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PREFACE 

 
Digital Image Processing, developed during last two and half decades, has become a very 

important subject in electronics and computer engineering. Computer vision and robotic 

vision is one of the many areas it encompasses. Image object identification and 

segmentation are the two sub-areas of image restoration. 

  
The goal of image segmentation is partition of an image into a set of disjoint regions with 

uniform and homogeneous attributes such as intensity, color, tone or texture etc. In many 

real situations, for images, issues such as limited spatial resolution, poor contrast, 

overlapping intensities, noise and intensity inhomogenities introduce fuzziness in the 

object boundaries in the image. Due to this the fuzzy set theory was proposed, which 

produced the idea of partial membership of belonging described by a membership 

function. 

 
Fuzzy rule based segmentation and various fuzzy clustering based segmentation has been 

implemented and developed. The proposed FCM based segmentation methods are tested 

extensively by subjective and objective evaluation. Under low noise conditions, though 

many FCM based segmentation methods are very good in terms of objective evaluations, 

the resulting output images of almost all methods give nearly equal visual quality. Hence 

efforts are made here to develop efficient filters for suppression of a uniform random 

noise under moderate and high noise conditions. The developed algorithm has also been 

applied to biomedical image segmentation. 

Therefore, the present research work may be treated as  

(i) developmental work; and 

(ii) applied research work. 

 
I would be happy to see other researchers using the results reported in the thesis for 

developing better image filters. Moreover, I will be contended to find these filters 

implemented for practical applications in near future. 

Kumari Nirulata 
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Abstract 
 

Some fuzzy technique based segmentation methods are studied and implemented and 

some fuzzy c means clustering based segmentation algorithms are developed in this thesis 

to suppress high and low uniform random noise. The reason for not developing fuzzy rule 

based segmentation method is that they are application dependent 

In many occasions, the images in real life are affected with noise. Fuzzy c means 

clustering based segmentation does not give good segmentation result under such 

condition. Various extension of the FCM method for segmentation are present in the 

literature. But most of them modify the objective function hence changing the basic FCM 

algorithm present in MATLAB toolboxes. Hence efforts have been made to develop 

FCM algorithm without modifying their objective function for better segmentation .   

The fuzzy technique based segmentation methods that are studied and developed are 

summarized here. 

 
(A) Fuzzy edge detection based segmentation: Two fuzzy edge detection methods 

are studied and implemented for segmentation:  (i) FIS based edge detection and (ii) Fast 

multilevel fuzzy edge detector (FMFED).  

(i): The Fuzzy Inference system (FIS) based edge detector consists of some fuzzy 

inference rules which are defined in such a way that the FIS system output (“edges”) is 

high only for those pixels belonging to edges in the input image. A robustness to contrast 

and lightining variations were also taken into consideration while developing these 

rules.The output of the FIS based edge detector is then compared with the existing Sobel, 

LoG and Canny edge detector results. The algorithm is seen to be application dependent 

and time consuming. 

(ii) Fast Multilevel Fuzzy Edge Detector: To realise the fast and accurate detection of 

edges, the FMFED algorithm is proposed. It first enhances the image contrast by means 

of a fast multilevel fuzzy enhancement algorithm using simple transformation function 

based on two image thresholds. Second, the edges are extracted from the enhanced image 

by using a two stage edge detector operator that identifies the edge candidates based on 
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local characteristics of the image and then determines the true edge pixels using edge 

detector operator based on extremum of the gradient values.  

Finally the segmentation of the edge image is done by morphological operator by edge 

linking. 

 
(B) FCM based segmentation: Two fuzzy clustering based segmentation methods 

are developed: (i) Modified Spatial Fuzzy c-Means (MSFCM) (ii) Neighbourhood 

Attraction Fuzzy c-Means (NAFCM).  . 

 

(i) Contrast-Limited Adaptive Histogram Equalization Fuzzy c-Means 

(CLAHEFCM): This proposed algorithm presents a color segmentation process for low 

contrast images or unevenly illuminated images. The algorithm presented in this paper 

first enhances the contrast of the image by using contrast limited adaptive histogram 

equalization. After the enhancement of the image this method divides the color space into 

a given number of clusters, the number of cluster are fixed initially. The image is 

converted from RGB color space to LAB color space before the clustering process. 

Clustering is done here by using Fuzzy c means algorithm. The image is segmented based 

on color of a region, that is, areas having same color are grouped together. The image 

segmentation is done by taking into consideration, to which cluster a given pixel belongs 

the most. The method has been applied on a number of color test images and it is 

observed to give good segmentation results 

(ii) Modified Spatial Fuzzy c-means (MSFCM): The proposed algorithm divides the 

color space into a given number of clusters, the number of cluster are fixed initially. The 

image is converted from RGB color space to LAB color space before the clustering 

process. A robust segmentation technique based on extension to the traditional fuzzy c-

means (FCM) clustering algorithm is proposed. The spatial information of each pixel in 

an image has been taken into consideration to get a noise free segmentation result. The 

image is segmented based on color of a region, that is, areas having same color are 

grouped together. The image segmentation is done by taking into consideration, to which 

cluster a given pixel belongs the most. The method has been applied to some color test 

images and its performance has been compared to FCM and FCM based methods to show 
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its superiority over them. The proposed technique is observed to be an efficient and easy 

method for segmentation of noisy images.  
 

(iv)Neighbourhood Attraction Fuzzy c Means Algorithm: A new algorithm based on 

the IFCM neighbourhood attraction is used without changing the distance function of the 

FCM and hence avoiding an extra neural network optimization step for the adjusting 

parameters of the distance function, it is called Neighborhood Atrraction FCM 

(NAFCM). During clustering, each pixel attempts to attract its neighbouring pixels 

towards its own cluster. This neighbourhood attraction depends on two factors: the pixel 

intensities or feature attraction, and the spatial position of the neighbours or distance 

attraction, which also depends on neighbourhood structure. The NAFCM algorithm is 

tested on a synthetic image (chapter 6, figure 6.3-6.6) and a number of skin tumor 

images. It is observed to produce excellent clustering result under high noise condition 

when compared with the other FCM based clustering methods. 
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Preview 
Digital image processing is the use of computer algorithms to perform image processing 

on digital images. As a subfield of digital signal processing, digital image processing has 

many advantages over analog image processing; it allows a much wider range of 

algorithms to be applied to input data, and can avoid problems such as the build-up of 

noise and signal distortion during processing. Image segmentation refers to the process of 

partitioning a digital image into multiple regions (set of pixels). The goal of segmentation 

is to simplify and/or change the representation of an image into something that is more 

meaningful and easier to analyse. Image segmentation is typically used to locate objects 

and boundaries (lines, curves, etc.) in an image.  

 

In this thesis the various popular fuzzy techniques for image segmentation are studied. 

Various methods for better clustering and segmentation have been developed. The 

algorithms or methods developed are meant for online and real time applications like 

television, camera phone, etc. 

 

1 



Chapter 1 Introduction 
 

           
 

3 

1.1   Fundamentals of Digital Image Processing 
Digital image processing is a subset of the electronic domain wherein the image is 

converted to an array of small integers, called pixels (derived from picture element), 

representing a physical quantity such as scene radiance, stored in a digital memory, and 

processed by computer or other digital hardware. Digital image processing, either as 

enhancement for human observers or performing autonomous analysis, offers advantages 

in cost, speed, and flexibility, and with the rapidly falling price and rising performance of 

personal computers it has become the dominant method in use. 

An image is denoted by two dimensional functions of the form f(x,y). The value or 

amplitude of f at spatial coordinates (x,y) is a positive scalar quantity whose physical 

meaning is determined by the source of the image. In a digital image, (x,y), and the 

magnitude of f are all finite and discrete quantities. 

It is a hard task to distinguish between the domains of image processing and any other 

related area such as computer vision. But the two areas are quite different in the kind of 

output we get from them. Computer vision is the science and technology of machines 

that see. As a scientific discipline, computer vision is concerned with the theory for 

building artificial systems that obtain information from images. The image data can take 

many forms, such as a video sequence, views from multiple cameras, or multi-

dimensional data from a medical scanner. In computer vision, the input is a digital image 

and the output is some representation of its interesting features. Image processing is often 

used in computer vision as a pre-processing step. Image processing is defined as an area 

when both input and output are images. 

 As a technological discipline, computer vision seeks to apply the theories and models of 

computer vision to the construction of computer vision systems. 

The organization of a computer vision system is highly application dependent. Some 

systems are stand-alone applications which solve a specific measurement or detection 

problem, while other constitute a sub-system of a larger design which, for example, also 

contains sub-systems for control of mechanical actuators, planning, information 

databases, man-machine interfaces, etc. The specific implementation of a computer 
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vision system also depends on if its functionality is pre-specified or if some part of it can 

be learned or modified during operation. There are, however, typical functions which are 

found in many computer vision systems. 

1.   Image acquisition: A digital image is produced by one or several image sensor 

which, besides various types of light-sensitive cameras, includes range sensors, 

tomography devices, radar, ultra-sonic cameras, etc. Depending on the type of sensor, the 

resulting image data is an ordinary 2D image, a 3D volume, or an image sequence. The 

pixel values typically correspond to light intensity in one or several spectral bands (gray 

images or colour images), but can also be related to various physical measures, such as 

depth, absorption or reflectance of sonic or electromagnetic waves, or  nuclear magnetic 

resonance.  

2.   Pre-processing: Before a computer vision method can be applied to image data in 

order to extract some specific piece of information, it is usually necessary to process the 

data in order to assure that it satisfies certain assumptions implied by the method. 

Examples are  

(a)   Re-sampling in order to assure that the image coordinate system is correct.  

(b)   Noise reduction in order to assure that sensor noise does not introduce false 
information.  

(c )  Contrast enhancement to assure that relevant information can be detected.  

(d)   Scale space representation to enhance image structures at locally appropriate scales. 

3.   Feature extraction: Image features at various levels of complexity are extracted 

from the image data. Typical examples of such features are  

(a)  Lines, edges and ridges.  

(b)  Localized interest points such as corners, blobs or points.  

More complex features may be related to texture, shape or motion.  
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4.   Detection/Segmentation: At some point in the processing a decision is made about 

which image points or regions of the image are relevant for further processing. Examples 

are  

(a)  Selection of a specific set of interest points  

(b)  Segmentation of one or multiple image regions which contain a specific object of 
interest.  

5.   High-level processing: At this step the input is typically a small set of data, for 

example a set of points or an image region which is assumed to contain a specific object. 

The remaining processing deals with, for example:  

(a)  Verification that the data satisfy model-based and application specific assumptions.  

(b)  Estimation of application specific parameters, such as object pose or object size.  

(c)  Classifying a detected object into different categories 

Hence it can be said that image segmentation forms an integral part of computer vision 

systems and is more an area of computer vision than image processing. 

1.2 Image Segmentation  

1.2.1  Theory 
Segmentation of an image entails the division or separation of the image into regions of 

similar attribute. The basic attribute for segmentation is image amplitude- luminance for 

a monochrome image and color components for a color image. Image edges and textures 

are also useful attributes for segmentation. The result of image segmentation is a set of 

regions that collectively cover the entire image, or a set of contours extracted from the 

image. 

Segmentation does not involve classifying each segment. The segmentor only subdivides 

an image; it does not attempt to recognise the individual segments or their relationships to 

one another. 

There is no theory of image segmentation. As a consequence, no single standard method 

of image segmentation has emerged. Rather, there are a collection of ad hoc methods that 
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have received some degree of popularity. Because the methods are ad hoc, it would 

useful to have some means of assessing their performance. Haralick and Shapiro (1) have 

established the  

following qualitative guidelines for “good” image segmentation:       

(a) Regions of the image segmentation should be uniform and homogeneous with respect 

to some characteristic such as gray tone or texture. 

(b)  Region interiors should be simple and without many small holes 

(c)  Adjacent regions of segmentation should have significantly different values with 

respect to the characteristic on which they are uniform. 

(d)  Boundaries of each segment should be simple, not ragged, and must be spatially 

accurate. 

1.2.2  Applications of  segmentation 

Some of the practical applications of image segmentation are: 

1.   Medical Imaging 

    Locate tumors and other pathologies 

    Measure tissue volumes 

    Computer guided surgery 

    Diagnosis  

    Treatment planning 

    Study of anatomical structures 

 
2.   Locate objects in satellite images (roads, forests, etc.) 

3. Face recognition 

4.   Fingerprint recognition 

5.   Automatic traffic controlling systems 

6. Machine vision 
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1.3 Literature survey of fuzzy techniques applied for 

segmentation 
Fuzzy technique has been applied for various methods used for image segmentation. 

Fuzzy image segmentation is increasing in popularity because of rapid extension of fuzzy 

set theory, the development of various fuzzy set based mathematical modelling, 

synergistic combination of fuzzy, genetic algorithm and neural network[50],[51], and its 

successful and practical application in image processing, pattern recognition and 

computer vision system.  

In this work fuzzy edge detector and fuzzy clustering based image segmentation are 

studied. Fuzzy based edge detection methods are extensively used for image 

segmentation. Efficient fuzzy technique based edge detection method which would yield 

good segmentation results on application of some edge tracking techniques and some 

times even without application of edge tracking methods have been discussed. 

Tood law, Hidenori Itoh and Hirohisa seki [1] characterized the problem of detecting 

edges in images as a fuzzy reasoning problem. The edge detection problem is divided 

into three stages: filtering, detection, and tracing. It was finally concluded in the paper 

that the algorithm was able to assemble edge information in a meaningful way. Fuzzy 

reasoning based edge detection has also been popular for edge detection of images 

affected by noise [2- 4]. 

Olga Regina Pereira Bellon et al. [5] presented a methodology to perform edge detection 

in range images in order to provide a reliable and meaningful edge map, which helps to 

guide and improve range image segmentation by clustering technique. The obtained edge 

map leads to three important improvements: (1) the definition of the ideal number of 

regions to initialize the clustering algorithm; (2) the selection of suitable initial cluster 

centers; and (3) the successful identification of distinct regions with similar features. 

 Xiaohan Yu, J. Yla-Jaaski et al. [6] proposed a new method for texture segmentation 

based on edge detection. The new scheme is based on the idea that texture features 

change abruptly near boundaries between different textures, and the segmentation can be 

carried out by detecting the feature changes or so-called feature edges. In this algorithm, 
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the image is first projected onto a hyperplane called the characteristic image, in which the 

value of each pixel is not a grey level but 

a vector value of the local textural features. An edge detection algorithm is then extended 

to the vector space and applied to the hyperplane to detect the feature edges. 

Liu Yi, Chen Xue-quan [7] presented an improved edge detection algorithm for remote 

sensing images, which is based on fuzzy logic theory and conventional Pal. King 

algorithm. The membership function was redesigned, the method of fuzzy enhancement 

was modified and an edge evaluation criteria was used to control the iterative procedure 

automatically. The presented algorithm was found to be superior to other edge detectors 

in edge detection of remote sensing images.  

Jinbo Wu, Zhouping Yin, and Youlon Xiong [8] proposed a fast and accurate edge 

detection method for blurry images. The algorithm called fast multilevel fuzzy edge 

detection (FMFED) first enhances the image contrast by means of the fast multilevel 

fuzzy enhancement (FMFE) algorithm using the simple transformation function based on 

two image thresholds. Secondly, the 

Edges are extracted from the enhanced image by a two-stage edge detection operator that 

identifies the edge candidates based on the local characteristics of the image.   

Cristiano Jacques Miosso and Adolfo Bauchspiess [9] evaluated the performance of a 

fuzzy inference system in edge detection. It was concluded that despite the much superior 

computational effort when compared to the Sobel operator, the implemented FIS system 

presents greater robustness to contrast and lighting variations, besides avoiding obtaining 

double edges. Further tuning of the weights associated to the fuzzy inference rules is still 

necessary to reduce even more inclusion in the output image of pixels not belonging to 

edges.  

Image thresholding is another method which is used for image segmentation. Fuzzy 

techniques are applied for this method. 

Farrah wong HT, Ramachandran Nagaranjan et al. [10] presented an image segmentation 

method by using a threshold value determined by fuzzy logic. The fuzzy based 

segmentation reported in the paper is an automated threshold calculation. The threshold 

value calculated by utilizing the histogram of the image and the measure of fuzziness 

constitute the initial step in the proposed segmentation procedure. The threshold value is 
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then used as an input for the split and merge method of segmentation. Wen-Bing, Jin-Wn 

Tian et al. [11] have presented a three level thresholding method for image segmentation 

based on probability partition, fuzzy partition and entropy theory. The procedure for 

finding the optimal combination of all the fuzzy parameters is implemented by a genetic 

algorithm with appropriate coding method so as to avoid useless chromosomes. M. 

Cheriet, J.N.Said et al.[12] presented a general recursive approach for image 

segmentation by extending Otsu’s method. This approach segments the brightest 

homogeneous objects after the last recursion. There are many thresholding based image 

segmentation methods [13,14]. Most of these greyscale based segmentation methods 

often assume that the image has a uniform and stationary or quasistationary distribution 

of greyscale for various targets or background. So they are often not so effective for the 

images with complex structure because of the complex distribution of the greyscale of 

images. Some techniques [15] assume images to be mostly nonstationary with space 

variant distribution. The segmentation methods based on this model are dependent on 

local area. The performance of such local operator will degrade quickly as the noise 

increases. 

The most important fuzzy based approach to image segmentation are: fuzzy clustering 

algorithms, fuzzy rule based approach and measure of fuzziness.  

Lior Shamir[16] has described a human perception based approach to pixel color 

segmentation. Fuzzy sets are defined on the H, S and V components of the HSV color 

space and provide a fuzzy logic model that aims to follow the human intuition of color 

classification. The knowledge-driven model allows simple modification of the 

classification based on needs of a specific application, and the efficiency of the algorithm 

in terms of the computational complexity makes the proposed method suitable for 

applications where efficiency is a primary issue. 

