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Abstract 

The paper focuses on the division of the sensor field into subsets of sensor events and proposes the linear 
transformation with the smallest achievable error for reproduction: the transform coding approach using the 
principal component analysis (PCA). 

     For the implementation of the PCA, this paper introduces a new symmetrical, lateral inhibited neural net-
work model, proposes an objective function for it and deduces the corresponding learning rules. The necessary 
conditions for the learning rate and the inhibition parameter for balancing the crosscorrelations vs. the autocor-
relations are computed. The simulation reveals that an increasing inhibition can speed up the convergence 
process in the beginning slightly. 

     In the remaining paper, the application of the network in picture encoding is discussed. Here, the use of 
non-completely connected networks for the self-organized formation of templates in cellular neural networks is 
shown. It turns out that the self-organizing Kohonen map is just the non-linear, first order approximation of a 
general self-organizing scheme. Hereby, the classical transform picture coding is changed to a parallel, local 
model of linear transformation by locally changing sets of self-organized eigenvector projections with overlap-
ping input receptive fields. This approach favors an effective, cheap implementation of sensor encoding directly 
on the sensor chip. 
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1.  INTRODUCTION 

The encoding of sensor information is not only an interesting, but also a very important subject. Results are 
used in picture, speech and music encoding and compression which is needed in applications like telecommuni-
cation, satellite data transmission, environmental and geographical image bases, music compression systems, 
high-resolution television transmission and storage and, therefore, in multi-media data bases. It is also an 
important subject in the preprocessing for speech recognition or in tactile and position sensing for robot 
control.      Classically, the sensor signals are seen as locally and time-varying features decomposed by a new feature 
set which is better usable, e.g. by the Fourier coefficients of a Fourier transformation. This approach is often 
used for instance in picture processing (Jain, 1989) or in the preprocessing stages of speech-recognition sys-
tems, e.g. Kohonen, (1988a). Very often, the Fourier transformation can be done very efficiently in parallel in a 
local region by small, parallel processing units. In this case, as localized Fourier transform the Gabor transfor-
mation (see e.g. Daugman, 1988) is considered. The set of the absolute values of the (complex) coefficients of 
a local linear decomposition can be termed a jet  ; in the case of Gabor functions it is a Gabor jet  (Buhmann et 
al., 1989).  

     The Gabor decomposition functions have some similarity with the receptive fields found in the visual cortex 
of cat (Jones & Palmer, 1987; Daugman, 1988). Providing the ON/OFF centre receptive fields can also lead 
to self-organized, orientation-sensitive receptive fields (Barrow, 1987). Each Gabor jet can be regarded as a 
topographic organization of the visual input encoding and can be identified with a hypercolumn found in the 
visual cortex (Okajima, 1986). 

     Nevertheless, this approach has some flaws: the coefficients of such a decomposition can be correlated; by 
their interdependence they are not optimally coded and contain unnecessary redundancy. Therefore, let us 
introduce in this paper another approach by the means of another decomposition or other sensor primitives.  

1.1 Sensor Primitives 

Assume that we have a set of sensor events {x(i)} where x(i) = (x1
(i),…,xn

(i)) denotes a tuple of real sensor data 
which characterizes event i. Some events occur more often than others. If we have one input pattern x(k) = w 
which occurs mostly we note that the situation {x1 = x1

(k), …. , xn = xn
(k)} is often observed; the data values are 

no more random but there exists now a correlation between the input and the pattern w. Therefore, to reduce 
the input information we can construct a device which reacts especially to this input pattern and describe the 
space of input tuples in terms of a prototype pattern and residuals. This device is a correlation detector, shown 
in Fig. 1.  
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Fig. 1 A correlation detection device. The device has its h ighest output when the corre-
lation between the input signal pattern and the weight pattern coincidents the most  

The output y of the device can give a measure of the correlation or similarity of the input x and the prototype 
pattern w such that  

                 y = Σj xjwj = xTw                           (1.1) 

with T denoting the vector transpose. A performance criterion for such a correlation device could be that it 
detects the most often used input by the expected correlation with w    

〈y〉opt = max 〈y〉 
                         w 

using the expectation operator 〈 〉. Also a strong negative correlation is an indication for an event, because a 
strong negative output reveals also the appearance of x for anti-correlated patterns w which respond maximally 
when x is not present. Therefore, we change the goal to a sign-independent version 

           〈y2〉opt = max 〈y2〉 = max 〈wTxxTw〉 = max wTCxxw                (1.2) 
             w         w             w 

with the autocorrelation matrix Cxx = 〈xxT〉. 

