11 research outputs found

    An Adaptive Color Image Segmentation

    Get PDF
    A novel Adaptive Color Image Segmentation (ACIS) System for color image segmentation is presented. The proposed ACIS system uses a neural network with architecture similar to the multilayer perceptron (MLP) network. The main difference is that neurons here uses a multisigmoid activation function. The multisigmoid function is the key for segmentation. The number of steps i.e. thresholds in the multisigmoid function are dependant on the number of clusters in the image. The threshold values for detecting the clusters and their labels are found automatically from the first order derivative of histograms of saturation and intensity in the HSV color space. Here, the main use of neural network is to detect the number of objects automatically from an image. The advantage of this method is that no a priori knowledge is required to segment the color image. ACIS label the objects with their mean colors. The algorithm is found to be reliable and works satisfactorily on different kinds of color images. Experimental results show that the performance of ACIS is robust on noisy images also

    Improved support vector clustering algorithm for color image segmentation

    Get PDF
    Color image segmentation has attracted more and more attention in various application fields during the past few years. Essentially speaking, color image segmentation problem is a process of clustering according to the color of pixels. But, traditional clustering methods do not scale well with the number of training sample, which limits the ability of handling massive data effectively. With the utilization of an improved approximate Minimum Enclosing Ball algorithm, this article develops an fast support vector clustering algorithm for computing the different clusters of given color images in kernel-introduced space to segment the color images. We prove theoretically that the proposed algorithm converges to the optimum within any given precision quickly. Compared to other popular algorithms, it has the competitive performances both on training time and accuracy. Color image segmentation experiments on both synthetic and real-world data sets demonstrate the validity of the proposed algorithm

    Segmenting colour images on the basis of a fuzzy hierarchical approach

    Get PDF
    In this paper we deal with two problems related to imprecision in colour image segmentation processes: to decide whether a set of pixels verify the property "to be homogeneously coloured", and to represent the set of possible segmentations of an image at different precision levels. In order to solve the first problem we introduce a measure of distance between colours in the CIE L*a*b* space, that allows us to measure the degree of homogeneity of two pixels p and q on the basis of the maximum distance between the colours of consecutive pairs of pixels in any path linking p and q . Since homogeneity is a matter of degree, we define a (fuzzy) segmentation of an image as a set of fuzzy regions, each of them being a fuzzy subset of pixels, that we obtain by using a region growing technique. The membership degree of each pixel to each region is calculated on the basis of our homogeneity measure. The second problem is solved by introducing a fuzzy similarity relation between the fuzzy regions in this initial segmentation. The different α-cuts of the similarity relation define the set of precision levels, from which a nested hierarchy of fuzzy segmentations is finally obtained

    An Adaptive Color Image Segmentation

    Get PDF
    A novel Adaptive Color Image Segmentation (ACIS) System for color image segmentation is presented. The proposed ACIS system uses a neural network with architecture similar to the multilayer perceptron (MLP) network. The main difference is that neurons here uses a multisigmoid activation function. The multisigmoid function is the key for segmentation. The number of steps i.e. thresholds in the multisigmoid function are dependant on the number of clusters in the image. The threshold values for detecting the clusters and their labels are found automatically from the first order derivative of histograms of saturation and intensity in the HSV color space. Here, the main use of neural network is to detect the number of objects automatically from an image. The advantage of this method is that no a priori knowledge is required to segment the color image. ACIS label the objects with their mean colors. The algorithm is found to be reliable and works satisfactorily on different kinds of color images. Experimental results show that the performance of ACIS is robust on noisy images also

    High resolution remote sensing image segmentation based on multi-features fusion

    Get PDF
    High resolution remote sensing images contain richer information of spatial relation in ground objects than low resolution ones, which can help to describe the geometric information and extract the essential features more efficiently. However, the handling difficulties due to the relative poorer spectral information, represented by phenomena of different objects with the same spectrum and the same object with the different spectrum, may cause the spectrum-based methods to fail. Besides, the inherent geometric growth in processing of traditional methods caused by growing pixels always leads to longer processing time, poorer precision, and lower efficiency. Combining the spectral features with textural and geometric features, we proposed a novel kernel clustering algorithm to segment high resolution remote sensing images. The experimental results were compared with mean shift and watershed algorithms, which validated the effectiveness and reliability of the proposed algorithm.