A. Borji and M. Hamidi [17] have proposed a new method for color image segmentation 

using fuzzy logic where they automatically produce a system for color classification and 

image segmentation with least number of rules and minimum error rate. A 

comprehensive learning particle swarm optimization technique is used to find optimal 

fuzzy rules and membership functions as it discourages premature convergence. Less 

computational load is needed when using this method compared to other methods like 
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ANFIS. Large train data set and its variety makes the proposed method invariant to 

illumination noise. 

Estevez Pablo A., Flores Rodrigo J. et al. [18] proposed a method called FMMIS (fuzzy 

min-max neural network for image segmentation). The FMMIS method grows boxes 

from a set of seed pixels, to find the minimum bounded rectangle for each object present 

in the images. The proposed method is very fast and it may be applied to real-time image 

segmentation tasks. 

G. Karmakar ,L. Dooley et al. [19] proposed a new algorithm called fuzzy rules for image 

segmentation incorporating texture features (FRIST), which includes two additional 

membership functions to those already defined in GFRIS( generic fuzzy rule based image 

segmentation). FRIST incorporates the fractal dimension and contrast features of a 

texture by considering image domain specific information. FRIST exhibits considerable 

improvement in the results obtained compared with the GFRIS approach for many 

different image types.  

Tie Qi Chen and Yi Lu [20] developed a fuzzy clustering algorithm that iteratively 

generates color clusters using a uniquely defined fuzzy membership function and an 

objective function for clustering optimization. The region segmentation algorithm merges 

clusters in the image domain based on color similarity and spatial adjacency. Martin 

Tabakov [21] described a way of medical image segmentation using an appropriately 

defined fuzzy clustering method based on a fuzzy relation. The considered relation is 

defined in terms of Euclidean distance. 

Ahmed Mohamed N., Yamany Sameh M. et al. [22] presented an algorithm for fuzzy 

segmentation of MRI data and estimation of intensity inhomogenities using fuzzy logic. 

The algorithm is formulated by modifying the objective function of the standard fuzzy c-

means algorithm to compensate for such inhomogenities and allow the labelling of a 

pixel to be influenced by the labels in its immediate neighbourhood. 

Y. Yang, Ch.Zheng and P. Lin [23] presented a novel penalized fuzzy c-means (PFCM) 

algorithm for image segmentation. The algorithm is formulated by incorporating the 

spatial neighbourhood information into the original FCM with a penalty term. The 

penalty term is inspired by the neighbourhood expectation maximization algorithm and is 
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modified in order to satisfy the criterion of the FCM algorithm. The algorithm is found to 

be more robust to noise than standard FCM. 

Shan Shen,William Sandham et al. [24] presented an extension to the original FCM. The 

algorithm is based on neighbourhood attraction, which is dependent on the relative 

location and features of the neighbouring pixels. The degree of attraction is optimized by 

a neural-network model. 

Jiayin Kang, Lequan Min et al. [25] presented a novel method for image segmentation by 

incorporating spatial neighbourhood information into the standard FCM. An adaptive 

weighted averaging filter is given to indicate the spatial influence of the center pixel.  

Li Ma and R. C. Staunton [26] proposed a novel FCM algorithm to be used when active 

or structured lights are projected onto a scene. The recursive FCM algorithm is modified 

to include biased illumination field estimation. New clustering center and fuzzy 

clustering functions resulted based on the intensity and the average intensity of a pixel 

neighbourhood based object function. A dilation operator was used in the end on the 

initial segmented image for further refinement. The proposed method is found to be 

effective for segmenting images illuminated by patterns containing underlying biased 

intensity fields. 

Yannis A. Tolias and Stavros M. Panas [27] presented the adaptive fuzzy 

clustering/segmentation (AFCS). In AFCS, the nonstationary nature of the images is 

taken into account by modifying the prototype vectors as function of sample location in 

the image. A multiresolution model is utilized for estimating the spatially varying 

prototype vectors for different window sizes. The segmentation of different resolutions is 

combined using a data fusion process in order to compute the final fuzzy partition 

matrix.The results provide segmentation having lower entropy. 

N. A. Mohamed, M.N. Ahmed et al.[28] described the application of fuzzy set theory in 

medical imaging. A fully automatic technique to obtain clusters is proposed. A modified 

fuzzy c-means classification algorithm is used to provide a fuzzy partition. The method is 

inspired by Markov random Field (MRF) and is found to be less sensitive to noise as it 

filters the image while clustering it. 

S R Kannan [29] presented a new method called fuzzy membership c-means(FMCM) for 

segmentation of Magnetic Resonance Images(MRI). This work develops a specific 
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method to construct the initial membership matrix to clusters in order to improve the 

strength of the clusters. 

Y. Yong, Z. Chongxun et al. [30] presented a spatially weighted fuzzy c-means (SWFM) 

clustering algorithm for image thresholding. Spatial neighbourhood information is taken 

into account in this algorithm. Two improved implementations of the k-nearest 

neighbour(k-NN) algorithm re introduced for calculating the weight in the SWFCM to 

improve thresholding. To speed up FCM algorithm the iteration is carried out on 

histogram of the image instead of all pixels of the image.  

 

1.4   Problem Statement 
In general, the classification of an image’s pixel belonging to one of the “objects” (i.e., 

classes) composing the image is based on some common feature(s), or resemblance to 

some pattern. In order to determine which are the features that can lead to a successful 

classification, some apriori knowledge or/and assumptions about the image are equally 

required. 

Classical, so-called “crisp” image segmentation techniques, while effective for images 

containing well-defined structures such as edges, do not perform well in the presence of 

ill-defined data. In such circumstances, the processing of images that posses ambiguity is 

better performed using fuzzy segmentation techniques, which are more adept at dealing 

with imprecise data. Fuzzy techniques may be broadly classified into five main 

categories: 

1.  Fuzzy clustering based image segmentation 

2.  Fuzzy rule based image segmentation 

3.  Fuzzy geometry based image segmentation 

4.  Fuzzy thresholding based image segmentation 

5.  Fuzzy integral based segmentation techniques (Tizhoosh,1998). 

Of all these methods mentioned, the most widely used are the fuzzy rule based and fuzzy 

clustering based segmentation. The problem with fuzzy rule based image segmentation 

techniques is that they are application dependent with the structure of the membership 

functions being predefined and in certain cases, the corresponding parameters being 

manually determined. Karmakar et al. [76] presented a contemporary review of fuzzy rule 
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based image segmentation techniques, and confirmed that despite being used in a wide 

range of applications, both the structure of membership functions and derivation of their 

relevant parameters were still very much application domain and image dependent. Fuzzy 

c-means is an unsupervised technique that has been successfully applied to feature 

analysis, clustering, and classifier designs in fields such as astronomy, geology, medical 

imaging, target recognition, and image segmentation [21]-[28],[61],[62],[74],[75]. An 

image can be represented in various feature spaces, and the FCM algorithm classifies the 

image by grouping similar data points in the feature space into clusters. This clustering is 

achieved by iteratively minimizing a cost function that is dependent on the distance of the 

pixels to the cluster centers in the feature domain.  

Unfortunately, the greatest shortcoming of FCM is its over-sensitivity to noise, which is 

also a flaw of many other intensity based segmentation methods. In recent years, many 

modification of the FCM algorithm have been reported to overcome the effect of noise.  

Most of these methods inevitably introduce computation issues. In almost all methods 

proposed recently, the objective function of the FCM is changed. As most equations are 

modified along with the modification of the objective function, these methods lose 

continuity from FCM, which is well-realized with many types of software, such as 

MATLAB.     

 

1.5  Image Metrics       
 The quality of an image is examined by objective evaluation as well as subjective 

evaluation. The subjective evaluation is the most widely used type of evaluation method, 

in which the segmentation results are judged by a human evaluator. The disadvantage of 

such methods is that visual or qualitative evaluation is inherently subjective. Subjective 

evaluation scores may vary significantly from one human evaluator to another, because 

each evaluator has their own distinct standards for assessing the quality of a segmented 

image. The image metrics for fuzzy clustering based segmentation are discussed here. In 

fuzzy clustering based method good clustering of the image amounts to good 

segmentation. Hence in order to obtain a quantitative comparison, two types of cluster 

validity functions, fuzzy partition and feature structure, are often used to evaluate the 

performance of clustering in different clustering methods. The representative functions 
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for the fuzzy partition are partition coefficient pcV [31] partition entropy peV  [32]. They 

are defined as follows:                              
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                                                                                                    (1.1) 

and           
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                                                                                  (1.2) 

 

The value of Vpc   is in the range [1/c,1]. An index close to 1 indicates good cluster 

separation, while a low index value indicates fuzzier clustering. An index of Vpc =1/c 

indicates that there is no clustering tendency. The value of Vpe is in the range [0,log c]. In 

contrast to Vpc, a low value of Vpe indicates good cluster separation. The idea of these 

validity functions is that the partition with less fuzziness means better performance. As a 

result, best clustering is achieved when the value pcV  is maximal or peV  is minimal.  

The third image metric used for comparision of different algorithms present and proposed 

is the percentage of misclassified pixels present in a class(cluster).To find the number of 

misclassified pixels in each clusters first we find the number of pixels in each clusters 

when noise is not added to the image. After that, we add noise to the image and calculate 

the number of pixels which are misclassified i.e the number of pixels that have increased 

in a cluster after adding noise or the missing pixels in a cluster after adding noise. Finally 

the percentage of misclassified pixels is calculated using the formula : 

 

Numberof misclassified pixels inacluster 100
Orignal number of pixels in thecluster

                                                          (1.3) 

 

Another image metric used for comparison of different methods is the execution time. 

Execution time is defined as the time taken for the simulation of an algorithm. The less 
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time an algorithm takes for execution the more efficient it is considered. The processesor 

used is a Pentium IV core 2 duo processor, 2.4Ghz (clock), 2GB (RAM), Windows vista 

64 bit operating system. 
 

1.6 Conclusion 
In this introductory chapter, the fundamentals of digital image processing, theory and 

application of image segmentation, the existing image segmentation techniques and their 

merits and demerits  

and various image metrics are studied. The advantages and disadvantages of fuzzy rule 

based segmentation and fuzzy clustering based segmentation have been discussed.  

Hence, it is decided to study and develop various fuzzy rule based segmentation method 

and fuzzy clustering based segmentation algorithms. 
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Preview 

Image segmentation algorithms are generally based on one of the two basic properties of 

intensity values: discontinuity and similarity. In the first category, the approach is to 

partition an image based on abrupt changes in intensity, such as edges in an image. 

Segmentation based on discontinuity method is discussed in next chapter. The principal 

approaches in the second category are based on partitioning an image into regions that are 

similar according to a set of pre-defined criteria. Thresholding, region growing, and 

region splitting and merging are examples of methods in this category. Segmentation 

based on similarity property of intensity values that is region based segmentation 

methods are described here. 

 

2.1 Region-Based Segmentation 
2.1.1 Basic formulation: 
Let R  represent the entire image region. Segmentation may be viewed as a process that 

partitions R  into n  subregions, 1 2, ,..., nR R R  such that 

 

2 
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( ) R  =  R

(b ) R  is  a  co nn ec ted  reg io n , i=  1 ,2 ,....,n .

(c ) R R  =   fo r a ll i an d  j, i j

(d ) P (R ) =  T R U E  fo r a ll i =  1 ,2 ,....,n .

(e ) P (R R )  =  FA L S E  fo r i j
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a


 









 

 

Here, ( )iP R is a logical predicate defined over the points in set iR  and   is the null set. 

Condition (a) indicates that the segmentation must be complete; that is, every pixel must 

be in a region. Condition (b) requires that points in a region must be connected in some 

predefined sense. Condition (c) indicates that the regions must be disjoint. Condition (d) 

deals with the properties that must be satisfied by the pixels in a segmented region- for 

example ( )iP R = TRUE if all pixels in iR  have the same gray level. Finally, condition (e) 

indicates that regions iR  and Rj  are different in the sense of the predicate P [33]. 

 

2.1.2 Region growing 
Region growing is a procedure that group’s pixels or subregions into larger regions based 

on predefined criteria [34]. The basic approach is to start with a set of “seed” points and 

from these grow regions by appending to each seed those neighboring pixels that that 

properties similar to the seed ( such as specific ranges of gray level or color). 

This approach has specific advantages over boundary based (pixel differences) methods: 

1.   It is guaranteed (by definition) to produce coherent regions. Linking edges, gaps 

produced by missing edge pixels, etc. are not an issue 

2.    It works from the inside out, instead of the outside in. The question which object a 

pixel belongs to, is immediate, not the result of point-in-contour tests. 

However, it also has drawbacks: 

1.  Decisions about region membership are often more difficult than applying edge 

detectors. 
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2.   It can’t find objects that span multiple disconnected regions. (Whereas edge-based 

method can be designed to handle “gaps” produced by occlusion—the Hough transform 

is one example 

 

The objectives of region-based approaches can be summarized as follows: 

(a)    Produce regions that are as large as possible (i.e., produce as few regions as 

possible). 

(b)   Produce coherent regions, but allow some flexibility for variation within the region. 

 

2.1.2.1   How to choose the seed(s) for region growing in practice?  
1.    It depends on the nature of the problem. 

2.    If  target need to be detected using infrared images for example, choose the brightest 

pixels 

3.   Without a-priori knowledge, compute the histogram and choose the gray-level values               

corresponding to the strongest peaks. 

 

2.1.2.2   How to choose the similarity criteria (predicates)? 
The homogeneity predicate can be based on any characteristic of the regions in the image 

such as 

 

     * Average intensity 

     * Variance 

     * Color 

     * Texture 

     * Motion 

     * Shape 

     * Size 

 

Selecting a set of one or more starting points often can be based on the nature of the 

problem. When a priori information is not available, the procedure is to compute at every 

pixel the same set of properties that ultimately will be used to assign pixels to the regions 
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during the growing process. If the result of these computations shows clusters of values, 

the pixels whose properties place them near the centroid of these clusters can be used as 

seeds. 

The selection of similarity criteria depends not only on the problem under consideration, 

but also on the type of image data available. For example, the analysis of land-use 

satellite imagery depends heavily on the use of color. This problem would be 

significantly more difficult, or even impossible to handle without the inherent 

information available in color images. When the images are monochrome, region analysis 

must be carried out with a set of descriptors based on gray levels and spatial properties 

(such as moments and texture). 

Descriptors alone may yield misleading results if connectivity or adjacency information 

is not used in the region-growing process.  

Region growing should stop when no more pixels satisfy the criteria for inclusion in that 

region. Criteria such as gray level, texture, and colour, are local in nature and do not take 

into account the history of region growth. Hence the power of region growing algorithms 

are increased by utilizing the concept of size, likeness between a candidate pixel and the 

pixels grown so far (such as a comparison of the gray level of a candidate and the average 

gray level of the grown region), and the region being grown. 

 

2.1.3   Region split and merge  
Split and merge image segmentation techniques are based on a quad tree data 

representation whereby a square image is broken (split) into four quadrants if the original 

image segment is nonuniform in attribute. If four neighboring squares are found to be 

uniform, they are replaced (merge) by a single square composed of the four adjacent 

squares. 

 Subdivide an image initially into a set of arbitrary, disjoint regions and then merge 

and/or split the regions in an attempt to satisfy the necessary conditions 

Let R represent entire image region and select a predicate P 

(1)   Split into four disjoint quadrants any region Ri for which P(Ri) = FALSE 

(2)   Merge any adjacent regions Rj and Rk for which P(Rj ∪ Rk) = TRUE 



Chapter 2 Basic techniques of image segmentation 
 

           
 

21 

 Figure 2.1    Quadtree decomposition 
 

(3)   Stop when no further merging or splitting is possible 

Several variations of this theme are possible 

2.1.3.1 Quadtrees for region extraction 

Important data structures which is used in split and merge algorithms is the quadtree. 

Figure 2.1 shows a quadtree and its relation to the image. Note that in graphics the 

quadtree is used in a region splitting algorithm (Warnock's Algorithm) which breaks a 

graphical image down recursively from the root node, which represents the whole image, 

to the leaf nodes where each leaf node represent a coherent region, which can be rendered 

without further hidden line elimination calculations[14]. The same use is made of 

quadtrees for vision. Quadtrees impose one type of regular decomposition onto an image. 

To complete the segmentation process this must be followed by a merging phase. Thus 

the problem of finding adjacent neighbours to a given node has been studied in figure 2.2. 

The problem is one of tree search and efficient algorithms have been published. 
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 Figure 2.2   Splitting and merging with quadtrees 

 

 

 

 

 

 

 

 

 

 

2.2 Segmentation technique based on discontinuity 
property of pixels. 
 
2.2.1   Detection of Discontinuities 
In this category, the approach is to partition an image based on abrupt changes in 

intensity, such as edges in an image. Three basic types of gray-level discontinuities that 

are mostly detected in a digital image are: points, lines and edges. The most common way 

to look for discontinuities is to run a mask through the image. For the 3x3 mask shown in 

fig. 3.1 , this procedure involves computing the sum of products of the coefficient with 

the gray level contained in the region encompassed by the mask. That is, the response of 

the mask at any point in the image is given by  
'

1 1 2 2 9 9
9

1

. . .

i i
i

R w z w z w z

w z

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                                                             (2.1)                                                              
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where iz  is the gray level of the pixel associated with mask coefficient iw . As usual, the 

response of the mask is defined with respect to its center location.  

 

2.2.1.1   Point detection  
Using the mask shown in Fig. 2.3, we say that a point has been detected at the location on 

which the mask is centered if  

 
'| |R T                                                                                                                      (2.2) 

 

where T is a nonnegative threshold and R’ is given by (2.1). 

                         

2.2.1.2  Line detection 
Consider the masks in Fig. 2.4. If the first mask were moved around an image, it would 

respond more strongly to lines (one pixel thick) oriented horizontally. With a constant 

background, the maximum response would result when the line passed through the 

middle row of the mask. Similarly, the second mask in Fig. 2.4 responds to lines oriented 

at 
0

45 ; the third mask to vertical lines; and the fourth mask to lines oriented at 
0

45  

direction. 

