
]2

=

[∑n−1
i=1 α(Si)(

+
yi

2 − +
yi+1

2 )
]2

2
[∑n

i=1 ci
+
yi

2
]2

≥

[∑n−1
i=1 h(G)η(Si)(

+
yi

2 − +
yi+1

2 )
]2

2
[∑n

i=1 ci
+
yi

2
]2

= h(G)2

2

[
η(S1)

+
y1

2 +∑n
i=2(η(Si)− η(Si−1))

+
yi

2
]2

[∑n
i=1 ci

+
yi

2
]2

= h(G)2

2

[
υ(S1)

+
y1

2 +∑n
i=2(υ(Si)− υ(Si−1))

+
yi

2
]2

[∑n
i=1 ci

+
yi

2
]2

= h(G)2

2

[∑n
i=1 ci

+
yi

2
]2

[∑n
i=1 ci

+
yi

2
]2 = h(G)2

2 .

For the second to last equality, recall that +
yi = 0 whenever yi < yℓ. By

the definition of ℓ, this is exactly the case when the respective minimum
in η(Si) = min{υ(Si), υ(G)− υ(Si)} is realized at the second argument.
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Chapter 5 | Connectivity Matrices

The idea behind this proof can be utilized algorithmically. Pothen, Simon,
and Liou [86] present a framework that works for general weighted Laplace
matrices. We also refer to the seminal work of Fiedler [45], which framed the
term algebraic connectivity for the second smallest eigenvalue of a graph’s
Laplace matrix, and attracted great research interest in this parameter.
A question that arises here is whether the second smallest eigenvalue of the
connectivity Laplace matrix shows some specific properties. Although deter-
mining the latter involves additional computational effort, for determining
the given graph’s cut values, as discussed in Section 5.1, this effort could
be worthwhile if one could demonstrate theoretical or empirical benefits for
spectral graph partitioning.
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Conclusion and Outlook

This dissertation focuses on pairwise connectivity relations in graphs. To say
that a graph is k-connected gives information about its global structure. On
the other hand, the number of independent or edge-disjoint paths between
two vertices measures how strong those specific vertices are connected. This
thesis contributes to exploring the interplay of these two perspectives.

Main results

Whereas Chapters 1 and 2 lay the foundations of this work, Chapter 3
presents the current state of research on uniform graph connectivity. The
central results of this chapter are the following.

◾ Section 3.2 gives a detailed account of how the classes of uniformly
k-connected and uniformly k-edge-connected graphs are related.

◾ Section 3.3 provides a complete constructive characterization of uni-
formly 3-connected graphs.

◾ Section 3.4 demonstrates how to utilize the constructive results of Sec-
tion 3.3. It contains a tight bound on the number of vertices of degree
three in uniformly 3-connected graphs as well as results on how crossing
numbers and treewidths behave under the constructions at hand.

In Chapter 4, cut sequences are suggested as graph invariants. Many struc-
tural questions that have been studied intensively for degree sequences trans-
late naturally to this concept. The following are the key results.

◾ Section 4.1 conceptualizes the notion of a graph’s cut sequence.
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◾ Section 4.4 shows how to construct graphs having a given cut sequence
in case that sequence satisfies a shifted variant of the Erdős-Gallai
inequalities.

Chapter 5 presents the current state of research on the spectral properties
of connectivity and edge-connectivity matrices, whose entries represent a
graph’s local connectivities. This chapter’s main results are the following.

◾ In Section 5.2, we present our knowledge about the spectral properties
of connectivity matrices. In particular, we report on the status of a
conjecture that the energy of a connectivity matrix is bounded from
above by 2(n− 1)2.

◾ Section 5.3 provides spectral properties of edge-connectivity matrices.
In particular, this includes a tight lower bound on the smallest eigen-
value of an edge-connectivity matrix and a tight upper bound on the
energy of such a matrix.

A selection of open problems

For many questions we answered in this work, several more arise. Let us
conclude this investigation by compiling a few of them.

◾ How can we characterize uniformly k-connected and uniformly k-edge-
connected graphs for k ≥ 4?

◾ We know that the treewidth of uniformly 3-connected graphs with min-
imum number of vertices of degree three is greater than or equal to 4
and less than or equal to 13. What is the best bound that can be given?

◾ Find a concise characterization of graphs whose cut sequences violate
the shifted Erdős-Gallai inequalities and show how to construct them.