     This unit is responsible for the most often used correlation. Additional device units can be used to recognize 
less frequently occurring input events by other prototypes wi. In order to distinguish the input events maximally, 
the response yi of the prototype wi should be not correlated to another one. Thus, a network of correlation 
detection devices which use  eqn (1.2) can be seen as a network which describes the input by terms of often 
occurring uncorrelated events or signal primitives.  

     What is the solution for eqn(1.2)? Certainly, for unrestricted w there are trivial solutions like wj = 0 or w j = 
∞. Since several, parallel working devices of the linear type implement a linear transformation, we might 
choose as device function restriction that this transformation should be neutral, i.e., the volume spanned by the 
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new base vectors should be the same as by the old ones. This is accomplished by the demand det(w1,…,wm) = 
1 which in turn results by the (more restrictive) demand for an orthogonal base of |wi| = 1 because then we get 
with W = (wi,…,wm)T and WWT = I the proportion 1 = det(I) = det(WWT) = det(W)⋅det(WT) = det2(W). 

It can be shown that for non-zero, constant-length w the objective function R(w) = 〈y2
(w)〉 takes its extremes at 

w = e i, the eigenvectors of Cxx. When we have only different, distinct eigenvalues, there is one unique maxi-
mum for the eigenvector with the maximal eigenvalue and one unique minimum for the eigenvector with the 
smallest eigenvalue (e.g. Brause, 1992b).  

1.2 The Minimal Mean Square Error Of The Sensor Primitives 

If we use the same number m of devices as there are input lines, the m = n output values yi are just the projec-
tion of the input x on the vectors wi or the coordinates of x in a new base {wi}. When the wi are linearly inde-
pendent and complete, we do not loose information and a complete, errorless reconstruction of the input x by 
y = (y1,….,ym) is possible. 

     However, if we use m<n, i.e., less devices than input lines, we will make an error attempting to reconstruct 
x from y. To reduce this error, we will first choose as a description base {wi} the m most important (most 
frequent) input patterns of  eqn (1.2). For many purposes the necessary processing of sensor input signals is 
realized by using a system which implements the maximization of the transinformation from the input to the out-
put of the system. For deterministic systems, this corresponds to the maximization of the output entropy 
(maximum entropy principle). In pattern recognition theory, it is well known that for Gaussian distributed 
sources processed by linear systems this corresponds to the minimization of the mean square error of the 
output (Tou & Gonzalez, 1974).  

     The decomposition of the input into eigenvector components which minimizes the mean squared error crite-
rion is also called a "discrete Karhunen-Loéve transformation (KLT)", "Hotelling transformation", "principal 
component analysis (PCA)" or "eigenvector decomposition". 

     For linear systems, it is well known that the mean square error is minimized by selecting only those base 
vectors (eigenvectors) with the biggest eigenvalues (Kramer & Matthews, 1956; Fukunaga, 1972). This corre-
sponds in our notation of section 1.1 to the most frequent events. Neglecting the ones with the smallest eigen-
values results in the smallest reconstruction error of the encoded input. The squared error for using only m < n 
components by three different transformations is shown in figure 2 for a homogeneous random field, i.e., a pic-
ture containing random pixel data according to a translation-invariant autocorrelation function.  
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   Component number 

ZOH Zero-order hold 
DFT Discrete Fourier 
KLT Karhunen-Loeve 

 

Fig. 2 The squared error for neglecting high order components, plotted as function of the 
highest component index still used, and compared for three different encoding methods (af-
ter Habibi & Wintz,1971) 

Since we consider only pictures of discrete pixels with integer-valued indices both for x and y, we use only 
discrete transformations containing finite sums. 

     Obviously (by definition!), the eigenvector decomposition KLT performs the best and can be considered as 
an optimal transformation for the mean squared error criterion. It should be preferred to all other current linear 
transformations as the simple Zero-order-hold transformation ZOH which computes the local average in a 
pixel region, the Hadamard transformation which use special binary functions, the commonly used discrete 
Fourier transformation DFT or its real-valued version, the discrete Cosines transformation DCT which de-
scribe the picture by its frequencies (Habibi & Wintz,1971). 