    COMPUTER VISION-BASED COLOR IMAGE SEGMENTATION WITH IMPROVED KERNEL CLUSTERING

    Full text link

    Study and Development of Some Novel Image Segmentation Techniques

    Get PDF
    Some fuzzy technique based segmentation methods are studied and implemented and some fuzzy c means clustering based segmentation algorithms are developed in this thesis to suppress high and low uniform random noise. The reason for not developing fuzzy rule based segmentation method is that they are application dependent In many occasions, the images in real life are affected with noise. Fuzzy c means clustering based segmentation does not give good segmentation result under such condition. Various extension of the FCM method for segmentation are present in the literature. But most of them modify the objective function hence changing the basic FCM algorithm present in MATLAB toolboxes. Hence efforts have been made to develop FCM algorithm without modifying their objective function for better segmentation . The fuzzy technique based segmentation methods that are studied and developed are summarized here. (A) Fuzzy edge detection based segmentation: Two fuzzy edge detection methods are studied and implemented for segmentation: (i) FIS based edge detection and (ii) Fast multilevel fuzzy edge detector (FMFED). (i): The Fuzzy Inference system (FIS) based edge detector consists of some fuzzy inference rules which are defined in such a way that the FIS system output (“edges”) is high only for those pixels belonging to edges in the input image. A robustness to contrast and lightining variations were also taken into consideration while developing these rules.The output of the FIS based edge detector is then compared with the existing Sobel, LoG and Canny edge detector results. The algorithm is seen to be application dependent and time consuming. (ii) Fast Multilevel Fuzzy Edge Detector: To realise the fast and accurate detection of edges, the FMFED algorithm is proposed. It first enhances the image contrast by means of a fast multilevel fuzzy enhancement algorithm using simple transformation function based on two image thresholds. Second, the edges are extracted from the enhanced image by using a two stage edge detector operator that identifies the edge candidates based on local characteristics of the image and then determines the true edge pixels using edge detector operator based on extremum of the gradient values. Finally the segmentation of the edge image is done by morphological operator by edge linking. (B) FCM based segmentation: Two fuzzy clustering based segmentation methods are developed: (i) Modified Spatial Fuzzy c-Means (MSFCM) (ii) Neighbourhood Attraction Fuzzy c-Means (NAFCM). . (i) Contrast-Limited Adaptive Histogram Equalization Fuzzy c-Means (CLAHEFCM): This proposed algorithm presents a color segmentation process for low contrast images or unevenly illuminated images. The algorithm presented in this paper first enhances the contrast of the image by using contrast limited adaptive histogram equalization. After the enhancement of the image this method divides the color space into a given number of clusters, the number of cluster are fixed initially. The image is converted from RGB color space to LAB color space before the clustering process. Clustering is done here by using Fuzzy c means algorithm. The image is segmented based on color of a region, that is, areas having same color are grouped together. The image segmentation is done by taking into consideration, to which cluster a given pixel belongs the most. The method has been applied on a number of color test images and it is observed to give good segmentation results (ii) Modified Spatial Fuzzy c-means (MSFCM): The proposed algorithm divides the color space into a given number of clusters, the number of cluster are fixed initially. The image is converted from RGB color space to LAB color space before the clustering process. A robust segmentation technique based on extension to the traditional fuzzy c-means (FCM) clustering algorithm is proposed. The spatial information of each pixel in an image has been taken into consideration to get a noise free segmentation result. The image is segmented based on color of a region, that is, areas having same color are grouped together. The image segmentation is done by taking into consideration, to which cluster a given pixel belongs the most. The method has been applied to some color test images and its performance has been compared to FCM and FCM based methods to show its superiority over them. The proposed technique is observed to be an efficient and easy method for segmentation of noisy images. (iv) Neighbourhood Attraction Fuzzy c Means Algorithm: A new algorithm based on the IFCM neighbourhood attraction is used without changing the distance function of the FCM and hence avoiding an extra neural network optimization step for the adjusting parameters of the distance function, it is called Neighborhood Atrraction FCM (NAFCM). During clustering, each pixel attempts to attract its neighbouring pixels towards its own cluster. This neighbourhood attraction depends on two factors: the pixel intensities or feature attraction, and the spatial position of the neighbours or distance attraction, which also depends on neighbourhood structure. The NAFCM algorithm is tested on a synthetic image (chapter 6, figure 6.3-6.6) and a number of skin tumor images. It is observed to produce excellent clustering result under high noise condition when compared with the other FCM based clustering methods

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices
    corecore