◾ Prove or disprove that asymptotically all graphs satisfy the shifted
Erdős-Gallai inequalities.

◾ Prove or disprove that the energy of a connectivity matrix is bounded
from above by 2(n− 1)2.

◾ Provide a lower bound on the smallest eigenvalue of a connectivity
matrix that is better than the general bound by Zhan [108].

◾ Prove or disprove that the cycle on four vertices is the only graph that
satisfies Šoltés condition for the inverse flow distance.

◾ What are specific characteristics of the connectivity Laplace matrix and
can they be utilized for spectral graph partitioning?
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Symmetric Matrices

In this appendix, we summarize the necessary tools from linear algebra which
we employ in particular in Chapter 5. For the following results and further
terminology, we refer to Horn and Johnson [67, Chapters 0, 1, and 4]. Our
focus here is specifically on matrices that are symmetric and nonnegative,
which are typical properties of graph matrices, as discussed in Section 5.1.

Lemma 101. A symmetric matrix A ∈ Rn×n has only real eigenvalues and
eigenvectors belonging to different eigenvalues are orthogonal.

Lemma 102. Let A = [aij] ∈ Rn×n be a matrix with eigenvalues λ1 ≥ . . . ≥ λn

and let µ ∈ R. Then A + µI has eigenvalues λ1 + µ ≥ . . . ≥ λn + µ.

Theorem 103. For each symmetric matrix A ∈ Rn×n there exists an orthog-
onal matrix U containing the eigenvectors of A as columns such that Λ = U⊤AU
is a real diagonal matrix.

Since the matrix U in Theorem 103 is orthogonal, we can write the matrix A
as

A = UΛU⊤ =
n∑

i=1
λiuiu

⊤
i

where λ1, . . . , λn are the eigenvalues of A that correspond to the eigenvec-
tors u1, . . . , un. This expression is also known as the spectral decomposition
of A. When bounding the eigenvalues of a matrix, we often rely on the
following principle by Rayleigh [100] and Ritz [88].
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Theorem 104. Let λ1 ≥ . . . ≥ λn be the eigenvalues of a real symmetric
matrix A ∈ Rn×n. Then for all x ∈ Rn×n there holds

λnx⊤x ≤ x⊤Ax ≤ λ1x
⊤x.

Equality in the lower bound holds if x is an eigenvector to λn, equality in the
upper bound holds if x is an eigenvector to λ1.

Alternatively, we may state the contents of Theorem 104 via

λ1 = max
x∈Rn

∥x∥2=1

x⊤Ax = max
x∈Rn

x̸=0

x⊤Ax

x⊤x
and λn = min

x∈Rn

∥x∥2=1

x⊤Ax = min
x∈Rn

x̸=0

x⊤Ax

x⊤x
.

The terms x⊤Ax/(x⊤x) appearing herein are called Rayleigh-quotients. This
principle can be generalized to the k-th largest or k-th smallest eigenvalue.

Theorem 105. Let λ1 ≥ . . . ≥ λn be the eigenvalues of a real symmetric ma-
trix A ∈ Rn×n and let {u1, . . . , un} be a corresponding basis of orthonormal
eigenvectors. Then for k ∈ {1, . . . , n} there holds

λn−k = min
x̸=0

x⊥un,...,un−k+1

x⊤Ax

x⊤x
and λk = max

x̸=0
x⊥u1,...,uk−1

x⊤Ax

x⊤x
.

Another key tool in spectral graph theory goes back to Perron [85] and Frobe-
nius [48] and comes in many variants, of which Horn and Johnson [67, Chap-
ter 8] give an overview. We make use of the following version.

Theorem 106. Let A = [aij] ∈ Rn×n be a nonnegative irreducible matrix.
Then the following statements apply.

(i) It holds λ1 > 0.
(ii) An eigenvector corresponding to λ1 contains only positive or only neg-

ative entries.
(iii) The eigenvalue λ1 is simple.
(iv) For all eigenvalues λ of A there holds |λ| ≤ λ1.

Corollary 107. Let A = [aij] and B = [bij] be nonnegative irreducible ma-
trices in Rn×n. If A ≤ B, then λ1(A) ≤ λ1(B). If A ≤ B and if aij < bij for
some i, j ∈ {1, . . . , n}, then λ1(A) < λ1(B).
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