     The reason why the Fast Fourier Transform (FFT) or the Fast Cosine Transform (FCT) and not the KLT 
are often chosen as encoding standard lies mainly in the fact that in sequential implementations, the run time 
complexity of the KLT is O(N6) for a picture with N×N pixels whereas for the FTT this is reduced to 
O(N2(logN)2), see (Jayant & Noll, 1984). However, if the base vectors are already known because the input 
statistics are stable, the complexity is reduced to the one of a linear transform which can be implemented in 
parallel hardware as shown in this paper. This makes the KLT approach attractive again as a good candidate 
for encoding purposes. 
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1.3 PCA decomposition of sensor signals 

The decomposition of sensor signals (transform coding) into eigenvector components leads to the least mean 
square error for the reconstruction of the original signal by the components yi and the eigenvectors e i. If we 
treat a picture as a signal, all discrete n = N×M pixels of the picture can be arranged in one input vector of n 
components. Thus, also the eigenvectors of the corresponding autocorrelation matrix have n components and 
can be rearranged back into picture form: they are the basis images of the decomposition and called eigen 
images (Jayant & Noll, 1984) and represent the pattern primitives we have looked for in section 1.1. 

     The correlations in pictures decrease rapidly with increasing distance. Wintz (1972) reports that for image 
reproduction it suffices to consider correlations only 4-5 pixels wide. Therefore, instead of including all correla-
tions on N×M pixels we divide the picture into K subpictures and describe the whole picture by K sets of ei-
genvectors with length n = N×M/K, see figure 3.  

 

  

 ·
 ·
 ·

Y

x
1 2 . .

. . n

y1

ym

 
Fig. 3 The picture decomposition by parallel processing systems. The picture is devided in sub-
pictures. The sensor elements (pixels) of each subpicture can serve as the input for a neural 
network, processing the whole picture in parallel. Conventionally, all subpictures are proc-
essed in sequential order, leading to a linearization in run time complexity of the sequential al-
gorithm used for each subpicture. Since the long-range correlations of the pixels are neglected 
by the subpicture approach, it yields a certain (neglectable) error. 

This approach [which was first proposed by Habibi & Wintz, 1971] breaks the encoding process into parallel 
activities for K independent working processing systems. The price we pay is an small error, depending on our 
subpicture size and our pixel correlation statistics. By experience, a subpicture size of 8x8 pixels can be con-
sidered to be sufficient (Wintz, 1972).  
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     Now, let us identify each one of the parallel processing systems by a subnet of m neurons. The parallel, 
distributed encoding of the whole picture is done by a neural network where each subpicture of n pixels is 
coded by a local transformation process into m components by a subnetwork of m neurons.  

1.4 The transform coding concept 

The classical transform encoding process consists of two stages: a linear transformation, which for instance is 
implemented in the JPEG and MPEG standard video encoding by a discrete cosine transform (JPEG-9-R6, 
1991; MPEG 91, 1991), and a vector quantization stage. Both stages contain non-linear operations and re-
duce the data stream; the linear transformation projects components on constant values which results in a di-
mension reduction (non-zero kernel) and the vector quantization maps all data of the neighborhood to only 
several class prototypes. The image coding and decoding is illustrated in Fig. 4. 

  

 ·
 ·
 ·

 ·
 ·
 ·  ·

 ·
 ·

 ·
 ·
 ·

 ·
 ·
 ·

 ·
 ·
 ·

lin. transformation
vector           codebook 
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ym+1

ym
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xn

x1
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Fig. 4 The image coding and decoding schema of transform coding . After a linear trans-
formation and a quantization stage, the compressed signal is stored or transmitted. At 
the receiver or display device it is restored in the inverse order. Th e compression is ob-
tained by neglecting n-m components of the linear decomposition and the additional 
quantization of the remaining ones. 

This concept can be implemented by integrating the neural network directly on a VLSI chip (e.g. a CCD chip) 
in parallel to the light-sensitive cells. The neurons will then directly learn the eigenvectors by the input signal 
statistics, see e.g. Brause (1994). Nevertheless, the output can be sequential as the usual video signal. On the 
receiver side, the reconstruction of the picture signal can be done directly on the screen, e.g. a LCD. Since we 
can get the values for the weights by training a simulated system like this with pictures of the desired statistics 
or use directly analytical solutions, we can implement the weights on the sender and on the receiver side of the 
system as pure ROM solutions without complicated learning mechanism. Here, the neural network model 
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which will be introduced in section 2 just serves a simulation tool for the training phase and is abandoned for 
the activity phase, the usage of the implemented system. 