Let R1’, R2’, R3’, and R4’ denote the responses of the masks in Fig. 2.4, from left to 

right, where R’s are given by equation 2.1. Let the four masks be run through an image 

Figure 2.3   Point detection mask  



Chapter 2 Basic techniques of image segmentation 
 

           
 

24 

individually. If, at a certain point in the image, |Ri’|>|Rj’|, for all j  i, that point is said to 

be more likely associated with a line in the direction of the mask i.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2.2.1.3   Edge detection 
Edge detection is an important step for image segmentation. The goal of edge detection 

process in a digital image is to determine the frontiers of all represented objects based on 

automatic processing of the color or gray level information in each present pixel. 

To extract the edges from the images, derivative edge detection operators or gradient 

operator, such as Sobel operator, Prewitt operator, Roberts operator, and Laplacian 

operators are commonly used. A 3x3 mask is used for edge detection using the mentioned 

operators. The various masks and the result of applying them on the image are shown in 

fig. 2.4 and fig. 3.5 respectively. 

 

The reasons that Prewitt and Sobel edge detectors visually appear to better delineate 

object edges than the Roberts edge detector is attributable to their larger size, which 

provides averaging of small luminance fluctuations. The Sobel edge detector uses a 

weight of 2 in the center coefficient. A weight of 2 is used to achieve some smoothing by 

Figure 2.4. Line detector masks 
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Roberts 

Prewitt 

Sobel 
Figure 2.5.  Line detection 
masks 

giving more importance to the center point. The Prewitt masks are simpler to implement 

than the Sobel masks, but the latter have slightly superior noise-suppression 

characteristics, an important issue when dealing with derivatives. Note that the 

coefficients in all masks shown in Fig. 2.5 sum to 0, indicating that they give a response 

of 0 in areas of constant gray levels, as expected of a derivative operator.  

 

                            
 

 

 

 

 

 

 

 

 

                                    

 

 

 

 

 

 

 

 

(A)  Laplacian of Gaussian edge detector 
Marr and Hildreth [35] have proposed the Laplacian of Gaussian (LoG) edge detection 

operator operator in which Gaussian-shaped smoothing is performed prior to application 

of the Laplacian. The continuous domain LoG gradient is 

 
 2( , ) ( , ) ( , )sG x y F x y H x y                                                                  (2.3)               
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where 

 
( , ) ( , ) ( , )sH x y g x s g y s                                                                                           (2.4)                       

 

is the impulse response of the Gaussian smoothing function as defined by 

  

 1/22 2( , ) 2 exp 1/ 2( / )g x s s x s


                                                                     (2.5)                                                            

 
where s is standard deviation 

 As a result of the linearity of the second derivative operation and of the linearity of 

convolution, it is possible to express the LoG response as 

 

( , ) ( , ) ( , )G x y F x y H x y                                                                                        (2.6)   

 

where 

 
 2( , ) ( , ) ( , )H x y g x s g y s                                                                            (2.7) 

 

Upon differentiation one obtains               

2 2 2 2

4 2 2

1( , ) ( , ) 1 exp
2 2

x y x yH x y g x s
s s s

    
    

   
                                           (2.8) 

 

This function is commonly referred to as the Laplacian of a Gaussian (LoG) because 

Eq.2.8 is in the form of a Gaussian function. A 5x5 mask that approximates ( , )H x y  is 

shown in Fig.2.6(c). This approximation is not unique. Its purpose is to capture the 

essential shape of ( , )H x y ; that is, a positive central term, surrounded by an adjacent 

negative region that increases in value as a function of distance from the origin, and a 

zero outer region. The coefficients must also sum to zero, so that the response of the 

mask is zero in areas of constant gray level. Due to its shape, the Laplacian of Gaussian is 

called the Mexican hat function.   
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(B)  Canny edge detector 
The Canny edge detection operator was developed by John F. Canny [57] in 1986 and 

uses a multi-stage algorithm to detect a wide range of edges in images. The method can 

be summarized as follows: 

1. The image is smoothed using a Gaussian filter with a specified standard deviation, s, 

to reduce noise. 

2. The local gradient, 2 2 1/ 2( , ) [ ]x yg x y G G  , and edge direction, 1( , ) tan ( / )x yx y G G  , 

are computed at each point. Any of the first three techniques Prewitt, Sobel or LoG edge 

                             

                   (a)                                                                            (b)  

Figure 2.6  Laplacian of a Gaussian (LoG). (a) 3-D plot. (b) Image (black is negative, gray is the zero plane, 
and white is positive). (c) 5x5 mask approximation to the shape of (a) 

 (c) 
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detector can be used to compute xG and yG . An edge point is defined to be a point whose 

strength is locally maximum in the direction of the gradient.  

3. The edge points determined in (2) give rise to ridges in the gradient magnitude image. 

The algorithm then tracks along the top of these ridges and sets to zero all pixels that are 

not actually on the ridge top so as to give a thin line in the output, a process known as 

nonmaximal suppression. The ridge pixels are then thresholded using two thresholds, T1 

and T2, with T1<T2. Ridge pixels with values greater than T2 are said to be “strong” 

edge pixels. Ridge pixels with values between T1 and T2 are said to be “weak” edge 

pixels. 

4. Finally, the algorithm performs edge linking by incorporating the weak pixels that are 

8-connected to the strong pixels. 

The gradient-based edge detection method has been widely applied in practice and a 

reasonable edge map is obtained for most images. Nevertheless, they suffer from some 

practical limitations. 

First, they need a smoothing operation to alleviate the effect of high spatial frequency in 

estimating the gradient. Usually this smoothing is applied to all pixels in the image 

including the edge regions, and so the edge is distorted and missed in some cases, in 

particular at junctions or corners. Secondly, the gradient magnitude alone is insufficient 

to determine meaningful edges because of the ambiguity caused by the underlying pixel 

pattern, especially in complex natural scenes. Thirdly, the gradient-based edge detection 

methods increase the computational complexity because calculations, such as square root 

and arctangent, to produce the gradient vector are required. Finally, for edge thresholding 

conventional gradient methods use one or two global edge thresholds for an input image. 

For example, the hysteresis thresholding proposed by Canny in many practical 

applications require not only the trial and error adjustment of two thresholds to produce a 

satisfactory edge result for each different input image, but also the validity of the pre-

adjusted thresholds.   

 
The simulation results and conclusion of this chapter are in chapter 6. 
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Preview 
The goal of edge detection in image processing is to determine the frontiers of all 

represented objects, based on automatic processing of color or gray level information 

contained in each pixel. This procedure has many applications in image processing, 

computer vision and biological and robotic vision [46], [47], and [48]. 

Edge detection of real world images is a challenging task as there are a number of objects 

and huge variations between them which makes it difficult to approximate all objects 

using a general frame. Segmentation based on edge detection mostly consists of two 

steps: 

1.   Edge detection 

2.   Edge linking 

 

3 
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Most real world images posses a certain amount of ambiguity and hence their 

segmentation produces fuzzy regions. For such images, fuzzy image segmentation 

techniques are more adept for processing their uncertainties. The importance of the fuzzy 

sets for analyzing complex natural 

systems has been determined in several application domains. Digital images, which are 

mappings of natural scenes, are always accompanied by some degree of uncertainty 

(fuzziness) mainly due to: 

i)     Imprecision of gray values of the pixels; 

ii)    Ambiguity resulting from the image acquisition and mapping mechanism; 

iii)   Vague information in the region boundaries. 

 This fact justifies the development of algorithms based on fuzzy sets for several tasks of 

image analysis.    

Recent techniques have characterized edge detection as a fuzzy reasoning problem [37], 

[38], [40], [41], [42]. These techniques have presented good and, therefore, promising 

results in the areas of image processing and computational vision. Fuzzy techniques 

allow a new perspective to model uncertainties due to the uncertainty of gray-values 

present in the images. Thus, instead of assigning gray-values to the pixels in the image, 

fuzzy membership may be used to the gray-values in the image.   

Fuzzy approaches for image segmentation may be classified as approaches based on 

fuzzy rules; fuzzy classification algorithms; fuzziness measurements and image 

information and fuzzy geometry [39]. The approach based on rules treats image 

characteristics as linguistic variables and, therefore, uses IF-THEN fuzzy rules to 

segment images in different regions [36], [40], [41]. Fuzzy classification is the oldest 

approach for image segmentation. Algorithms such as the c-means fuzzy and possibilistic 

c-means may be used to build classes (segments) [40], [41], [27]. Fuzziness 

measurements (fuzzy entropy) and image information (fuzzy divergence) may also be 

used to segment images [38], [44].     
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I F/I/D 
DVh  

DHh  

HPh  

Mh  

DH(i,j), DH(i,j+1), 
DH(i+1,j), DH(i-1,j) 

DV(i,j), DV(i,j+1), 
DV(i+1,j), DV(i-1,j) 

  H 

 M 

Threshold  E 

Figure 3.1. FIS applied to edge detection in image I. DHh  and DVh  are Sobel operators to estimate 1st derivative 

of I in horizontal and vertical directions. HPh  & Mh  are masks of a high pass and low pass filters. F,I,D refer to 

fuzzification, inference and deffuzification stages. 

3.1 A Fuzzy Inference System for Edge Detection based 

Segmentation 
A nonlinear image filtering technique is developed here which is based on fuzzy 

inference systems (FIS) [45]. During input image processing, three kinds of linear filters 

are applied to it: 

1.  Sobel operators, used to estimate its derivative in horizontal and vertical directions 

( DHh  and DVh  filters) 

2.  A low-pass filter and  

3.  A high-pass filter. 

Here the gray level associate to pixel (i,j) in the output image E depends not only on the 

pixel (i,j) in each  pre-processed image but also on some neighbor pixels, as depicted in 

Figure 3.1. Besides, each image DH and DV that results from applying Sobel operators is 

passed to the FIS system, and not only the image composition 2 2D DH DV  .  

The purpose of proposed fuzzy system is to determine if pixel (i,j) evaluated is or is not 

present in one of the edges of the image, given the information explicit in the input 

filtered images. 
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3.1.1 Implementation of the FIS system  
During input image pre-processing step, four linear filters were employed. Sobel operator 

DHh  and DVh  are masks of size 3x3 and are given by 

                               

DHh  =    

                                                        

 

  

 

 
 

 

DVh  =                                                  

                                         

       

 

                                                
  The high pass filter mask is given by: 

 

                                           

H Ph  =    

 

 

The low pass filter mask is selected in such a way that the gray level in each pixel of the 

output image is the arithmetic mean of the gray levels in a 5x5 neighbourhood of the 

same pixel in the input image. 

The mask for low pass filter is given as 

 

 

1/16 1/8 1/16
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1/16 1/8 1/16
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MFh  =          

                              

 

 

 
Given the masks associated with each filter, the filtered images may be computed through 

a bi-dimensional convolution operation. 

DHDH h I   

DVDV h I   

HPHP h I      

 MFM h I   

                                    

3.1.2  Fuzzy sets and fuzzy membership functions  
The system implementation was carried out considering that the input image and the 

output image obtained after defuzzification are both 8-bit quantized; this way, their gray 

levels are always between 0 and 255. These values define the working interval of the 

output variable and the input variable M (the other input variables are not guaranteed to 

be less than 255). Besides, three fuzzy sets were created to represent each variable’s 

intensities; these sets were associated to the linguistic variables “low”, “medium” and 

“high”. 

The Gaussian membership function is adopted for the fuzzy sets (“low , medium and 

high”)  associated with input M and the output. The mean value for the Gaussian 

membership function is taken as 0, 127.5 and 255 as shown in figure 3.2(a). For the fuzzy 

set associated with inputs  DV,HP and output, Gaussian functions were also adopted for 

linguistic variables “low” and “medium”. The membership function for linguistic 

1 1 1 1 1
1 1 1 1 1

1 . 1 1 1 1 1
25

1 1 1 1 1
1 1 1 1 1

 
 
 
 
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 
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variable “high” is chosen to be a sigmoid function, since in this case we can not 

guarantee that the input values will be restricted to the interval [0,255].  

 
3.1.3 Fuzzy logical operations and defuzzification method 

definitions 
The functions adopted to implement the “and” and “or” operations were the minimum 

and maximum functions, respectively. The Mamdani method was chosen as the 

defuzzification procedure, which means that the fuzzy sets obtained by applying each 

inference rule to the input data were joined through the add function; the output of the 

system was then computed as the centroid of the resulting membership function [52, 

pages 2-20 to 2-23]. 

 

3.1.4   Inference rules  
The fuzzy inference rules were defined in such a way that the FIS system output 

(“Edges”) is high only for those pixels belonging to edges in the input image. 

The first three rules were defined to represent the general notion that in pixels belonging 

to an edge there is a high variation of gray level in the vertical or horizontal direction: 

 

1.     ( DH  low )  AND  ( DV  low )                       (“Edges” low). 

2.     ( DH  medium )  AND (DV  medium)            (“Edges” high). 

3.     ( DH  high )  OR  ( DV  high )                         (“Edges” high). 

 

To guarantee that edges in regions of relatively low contrast can be detected, the two 

following rules were established to favour medium variations of the gray level in a 

specific direction in regions of low frequency of the input image (HP “low”): 

 

4.     (DH medium )  AND ( HP low )            ( “ Edges” high). 

5.     (DV medium )  AND ( HP low )            ( “ Edges” high). 
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To avoid including in the output image, pixels belonging to regions of the input where the 

mean gray level is lower, the following two rules were established.  These regions are 

proportionally more affected by noise, supposed it is uniformly distributed over the 

whole image. The goal here  

is to design a system which makes it easier to include edges in low contrast regions, but 

which does not favour false edges by effect of noise. 

 

6.      (DV  medium)  AND (M  low)              (“Edges” low). 

7.      (DH  medium)  AND  (M  low)              (“Edges” low). 

 
To avoid forming double edges in the output image that tend to appear due to shadows in 

the natural images, following four rules were developed. Considering that high variations 

in gray level in horizontal direction correspond to vertical edges, it is concluded that high 

values of DH(i,j) and DH (i,j 1)  do not imply edge pixels in (i,j)  and (i,j 1)  

simultaneously. High values of DV(i,j) and DV(i 1,j) do not correspond to edge pixels 

in (i,j) and (i 1,j). 
 

8.      (DV high)  AND (DV (i + 1, j)  high)              (“Edges” medium). 

9.      (DH high)  AND  (DH (i, j + 1) high)                (“Edges” medium). 

10.    (DV medium)  AND  (DV (i+1,j) high)             (“Edges” low). 

11.    (DH medium)  AND  (DH (i, j+1) high)            (“Edges” low). 

 

Finally, rule 12 was defined to avoid including isolated pixels in the output image, 

favouring only continuous lines. It also avoids including points by effect of noise, since 

this tends to generate isolated pixels in the image which represents the input’s edges. 

 

12. (DV (i, j + 1) low) AND (DH(i + 1, j) low)  AND 

         (DV (i, j - 1) low) AND (DH(i -1, j) low)           (“Edges” low). 
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Figure 3.2     Membership function of fuzzy sets associated to (a)  output E (edges) and input 
M and  (b) to inputs DH  , DV , HP 

(a) 

(b) 
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3.2 An Efficient Multilevel Fuzzy Edge Detector for 

Digital Images 
The traditional fuzzy edge detection algorithm introduces the fuzzy enhancement method 

and is suitable for edge detection up to some extent [53]-[54]. The algorithm first 

enhances the image by means of mapping transformations, fuzzy enhancement operator, 

and inverse mapping transformation and then extracts the edge information from the 

enhanced image using “min” or “max” operator. This algorithm is computationally 

complex because the mapping transformation involves the exponential calculation and it 

will lead to loss of low intensity pixel. 

Many improved algorithms have been proposed by various authors with simplified 

mapping transformation and optimized fuzzy enhancement operator [55],[56]. In this 

method the image is enhanced by dividing it into various levels and then edge detection is 

done by using two stages. The two- stage detection first determine the pixels which are 

potential edge candidate by means of local characteristic of the image and in the second 

step it determines true edges. 

 

3.2.1 Overview of the fuzzy algorithm 
Step 1. Computing the Threshold 

The first step before fuzzification is image thresholding. Here thresholding is done by 

global thresholding [33] method. The reason for applying global thresholding as a 

method of thresholding in this case is its simple implementation. This is an iterative 

process given as follows 

1. Select initial estimate for threshold T. 

2. Segment the image into two groups g1 and g2. Where g1 is intensity values greater 

than or equal T and g2 is intensity values less than T. 

3. Compute a new threshold 

    T = 0.5*(mean (g1) +mean (g2)); 

4. Repeat steps 2 through 3 until the difference in T in successive iterations is smaller 

than a predefined parameter T0. 
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Based on the threshold value, all the pixels in the image can be classified into two sets, 

namely Fo containing high gray level value greater than or equal to T and another Fb 

containing low gray level value less than threshold T. The mean value Mo for set Fo and 

Mb for set Fb can be computed as follows: 
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                                                                                                      (3.1)    
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                                                                                                      (3.2) 

 

where So and Sb are sum of object pixels and the sum of background pixel. 

Step 2. Computing the Fuzzy Membership value 

The membership function as defined by Pal. King algorithm is given as: 

 

max( ) 1
eF

ij
ij ij

d

f f
G f

F



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                                                                              (3.3) 

 

where Fd and Fe are reciprocal and exponential fuzzy factor respectively. 

There is a large amount of calculation with exponential form for fuzzy membership 

function. Therefore the equation is redesigned as following:  
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where fmax and fmin denote the maximum and minimum gray value of image. M and N 

denote the rows and columns of the image respectively.  

Step 3. Fuzzy Enhancement 

After changing the image from spatial domain to fuzzy domain, the fuzzy enhancement 

operator Er is applied to get the enhanced image as follows: 
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                                                            (3.6)                                                                         

 

where r denotes the number of iterations, and to enhance the image moderately it is 

usually chosen as 2 or 3. t denotes fuzzy characteristic threshold, and its value can be  

chosen flexibly between 0 and 1. For the images considered here the results were mostly 

obtained for a t value varying in the range 0.5 to 1. 

Step 4. Inverse transform of step 2 

After enhancement in fuzzy domain, the inverse mapping is done to change the image 

from fuzzy domain into the spatial domain as follows: 

 

(3.4) 
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3.2.2.  Edge detection in two stages 
1.  First Stage Edge Detection: The first stage edge detections aim is to determine pixels 

which are probable edge candidates. 

