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Abstract- Color image segmentation has been widely applied to diverse fields in the past decades for 

containing more information than gray ones, whose essence is a process of clustering according to the 

color of pixels. However, traditional clustering methods do not scale well with the number of data, 

which limits the ability of handling massive data effectively. We developed an improved kernel 

clustering algorithm for computing the different clusters of given color images in kernel-induced space 

for image segmentation. Compared to other popular algorithms, it has the competitive performances 

both on training time and accuracy. The experiments performed on both synthetic and real-world data 

sets demonstrate the validity of the proposed algorithm. 

 

Index terms: Computer vision, Color image segmentation, Kernel clustering, MEB algorithm, Support vector 

data description. 
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I. INTRODUCTION 

 

If the eyes are the window to the soul, then the visual ability decides whether or not the window 

is clear. What we human being can not denying is that, our visual ability is tend to be fragile, 

fatigue, aging and damageable, and what listed before, to some extent, are on the contrary for 

computer vision. 

Due to the merits of high efficiency, nondestruction, objective and accurate result, and fatigueless 

working, computer vision has achieved lots of successful applications in more and more fields, 

such as biological feature recognition, information retrieval, and so on. By utilizing of infrared-

ray, ultraviolet-ray, X-ray, ultrasound and other advanced detection techniques, computer vision 

has the significant advantages in detecting invisible objects and under high dangerous scenes. 

The various application areas can be summarized but not limited to as follows. 

 

a. Application in industrial detection 

Nowadays, computer vision has been successfully applied in the field of industrial detection 

(seen in Fig. 1), and greatly improves the quality and reliability of the product, which guarantees 

the speed of production.  

 

Figure 1. Application of computer vision in industry detection 

 

For example, the quality detection in packaging and printing for products, quality detection for 

containers, drink filling, and bottle cap sealing in beverage industry, timber wood detection, 
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semiconductor integrated packaging quality detection, coil quality detection, the industrial 

computed tomography of key mechanical parts, etc. At the customs, the application of X-ray and 

the computer vision technology can inspect the cargo without opening the package, which can 

greatly improve the speed of customs clearance, and saves a large amount of manpower and 

material resources. In the pharmaceutical production line, computer vision technology can be 

used to test the drug packaging, which can guarantee the package quality of drags. 

 

b. Application in aviation and remote sensing 

Computer vision can be used in diverse scenes of aviation and remote sensing (seen in Fig. 2), 

which can be listed but not limited to the following applications.  

 

Figure 2. Application of computer vision in remote sensing: Surreal Bridges of Google Earth 

 

The reconnaissance, positioning and navigation in military scenes. Automatic cartography, 

satellite images and topographic map alignment, automatic surveying and mapping. Management 

of land and resources, such as the management of the forest, water, soil, etc. Synthetic analysis 

and prediction to weather forecast, automatic environment and fire alarm monitoring. Detection 

and analysis of astronomy and space objects, transportation and air lines management, etc. 

Collecting satellite remote sensing images, automatic identifying and classifying the ground 

targets according to the characteristics of image and graphics topography, etc. 
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c. Application in biomedicine 

In the field of biomedicine, computer vision is used to assist doctors in medical images analysis 

(seen in Fig. 3), where digital image processing and information fusion technologies can be used 

for medical imaging data statistics and analysis in the scenes of X-ray perspective, nuclear 

magnetic resonance and CT images. For example, X-ray images reflect the bone tissue, nuclear 

magnetic resonance images reflect the organic organization, and doctors often need to consider 

the relationship between skeleton and organic organization, therefore the digital image processing 

technique is required to suitable superpose two kinds of images together to facilitate the medical 

analysis. 

 

Figure 3. Application of computer vision in CT detection 

 

d. Application in military and public security 

The application of computer vision in security includes two scenarios, military security and 

public security. 

 

d.i Military security 

The military security scenario includes the cruise missile terrain recognition, the object 

recognition and tracking (seen in Fig. 4), the radar terrain reconnaissance, the remote control 
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aircraft guidance, the target identifying and guidance, the military alert system and automatic 

control of artillery, etc. 

 

Figure 4. Application of computer vision in military object tracking 

 

d.ii Public security 

The public security scenario includes the fingerprint automatic recognition, the iris feature 

automatic recognition, the synthesis of criminals’ face, the automatic identification of 

handwriting, portrait, and seal, enhancing image quality to capture emergency in the monitoring 

system for closed circuit television (seen in Fig. 5), intelligent scheduling in traffic management 

system, etc. 