     In this paper we present a neural model for the first encoding stage, although the second stage, the vector 
quantization, can also be modeled by the use of non-linear versions of this network, e.g. the Kohonen map 
(Kohonen, 1982). 

1.5 PCA Encoding by Neural Networks 

There already exist several neural nets for the implementation of an eigenvector decomposition. Let us start 
with Oja's statement (Oja, 1982) that a linear, formal neuron using Hebb's learning rule and restricted weights 
will learn the eigenvector of the expected autocorrelation matrix Cxx of the input patterns x with the biggest 
eigenvalue λmax (which was partially anticipated by Amari, 1972): 

       w→ ek  with  λk = max i  λi         

and   Cxxe i  = λie i     Cxx = 〈xxT〉  . 
                       

Since then several network architectures were proposed for a partial or complete eigenvector decomposition. 
Basically, they consist of two categories: networks which learns the eigenvectors sequentially ("asymmetric 
networks") which are based on the sequential Gram-Schmidt orthogonalization mechanism, and networks 
which learn them in parallel ("symmetric networks") and do not predetermine an order of the eigenvectors. The 
approaches use linear neurons, where each neural weight vector converges to one eigenvector.  

     Examples of the former architectures are the Sanger (1989) decomposition network, and the lateral inhibi-
tion network of Rubner and Tavan (1989). They use as a basic building block the linear correlation neuron 
which learns the input weights by a Hebb-rule, restricting the weights w1,…,wn. As Oja (1982) showed, this 
learning rule let the weight vector of the neuron converge to the eigenvector of the expected autocorrelation 
matrix.  

     The learning rule for one neuron can be generalized, yielding a network where the input is inhibited simulta-
neously by the projections of the input to all weight vectors. This corresponds to the latter, symmetric network 
approach. All those symmetric networks, as the Oja (1989) subspace network, the Williams (1985) subspace 
learning and the lateral inhibition network of Földiák (1989), which is a version of Kohonen and Oja (1976) 
orthogonalizing filter, have the property that they provide the convergence of the weight vectors only to the 
subspace of the eigenvectors, not necessarily to the eigenvectors themselves. 
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      In this paper a new fully symmetrical network for eigenvector decomposition, constructed by an objective 
function and, different to the networks needing weight feedback or interneurons (Oja 1992; Plumbley 1993) 
and implemented by a biological plausible and easily realizable network mechanism is presented. Contrary to 
the opinion of Hornik and Kuan (1992), who are not in favor of symmetric local PCA algorithms because they 
do not give rise to asymptotically stable desired equilibria and have generally a slower convergence than their 
asymmetric counterparts, we will introduce a new symmetric model in this section which is not covered by their 
general convergence analysis of the PCA models mentioned above and which will enable us to observe the 
self-organized local eigenvector decomposition developments reported in Section 4. 

2. THE SYMMETRIC BASE MODEL 

Now, let us describe in this section a new symmetric learning model which results in weight vectors implement-
ing a PCA. This was first introduced by Brause (1993a,b); a similar but not identical model was independently 
developed by Freisleben (1993) and Leen (1991) . 

2.1 The Activity Model 

Let us assume in a first step that we have m neurons which are laterally interconnected as shown in Fig. 5.  

X = (    x1 ,           x2,  ·  ·   ·         xn )

   ·   ·   ·

y      =    (    y1 ,           y2,  ·  ·   ·            ym )
 

Fig. 5 The symmetric, laterally interconnected network model. Input and output are 
symmetrically distributed to all neurons which are linear ones. All weights are ran-
domly initialized; there is no preassignment of the eigenvector index to a weight index. 
At the end of the convergence, the lateral inhibition weights which represent the ex-
pected cross correlation between the neural outputs become zero 
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Each neuron i has a randomly chosen prototype ("weight vector") wi. After we presented one input pattern x in 
parallel with each neuron of the linear system, the output of neuron i will result in  

           yi = wi
Tx + Ti        Ti = 

j i≠
∑ uijyj                   (2.1) 

where Ti denotes the influence by the lateral connections which are weighted by the lateral weights uij. The 
input can be assumed to be zero-mean, i.e., 〈x〉 = 0. If this is not the case, it can be made so by introducing a 
special threshold weight learned with an anti-Hebb-rule, see Appendix C. 