For any one pixel (i,j) with its gray value equal to fij, the 3x3 window centered around 

(i,j) is chosen. The mean value Mij of the gray values of all the pixels in the window is 

computed. The edge sign is determined according to relationship between Mij and fij as 

follows: 

 

1,

0 ,
i j i j

i j
i j i j

f M
s

f M

    
  

                                                                                  (3.8) 

                                               

where sij=0 indicates that pixel(i,j) is not an edge pixel, while sij=1 indicates pixel (i,j) 

will be edge candidate.  

 
2. Second-Stage Edge Detection Operator: 

For the pixel (i,j) with sij=1,the 5x5 window centered around  (i,j) is chosen, and it is 

divided into eight sub-windows as shown in Fig 1. Let the four pixels included in the lth  

(l=0….7) sub window be  
 

The gradient values for the pixel (i,j) and the two neighbouring pixels in this sub window 

can be defined as follows:  
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Figure.3.6. The eight partition of the detection window 
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The additional edge sign for every pixel (i,j) in every sub window is determined as 

follows: 
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All the gradient values for pixel (i,j) with 1l
i js    in the sub windows constitute      

 

 | 1, 0.....7l l
ij ij ijD d s l                                                                                             (3.11) 
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The maximal gradient value in ijD will be used as the  ultimate gradient value for the pixel 

(i,j) in the 5x5 detection window and the edge image will be produced when the gradient 

values of all the pixels in the enhanced image have been calculated as following:  
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                                                                 (3.12)                           

where   denotes null set 

 

3.3 Edge linking by morphological operators 
The methods discussed in the previous section should result in pixels lying only on edges. 

However, practically this set of pixels seldom characterizes edge completely because of 

nose, breaks in the edge from nonuniform illumination, and other effect that introduce 

spurious intensity discontinuities. Thus edge detection algorithms are normally followed 

by edge linking procedures to bridge gaps in region boundary. 

We apply simple morphological tools for the edge linking problem. The results of 

applying edge linking by morphological operators, on the edge detected image is shown 

in chapter 6 (Fig.6.15). The edge detection method considered for all these images is 

FMFED algorithm. The reason for not applying FIS based edge detector is its poor 

quality of edge detection compared to some older techniques like canny edge detector. 

The various morphological operators used for edge linking of these images are described 

below: 

Cleaning  – This operation removes isolated foreground pixels from the binary edge 

image. 

Dilation  – Dilation is an operation that “grows” or “thickens” objects in binary image. 

The specific manner an extent of this thickening is controlled by a shape referred to as a 

structuring element. 

 Mathematically, dilation is defined in terms of set operations. The dilation of A by B, 

denoted AB, is defined as  
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ˆ{ | ( ) |}zA B z B A     

Where 

  is the empty set 

 B is the structuring element and 

B̂  is reflection of set B, defined as 

ˆ { | , }B w w b for b B     

Closing   –   Dilation and erosion are often applied to image in concatenation. Dilation 

followed by erosion is called a close operation. It is mathematically defined as  

( )f b f b b     

Where erosion is defined as a process that “shrinks” or “thins” objects in an binary 

image. The manner and the extent of shrinking is controlled by a structuring element. 

Mathematically, erosion is defined as 

{ | ( ) }c
zA B z B A     

Where cA  is the complement of set A. 

 

The simulation results and conclusion of the chapter are in chapter 6. 
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Preview 

Advances in cognitive psychology over the past decades have revealed that visual data, in 

the form of scenes and pictures, are often mentally processed in visual terms alone, 

without any corresponding translation or recording into verbal labels or representation, 

and humans often respond strongly to color cues within image contents. In the past 

decade, color imaging and printing devices has become more affordable and computer 

power has been ever increasing. As a result color imaging has become very popular in 

many applications including object classification and recognition, video surveillance, 

image indexing and retrieval in image databases, feature based video compression, etc. In 

this chapter we discuss about color image segmentation, which is often a necessary 

computational process for color-based image retrieval and object recognition. 

Image segmentation is a process of partitioning image pixels based on selected image 

features. The pixels that belong to the same region must be spatially connected and have 

the similar image features. If the selected segmentation feature is color, an image 

segmentation process would separate pixels that have distinct color feature into different 

4 
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regions, and simultaneously, group pixels that are spatially connected and have the 

similar color into the same region. Every pixel in the image must be assigned to a region 

when any segmentation algorithm terminates. In image processing two terms are usually 

seen very frequently close to each other: clustering and segmentation. When analyzing 

the color information of an image, for example and trying to separate regions or ranges of 

color components having same characteristics, the process is called clustering. Mapping 

the clusters onto the spatial domain and physically separating regions or surfaces in the 

image is called segmentation.  

The objective of color clustering is to divide a color set into c homogeneous color 

clusters. Color clustering is used in a variety of applications, such as color image 

segmentation and recognition.  

Color clustering is an inherently ambiguous task because color boundaries are often 

blurred. For example, consider the task of dividing a color image into color objects. In 

color images, the boundaries between objects are blurred and distorted due to the imaging 

acquisition process.  Furthermore, object definitions are not always crisp, and knowledge 

about the objects in a scene may be vague. Fuzzy set theory and fuzzy logic are ideally 

suited to deal with such uncertainties. Fuzzy clustering models have proved a particularly 

promising solution to the color clustering problem. Such unsupervised models can be 

used with any number of features and clusters. In addition, they distribute membership 

values across the clusters based on natural groupings in feature space (Bezdek, 1999). In 

fuzzy clustering, the uncertainty inherent in a system is preserved as long as possible 

before decisions are made. Of the fuzzy clustering algorithms proposed to date, the fuzzy 

c-means (FCM) algorithm proposed by Bezdek is the most widely used in image 

segmentation because it has robust characteristics for ambiguity and can retain much 

more information than hard segmentation methods. Fuzzy c-means is an unsupervised 

technique that has been successfully applied to feature analysis, clustering, and classifier 

designs in fields such as astronomy, geology, medical imaging, target recognition, and 

image segmentation. An image can be represented in various feature spaces, and the 

FCM algorithm classifies the image by grouping similar data points in the feature space 

into clusters. This clustering is achieved by iteratively minimizing a cost function that is 

dependent on the distance of the pixels to the cluster centers in the feature domain. 
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4.1  Representation of Color Images 

4.1.1  The colour data: vector representation 
A.  Bitmaps 
The original and basic way of representing a digital colored image in a computer’s 

memory is obviously a bitmap. A bitmap is constituted of rows of pixels, contraction of 

the words ‘Picture Element’. Each pixel has a particular value which determines it’s 

appearing color. This value is qualified by three numbers giving the decomposition of the 

color in the three primary colors Red, Green and Blue. Any color visible to human eye 

can be represented this way. The decomposition of a color in the three primary colors is 

quantified by a number between 0 and 255. For example, white will be coded as R = 255, 

G = 255, B = 255; black will be known as (R,G,B) = (0,0,0); and say, bright pink will be : 

(255,0,255). In other words, an image is an enormous two dimensional array of color 

values, pixels, each of them coded on 3 bytes, representing the three primary colors. This 

allows the image to contain a total of 256x256x256 = 16.8 million different colors. This 

technique is also know as RGB encoding, and is specifically adapted to human vision. 

With cameras or other measure instruments we are capable of ‘seeing’ thousands of other 

‘colors’, in which cases the RGB encoding is inappropriate. The range of 0-255 was 

agreed for two good reasons: The first is that the human eye is not sensible enough to 

make the difference between more than 256 levels of intensity (1/256 =0.39%) for a 

color. That is to say, an image presented to a human observer will not be improved 

byusing more than 256 levels of gray (256 shades of gray between black and white). 

Therefore 256 seems enough quality. The second reason for the value of 255 is obviously 

that it is convenient for computer storage. Indeed on a byte, which is the computer’s 

memory unit, can be coded up to 256 values. 

As opposed to the audio signal which is coded in the time domain, the image signal is 

coded in a two dimensional spatial domain. The raw image data is much more straight 

forward and easy to analyse than the temporal domain data of the audio signal. This is 

why we will be able to do lots of stuff and filters for images without transforming the 

source data, this would have been totally impossible for audio signal.  
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B.  Vector representation of colors 
As we have seen, in a bitmap, colors are coded on three bytes representing their 

decomposition on the three primary colours. It sounds obvious to a mathematician to 

immediately interpret colors as vectors in a three dimension space where each axis 

stands for one of the primary colors. Therefore we will benefit of most of the geometric 

mathematical concepts to deal with our colors, such as norms, scalar product, projection, 

rotation or distance. Figure 4.1, illustrates this new interpretation: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
4.2  Selection  of Color Space  
Sometimes it is necessary to adjust computer vision to human vision. Especially it is 

necessary when we are segmenting images, which were segmented by people and we try 

to replace people with computers or when we want to help people in segmentation of 

images. For this purpose we are using the L*a*b* color space.  The L*a*b* color space 

consists of a luminosity layer ‘L*’, chromaticity-layer ‘a*’ indicating where color falls 

along the red-green axis and chromaticity-layer ‘b*’ indicating where the color falls 

along the blue-yellow axis. The non linear relationships for L* a* and b* are the same as 

Figure 4.1. vector representation of color 
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for CIE XYZ (1931) and is another attempt to linearise the perceptibility of unit vector 

color differences.  Again, it is in non-linear, and the conversions are still reversible. 

Colouring information is referred to the color of the white point of the system. The non 

linear relationships for L* a* and b* are the same as for CIELUV and are intended to 

mimic the logarithmic response of the eye. 

The color space used in the initialization is of great importance because the shapes and 

distribution of clusters depend on the color space (Tominaga, 1992).  Typically, raw color 

data are expressed in the RGB color space. However, RGB is not a perceptually uniform 

space. The CIELAB color space, adopted as an international standard in the 1970’s, 

provides perceptually uniform space, which means the Euclidean distance between two 

color points in the CIELAB color space corresponds to the perceptual difference between 

the two colors by the human vision system (Wyszecki and Stiles, 2000). This property 

has made the CIELAB color space to be attractive and useful for color analysis, and the 

CIELAB color space has shown its superior performance than other color spaces in many 

color image applications (Paschos, 2001; Gong et al., 1998; Chang and Wang, 1996; Li 

and Yuen, 2000; Shafarenko et al., 1998). Based on these reports, the CIELAB color 

apace has been chosen for color clustering. The transformation from RGB to CIELAB is 

performed as followed. 

The L parameter has a good correlation with perceived lightness. The LAB cube  root 

color coordinate system was developed to provide a computationally simple measure  of 

color in agreement with Munsell color system[58]. The color coordinates are 
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where Xo, Yo, Zo are the tristimulus values for  the reference white and X, Y, Z are the 

tristimulus value of the image pixels.  We approximate these tristimulus values from 

(RGB) by the linear transformation: 

 

0.607 0.174 0.200
0.299 0.587 0.114
0.000 0.066 1.116

X R
Y G
Z B

     
          
     
     

                                                                             (4.4) 

 

The reference white is (Ro,Go,Bo) = (255,255,255). 

Basically, ‘L’ is correlated with brightness, ‘A’ approximates   redness - greenness, and 

‘B’ with yellow – blueness. These coordinates are used to construct a Cartesian color 

space where the Euclidean distance is used that is, 

 
2 2 2* * * *

abE L a b                                                                                                (4.5) 

 

4.3 Fuzzy c-means Algorithm 
Clustering is a process for classifying objects or patterns in such a way that samples of 

the same group are more similar to one another than samples belonging to different 

groups. Many clustering strategies have been used, such as the hard clustering scheme 

and the fuzzy clustering scheme, each of which has its own special characteristics. The 

conventional hard clustering method restricts each point of the data set to exclusively just 

one cluster. As a consequence, with this approach the segmentation results are often very 

crisp, i.e., each pixel of the image belong to exactly just one class. However, in many real 

situations, for images, issues such as limited spatial resolution, poor contrast, overlapping 

intensities, noise and intensity inhomogeneities variations make this hard (crisp) 

segmentation a difficult task. Due to this fuzzy set theory was proposed, which produced 

the idea of partial membership of belonging described by a membership function.   

Fuzzy clustering as a soft segmentation method has been widely studied and successfully 

applied to image segmentation [59-63].The fuzzy c-means (FCM) algorithm, proposed by 

Dunn and generalized by Bezdek[64],  has the function to describe the fuzzy 
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classification for the pixels by calculating the fuzzy membership value. Fuzzy c-means 

algorithm is a data clustering algorithm in which each data point belongs to a cluster to a 

degree specified by a membership grade. It minimizes an objective function, with respect 

to fuzzy membership U, and set of cluster centroids V   

2

1 1
(U , V ) ( ) ( , )

n c
m

ik k i
k i

J u d x v
 

                                                             (4.6) 

  where    

        

 
c -  the number of cluster centers or data subsets 

m - the weighting exponents, 1 for ‘hard’ clustering, and increasing for fuzzier      

clustering; 
2 ( , )k id x v - the distance measure between object xk and cluster center vi; 

n  -  the total number of  pixels in image; 

uik -  the fuzzy membership value of pixel k in cluster i; 

vi -  the cluster center for subset i in feature space; 

U – the fuzzy c-partition 

The above fuzzy c-mean algorithm uses iterative operation to get U and V and finally 

minimizes the objective function. The algorithm is achieved as following: 

1.  Fix the number of cluster c, 2<c<n; 

       Fix m, 1<m<  

2.  Initialize the fuzzy c-partition [0]U ; 

3.   Assume the steps b = 1, 2 ,…. ; 

4.   Calculate the c cluster centers { (b)
iV } with  (b)U , the   cluster center for cluster i  is . 
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m
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5.  Update (b)U , calculate the membership (b+1)U : 

 

(a)  Calculate Ik and Tk   

k

ik i k

k k

I {i     1<i<c};
d  abs(x  - v )  0 ;
T  {1,2, ...,c} - I  ; 


 


 

  

(b)  For data set k, calculate the new membership values: 

 

k

ik 2
1

c ik

jk
j = 1

(i)  if   I  = 0
1     u  =
d

 d

m 
  
 

                                                                                              (4.8) 
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I
i I

(ii) else
      u = 0,   i  T   and
      1u



 


 

 

6.  Compare (b)U  and  (b+1)U  in a convenient matrix norm, 

 If  (b) (b+1)
LU U    , stop; 

Otherwise, set b = b+1 and go to step 4.  

Here (0)U  is the initial partition and can be randomly set or by an approximation method. 

L  is the convergence threshold. The introduction of the term m makes the segmentation 

flexible, m = 1 for ‘hard’ clustering. The increase of the values of m stresses the fuzzy 

properties. The FCM process is guaranteed to converge for m >1.  

 
4.4  Segmentation Method: 
The Segmentation process consists of several steps. The first step is the conversion of the 

input image to chosen feature space, which may depend on the clustering method used. In 
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our case the input image is converted from RGB colour space to LAB colour space. The 

L, A and B values are used as input to the clustering method.  

Next step after the conversion of input image color is the application of clustering 

algorithm. In our case we use fuzzy c- mean clustering as described in the section above.  

After these two steps the segmentation process is followed as described: 

Assumptions: Image transformed into feature space, number of clusters is c, stop 

condition is  , fuzziness parameter m = 2. 

Step 1: Convert the given RGB image into desired feature space (LAB colour space in 

this case). 

Step 2: Cluster image in feature space, with given conditions: number of clusters is c, 

fuzziness index is m=2 and stop condition is .  

Step 3: The FCM iteration is stopped when the maximum difference between two 

objective functions at two successive iterations is less than or equal to that of a fixed 

value. 

Step 4:   For every pixel I(r,c) of image I, where ‘r’ is number of row and ‘ c’ is number 

of column, the following steps are followed. 

Step 4.1: All the pixels were considered belonging to one of the predetermined regions or 

clusters. The number of cluster should be chosen carefully.            

Step 4.2: The defuzzification process [23] takes place in order to convert the fuzzy 

partition matrix U to crisp partition. A number of methods have been developed to 

defuzzify the partition matrix, among which the maximum membership procedure is the 

most important. The procedure assigns the object k to the class c with the highest 

membership  

arg {max( )}k i ikc u                                                                                                   (4.9)              

Step 4.3: The decision on how to assign the pixel I(i,j) to various clusters was based on 

wining iku   having highest value among the clusters. 

 Step 5:  The pixel I(i,j) would be painted the same colour as the cluster to which it 

belongs the most. 
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4.5  Image segmentation under uneven illumination of 

objects 
Image degradation is inevitable during the transmission and conversion of images. For 

example, the quality of an image shot by a camera is sometimes low due to the distortion 

of camera’s optics system, low light conditions, the relative motion of the photographed 

object and the camera, the environmental change and the random disturbance. If we 

perform clustering operation on such images we are likely to get wrong classification of 

objects present in the image due to distortion of the image. Hence an enhancement 

operation has to be carried out as a preprocessing step on such images before clustering 

operation is performed on them. The enhanced image avoids wrong classification to great 

extent. The image enhancement is an important technique that can improve the quality of 

the degraded image and provide some interested image features selectively. Image 

enhancement algorithms have been designed to process a given image so the results are 

better than the original image for their applications.  

When the objective is to improve perceptual aspects, desirable image enhancement can 

be performed by the contrast and dynamic range modification.   

Processing techniques for image enhancement can be classified into spatially uniform 

operators and spatially non-uniform operators. Linear contrast stretch, histogram 

equalization are two of the most widely used spatially uniform technique. Adaptive 

histogram-equalization (AHE) [67], contrast-limited adaptive histogram equalization 

(CLAHE) [68] belongs to the second class of image-contrast enhancement methods. 