 

Figure 5. Application of computer vision in traffic monitoring 
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The applications of computer vision have many other topics, such as image segmentation. Being 

one of the primal problems in image processing, image segmentation can be divided into two 

main types according to different strategies, gray image segmentation and color image 

segmentation. Due to the fact that color images contain more information to describe the real-

world more vividly than gray images, along with the rapid increasing of computer processing 

capacity, color image segmentation has attracted more attention than gray image segmentation 

during the past few years.  

Traditional color image segmentation methods can be implemented with different ideas, such as 

edge segmentation, region segmentation, segmentation based on threshold, segmentation based 

on artificial neural network, segmentation based on wavelet, segmentation based on active 

contour model, segmentation based on genetic algorithm, clustering segmentation, and so on. As 

the essence of color image segmentation is a kind of clustering according to the color of pixels, 

large number of clustering segmentation methods appeared in recent years.  

But, traditional clustering methods do not scale well with the training sample size, which limits 

the ability of color image segmentation to handle massive data effectively. Inspired by the idea 

proposed by Support Vector Data Description, we developed an improved kernel clustering 

algorithm for computing the different clusters of given color images in kernel-induced space to 

segment the color images. Compared to other popular algorithms, it has the competitive 

performances both on training time and accuracy. The experiments performed on both synthetic 

and real-world data sets demonstrate the validity of the proposed algorithm. 

The rest of this paper is organized as follows. Section II provides a review on Color Image 

Segmentation. Popular clustering methods are introduced in Section III. Section IV proposes the 

improved Kernel Clustering algorithm in detail. Section V conducts the experimental results on 

both synthetic and real-world data set, and Section VI ends this paper with a conclusion.  

 

II. COLOR IMAGE SEGMENTATION 

 

Comparing by the principle of segmentation, color image segmentation and gray image 

segmentation are the same techniques since they are both based on pixel numerical similarity and 

proximity of input space, except for the transition of the investigation on the pixel attribute and 

feature extraction technology from one dimension space to high dimension space. With the rapid 
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increasing of computer processing capacity in recent years, color image segmentation has 

attracted increasingly more attention. According to different strategies adopted in handling 

methods, color image segmentation can be divided into categories as follows. 

 

a. The method based on neighborhood 

According to the same or similar characters of pixels, the method based on neighborhood can 

connect the neighboring pixels to achieve image segmentation. It includes all sorts of region 

growing methods, watershed segmentation method, and the Markov Random Field (MRF) 

method. This method can make a full use of space information and the correlation between pixels. 

However, some priori information is needed at the same time, such as the seed pixels and a 

variety of criteria to define the color target boundaries, which are difficult to get in some cases. 

 

a.i Region growing method 

Region growing method (including region splitting-and-merging technology), initializes from 

several seed points or seed regions, according to certain growth standards, discriminates and 

connects the points of neighborhood pixels, until all pixel points have been connected [1-3]. This 

method defines three principles in Euclid distance of RGB color space, color identity principle, 

principle based on the color similarity and space neighborhood, global identity principle based on 

the color similarity, which leads to the subjectivity in the selection of the corresponding 

thresholds, and not suitable for image segmentation with shadow area. 

 

a.ii Watershed segmentation method 

Watershed segmentation method [4-7] is based on gradient, whose advantage is that it can get 

one pixel wide, which can result in a closed connected precise outline. However, it is difficult to 

select a proper label in watershed segmentation method, and improper labeling always leads to an 

over-segmentation result. 

 

a.iii Markov Random Field method 

Markov random field method [8-10] is one of the most commonly used statistical methods in 

image segmentation, especially in the widespread application of the texture image. Its essence is 

regarding the color value of each point in image as a random variable with certain probability 
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distribution, where the probability of a pixel point taking some color is determined by its 

neighborhood other than the global information of the image. Technologies based on random 

field model can provide more accurate image area domain feature. When confronted with 

complex image area, or difficulty to divide the image through simple technology, the methods 

based on random field model will always achieve very good segmentation results. However, it 

needs a lot of calculation, and the related algorithms are very complicated, so the balance 

between computing complexity and making good segmentation results is a challenging topic to 

be further studied. 

