581 research outputs found

    Sensor encoding using lateral inhibited, self-organized cellular neural networks

    Get PDF
    The paper focuses on the division of the sensor field into subsets of sensor events and proposes the linear transformation with the smallest achievable error for reproduction: the transform coding approach using the principal component analysis (PCA). For the implementation of the PCA, this paper introduces a new symmetrical, lateral inhibited neural network model, proposes an objective function for it and deduces the corresponding learning rules. The necessary conditions for the learning rate and the inhibition parameter for balancing the crosscorrelations vs. the autocorrelations are computed. The simulation reveals that an increasing inhibition can speed up the convergence process in the beginning slightly. In the remaining paper, the application of the network in picture encoding is discussed. Here, the use of non-completely connected networks for the self-organized formation of templates in cellular neural networks is shown. It turns out that the self-organizing Kohonen map is just the non-linear, first order approximation of a general self-organizing scheme. Hereby, the classical transform picture coding is changed to a parallel, local model of linear transformation by locally changing sets of self-organized eigenvector projections with overlapping input receptive fields. This approach favors an effective, cheap implementation of sensor encoding directly on the sensor chip. Keywords: Transform coding, Principal component analysis, Lateral inhibited network, Cellular neural network, Kohonen map, Self-organized eigenvector jets

    Genetic algorithm and tabu search approaches to quantization for DCT-based image compression

    Get PDF
    Today there are several formal and experimental methods for image compression, some of which have grown to be incorporated into the Joint Photographers Experts Group (JPEG) standard. Of course, many compression algorithms are still used only for experimentation mainly due to various performance issues. Lack of speed while compressing or expanding an image, poor compression rate, and poor image quality after expansion are a few of the most popular reasons for skepticism about a particular compression algorithm. This paper discusses current methods used for image compression. It also gives a detailed explanation of the discrete cosine transform (DCT), used by JPEG, and the efforts that have recently been made to optimize related algorithms. Some interesting articles regarding possible compression enhancements will be noted, and in association with these methods a new implementation of a JPEG-like image coding algorithm will be outlined. This new technique involves adapting between one and sixteen quantization tables for a specific image using either a genetic algorithm (GA) or tabu search (TS) approach. First, a few schemes including pixel neighborhood and Kohonen self-organizing map (SOM) algorithms will be examined to find their effectiveness at classifying blocks of edge-detected image data. Next, the GA and TS algorithms will be tested to determine their effectiveness at finding the optimum quantization table(s) for a whole image. A comparison of the techniques utilized will be thoroughly explored

    Image compression techniques using vector quantization

    Get PDF

    Use of Self Organized Maps for Feature Extraction of Hyperspectral Data

    Get PDF
    In this paper, the problem of analyzing hyperspectral data is presented. The complexity of multi-dimensional data leads to the need for computer assisted data compression and labeling of important features. A brief overview of Self-Organizing Maps and their variants is given and then two possible methods of data analysis are examined. These methods are incorporated into a program derived from som_toolbox2. In this program, ASD data (data collected by an Analytical Spectral Device sensor) is read into a variable, relevant bands for discrimination between classes are extracted, and several different methods of analyzing the results are employed. A GUI was developed for easy implementation of these three stages

    A Decade of Neural Networks: Practical Applications and Prospects

    Get PDF
    The Jet Propulsion Laboratory Neural Network Workshop, sponsored by NASA and DOD, brings together sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and application prospects. While the speed and computing power of microprocessors continue to grow at an ever-increasing pace, the demand to intelligently and adaptively deal with the complex, fuzzy, and often ill-defined world around us remains to a large extent unaddressed. Powerful, highly parallel computing paradigms such as neural networks promise to have a major impact in addressing these needs. Papers in the workshop proceedings highlight benefits of neural networks in real-world applications compared to conventional computing techniques. Topics include fault diagnosis, pattern recognition, and multiparameter optimization

    Ultimate Compression After Impact Load Prediction in Graphite/Epoxy Coupons Using Neural Network and Multivariate Statistical Analyses

    Get PDF
    The goal of this research was to accurately predict the ultimate compressive load of impact damaged graphite/epoxy coupons using a Kohonen self-organizing map (SOM) neural network and multivariate statistical regression analysis (MSRA). An optimized use of these data treatment tools allowed the generation of a simple, physically understandable equation that predicts the ultimate failure load of an impacted damaged coupon based uniquely on the acoustic emissions it emits at low proof loads. Acoustic emission (AE) data were collected using two 150 kHz resonant transducers which detected and recorded the AE activity given off during compression to failure of thirty-four impacted 24-ply bidirectional woven cloth laminate graphite/epoxy coupons. The AE quantification parameters duration, energy and amplitude for each AE hit were input to the Kohonen self-organizing map (SOM) neural network to accurately classify the material failure mechanisms present in the low proof load data. The number of failure mechanisms from the first 30% of the loading for twenty-four coupons were used to generate a linear prediction equation which yielded a worst case ultimate load prediction error of 16.17%, just outside of the ±15% B-basis allowables, which was the goal for this research. Particular emphasis was placed upon the noise removal process which was largely responsible for the accuracy of the results

    Overlap Removal of Dimensionality Reduction Scatterplot Layouts

    Full text link
    Dimensionality Reduction (DR) scatterplot layouts have become a ubiquitous visualization tool for analyzing multidimensional data items with presence in different areas. Despite its popularity, scatterplots suffer from occlusion, especially when markers convey information, making it troublesome for users to estimate items' groups' sizes and, more importantly, potentially obfuscating critical items for the analysis under execution. Different strategies have been devised to address this issue, either producing overlap-free layouts, lacking the powerful capabilities of contemporary DR techniques in uncover interesting data patterns, or eliminating overlaps as a post-processing strategy. Despite the good results of post-processing techniques, the best methods typically expand or distort the scatterplot area, thus reducing markers' size (sometimes) to unreadable dimensions, defeating the purpose of removing overlaps. This paper presents a novel post-processing strategy to remove DR layouts' overlaps that faithfully preserves the original layout's characteristics and markers' sizes. We show that the proposed strategy surpasses the state-of-the-art in overlap removal through an extensive comparative evaluation considering multiple different metrics while it is 2 or 3 orders of magnitude faster for large datasets.Comment: 11 pages and 9 figure

    Data-Driven Color Manifolds

    Full text link

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program

    DCT Implementation on GPU

    Get PDF
    There has been a great progress in the field of graphics processors. Since, there is no rise in the speed of the normal CPU processors; Designers are coming up with multi-core, parallel processors. Because of their popularity in parallel processing, GPUs are becoming more and more attractive for many applications. With the increasing demand in utilizing GPUs, there is a great need to develop operating systems that handle the GPU to full capacity. GPUs offer a very efficient environment for many image processing applications. This thesis explores the processing power of GPUs for digital image compression using Discrete cosine transform
    • …
    corecore