While the spatially uniform methods use a transformation applied to all the pixels of the 

image, the later methods use an input–output transformation that varies adaptively with 

the local characteristics of the image. Spatially non-uniform operators usually provide a 

better performance than spatially uniform operators. The linear contrast-stretch method 

can hardly enhance all parts of the image simultaneously. Histogram equalization tends to 

over-enhance the image contrast if there are high peaks in the histogram. Adaptive 

histogram equalization applies locally varying gray-scale transformation each small 

region (block) of the image, thus requiring the determination of the block size. An 

improvement on this technique is represented by the CLAHE method. In contrast-limited 
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adaptive histogram equalization, the local contrast-gain is limited by restricting the height 

of local histograms. This method provides for local enhancement of region in an image. It 

reduces undesired noise amplification and reduces boundary artefacts. 

 
4.5.1.  Contrast limited adaptive histogram equalization 
Contrast Limited Adaptive Histogram Equalization (CLAHE) is an extension to Adaptive 

Histogram Equalization (AHE) which limits the maximum contrast adjustment that can 

be made to any local histogram. This limitation is useful so that the resulting image does 

not become too noisy (which is a problem with AHE). The limitation is performed by 

allowing a set maximum number of pixels within each gray level associated with a local 

histogram. After clipping the histogram, the pixels that were clipped are equally 

redistributed over the whole histogram to keep the whole histogram count unchanged. It 

operates on small data regions (tiles) rather than the entire image. Each tiles contrast is 

enhanced so that the histogram of each output region approximately matches the 

specified histogram (uniform distribution in this case).  

 
4.5.2   Segmentation method 

The algorithm developed is a contrast limited adaptive histogram equalization based 

FCM. Hence, it is called CLAHEFCM.  The segmentation process consists of several 

steps. The first step is the conversion of the input image to chosen feature space, which 

may depend on the clustering method used. In our case the input image is converted from 

RGB color space to LAB color space. The L, A and B values are used as input to the 

clustering method.  

Next step after the conversion of input image color space is the application of 

enhancement method, followed by clustering algorithm. In our case we use fuzzy c- mean 

clustering as described in the section above.  

After these two steps the segmentation process is followed as described: 

Assumptions: Image transformed into feature space, number of clusters is c, stop 

condition is , fuzziness parameter m = 2. 

Step 1: Covert the given RGB image into desired feature space (LAB color space in this 

case). 
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Step 2: Next we normalize the brightness layer L, by dividing by 100.  After that we 

apply the contrast limited adaptive histogram enhancement (CLAHE) algorithm to the 

luminosity layer.  

Rest of the steps are same as the step 3- step 5 in section 4.4. 

 

The simulation results and conclusion of the chapter are in chapter 6. 
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Preview 
Fuzzy c-means clustering is an unsupervised technique that has been successfully applied 

to feature analysis, clustering, and classifier designs in fields such as astronomy, geology, 

medical imaging, target recognition, and image segmentation. An image can be 

represented in various feature spaces, and the FCM algorithm classifies the image by 

grouping similar data points in the feature space into clusters. This clustering is achieved 

by iteratively minimizing a cost function that is dependent on the distance of the pixels to 

the cluster centers in the feature domain. 

The pixels on an image are highly correlated, i.e. the pixels in the immediate 

neighbourhood posses nearly the same feature data. Therefore, the spatial relationship of 

neighbouring pixels is an important characteristic that can be of great aid in imaging 

segmentation. General boundary detection techniques have taken advantage of this spatial 

information for image segmentation. However, the conventional FCM does not fully 

utilize this spatial information.  
 

5 
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5.1  FCM-Related Extensions  

The most direct way to compensate for the drawback of FCM is to smooth the image 

before segmentation. However, standard smoothing filters lead to a loss of important 

image details. Various extensions of the FCM algorithm with attempt to accommodate 

noise have been presented by many researchers. Tolias and Panas post-processed the 

membership function to smooth the noise effect [69]. Acton and Mukherjee incorporated 

multiscale information to enforce spatial constraints [70].   

The most popular approach for increasing the robustness of FCM to noise is to modify 

the objective function directly. Dave proposed the idea of a noise cluster to deal with 

noisy clustering data in the approach known as NC [71]. Noise is effectively clustered 

into a separate cluster which is unique from from signal clusters. However, it is not 

suitable for image segmentation, since noisy pixels should not be separated from other 

pixels, but assigned to the most appropriate clusters in order to reduce the effect of noise. 

 Another similar method, developed by Krishnapuram and Keller [72], is called 

possibilistic c-means (PCM), which interprets clustering as a possibilistic partition. 

Instead of having one term int the objective function, a second term is included, forcing 

the membership to be as high as possible without a maximum limit constraint of one. 

However, it caused clustering being stuck in one or two clusters.  

Pedrycz and Waleztzky [73] took advantage of the available classified information and 

actively applied it as a part of their optimization procedures. Ahmed et al. [22] modified 

the objective function of the standard FCM by introducing a term that allowed the 

labelling of a pixel to be influenced by the labels in its immediate neighbourhood. Zhang 

Yang , Fu-lai Chuang et al.[75] developed a robust fuzzy clustering- based segmentation 

method for noisy images. A robust modified FCM in the sense of a novel objective 

function is derived. The applicability of the proposed modified FCM is also explored.  

 Jiayin Kang et al.[25] proposed another such modified FCM where objective function 

was modified by incorporating the spatial neighbourhood information into the standard 

FCM algorithm. Y. Yang et al. proposed a novel penalized fuzzy c-means (PFCM) 

algorithm for image segmentation, the penalty term acts as a regularizer in the algorithm 

which is inspired by neighbourhood maximization (NEM) algorithm and is modified in 

order to satisfy criterion of FCM algorithm [23].  
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S.Shen,W.Sandham et al. [24] presented an algorithm called IFCM. A neighbourhood 

attraction, which is dependent on relative location and features of neighbouring pixels, is 

used to improve the segmentation results. This method changed the distance function 

used in FCM which is the distance between pixel intensity and the cluster intensities and 

a neural network optimization technique was used to adjust parameters in the modified 

distance function. But problem with this method is that it requires an extra neural 

network optimization step for adjusting parameters of the distance function. Hence, this 

makes the algorithm complex.  Keh-Shih Chuang, Hong-Long Tzeng, et al. [74] 

presented a fuzzy c-means (FCM) algorithm that incorporated spatial information into the 

membership function for clustering, and the membership weighting of each cluster is 

altered after the cluster distribution in the neighbourhood is considered. The problem 

with this method is that it does not produce smooth edges. 

All these methods except the last two methods inevitably introduce computation issues, 

by modifying most equations along with the modification of the objective function, and 

have to lose the continuity from FCM, which is well-realized with many types of 

software, such as MATLAB.   

 
5.2 Development of algorithm for incorporating spatial 

relationship of neighbouring pixels into FCM 
5.2.1    Method 

This proposed method is based on the FCM incorporating spatial function [74] proposed 

by K-S Chuang et al. One of the important characteristics of an image is that its 

neighbouring pixels are highly correlated to each other. The probability that a pixel 

neighbourhood will belong to same cluster is very high.  This property of the pixels is 

quite helpful when the image is affected by noise. As the spatial relationship among 

pixels is not considered in the standard FCM algorithm a spatial function is introduced to 

take into account the neighborhood property. 

For finding the spatial function, the membership information of each pixel of a cluster is 

converted to its spatial domain to get the complete image. Then we calculate the spatial 

function, using the following definition 
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( )k

M

ik ij
k NB x

s u


                                                                                                      (5.1) 

 

where ( )kNB x  represents a square window centered on pixel kx  (1<k<n, where n is the 

total number of pixels in the image) in the spatial domain image containing the 

membership information of each pixel to a particular cluster ‘i ‘.  A 5x5 window was 

used for this work. Just like the membership function uij  the spatial function sik gives the 

membership of the kth pixel to a particular cluster ‘i ‘. 

The spatial function is modified in order to take into account the properties of a local 

neighborhood in a way that the membership of each pixel results as a weighted sum of 

the pixels in the 5x5 neighborhood. This enables smoothening of the edges or boundaries 

of objects present in an image. Assuming M as the 5x5 neighborhood of the pixel j, the 

membership function to a cluster i is modified as follows: 

 

( )
25

ik ik
ik

h sh 
                                                                                                       (5.2) 

 

Hence the new algorithm developed is named Modified spatial fuzzy c means (MSFCM)           

 

The spatial function is then introduced in the membership function as follows: 
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                                                                                              (5.3)                                

 

where p and  q are parameters which control the relative importance of both functions. If 

the pixels in an image are not affected by noise then spatial function will only fortify the 
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original membership, and the clustering result remains unchanged. However, for a noisy 

pixel, this formula reduces the weight of a noisy cluster by the labels of its neighboring 

pixels.  As a result, misclassified pixels from noisy regions or spurious blobs can easily 

be corrected. 

The clustering is a two-pass process. In the first pass we use the standard FCM to 

calculate the membership value for each pixel. The membership value for each pixel to 

different clusters is then mapped to spatial domain and the spatial function is calculated 

from that. 

In the second pass, the FCM iteration proceeds with the new membership function that is 

incorporated with the spatial function. The iteration of spatial FCM algorithm stopped 

when the difference between the present and the previous objective function is less than 

or equal to a certain value ( 510 ).  

After the convergence, defuzzification is applied to assign each pixel to a specific cluster 

for which the membership is maximal.  

 
5.2.2   Segmentation method                                                                                        

The Segmentation process consists of several steps. The various steps involved in the 

method are shown in Fig. 5.1. The first step is the conversion of the input image to 

chosen feature space, which may depend on the clustering method used. In our case the 

input image is converted from RGB color space to LAB color space. The L, A and B 

values are used as input to the clustering method.. In our case we use fuzzy c- mean 

clustering as described in the section above.  

After these two steps the segmentation process is followed as described: 

Assumptions: Image transformed into feature space, number of clusters is c, stop 

condition is , fuzziness parameter m = 2. 

Step 1: Convert the given RGB image into desired feature space (LAB color space in this 

case). 

Step 2: Cluster image in feature space, with next conditions: number of clusters is c, 

fuzziness index is m=2 and stop condition is . 

Step 3: The membership information of each pixel is mapped to the spatial domain, and 

the spatial function is calculated.  
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Color image 
        + 
     Noise 

Convert image 
from RGB to 
L*a*b* color 
space 

Fuzzy clustering in 
L*a*b* domain and 
converting partition 
matrix to spatial 
domain 

Map initial 
clusters to 
image 
domain 

Apply 
defuzzification 
rule 

CL3: A set 
of color 
regions 

CL1 

CL2 

Input 

Output 

Find modified spatial 
function of the images 
in spatial domain and 
give it as input for FCM 

Fig. 5.1. Block diagram of the various steps used for 
segmentation using standard FCM along with input 
and output 

Step 4:  The new membership function is calculated using equation (4).  

Step 5: The FCM iteration proceeds with the new membership function. The iteration is 

stopped when the maximum difference between two objective functions, at two 

successive iterations, is less that a fixed value. 

The next steps are same as steps 4-5 in segmentation method of section 4.4 

 

 

 

 

 

 

 

 

 
The ‘hand’ image was divided into three clusters, the three clusters consists of the hand, 

green ring and the background. The membership function of each of these three clusters 

with respect to ‘A’and ‘B’ values of image pixels, calculated by standard FCM and  

proposed method called modified spatial FCM (MSFCM) is shown in Fig. 5.2.The 

membership function for both sFCM and proposed method are same.  
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          (b) 

 Fig. 5.2. (a) Membership function of first, second and third cluster with respect to a* values of 

image pixels using FCM. (b) Membership function of first, second and third cluster with 

respect to b* values of image pixels using FCM. (c) Membership function of first, second and 

third cluster with respect to b* values of image pixels using MSFCM. (d) Membership function 

 

          (a) 

  

          (c)                                                                                   (d)  
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5.3 Segmentation of noisy colour images using 

neighbourhood property of a digital image 
5.3.1     Method 
A new algorithm based on the IFCM (Improved Fuzzy c- means) [24] neighbourhood 

attraction is proposed.  The algorithm does not change the distance function of the FCM, 

hence avoiding an extra neural network optimization step for the adjusting parameters of 

the distance function; it is called Neighbourhood Attraction FCM (NAFCM). During 

clustering, each pixel attempts to attract its neighbouring pixels towards its own cluster. 

This neighbourhood attraction depends on two factors: the pixel intensities or feature 

attraction, and the spatial position of the neighbours or distance attraction, which also 

depends on neighbourhood structure. 

The first parameter, feature attraction, is given by the function 

1

1

S

i k j k
k

i j S

j k
k

u g
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g









                                                                                          (5.4)  

 

Where jkg  is the intensity difference between study pixel j and its neighbour pixel k. 

j k j kg x x               

iku is the membership of the neighboring pixel  k to the ith cluster, and S is the number of 

neighboring pixels. 

The distance attraction function is given by        
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The neighbourhood structure is of the form 

 2 2| 0 ( ) ( )j j k j kK k N a a b b Q                                                                       (5.6) 
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Where ( , ),( , )j j k ka b a b  denote the coordinates of the pixel j, k. Q is a constant, equal to  

2(L-1), and L is the level of the neighbourhood. Fig.5.7 shows the neighbourhood for 

different levels. We consider L =2. 

jkq  in (5) can be described as follows: 

2 2( ) ( )jk j k j kq a a b b                                                                               (5.7) 

 
After getting the functions Hij and Fij each of these matrixes are converted into spatial 

domain and perform the smoothing operation on them using averaging filters. This 

operation is done in order to reduce the effect of noise in the image.     
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( ) / 25ij ij ijf f m                                                                                                 (5.9) 

 

i jh  and i jf  are given as input to the  FCM algorithm. We take the number of cluster 

according to object of interest for a particular problem. 
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5.3.2  Segmentation method 
The Segmentation process consists of several steps. The first step is the conversion of the 

input image to LAB color space. Next step is finding the two attraction features for the 

image, followed by clustering algorithm. In our case we use fuzzy c- mean clustering as 

described in the section above.  

After these two steps the segmentation process is followed as described: 

Assumptions: Image transformed into feature space, number of clusters is c, stop 

condition is  , fuzziness parameter m = 2. 

Step 1:  Take the desired noisy colour image (Skin tumor images in this case) and convert 

the image to LAB color space. 

Step 2: Find the feature attraction and distance attraction function as defined by equation 

(5.4) and (5.5). 

Step 3: Convert the feature attraction and distance information into spatial domain, and 

perform smoothing operation using averaging filters on the image matrix formed in 

spatial domain. The smoothed images formed from the two matrixes are found by 

equation (5.8) and (5.9). 

Figure. 5.7. Neighborhood structure definitions. (A higher level includes pixels labeled as the number of 

the level and pixels in all lower levels). 
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Step 4:  The data from equation (5.8) and (5.9) are used as input for the FCM algorithm.  

Step 5: The FCM iteration is stopped when the maximum difference between two 

objective functions at two successive iterations is less than or equal to that of a fixed 

value. 

Rest of the steps are same as steps 4-5 in section 4.4. 

 

5.4    Segmentation by using morphological operator  
Apart from the segmentation method described in previous section for segmenting tumor 

images, morphological operators can also be used for segmentation. The results of 

applying morphological operators for segmentation after clustering is shown in figure 

6.40- figure 6.41. The steps involved for segmentation by using morphological operators 

are as follows. 

Step 1:  First the cluster images are converted to black and white images by thresholding 

and then the regions in the images are filled using morphological tool 

Step 2: Fill the holes (hole is an area of dark pixels surrounded by lighter pixels) inside 

the region of the black and white cluster images. 

Step 3: Perform morphological opening on the image with a structuring element (square 

mask of size 3x3). This is done to smooth the contour of the object, break narrow 

isthumuses and eliminates thin protrusions. 

Step 4:  Remove from the binary segmented imgaes all connected components (objects) 

that have less than 200 pixels. We select 200 pixels as it is sufficient to remove object 

which do not belong to region of interest, i.e the affected region. 

Step 5: Finally find the perimeter of the objects in binary image and overlay them on the 

original image.  

 
 

 

 

 



Chapter 5 Development of algorithm for segmentation by incorporating spatial property of pixels in  
fuzzy clustering 

 

           
 

70 

5.5 Application of NAFCM algorithm in segmentation of 

melanoma images: 
Segmentation of Melanoma images using the above algorithm: 

Melanoma, the most serious type of skin cancer, develops in the cells that produce 

melanin — the pigment that gives the skin its color. Melanoma can also form in eyes and, 

rarely, in internal organs, such as intestines.  

The exact cause of all melanomas isn't clear, but exposure to ultraviolet (UV) radiation 

from sunlight or tanning lamps and beds greatly increase risk of developing melanoma.  

Avoiding excessive sun exposure can prevent many melanomas. And making sure you 

know the warning signs of skin cancer can help ensure that cancerous changes are 

detected and treated before they have a chance to spread. Melanoma can be successfully 

treated if it is caught in early stages.  

The first melanoma symptoms often are: a change in an existing mole, or the 

development of a new, unusual-looking growth on the skin. But melanoma can also occur 

in otherwise normal looking skin. 

Unusual moles that may indicate melanoma: 

Characteristics of unusual mole that may indicate melanoma or other skin cancer follow 

the A-B-C-D guide developed by the American Academy of Dermatology: 

    A is for asymmetrical shape. Look for moles of irregular shapes, such as two very 

different-looking halves. 

    B is for irregular border. Look for moles irregular, notched or scalloped borders – the 

characteristics of melanoma. 

    C is for changes in color. Look for growths that have many colors or an uneven 

distribution of color. 

    D is for diameter. Look for new growth in a mole larger than about ¼ inch (6 mm.). 

For every symptom listed above, we take one example into consideration. The 

examination of growth on skin is done automatically by use of the proposed NAFCM 

algorithm. The simulation results are present in Fig. 6.32-Fig. 6.35. 
The simulation results and conclusion of the chapter are in chapter 6. 
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CHAPTER 6 

 

 

 

 
 

Simulation Results and 
Discussion 
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Preview 
 

The simulation results of all the chapters and their conclusion is presented in the chapter. 

The image metrics like partition coefficient Vpc, partition entropy Vpe and the percentage 

of misclassified pixels are used in the chapter to compare between the various existing 

and proposed algorithms. Extensive qualitative and quantitative analysis is done for 

comparing the clustering and segmentation results obtained using the different 

algorithms, under increasing noise condition. The algorithms are tested on synthetic 

image, real world image and biomedical image. 