 

b. The method based on histogram threshold 

The method based on histogram threshold [11-13] uses the valley value between the two adjacent 

peaks in color histogram as a threshold to segment images. Unlike gray images, color images 

have three color components, and the histogram is a 3-d array, by which it is more difficult to 

determine the thresholds. The most used solving method includes adopting three two-dimensional 

spectrum subsets for RGB space, and choosing three main spectrum subsets for images with 

more spectrum subsets by the use of principal component transform. Histogram threshold-based 

method does not need any priori information, and the amount of calculation is small. However, 

the segmented areas based on color segmentation may be incomplete, and the results for images 

without obvious peaks are poor. 

 

c. The method based on clustering 

The method of color image segmentation based on clustering [14-18], represents the pixels in the 

image space with the corresponding feature space points, segments the feature space points 

according to their clustering in feature space, and then maps them back to the original image 

space to get the segmentation result.  

The clustering-based color image segmentation method can be classified into two categories, 

multi-dimensional color clustering and multi-dimensional extension of histogram threshold, both 

of which have its own merits and shortcomings. There exists some dependent losses and 

correlation among multi-dimensional data in multi-dimensional color clustering, but it cannot 

correctly represent data clustering. However, the multi-dimensional extension of histogram 

threshold method has high efficiency in calculation; but on the other hand, it cannot represent the 
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color feature space very well. The former has higher computation costs than the latter, but it can 

represent the color space better. 

At present, there are many strategies combining multidimensional threshold segmentation with 

other methods, such as 3-d histogram growth method, scale spatial clustering method, the 

dynamic clustering algorithm, etc., which can overcome the phenomenon of excessive 

segmentation with simple process of classification, and it is easy to implement. However, it has 

also some disadvantages. Firstly, there is the problem of how to determine the number of colors 

in color image segmentation. Secondly, the characteristics are usually independent of the images, 

and there is the question of how to select features in order to get satisfactory separation results. 

Thirdly, there is no good use of spatial information, which is very useful for image segmentation. 

 

d. The method combined with other theories 

Except for the methods mentioned above, there are some methods combined with other theories, 

which can be listed as follows [19-24]. The color image segmentation technology based on fuzzy 

set theory, the color image segmentation technology based on wavelet analysis, the color image 

segmentation technology based on neural network, and the method based on physical model, all 

of which are suitable for some certain kind of application, and a unified framework is to be 

further studied. 

 

III. CLUSTERING METHODS 

 

Being one kind of common tool of data analysis and unsupervised machine learning methods, 

clustering aims at dividing the data set into several classes (or clusters), keeping the maximum 

similarity between the data of each same class, and the maximum difference between the data of 

each pair of different class [25] (seen in Fig. 6). According to the basic ideas the clustering 

algorithms adopt, the popular methods can be roughly divided into the types listed as follows [26]. 

 

 
 
 
 

 

Figure 6. The flow diagram of clustering 
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a. Hierarchical clustering 

Hierarchical clustering (HC) algorithms organize data into a hierarchical structure according to 

the proximity matrix. The results of HC are usually depicted by a binary tree or dendrogram. The 

root node of the dendrogram represents the whole data set and each leaf node is regarded as a 

data object. The intermediate nodes, thus, describe the extent that the objects are proximal to each 

other; and the height of the dendrogram usually expresses the distance between each pair of 

objects or clusters, or an object and a cluster. The ultimate clustering results can be obtained by 

cutting the dendrogram at different levels. This representation provides very informative 

descriptions and visualization for the potential data clustering structures, especially when real 

hierarchical relations exist in the data, like the data from evolutionary research on different 

species of organisms. HC algorithms are mainly classified as agglomerative methods and divisive 

methods. 

Agglomerative clustering starts with N clusters and each of them includes exactly one object. A 

series of merge operations are then followed out that finally lead all objects to the same group. 

Divisive clustering proceeds in an opposite way. In the beginning, the entire data set belongs to a 

cluster and a procedure successively divides it until all clusters are singleton clusters. 

 

b. Partitional clustering 

In contrast to hierarchical clustering, which yields a successive level of clusters by iterative 

fusions or divisions, partitional clustering assigns a set of objects into K clusters with no 

hierarchical structure. In principle, the optimal partition, based on some specific criterion, can be 

found by enumerating all possibilities. But this brute force method is infeasible in practice, due to 

the expensive computation. 

 

b.i Squared error-based clustering 

One of the important factors in partitional clustering is the criterion function. The sum of squared 

error function is one of the most widely used criteria. The K-means algorithm is the best-known 

squared error-based clustering algorithm, whose algorithm is very simple and can be easily 

implemented in solving many practical problems. It can work very well for compact and hyper 

spherical clusters. Parallel techniques for K-means are developed that can largely accelerate the 

algorithm. The drawbacks of K-means are also well studied, and as a result, many variants of K-
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means have appeared in order to overcome these obstacles. We summarize some of the major 

disadvantages with the proposed improvement in the following. 

1) There is no efficient and universal method for identifying the initial partitions and the number 

of clusters. The convergence centroids vary with different initial points. A general strategy for the 

problem is to run the algorithm many times with random initial partitions. 

2) The iteratively optimal procedure of K-means method cannot guarantee the convergence to a 

global optimum. 

3) K-means is sensitive to outliers and noise. Even if an object is quite far away from the cluster 

centroid, it is still forced into a cluster and, thus, distorts the cluster shapes. 

4) The definition of “means” limits the application only to numerical variables. The K-medoids 

algorithm mentioned previously is a natural choice, when the computation of means is 

unavailable, since the medoids do not need any computation and always exist. 

 

b.ii Mixture densities-based clustering 

In the probabilistic view, data objects are assumed to be generated according to several 

probability distributions. Data points in different clusters were generated by different probability 

distributions. They can be derived from different types of density functions (e.g., multivariate 

Gaussian or t-distribution), or the same families, but with different parameters. If the distributions 

are known, finding the clusters of a given data set is equivalent to estimating the parameters of 

several underlying models. 

As long as the parameter vector is decided, the posterior probability for assigning a data point to 

a cluster can be easily calculated with Bayes’s theorem. Here, the mixtures can be constructed 

with any types of components, but more commonly, multivariate Gaussian densities are used due 

to its complete theory and analytical tractability. Maximum likelihood (ML) estimation is an 

important statistical approach for parameter estimation and it considers the best estimate as the 

one that maximizes the probability of generating all the observations. 

Unfortunately, since the solutions of the likelihood equations cannot be obtained analytically in 

most circumstances, iteratively suboptimal approaches are required to approximate the ML 

estimates. Among these methods, the expectation-maximization (EM) algorithm is the most 

popular. 

The major disadvantages for EM algorithm are the sensitivity to the selection of initial 
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parameters, the effect of a singular covariance matrix, the possibility of convergence to a local 

optimum, and the slow convergence rate. 

 

c. Graph theory-based clustering 

The concepts and properties of graph theory make it very convenient to describe clustering 

problems by means of graphs. Nodes V of a weighted graph G correspond to data points in the 

pattern space and edges E reflect the proximities between each pair of data points. Both the single 

linkage HC and the complete linkage HC can be described on the basis of the threshold graph. 

Single linkage clustering is equivalent to seeking maximally connected subgraphs (components) 

while complete linkage clustering corresponds to finding maximally complete subgraphs 

(cliques). Graph theory can be used for hierarchical or nonhierarchical clusters. 

 

d. Combinatorial search techniques-based clustering 

The basic object of search techniques is to find the global or approximate global optimum for 

combinatorial optimization problems, which usually have NP-hard complexity and need to search 

an exponentially large solution space. Clustering can be regarded as a category of optimization 

problems. Given a set of N data points, clustering algorithms aim to organize them into K subsets. 

Even for small N and K, the computational complexity is extremely expensive, not to mention the 

large-scale clustering problems frequently encountered in recent decades. Simple local search 

techniques, like hill-climbing algorithms, are utilized to find the partitions, but they are easily 

stuck in local minima and therefore cannot guarantee optimality. More complex search methods, 

evolutionary algorithms (EAs) and Tabu search (TS) are known as stochastic optimization 

methods, while deterministic annealing (DA) is the most typical deterministic search technique, 

can explore the solution space more flexibly and efficiently. 

 

e. Fuzzy Clustering 

So far, the clustering techniques discussed before are referred to hard or crisp clustering, which 

means that each object is assigned to only one cluster. For fuzzy clustering, this restriction is 

relaxed, and the object can belong to all of the clusters with a certain degree of membership. This 

is particularly useful when the boundaries among the clusters are not well separated and 

ambiguous. Moreover, the memberships may help us discover more sophisticated relations 
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between a given object and the disclosed clusters. The standard Fuzzy Clustering Method (FCM) 

alternates the calculation of the membership and prototype matrix, which causes a computational 

burden for large-scale data sets. Kolen and Hutcheson accelerated the computation by combining 

updates of the two matrices. Hung and Yang proposed a method to reduce computational time by 

identifying more accurate cluster centers. FCM variants were also developed to deal with other 

data types, such as symbolic data and data with missing values. 