 
6.1 Simulation Results  
The algorithms are implemented on Matlab 7.0 (The Mathworks Inc.). The processesor 

used is a Pentium IV core 2 duo processor, 2.4Ghz (clock), 2GB (RAM), Windows vista 

64 bit operating system. 
Fig. 6.1(a) is an infrared image of an aluminium weld with porosity or crack. Fig 6.1(b)-

(d) shows the result of applying region growing for segmentation of the crack in the weld. 

6 
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Fig. 6.2 shows a scenery image and the result of applying region growing for segmenting 

a particular field region. Figure 6.3 shows the result of applying region split and merge 

on the weld crack image of Fig. 6.1(a). Fig. 6.4(a) shows image of Saturn planet with a 

distant isolated star near its right bottom side. Fig. 6.4(b) shows the result of applying a 

point detector mask shown in Fig.2.3. Fig. 6.5(a) shows a pill set image. Fig. 6.5(b)-(c) is 

the result of running a horizontal mask (Fig.2.4) on the image and thresholding it. Fig 6.6 

(a) shows lena image and Fig.6.6(b)-(f) shows the result of applying Roberts, Prewitt’s, 

Sobel, LoG and Canny edge detector. 

 
The FIS based edge detection described in section 3.1 is tested on different images, its 

performance being compared to that of the other derivative based popular edge detectors 

like, Sobel operator and Canny edge detector. Fig. 6.7(a) shows a block image which has 

varying gray levels on its two faces that are visible. Fig.6.7 (b)-(d) shows the result of 

applying Sobel and Canny edge detector and FIS system respectively. Fig, 6.8(a) depicts 

the image of digital cameras calibration pattern, in which there is a high contrast 

variation. Fig.6.8 (b)-(d) shows the result of applying Sobel and Canny edge detector and 

FIS system respectively. Fig. 6.9(a) shows a 230 325 8 bits standard image that is 

used for the calibration in the visual system. Fig.6.9 (b)-(d) shows the result of applying 

Sobel and Canny edge detector and FIS system respectively. The edge detection 

performance of the methods Sobel operator, Canny edge detector and Fuzzy Inference 

system are compared in terms of the image quality. 

 

The FMFED algorithm described above has been tested on some test images and its 

qualitative performance is compared to two popular edge detectors – Sobel and Canny 

edge detectors [57]. The fuzzy enhancement operator is tuned to allow good results while 

extracting edges of the image. For the images considered here the value of the fuzzy 

enhancement operator is mostly varied between the ranges 0.5 to 1. The first test image 

(Fig. 6.10) considered for comparison of the simulation results is a bird image, the second 

image (Fig. 6.11) is a tire image where the object of interest and the background have 

same gray level values. The third test image (Fig. 6.12) is a MRI image and the fourth 

(Fig. 6.13) and fifth (Fig. 6.14) test images are X-ray images. The qualitative comparison 
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between Sobel edge detector, Canny edge detector and the FIS algorithm on the different 

test images is shown in Fig. 6.10(b)-(d) to Fig. 6.14 (b)-(d). 

The results of applying morphological operators described in the section above is shown 

in Fig. 6.15 .The figure shows three edge detected image by applying  FMFED algorithm 

in Fig. 6.15(a)-(c). The result of applying morphological operators is shown in figure 

6.15(d)-(f). By observing the results it can be said that morphological operators are not 

the best way to fill the gaps in the edge images and hence there is scope for applying 

some other edge linking algorithm. 

 

The FCM based segmentation described in chapter 4, section 4.4 has been tested on some 

colour test images in LAB and their results are shown.  The number of cluster was chosen 

in such a manner that we are able to segment the region of interest based on color 

completely from the image provided. Selecting large values for number of cluster m, 

would lead to not so good generalization of the image. If too low values for the number 

of cluster are selected, the neighbourhood colours may be confused. Fig. 6.16 and Fig. 

6.17, show comparison between segmentation in RGB color space and LAB color space. 

The quantitative comparison between the two color spaces is done in Table 6.1 and Table 

6.2. The effect on partition coefficient Vpc and partition entropy Vpe for increasing noise 

has been studied in these tables.  

The images considered as test images  for applying FCM algorithm  are shown in 

Fig.6.18 (a) – Fig.6.21 (a). Fig.6 .18(a) is an image of some vegetation in desert area. Fig 

6.18(b)-(d) shows the two clusters formed by using c=2 and the segmented image 

respectively. Fig. 6.19(a) is the image of an woman. Fig 6.19(b)-(e) shows the three 

clusters formed by choosing selecting c = 3 and the segmented image. Fig. 6.20(a) is a 

biomedical image showing hyper pigmentation of skin of an old lady. The cheek region 

shows dark patches due to hyperpigmentation. Fig 6.20(b)-(d) shows the two clusters 

formed by selecting c=2 and the segmented image. Fig. 6.21(a) is an image containing a 

bird flying in sky. Fig 6.21(b)-(d) shows the two clusters formed by selecting c=2 and the 

segmented image. 

The CLAHE based FCM algorithm described in section 4.6 has been tested on some 

color test images in LAB color space and their results are shown in Fig 6.22-6.25.  Fig. 
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6.22(a) is a close aerial view of a landscape, which has a water body along with some dry 

areas. Fig 6.22(b) shows the enhanced image. Fig 6.22(c)-(d) shows the segmentation 

results for Fig. 6.22(a) and Fig. 6.22(b) respectively. Fig. 6.23(a) is the image of a 

person’s cheek region suffering from hyper-pigmentation. Fig. 6.23(b) is the enhanced 

image. Fig 6.23(c)-(d) shows the segmentation results for Fig. 6.22(a) and Fig. 6.22(b) 

respectively. Figure 6.24(a) is the image of a woman. Fig. 6.24(b) is the enhanced image. 

Fig 6.24(c)-(d) shows the segmentation results for Fig. 6.24(a) and Fig. 6.24(b) 

respectively. Fig. 6.25(a) is the image of a stork bird in a field. Fig. 6.25(b) is the 

enhanced image. Fig 6.25(c)-(d) shows the segmentation results for Fig. 6.25(a) and Fig. 

6.25(b) respectively. 

 
The MSFCM algorithm described in section 5.2 and the NAFCM algorithm described in 

section 5.3 has been tested in LAB color space on a synthetic image, a grayscale image 

and some color test images, and their results are shown in Fig. 6.26-6.35. 

A synthetic image shown in fig. 6.26(a) is used to show how the three classes of the 

image, having intensity values 0, 255 and 128, are affected while clustering the image 

using various clustering method such as FCM, sFCM, MSFCM, and NAFCM when the 

noise is increased from (-40,40) to (-90,90). The effect of increasing noise is shown in the 

Fig. 6.26- Fig. 6.28. From the images in Fig.6.26 - Fig.6.28, the percentage of 

misclassified pixels in each three clusters present in the synthetic image is calculated.  

Fig. 6.29 shows the comparison of segmentation results of region based segmentation, 

edge based segmentation and FCM clustering based segmentation under a low noise 

varying between (-25,25) on a grayscale image(weld crack image).  

The color images considered as test images are shown in Fig. 6.20- Fig.6.35. Fig. 6.30(a) 

shows an woman’s image with a uniform random noise with magnitude varying between 

(-35,35), in this image our region of interest is the skin color. Fig. 6.30(b)-6.30(e) shows 

the output of applying FCM, sFCM, MSFCM and NAFCM respectively on the input 

image. Fig. 6.30(f)-6.30(i) are the segmented images after applying FCM, sFCM, 

MSFCM and NAFCM algorithm respectively. The second test image in Fig.6.31(a) is the 

aerial view of a cross-road with a uniform random noise varying between (-35,35). The 

clustering result of applying FCM,sFCM, MSFCM and NAFCM is shown in Fig. 
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6.31(b)-6.31(e) respectively. Fig.6.31 (f)-(i) shows the segmented result of the four cases 

respectively. The test image in Fig.6.32 (a) is that of a human hand with a huge green 

color plastic ring. The image is corrupted with a noise of (-45,45). The green color plastic 

ring is our object of interest in this image. The segmentation result of all the algorithms 

has been shown in fig.6.32 (f)-6.32(i).The test image shown in Fig. 6.33 (a) is that of 

bacteria with a noise of (-90,90). The bacteria image is separated using all the four 

methods and the segmentation results are shown in Fig 6.31(f)-(i). The test image in Fig. 

6.33(a) is image of a stork bird in a field with a noise of (-60,60).The image is first 

enhance using CLAHE algorithm as in Fig.6.25(b). The bird is separated from its 

background (field) using all the four clustering methods and the results are shown in Fig. 

6.30(f)-(i).The test image in Fig. 6.35(a) is that of a woman. The skin color is clustered 

using the four algorithms under a random noise varying between (-90,90). The image is 

enhanced first using CLAHE algorithm as in Fig.6.24 (b) and then the four clustering 

algorithms are applied in Fig. 6.35(b)-6.35(e). The segmentation results are shown in Fig. 

6.35(f)-6.35(i).  

Fig. 6.36-Fig 6.39 shows an application of the NAFCM algorithm in detecting the tumor 

growth by observing tumor images showing different symptoms as discussed in section 

5.2.4. Fig. 6.36(b) shows an example of asymmetrical shape of the mole with a noise of (-

60,60)  in which one half is different from the other may indicate melanoma. Here, the 

left side of the mole is dark and a little raised, whereas the right side is lighter in color 

and flat. Fig. 6.36(c)-(d) are the results of using FCM for clustering of the image. The 

clusters formed by using NAFCM algorithm is shown in Fig.6.36(g)- 6.36(i). Fig. 6.37(b) 

is an example of a growth with irregular border having a noise of (-60,60). The clusters 

formed by using NAFCM algorithm is shown in Fig.6.36(f)- 6.36(g). Fig. 6.38(b) is an 

example of changes in colour of a mole with a noise of (-90,90).Fig.6.38(c)-6.38(l) shows 

the various clusters and segmented image using FCM and NAFCM respectively. 

Fig.6.39(b) is a case where we take the diameter of the mole into consideration to know 

whether it can develop into skin cancer. Here the image has a noise of (-90,90). 

Fig.6.39(c)-6.39(h) shows the various clusters and segmented image using FCM and 

NAFCM respectively. 
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Table 6.3 shows the quantitative analysis of all the algorithms. A high Vpc and a low Vpe 

gives good clustering result. Table 6.4 shows the percentage of misclassified pixels in 

each cluster for increasing noise condition. 

 

Fig. 6.39 and Fig 6.40 shows the result of applying morphological operators for 

segmentation of tumor images as described in section 5.2.3. Table 6.5 shows that 

NAFCM gives good clusters (high Vpc and low Vpe) while using it for segmentation of 

melanoma images. 

 

6.2 Discussion 
Two examples for region growing have been shown in Fig 6.1 and Fig 6.2. In the first 

case, Fig. 6.1, the seed point under consideration is single pixel intensity. In the second 

case, Fig. 6.2, an array of seed points has been considered, where pixels are added to a 

region if any of the pixels in its four neighbourhood satisfies a predefined condition. The 

first test image is an infrared image of an aluminium weld with porosity or crack. A 

threshold value of 65 and pixel intensity of 255(brightest pixels signify crack) are taken 

as condition for region growing. The second test image is a scenery image. The region is 

iteratively grown by comparing all unallocated neighbouring pixels to the region.The 

distance between a pixel's intensity value and the region's mean,is used as a measure of 

similarity. The pixel with the smallest distance measured this way is allocated to the 

respective region.This process stops when the intensity difference between region mean 

and new pixel become larger than a certain threshold.Region maximum distance is taken 

as 0.3. Figure 6.3 shows how the weld crack is segmented by using region split and 

merge with a standard deviation greater than 10 and mean intensity greater than 15. In 

Fig. 6.4 (b) it is observed that we are able to detect the isolated star using point detector 

mask. In Fig. 6.5(b)-(c) it is observed that the horizontal lines in the image are easily 

recovered. By observing Fig 6.6(b)-(f) it can be said that, Canny operator performs the 

best in detecting all edges, but the problem with it is that it gives false edges also. The 

Canny edge detector also requires the set of two threshold every time by the user. 
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The FIS based edge detection described in section 3.1 is tested with different images, its 

performance being compared to that of the other derivative based edge detectors like, 

Sobel operator and Canny edge detector. It is observed in Fig. 6.7 that the Sobel operator 

does not allow edges to be detected in the region where the transition from high gray 

level values of image pixels to low gray level values of image pixels is blurred. The 

Canny edge detector is able to detect all edges but it also gives some false edges along 

with the true edges. The FIS system in turn, allows edges to be almost detected even in 

the low contrast regions without the output image being much affected by noise. But still 

it is unable to detect true edge completely. In case of Fig. 6.8 we observe that again the 

Sobel operator is not able to detect edges in the low contrast region. The Canny edge 

detctor is able to detect some edge pixels in the low contrast regions of the image but it is 

unable to detect any eges in high contrast region. The FIS system is able to detect edge 

pixels in the low contrast region and some pixels even in the high contrast regions.In Fig. 

6.9 it is seen that the original image is quite blurred in nature. The Sobel edge detector is 

again unable to detect edges in the regions where the image starts getting more blurred. 

The Canny edge detector is the best performer here as it detects edges even in the blurred 

region, even though it has a disadvantage of detecting false edges. 

 
The FMFED algorithm described above has been tested on some test images and its 

qualitative performance is compared to two popular edge detectors – Sobel and Canny 

edge detectors[57]. By the visual comparison of all the algorithms results Fig. 6.10- 6.14 

(b-d), it is observed that the sobel edge detector operator performs the worst among all as 

it is unable to detect true edge pixels in certain areas. The Canny edge detector on the 

other hand is able to detect all the edge pixels but the problem with this method is that it 

detects false edges too. These false edges give wrong information about the original 

objects approximate shape. False edges are also a liability in cases where edge detection 

is used for image compression. In case of all test images considered here it is seen that we 

get too many edge pixels in the cases where Canny edge detector is applied to the original 

image. Whereas, when Sobel operator is applied to the same images, certain important 

edge information has been lost. The FMFED algorithm is a good. By observing the result 

of applying morphological operators on the edge detcted images [Fig. 6.15(a)-6.15(c)] 
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shown in Fig. 6.15(d)-6.15(f), it can be said that morphological operators are not the best 

way to fill the gaps in the edge images and hence there is scope for applying some other 

edge linking algorithm. 

The FCM based segmentation described in chapter 4, section 4.4 has been tested on some 

colour test images in LAB color space and their results are discussed here.  Apart from 

the reason that CIELAB color space provides perceptually uniform space, it is also 

observed that using RGB color space the clusters that are formed are not correct as shown 

in Fig. 6.16 and Fig. 6.17, here comparison is made between segmentation in RGB color 

space and LAB color space. The same results are proved by observing quantitative 

comparison between the two color space is done in Table 6.1 and Table 6.2 as the LAB 

color space shows high Vpc and low Vpe value (condition for good clustering). 

The images considered as test images for applying FCM algorithm are shown in Fig.6.18 

(a) – Fig.6.21 (a). Fig.6.18(a) is an image of some vegetation in desert area. Fig. 6.18(b)-

(d) by using just c=2, the sand and the green vegetation has been segmented 

satisfactorily. Figure 6.19(a) is the image of a women, here we want to segment the skin 

color, which can be done easily by choosing selecting c = 3. Fig. 6.20(a) is a biomedical 

image showing hyper pigmentation of skin of an old lady. The cheek region shows dark 

patches due to hyperpigmentation. By selecting c=2, the affected skin which is brown or 

dark in color is separated from the pink skin which is unaffected by hyperpigmentation. 

Fig. 6.21(a) is an image containing a bird flying in sky. Selecting c = 2 we are able to 

separate the bird from the sky. 

 

The CLAHE based FCM algorithm described in section 4.6 has been testedin LAB color 

space on some color test images and their results are discussed.  The CLAHE algorithm is 

applied only to the luminosity layer L. This is because the enhancement of the image 

depends on the brightness level of the image pixels. The images considered as test images 

here are shown in Fig 6.22-6.25(a). Fig. 6.22(a) is a close aerial view of a landscape, 

which has a water body along with some dry areas. Taking c=3, segments the water area 

(dark blue color in the segmented image) from the dry area. Figure 6.23(a) is the image of 

a person’s cheek region suffering from hyper-pigmentation. The extent of affected skin 

(shown by dark blue color in the segmented image) is known more accurately in the case 
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when segmentation is done after image enhancement. Figure 6.24(a) is the image of a 

woman. Taking the number of clusters c=3, the skin is correctly classified and segmented 

(yellow color in segmented image) after enhancement of the image. Fig. 6.25(a) is the 

image of a stork bird in a field. Taking the number of clusters c=3, the stork bird is 

almost correctly classified and segmented after enhancement of the image [sky blue color 

Fig. 6.25(d)].   
The MSFCM algorithm described in section 5.2 and the NAFCM algorithm described in 

section 5.3 have been tested on a synthetic image, a greyscale image, and some color test 

images in LAB color space, and their results are discussed. In Fig. 6.26- Fig. 6.28 it is 

observed that under low noise condition the best clusters are formed for MAFCM 

algorithms and NAFCM gives the best clusters under high noise condition. From the 

images in Fig.6.26 - Fig.6.28, the percentage of misclassified pixels in each three clusters 

present in the synthetic image is calculated.  

In Fig. 6.29 (weld crack image) it is observed that the proposed method MSFCM 

performs the best under low noise condition. The region growing based segmentation 

method completely fails to recognise regions under noisy conditions. The split and merge 

based segmentation too fails to identify the weld crack correctly. 