 

f. Neural networks-based clustering 

In neural networks-based clustering, input patterns are fully connected to all neurons via 

adaptable weights, and during the training process, neighboring input patterns are projected into 

the lattice, corresponding to adjacent neurons. Neural networks-based clustering has been 

dominated by SOFMs and adaptive resonance theory (ART). In competitive neural networks, 

active neurons reinforce their neighborhood within certain regions, while suppressing the 

activities of other neurons. In addition to these, many other neural network architectures are 

developed for clustering. Most of these architectures utilize prototype vectors to represent 

clusters, e.g., cluster detection and labeling network. 

Except for the clustering methods mentioned above, there are many other methods appear 

recently. The research on the clustering algorithm is deepening presently, and the kernel 

clustering and spectral clustering are two methods that have attracted much attention in recent 

years [27]. 

 

IV. IMPROVED KERNEL CLUSERING METHODS 

 

The main idea of kernel clustering method is adopting a nonlinear mapping  , such that the data 

points in input space can be mapped into a high-dimensional feature space, selecting appropriate 

Mercer kernel function instead of nonlinear mapping of the inner product to cluster in the feature 

space. The kernel clustering method is universal, and has great improvement to the classical 

clustering methods. The adopted nonlinear mapping can increase the linear separable probability 

on input data points, which can achieve more accurate clustering, and faster convergence speed, 

as well. Under the condition the classical clustering algorithms fail, the kernel clustering 

algorithms can always work. The kernel trick idea in kernel clustering method can be illustrated 
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in Fig. 7 below, where the left is the original input space, and the right is the kernel-induced 

space. 

 

 

Figure 7. The kernel trick: Nonlinear problems are linear in kernel-induced space 

 

Kernel trick can link many different kernel methods together, one of the most well-known is 

Support Vector Data Description (SVDD), where SVM and MEB were firstly connected. 

 
a. Support vector data description 

The idea of SVDD [29] can be formulated as follows. Formulating Binary SVM as a QP to 

maximize the margin between two classes, and the consequent generalization ability is always 

better than the other machine learning methods. 
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b. Support vector clustering 

Support Vector Clustering (SVC) belongs to the method of kernel clustering, whose foundational 

tool for clustering is Support Vector Machine (SVM) [28]. Based on the Support Vector Domain 

Description (SVDD) algorithm [29], Ben-Hur (2001) proposed an unsupervised nonparametric 

clustering algorithm, called SVC [30], whose aim is to find a set of contours used as the cluster 

boundaries in the original data space. These contours can be formed by mapping back the 

smallest enclosing sphere in the transformed feature space. RBF is chosen in this algorithm, and, 

by adjusting the width parameter of RBF, SVC can form either agglomerative or divisive 

hierarchical clusters. When some points are allowed to lie outside the hypersphere, SVC can deal 

with outliers effectively.  

Kernel-based clustering algorithms have many advantages. 

1) It is more possible to obtain a linearly separable hyperplane in the high-dimensional, or even 

infinite feature space. 

2) They can form arbitrary clustering shapes other than hyperellipsoid and hypersphere. 

3) Kernel-based clustering algorithms, like SVC, have the capability of dealing with noise and 

outliers. 

4) For SVC, there is no requirement for prior knowledge to determine the system topological 

structure.  

But there is still a bottleneck of weak scalability with the number of training sample data size in 

SVC algorithm, so many new SVC algorithms are designed to improve the computing efficiency 

[30-34]. 

 

c. Improved kernel clustering 

In this subsection, we proposed an improved kernel clustering (IKC) algorithm in detail, the 

concise conclusions about the time and space complexities of the proposed algorithm were 

presented, as well.   

The detailed procedure of IKC was given in Table 1 below. 
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c.i IKC algorithm in detail 

Table 1: The procedure of IKC Algorithm  

 

The proposed iterative IKC algorithm is shown in Table 1 above. There are two strategies to 

ensure the high efficiency. Firstly, the update in Step 3 can be performed efficiently without the 

use of any numerical optimization solver. Secondly, the radius in IKC is asymptotically 

expansive and converges to the optimum in )
1

(


O  iterations within any precision. The efficient 

update of the tth iteration is shown in Fig. 8. 

 

Figure 8. Update of ct at the tth iteration 
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c.ii Performance analysis of IKC algorithm 

In this section we conclude that the iterative IKC algorithm converges to the optimum within any 

precision, and the time and space complexities are superior to algorithms of CVM and SVC (seen 

in Fig. 9). 