The color images considered as test images are shown in Fig. 6.30- Fig.6.35. In Fig. 6.30 

it is  observed that the edges of the clustered output are better preserved in case of the 

MSFCM algorithm as compared to the case when FCM, sFCM and NAFCM algorithms 

have been applied for a noise of (-35,35). In Fig.6.31 it is observed that the clustering 

result obtained by applying FCM gives the worst result as it is not able to reduce the 

noise present in the image during clustering operation for a noise of (-35,35). In case of 

Fig.6.31(d) we observe that the edges of inner circle and inner triangle of the road is 

smoother as compared to Fig.6.31(b), Fig. 6.31(c) and Fig. 6.31(e) where FCM, sFCM 

and NAFCM algorithms are applied. The test image in Fig.6.32 (a) is that of a human 

hand with a huge green color plastic ring. The image is corrupted with a noise of (-

45,45). The green color plastic ring is our object of interest in this image. The MSFCM 

algorithm is able to cluster the object of interest accurately and the edges are also 

preserved well as compared to the other algorithms. Fig. 6.33 (a) is that of bacteria with a 

noise of (-90,90). The bacteria is separated from its background using all the three 
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methods. It is observed that the NAFCM algorithm is able to retain the boundary of 

bacteria more effectively as compared to other methods. 

Fig. 6.34(a) is image of a stork bird in a field with a noise of (-60,60).The image is first 

enhanced using CLAHE algorithm as in Fig.6.25(b). The bird is separated from its 

background (field) using all the four clustering methods.  It is observed the edges are well 

preserved using NAFCM algorithm. 

Fig. 6.35(a) is that of a woman. The skin color is clustered using the four algorithms 

under a random noise varying between (-90,90). The image is enhanced first using 

CLAHE algorithm as in Fig.6.24(b) and then the four clustering algorithms are applied. 

The NAFCM algorithm is seen to perform the best clustering to segment the skin of the 

woman.  

 

 Fig. 6.36-Fig 6.39 shows an application of the NAFCM algorithm in detecting the tumor 

growth by observing tumor images showing different symptoms as discussed in section 

5.2.4. Fig. 6.36(b) shows an example of asymmetrical shape of the mole with a noise of (-

60,60)  in which one half is different from the other may indicate melanoma. Here, the 

left side of the mole is dark and a little raised, whereas the right side is lighter in color 

and flat. Fig. 6.36(c)-(d) are the results of using FCM for clustering of the image. By 

observing these images we cannot say anything about the irregularity of the growths 

shape. But using the NAFCM algorithm we observe in Fig.6.36(g) and Fig. 6.36(h) that 

the two halves of the growth are very different from each other hence it has chances of 

developing into melanoma. Fig. 6.37(b) is an example of a growth with irregular border 

having a noise of (-60,60). The irregular border can be very easily determined using 

proposed method as shown in Fig. 6.37(h). Fig. 6.38(b) is an example of changes in 

colour of a mole with a noise of (-90,90). The different colours present in the growth are 

not easily observed using naked eyes or standard FCM method of clustering, whereas by 

using the NAFCM method we observe more than two color or uneven distribution of 

color present in the affected area. Fig.6.39(b) is a case where we take the diameter of the 

mole into consideration to know whether it can develop into skin cancer. Here the image 

has a noise of (-90,90). For measuring the diameter of the growth the border of the 

growth has to be known accurately but because of noise it is impossible to know the 
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borders clearly. NAFCM algorithm is able to find almost accurate border even under high 

noise as shown in Fig. 6.39(h). Table 6.5 shows that NAFCM algorithm gives good 

clustering results (high Vpc and low Vpe) for high noise condition in melanoma image 

segmentation 
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(a)                                                                                                                                                                                      (b)                                                                                                                                                                                      

Figure 6.1   (a) Original infrared image of an aluminium metal casting with porosity 

(b) Histogram of figure 2.1(a).  (c) Seed points.   (d) Result of  region growing 

  
(c)                                                                          (d)                                                                                                             
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(c)                                                                                                                              

(a)                                                         (b)                                                                                                                                                                                      

Figure 6.2   (a) Original scenery image (b) Array of seed points (c) Result of region growing 
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Figure 6.3   (a) Image of crack in a weld (b) Result of region split and merge with a 
standard deviation >10 and mean intensity >15. 

(a)                                                                             (b)                                                                                                               

 

 
 
 

 

 

 

 
 

 

 

Figure 6.4 (a) Image of planet Saturn with a small isolated white star on the bottom right 

side. (b) Result of point detection 

(a)                                                                                     (b)                                                                                         
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Figure 6.5. (a) Image of pill set  (b) Result of running a horizontal line detection mask through the image  (c) 

Result of thresholding fig. (b) with mean of maximum and minimum value of pixels 

 
    (a)                                                           (b)                                                         (c) 

 

 

 

 

  

 
 

 

  

                    (a)                                                              (b)                                                            (c) 

                     (d)                                                             (e)                                                              (f) 

Figure  6.6    (a) Original lena image  (b) Output of Roberts edge detector  (c) Output of Prewitt edge detector  

(d) Output of Sobel detector (e) Output of Log detector  (f) Output of Canny edge detector 
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Figure 6.7: (a) A wooden block’s image. (b) Edges detected by the Sobel operator. 

(c) Edges detected by the  Canny edge detector (d) Edges detected by the studied 

FIS system. 

(a)                                                                 (b)                                                                                                        

(c)                                                                (d)                                              
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Figure 6.8: (a) A digital cameras calibration pattern’s 

image. (b) Edges detected by the Sobel operator . (c) 

Edges detected by Canny edge detector.  (d) Edges 

detected by the studied FIS system. 

(a)                                              (b)                                          (c)                                                               

(e)                                

  

 

Figure 6.9 (a) A digital cameras calibration pattern’s 

image. (b) Edges detected by the Sobel operator. (c) 

Edges detected by the Laplacian of Gaussian 

operator. (d) Edges detected by the studied FIS 

(a)                                       (b)                                              (c)                                                                                                 

(d)                                                                                          
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Figure 6.10. Bird image and result of three edge 

detection algorithms. (a)Bird image. (b) Sobel operator. 

(c) Canny operator. (d) FMFED algorithm. 

(a)                                                         (b)                                                        (c)                                                            

(d)                         

     

 
(a)                                                          (b)                                                        (c)                                                   

(d)                                                                                                        
 

Figure 6.11. Tire image and result of three edge 

detection algorithms. (a) Tire image. (b) Sobel operator. 

(c) Canny operator. (d) FMFED algorithm. 
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a  b   
c  d   
Figure 6.12. MRI brain image and results of three edge detection  algorithms. (a) MRI 

brain image. (b) Sobel operator . (c) Canny operator.  (d)  Proposed algorithm 
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 a  b 
 c  d   
 Figure 6.13. X-ray image of brain and results of  three edge 

detection algorithms. (a) X-ray image of brain. (b) Sobel 

operator. (c) Canny  operator. (d) FMFED algorithm. 

   

 

a  b 
b  d 
 Figure 6.14. Dental X-ray image and results of three edge 

detection algorithms. (a) Dental X-ray image with abscess. 

(b) Sobel operator. (c) Canny operator. (d) FMFED 

algorithm. 
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     (a)                                                            (d) 

   (b)                                                           (e) 

   (c)                                                           (f) 

Figure 6.15 (a)-(c) Edges detected by FMFED  algorithm (d)-(f) result of 

applying morphological operators for segmentation 
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(a)                                                                   (b)                                                                 (c ) 

(d)                                                               (e)                                                                       (f) 

 

 

 

 

(g)                                                               (h)                                                                       (i) 

Figure 6.16  (a) Original image.   (b)-(d) The three clusters for c=3 in case of RGB color space.  (e) 

Segmented image in RGB color space.   (f)-(h) The three clusters for c=3 in case of L*a*b* color 

space.  (i)  Segmented image in  L*a*b* color space.  
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(e)                                                  (f)                                                   (g)                                                (h) 

(a)                                                  (b)                                                  (c)                                                (d) 

(i)                                                    (j)                                                   (k) 

Figure 6.17 (a) Original image.   (b)-(e) The four clusters for c=4 in case of RGB color space.  (f) 

Segmented image in RGB color space.   (g)-(j) The four clusters for c=4 in case of L*a*b* color space.  

(k)  Segmented image in  L*a*b* color space.  
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(a)                                                                                          (b)                          

(c)                                                                                          (d)                

Figure 6.18 (a) Original image.   (b)-(c) The two clusters for c=2 (h)  Segmented 

image  
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    (a)                                                                  (b)                                                              (c) 

        (d)        

Figure 6.20 (a) Original image.   (b)-(c) The two clusters for 

c=2   (e) Segmented image  

   

  

  

 
                   (a)                                                              (b)                                                                  (c ) 

                   (d)                                                               (e)                                                                

Figure 6.19 (a) Original image.   (b)-(d) The three clusters for c=3   (e)  Segmented image  
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Figure 6.21 (a) Original image.   (b)-(c) The two clusters for c=2   (d) Segmented image  

    (a)                                                                                                      (b) 

    (c)                                                                                                      (d) 
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     (a)                                                                                                        (b) 

 (c )                                                                                                    (d) 

Figure 6.22.  (a) Original image   (b) Enhanced image  (c) Segmented image without enhancement   

(d)  Segmented image after enhancement   
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   (a)                                                                                       (b) 

Figure 6.23.  (a) Original image   (b) Enhanced image  (c) Segmented image 

without enhancement   (d) Segmented image after enhancement   
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   (a)                                                                                       (b) 

         (c )                                                                                     (d) 

Figure 6.24.  (a) Original image   (b) Enhanced image  (c) Segmented image 

without enhancement   (d) Segmented image after enhancement   
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   (a)                                                                                                         (b) 

   (c)                                                                                                       (d) 

Figure 6.25.  (a) Original image   (b) Enhanced image  (c) Segmented image without enhancement   

(d) Segmented image after enhancement   
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       (a)                                       (b)                                        (c )                                      (d)   
 

     (e)                                        (f)                                      (g)                                       (h)   
 

       (i)                                       (j)                                      (k )                                        (l)   
 

Figure 6.26 (a) Synthetic image with (-60,60) noise (b) – (d) First, 

second and third cluster using FCM (e) – (g) First, second and third 

cluster using sFCM  (h) – (j)  First, second and third cluster using 

MSFCM  (k) – (m) First, second and third cluster using NAFCM 

       (m)         
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       (a)                                       (b)                                      (c )                                      (d)   

 

    

 

  

 

 

 

 

 
       (e)                                      (f)                                      (g )                                      (h)   

       (i)                                        (j)                                      (k )                                      (l)   

       (m)                     

Figure 6.27 (a) Synthetic image with (-70,70) noise (b) – (d) First, 

second and third cluster using FCM (e) – (g) First, second and third 

cluster using sFCM  (h) – (j)  First, second and third cluster using 

MSFCM  (k) – (m) First, second and third cluster using NAFCM 
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       (a)                                       (b)                                      (c )                                      (d)   

       (e)                                       (f)                                      (g )                                      (h)   
 

       (i)                                       (j)                                      (k )                                      (l)   
 

Figure 6.28 (a) Synthetic image with (-90,90) noise (b) – (d) First, 

second and third cluster using FCM (e) – (g) First, second and third 

cluster using sFCM  (h) – (j)  First, second and third cluster using 

MSFCM  (k) – (m) First, second and third cluster using NAFCM 

       (m)                     
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 (a)                                       (b)                                          (c )                                     (d)          

 (e)                                       (f)                                          (g)                                     (h)          
 

 (i)                                       (j)                                          (k)                            
 

Figure 6.29 (a) Image of a weld crack with noise of (-35,35) (b) Result of LOG operator (c) Result of Canny 

edge detector (d) Result of FIS (e) Result of FMFED (f) Result of FCM (g)  Result of sFCM (h) Result of 

MSFCM (i) Result of NAFCM (b) Result of region growing (c) Result of region split and merge 
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    (a)                                                        (b)                                                       (c )                                          
(a) 

    (d)                                                        (e)                                                       (f )                                          
(a) 

    (g)                                                         (h)                                                       (i)                
(a) 

Fig. 6.30. Comparison of segmentation results on a human image corrupted with a noise varying 

between (-35,35). (a) Image with (-35,35) noise  (b)-(d) Clustered image using FCM, sFCM and 

MSFCM resp. (e)-(g)  Segmented image using FCM, sFCM and MSFCM respectively. 
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Fig.6.31. Comparison of segmentation results on a crossroad image corrupted with a noise 

varing between (-35,35). (a) Image with (-35,35) noise (b)-(e) Clustered image using FCM, 

sFCM ,  MSFCM and NAFCM resp. (f)-(i) Segmented image using FCM, sFCM, MSFCM and 

NAFCM  respectively. 

            (a)                                                (b)                                                 (c )                                           
(a) 

            (d)                                                (e)                                                 (f )                                           
(a) 

            (g )                                               (h)                                                     (i) 
(a) 
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              (a)                                                     (b)                                                        (c )                                          
(a) 

              (d)                                                     (e)                                                        (f)                                                     
(a) 

            (g )                                                      (h)                                                       (i) 
(a) 

Fig.6.32. Comparison of segmentation results on a hand image corrupted with noise varying between (-45, 

45). (a) Image with (-45,45) noise  (b)-(e) Clustered image using FCM, sFCM, MSFCM and NAFCM 

resp. (f)-(i) Segmented image using FCM, sFCM, MSFCM and NAFCM respectively. 
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 (a)                                                                        (b)                                                                       (c )                                          
 

 (d)                                                        (e)                                                       (f )                                          
(a) 

 

Fig.6.33. Comparison of segmentation results on a bacteria image 

corrupted with uniform random noise varying between (-90,90) . (a) 

Original bacteria image (b) Image with (-90,90) noise (c)-(f) Clustered 

image using FCM, sFCM, MSFCM and NAFCM resp. (g)-(i) 

Segmented image using FCM, sFCM, MSFCM and NAFCM 

respectively.  

 (g)                                                                           (h)                                                                      (i)                                          
 

     (j)                                                         
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 (a)                                                                        (b)                                                                           (c )                                          
 

 (d)                                                                        (e)                                                                           (f )                                          
 

 (g)                                                                        (h)                                                                           (i)                                          
 

     (j)                            

Fig.6.34. Comparison of segmentation results on a stork image corrupted 

with uniform random noise varying between (-60,60) . (a) Original 

bacteria image (b) Image with (-60,60) noise (c)-(f) Clustered image 

using FCM, sFCM, MSFCM and NAFCM resp. (g)-(i) Segmented 

image using FCM, sFCM, MSFCM and NAFCM respectively. 
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          (a)                                           (b)                                           (c )                                          
(a) 

          (d)                                         (e)                                          (f )                                          
 

Fig.6.35. Comparison of segmentation results on a human 

image corrupted with uniform random noise varying 

between (-90,90) . (a) Original bacteria image (b) Image 

with (-90,90) noise (c)-(e) Clustered image using 

FCM,sFCM, MSFCM and NAFCM resp. (f)-(h) 

Segmented image using FCM, sFCM, MSFCM and 

NAFCM respectively. 

 

          (g)                                         (h)                                             (i)   
(a) 

 

     (j)                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 



Chapter 6 Simulation results and discussion 
 

           
 

112 

Table 6.1:  Comparision between various fcm based clustering methods with varying uniform 

random noise in RGB color space for hand image.  

 
  

Noise = (-35,35) 
 
Noise= (-45,45) 

 
Noise= (-60,60) 

 
Noise = (-90,90) 

 
Clustering methods 

 

pcV           peV  

 

 

pcV         peV  

 

 

pcV          peV  

 

pcV           peV  

   
FCM  
  

 
0.6190            0.6684 

 
0.5732        0.7349 

 
0.5253     0.8090 

 
0.4737       0.8898 

 
sFCM 
 

 
0.6203            0.6644 

 
0.5632        0.7361 

 
0.5246       0.8098 

 
0.4761       0.8864 

 
MSFCM 
 

    
0.6206            0.6643 

 
0.5644        0.7349 

 
0.5266       0.8072 

 
0.4768     0.8854 

 
NAFCM 
 

 
0.6294            0.6638 

 
0.5790       0.7353 

 
0.5249        0.8024 

 
0.4783     0.8847 

 
 

Table 6.2:  Comparision between various fcm based segmentation techniques with varying uniform 

random noise in LAB color space for hand image  
 

  
Noise = (-35,35) 

 
Noise = (-45,45) 

 
Noise = (-60,60) 

 
Noise = (-90,90) 

 
Clustering 
methods 

 

 pcV          peV  

 

 

  pcV          peV  

 

  

 pcV           peV  

 

   pcV             peV   

   
FCM  
  

 
0.6256    0.6582 
 

 
0.5444    0.7796 
 

 
0.5561    0.7652 
 

 
0.5372    0.7958 
 

 
sFCM 
 

 
0.8213    0.2644 
 

 
0.8697    0.2876 
 

 
0.7505    0.3361 
 

 
0.7142    0.4906 
 

 
MSFCM 
 

 
0.8862    0.1682 
 

 
0.8722    0.2682 
 

 
0.7662    0.3282 
 

 
0.7263    0.4782 
 

 
NAFCM 
 

 
0.8682    0.2543 

 
0.8602    0.2704 

 
0.7837    0.3107 

 
0.7614    0.4122 
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Table 6.3:  Comparision between the fcm based segmentation techniques with varying uniform 

random noise in LAB color space for various test images.  

 
  

      (35,-35) 
     
      (45,-45) 

       
      ( 60,-60) 

 
      (90,-90) 

  

Techniques 

   

pcV            peV  

   

pcV            peV  

      

 

pcV            peV   

  

 pcV        peV       

 

Hand 

image  

in figure 

6.31(a) 

 
FCM 
 
sFCM 
 
MSFCM 
 
NAFCM  
 

 
0.6256    0.6582 

 
0.8213    0.2644 

 
0.8862    0.1682 

 
0.8682    0.2543 

 
0.5914   0.7116 

 
0.8697    0.2876 

 
0.8722    0.2682 

 
0.8602    0.2704 

 
0.5561    0.7652 

 
0.7505    0.3361 

 
0.7662    0.3282 

 
0.7837    0.3107 

 
0.5372    0.7958 

 
0.7142    0.4906 

 
0.7263    0.4782 

 
0.7614    0.4122 

 

Cross-

road 

image 

 in figure 

6.32(a) 

 
FCM 
 
sFCM 
 
MSFCM 
 
NAFCM 
                

 
0.5627    0.6508 

 
0.7807    0.2268 

 
0.7931    0.2129 

 
0.7623    0.3315 

 

 
0.5444    0.6796 

 
0.7727    0.2298 

 
0.7784    0.2188 

 
0.7332    0.3781 

 

 
0.5365    0.6922 

 
0.6711    0.4889 

 
0.6720    0.4847 

 
0.6965    0.4406 

 

 
0.5112    0.7836 

 
0.5256    0.5213 

 
0.5388    0.5208 

 
0.6918 0.4509 

 

Bacteria 

image 

 in figure 

6.33(a) 

 
FCM 
 
sFCM 
 
MSFCM 
 
NAFCM 

 
0.8772    0.2258 

 
0.9870    0.0563 

 
0.9896    0.0421 

 
0.9621    0.1162 

 
0.8316    0.2919 

 
0.9754    0.1101 

 
0.9782    0.1121 

 
0.9299    0.1217 

 
0.7500    0.4018 

 
0.9012    0.1617 

 
0.9041    0.1576 

 
0.9139    0.3143 

 
0.7468    0.4069 

 
0.8016    0.3378 

 
0.8123    0.3268 

 
0.8721 0.2193 

 
 

Bird  

image 

 in figure 

6.34(a) 

 

 
FCM 
 
sFCM 
 
MSFCM 
 
NAFCM 

 
0.9186    0.1104 

 
0.9882    0.0129 

 
0.9986    0.0131 

 
0.9699    0.0528 

 

 
0.9273    0.1483 

 
0.9773    0.0364 

 
0.9784    0.0482 

 
0.9693    0.0538 

 
0.8872     0.2122 

 
0.9378     0.1542 

 
0.9390    0.1531 

 
0.9685    0.0856 

 
0.7274     0.4317 

 
0.8538     0.3413 

 
0.8674    0.3265 

 
0.9364    0.1201 

 

Woman 

image 

in figure 

6.35(a) 

 
FCM 
 
sFCM 
 
MSFCM 
 
NAFCM 

 
0.7766    0.4236 

 
0.9846    0.0573 

 
0.9924    0.0121 

 
0.9778    0.0892 

 
0.7158   0.5159 

 
0.9011   0.1891 

 
0.9268   0.1383 

 
0.9149   0.1191 

 
0.6455   0.6173 

 
0.8618   0.2261 

 
0.8735   0.2213 

 
0.8868   0.1208 

 
0.6220   0.6635 

 
0.7981   0.4509 

 
0.8184   0.3870 

 
0.8691 0.2498 
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Table : 6.4 : Number of misclassified pixels with FCM,sFCM,MSFCM and NAFCM for synthetic 

image shown in figure 6.2(a) with different noise values 

 

 
 
 
 
 
 
 
 
 

                  Clustering methods 

 
FCM 

 
sFCM 

 
MSFCM 

 
 NAFCM 

 
 
Noise 

C 
L 
A 
S 
S 
           Percentage  of misclassified pixels in cluster 1, 2 and 3 

 
0.1058 

 
0 

 
0 

 
0.0677 
 

 
0.0088 

 
0 

 
0 

 
0.0147 

 
 
 
(-40,40) 
 
 
 

 
1 
 
 
2 
 
 
3 

 
0.0665 

 
0.0055 

 
0 

 
0.0665 

 
16.9915 

 
0.0055 

 
0.0021 

 
0 

 
3.7992 

 
0.0021 

 
0 

 
0 

   
 
 
(-60,60) 
 
 
  

 
1 
 
 
2 
 
 
3 

 
0.7594 

 
0.0055 

 
0.0055 

 
0.0055 

 
58.8833 

 
32.5532 

 
29.769 

 
0.0973 

 
30.8202 

 
13.0897 

 
11.9596 

 
0.2619 

 
 
 
(-70,70) 
 
 
 

 
1 
 
 
2 
 
 
3 

 
17.8271 

 
0.6763 

 
0.5876 

 
1.2417 

 
67.339 

 
65.7837 

 
63.2854 

 

2.7843 
 
37.2591 

 
27.0710 

 
25.8174 

 

1.2007 

 
(-80,80) 
 
 

 
1 
 
2 
 
 
3 

 
21.4911 

 
2.4224 

 
2.0067 

 
1.5854 

 
712.7775 

 
76.7477 

 
77.1239 

 
5.0418 

 
99.9117 

 
33.4922 

 
32.0679 

 
1.2919 

 
(-90,90) 
 

 
1 
 
 
2 
 
 
3 

 
23.2761 

 
6.5466 

 
3.5477 

 
1.5355 
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Figure 6.36. (a) Original image (b) Image with (-60,60) noise  (c)-(e) 

Object in 1st , 2nd  & 3rd cluster  respectively using FCM  (f) 

Segmented image using FCM  (g)-(i) Object in 1st ,2nd & 3rd cluster 

using proposed NAFCM  (j) Segmented image using NAFCM. 

    (a)                                                          (b)                                                  (c )                                          

        (d)                                                         (e)                                                    (f )                       

                      (g)                                                        (h)                                                    (i )                                          
 

        (j)                                                                              
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Figure 6.37. (a) Original image (b) Image with (-60,60) noise  (b)-(c) Object in 1st , 2nd & 3rd cluster  

respectively using FCM  (d) Segmented image using FCM  (e)-(f) Object in 1st  & 3rd cluster using 

NAFCM  (f) Segmented image using NAFCM. 

            (a)                                                      (b)                                                   (c )            

        (d)                                                    (e)                                                     (f )                                          

        (g)                                                     (h)                                                 
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Figure 6.38. (a)Original image (b) Image with (-90,90) noise  (c)-(f) Object in 1st  , 2nd , 3rd  & 4th cluster  

respectively using FCM  (g) Segmented image using FCM  (h)-(k) Object in 1st ,2nd , 3rd & 4th cluster using 

NAFCM (l) Segmented image using NAFCM. 

       (a)                                                                        (b)                                                                      (c )                                          

   (d)                                                                          (e)                                                                        (f)                                          

   (g)                                                                      (h)                                                                          (i) 

   (j)                                                                       (k)                                                                          (l)                                          

 

 

 

 



Chapter 6 Simulation results and discussion 
 

           
 

118 

   

   

  

Figure 6.39. (a)Original image (b) Image with (-90,90) noise  (c)-(d) Object in 1st  & 2nd  cluster  

respectively using FCM  (e) Segmented image using FCM  (f)-(g) Object in 1st  & 2nd  cluster 

using NAFCM  (h) Segmented image using NAFCM. 

     (a)                                                        (b)                                                         (c )                                          

         (d)                                                        (e)                                                     (f )                                          

         (g)                                                        (h)                                                               
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Figure 6.40. (a) Original image (b) Image with (-60,60) noise  (c) Skin lesion segmented with FCM 

technique after addition of noise  (d) Skin lesion segmented using NAFCM after addition of noise. 

               (a )                                                    (b)                                                 (c)                                                 (d) 

  

  

Figure 6.41. (a) Original image (b) Image with (-60,60) noise  (c) Skin lesion segmented 

with FCM technique after addition of noise  (d) Skin lesion segmented using NAFCM 

after addition of noise. 

                       (a)                                                                                                          (b) 

               (c)                                                                                                             (d)  
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     Table 6.5   Effect of increasing noise on the various tumor test images  

 

 

 

 

 

 

 

 

 

 

 

 

  
      (35,-35) 

     
      (45,-45) 

       
      ( 60,-60) 

 
      (90,-90) 

Tumor 
image 
in 

 
Techniques 

   

pcV            peV  
   

pcV            peV  
      

 

pcV            peV   
  
 pcV        peV         

 
figure 
6.36(a) 
 

 
FCM 
 
NAFCM 

 
0.6520    0.6089 
 
0.8424    0.2067 

 
0.6056   0.6783 
 
0.8206   0.2403 

 
 0.5599   0.7487 

 
0.8162   0.2448 

 
 0.4963   0.8515 
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6.3  Conclusion 
In chapter 2, various basic methods of image segmentation have been studied. It is 

observed from Fig. 6.1- Fig 6.6 that edge detectors are quite simple to execute and they 

are able to find the edges of objects present in all kind of images. Whereas, the region 

based methods are application dependent and the condition for region growing or region 

splitting and merging may change from one image to another. Hence the fuzzy edge 

detection based segmentation algorithms are explored in the next chapter. 

 
In chapter 3 two fuzzy methods for edge detection based segmentation are studied, the 

conclusion regarding the two methods is as follows: 

FIS for edge detection based segmentation: 

From the simulation results in Fig. 6.7-Fig 6.9 it can be very easily concluded that the 

FIS system developed better than the popular Sobel but its results are not as good as 

Canny operator. But one of the main problems with implementing such a FIS system is 

the amount of time required during processing. One of the main problems in 

implementing a FIS system is the amount of time required during processing. In addition 

to that, despite being used in a wide range of applications, both the structure of 

membership functions and derivation of their relevant parameters were still very much 

application domain and image dependent. 

Multilevel fuzzy edge detector for segmentation: 

This method has clear advantage over the rule based method as it does not involve 

changing the structure of membership function according to a particular application. This 

method gives better edges as compared to Sobel and Canny edge detector as seen in 

Fig.6.10- Fig.6.14 and it is also much faster as compared to the FIS algorithm for edge 

detection. 

The edge detection algorithms are normally followed by edge linking procedures to 

bridge gaps in region boundary. We apply simple morphological tools for the edge 

linking problem. The results of applying edge linking by morphological operators on the 

edge detected image, is shown in Fig 6.15. The edge detection method considered for all 

these images is FMFED algorithm. The reason for not applying FIS based edge detector 

is its poor quality of edge detection compared to some older techniques like canny edge 
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detector. The algorithm is also much faster as compared to the FIS algorithm for edge 

detection 

 

In chapter 4, algorithms for segmentation of color images using fuzzy clustering have 

been developed 
The segmentation method described in section 4.4 uses Fuzzy c-means as a tool for 

segmentation. The simulation results in Fig. 6.16-Fig. 6.21, show how the FCM is 

applied for segmentation. By observing the results it can be said that FCM can be 

successfully applied for clustering based segmentation of different types of images. 

The algorithm described in section 4.5 applies, enhancement algorithm (CLAHE) to 

FCM. The enhancement is applied only to the Luminosity layer (L) as it is the layer 

containing information about brightness of the image. By first enhancing the image and 

then performing clustering we are able to extract quite good segmentation results. The 

CLAHE algorithm spreads the brightness uniformly among all the pixels hence too bright 

pixels does not remain too bright and pixels having low brightness value are made to 

have more high brightness information.   

From the simulation results in chapter 6 (Fig. 6.22-Fig 6.25) it can be said that: 

CLAHEFCM improves the clustering and hence segmentation results of images which 

are not evenly illuminated. 

 

In chapter 5, algorithms for segmentation by incorporating spatial property of pixels in 

fuzzy clustering have been developed. The algorithm described in section 5.2 presents a 

modified spatial FCM algorithm (MSFCM) and observes its effect on color images 

degraded by random noise. The algorithm was realized by modifying the spatial function 

as described above. Qualitative (Fig.6.26-Fig. 6.35 ) and quantitative experimental results 

(Table 6.3) show that the proposed MSFCM (highest Vpc and lowest Vpe) algorithm is 

superior to standard FCM, sFCM and NAFCM when the clustering is done under low 

noise condition. 
The proposed method (NAFCM) is an extension of FCM algorithm which takes into 

account the neighbourhood attraction of the pixels and observes its effect on 

segmentation of color images degraded by random noise.  The algorithm is tested on a 
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synthetic image ( Fig. 6.26- Fig. 6.28), greyscale image (Fig. 6.29) and various other 

images (Fig. 6.30-Fig 6.35), having a noise of (-60,60) and higher . The results obtained 

by using proposed method have been compared with the results of other FCM based 

segmentation techniques. By observing the results (Fig. 2.26-Fig.6.35 and Table 6.3) it 

can be said that NAFCM (highest Vpc and lowest Vpe) gives the best clustering and hence 

segmentation result under high noise condition.  

Since the objective function of standard FCM was not modified in both the proposed 

methods, as in case of most techniques applying FCM for segmentation, the inbuilt FCM 

function present in recent MATLAB versions can be very easily applied for problem 

related to clustering and segmentation while applying these two algorithms.  

 

By observing Table 6.1 and Table 6.2 it can be said that clustering based segmentation 

performed in LAB color space gives higher values of pcV  and lower values for peV   

(condition for good clustering and segmentation) under increasing noise increasing from 

(-35,35) to (-90,90), as compared to clustering based segmentation in RGB color space. 

 

From Table 6.4 it is observed that as noise increases the percentage of misclassified 

pixels for every class also increases. MSFCM based segmentation gives the least 

percentage of misclassified pixels under low noise condition. NAFCM based 

segmentation gives the least percentage of misclassified pixels for every class under high 

noise condition. 

 

From Table 6.5 it can be concluded that NAFCM can be used for segmentation of 

melanoma images. 
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Preview 
In this research work various popular fuzzy techniques used for image segmentation 

available in the literature are studied. These fuzzy techniques can be combined with any 

other method to enhance the ability of the algorithm in good segmentation. However, due 

to the limitation of other fuzzy techniques, fuzzy clustering based segmentation has been 

considered in this thesis.  One major limitation with FCM based segmentation is that it 

does not take into consideration the spatial context of the image pixels, due to this FCM 

clustering based segmentation is sensitive to noise and imaging artefacts. 

Hence to compensate for this drawback of FCM clustering based segmentation, efforts 

have been made to develop algorithms, which are an extension to the standard FCM and 

take into account the spatial context of pixels. These algorithms are observed to perform 

well on noisy images. An FCM clustering algorithm for segmentation of images under 

uneven illumination has also been developed. 

 

The performance of the proposed algorithms for segmentation has been compared with 

existing algorithms. The objective evaluation metric used for clustering based 

7 
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segmentation are partition coefficient and partition entropy. All algorithms have been 

compared with respect to their execution time. 

 

7.1   Comparative Analysis 
The execution time of various segmentation methods such as region based segmentation 

method, edge detection based segmentation method and clustering based segmentation 

method is compared in Table 7.1. The hardware platform used is a Pentium IV core 2 duo 

processor, 2.4GHz (clock), 2GB (RAM) with windows vista 64 bit operating system. 
 
A qualitative comparison between various existing algorithms and FCM is done on a 

weld crack image. The results are shown in Fig. 7.1. 

The existing and the proposed segmentation algorithms are simulated on a different color 

test image. The test image is corrupted with a noise varying between (-35, 35), (-45, 45), 

(-60, 60) and (-90, 90). The performance of various clustering methods is compared in 

terms of pcV  and  peV  in LAB color space (used in our algorithm) is shown in Table 7.2. 
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 Table 7.1: Segmentation performance of various segmentation methods in terms of Execution time 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Segmentation methods 
 

 
Execution time (sec) 

 
Region based segmentation 
method 

 
Region growing 
 
Region split and merge 
 

 
5.78 
 
5.906 

 
Edge detection based 
segmentation method 

 
LOG 
 
Canny 
 
FIS 
 
Multi-level fuzzy edge detector   
 

 
0.985 
 
1.781 
 
13.328 
 
1.593 

 
Clustering based 
segmentation method 

 
FCM 
 
CLAHEFCM 
 
sFCM 
 
MSFCM 
 
NAFCM 
 
 

 
1.469 
 
1.625 
 
2.141 
 
2.266 
 
2.922 
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 (a)                                    (b)                                        (c )                                      (d)          

 (e)                                      (f)                                       (g )                                     (h)          

 

Figure. 7.1 (a) Image of a weld crack (b) result of region growing (c) Result of region split and 

merge (d) Result of LOG operator (e) Result of Canny edge detector (f) Result of FIS (g) Result of 

FMFED (h) result of FCM  
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Table 7.2:  Comparision between the fcm based segmentation techniques with varying uniform 

random noise in LAB color space for various test images.  
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7.2 Conclusion 
In Table 7.1 it is observed that LoG has the least execution time among all segmentation 

methods considered as it is the simplest method. Among the clustering based 

segmentation method, the standard FCM based segmentation takes the least execution 

time.  

It is observed from Fig. 7.1 that FCM based segmentation gives the best segmentation 

result without noise. The segmentation by FCM clustering gives a smooth contour of the 

weld crack as compared to other methods. 

By observing Table 6.1 and Table 6.2 it can be said that clustering based segmentation 

performed in LAB color space gives higher values of pcV  and lower values for peV   

(condition for good clustering and segmentation) under increasing noise increasing from 

(-35,35) to (-90,90), as compared to clustering based segmentation in RGB color space. 

Hence it can be concluded that for real life images, FCM based segmentation in 

LAB color space gives better results as compared to RGB color space. 

By observing Fig. 6.26 - Fig 6.35  and Table 7.2, it can be said that the proposed 

MSFCM gives the best clustering(highest Vpc and lowest Vpe)  result under low noise 

condition as compared to FCM, sFCM or NAFCM. It is also observed that NAFCM gives 

the best clustering (highest Vpc and lowest Vpe) and hence segmentation result under high 

noise condition.  

Hence it is concluded that MSFCM gives the best clustering and hence segmentation 

result under low noise condition and NAFCM gives the best clustering and 

segmentation result under high noise condition. 

From Table 6.4 it is observed that as noise increases the percentage of misclassified 

pixels for every class also increases. MSFCM based segmentation gives the least 

percentage of misclassified pixels under low noise condition. NAFCM based 

segmentation gives the least percentage of misclassified pixels for every class under 

high noise condition. 
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7.3  Scope of Future work 
1. The execution time of the proposed method is an area of concern. Hence clustering 

methods which are less time consuming can be developed for segmentation. 

2. The fuzzy clustering based method can be combined with other methods like 

Genetic algorithm and Level set methods to give better segmentation results. 

3. The number of cluster has to be fixed initially in FCM based segmentation methods. 

Some method which doesn’t require fixing of number of clusters before clustering can 

also be used for segmentation. 
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