Proposition 1. IKC algorithm obtains an )1(  -approximation of MEB(S) in )
1

(


O   iterations. 

Proposition 2. Assume that the IKC algorithm terminates at the th iteration with the solution 

),(  cr , then 
** )2( rcc   , where ),( ** cr  denotes the optimum of MEB(S). 

Proposition 3. The time complexity of IKC algorithm is )
1

(
32 


m

O , which is linear in m  for a 

fixed  . 

Proposition 4. The space complexity of IKC algorithm is )
1

(
2

O , which is independent of m  for a 

fixed  . 

The detailed proofs of these theorems are omitted here for conciseness, interested readers can 

refer to Wang [35]. 

 

Figure 9. Mathematical comparison on complexities of different algorithms 

 

From the mathematical comparison in Fig. 9 above on the indexes of iterations, space and time 

complexities, we can conclude that algorithm IKC is of the better performance than the others. 

 

V. EXPERIMENTAL RESULTS 

 

We conduct the experiments on both synthetic and real-world data set to prove the validity and 

efficiency of the proposed IKC algorithm. All the experiments were done on an AMD Sempron 

(tm) 2500+ 1.41GHz PC with 1GB RAM, and the software package we utilized is Matlab 7.0 

toolbox.  
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Firstly, we compare the kernel methods of Core Vector Machine (CVM), Support Vector 

Clustering (SVC), and the proposed Improved Kernel Clustering (IKC) algorithm on six 

synthetic data sets, which are generated randomly and follow the uniform distribution. 

  

a. Experiment on synthetic data set 

The details of data sets used in this section are listed in Table 2 below.  

Table 2: Details of synthetic data sets 

Data set Sy. 1 Sy. 2 Sy. 3 Sy. 4 Sy. 5 Sy. 6 

# Class 4 4 4 4 4 4 

# Dim. 2 2 2 2 2 2 

# Point 20 100 200 1000 2000 10000 

 

We conduct the experiments with different   on these data sets for all the algorithms to compare 

the performances. Core vectors’ number, support vectors’ number and raining time for all the 

algorithms, vary with data size on the synthetic data under the best choice of   are given in Fig. 

10-Fig. 12. We can see that the proposed IKC algorithm is of the smallest core vectors’ number, 

support vectors’ number, and the shortest training time. 

Generally speaking, we can conclude that, compared to methods of CVM and SVC, the proposed 

IKC is of the shortest training time, the highest accuracy and the smallest core vectors’ number. 

 

Figure 10. Core vector’s number vary with data size for different algorithms under the best   
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Figure 11. Support vector’s number vary with data size for different algorithms under the best   

 

 
Figure 12. Training time vary with data size for different algorithms under the best   

 
b. Experiment on real-world color images 

Utilizing the proposed IKC algorithm, we can handle the color image segmentation problem. All 

of the original images to be segmented are chosen from internet by personal interest, including 

three helicopter images, each of which has different background with different noisy level. The 

segmentation results are demonstrated in Fig. 13-Fig. 15, where the left images stand for the 
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original color images, the middle ones stand for the segmented color images under the mean-shift 

algorithm, and the right images stand for the segmented color images under the IKC algorithm 

we proposed.  

From the comparison results we can see that the proposed IKC algorithm can achieve competitive 

performances on color image segmentation. 

 

Figure 13. Original color image (left) vs. segmented image under mean-shift (middle) vs. 

segmented image under IKC (right) for helicopter with low noisy background 

 

Figure 14. Original color image (left) vs. segmented image under mean-shift (middle) vs. 

segmented image under IKC (right) for helicopter with medium noisy background 

 

Figure 15. Original color image (left) vs. segmented image under mean-shift (middle) vs. 

segmented image under IKC (right) for helicopter with high noisy background 
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VI. CONCLUSIONS 

 

We develop an improved kernel clustering algorithm to handle color image segmentation 

problem in this article. We conclude with some proved propositions that the proposed IKC 

algorithm has time complexity of )
1

(
32 


m

O , which is linear in the number of training samples 

m  for a fixed  , and space complexity of  )
1

(
2

O , which is independent of m  for a fixed  . 

Compared to CVM and SVC algorithms, it has the competitive performances in both training 

time and accuracy. Besides, by use of the proposed IKC algorithm, we can achieve a fast process 

to effective handle color image segmentation problem. Experiments on both synthetic and real-

world data sets demonstrate the validity of the proposed algorithm. 
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