     Although the model is quite linear, we have reactions for random input and weights due to the feedback 
lines which are difficult to analyze. Nevertheless, for the prediction of the system behaviors the analysis of the 
expected equilibrium states of the system is sufficient. 

     Let us assume that after an input pattern has been presented the system activity stabilizes [see for example 
(Kohonen, 1976)]. According to theorem 3 of Hirsch (1989), the system (2.1) is globally asymptotically stable 
for any input for symmetrical uij = uji when uii+

j i≠
∑ |uij| < 1 and there is no significant feedback delay (Marcus et 

al., 1991). In the case where the condition is not met initially, this can be assured by a normalization and small 
decrement uij → (uij/Σ j|uij|) - ε even for uii > 0. Therefore, with ε > 0 the expression uii+

j i≠
∑ |uij| becomes 

      u

u
ii

ik
k
∑

 – ε + 
i j≠
∑

u

u
ij

ik
k
∑

– ε    =  (
j

∑
| |u

u
ij

ik
k
∑

) – mε  + u

u
ii

ik
k
∑

 – u

u
ii

ik
k
∑

 < 1 – mε   

and the stability condition of Hirsch is satisfied.  

Then the output for neuron i becomes with Eqn (2.1) and the definition uii = 1 

           yi = wi
Tx + 

i j≠
∑ uijyj  = wi

Tx + ui
Ty – yi  

and the output vector of all neurons becomes 

           2y = Wx +Uy  or  (2I-U)y = Wx      

with the identity matrix I.  

Thus, the system output 

           y = (2I-U)-1W x = B x        B = (2I-U)-1W            (2.2) 

depends again linearly on the input. 
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2.2 The Learning of the Weights 

The learning rule for the weights bi of B = (bi) is determined by the following three conditions, introduced in 
Section 1.1: 
• The responses to different pattern prototypes should not be correlated 

            〈yiyj〉 = 〈yi〉〈yj〉 = 0           ∀ i≠j                         (2.3) 
• The response to the pattern prototypes should be maximal 

               Σi 〈yi
2〉 = max.                                   (2.4) 

• The change in the feature base should be neutral (no scaling) 

           det(B) = 1, e.g. |bi| = 1 suffices for an orthogonal base        (2.5) 

The first two conditions (2.3) and (2.4) can be modeled by the minimum of deterministic objective function 

     R(b1,…,bm) = 1/4 β
i

∑
j i≠
∑ (〈yiyj〉)2 − 1/2 

i
∑ 〈yi

2〉 = R1 + R2 .           (2.6) 

The first term R1 ensures that the cross-correlation (2.3) is always counted positive. This results in a minimum 
of R(.) where by R1 , the squared cross-correlation (2.3), becomes zero and –R2, the sum of all variances, 
becomes maximal. Since the extremes of the objective function, even scaled by an arbitrary factor, remain the 
same, the factor β  denotes only the relative influence of the cross-correlation with respect to the autocorrela-
tion influence. 

     The third condition (2.5) has to be additionally assured during the learning process. This condition could 
also be integrated into the objective function by a proper term, see Freisleben (1993) and Leen (1991). It was 
shown for one neuron (Chauvin, 1989) that this kind of risk function with implicit weight normalization yields 
the eigenvectors as solutions. The approach of explicit normalization, i.e., using (2.5) when computing the 
unique maximum (or minimum) of the objective function by a gradient ascend (or descend), in general yields 
the same solutions for one neuron (Brause, 1992b). 

     For several neurons, the situation is more complex. In Appendix A it is shown that the objective function 
R(b) takes its extremes when the bi, the rows of the matrix B, are a subset of the eigenvectors of the autocor-
relation matrix Cxx = 〈xxT〉. Since Cxx is symmetric and real, the eigenvalues λi are real and the eigenvectors 
form an orthogonal base system. Here, the cross-correlations  

            〈yiyj〉 = bi
T〈xxT〉bj = bi

TCxxbj = bi
Tλjbj = 0              ∀ i≠j 
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become zero, and by the assignment  

           uij =  − 〈yiyj〉       ∀ i≠j   lateral inhibition weights          (2.7) 

 we get as a result of the learning process 

            U = I                                          (2.8a) 

     and      

B = (2I-U)-1W = (2I-I)-1W = W                        (2.8b) 

The minimum of the objective function (2.6) is reached when the weight vectors become the eigenvectors of 
the autocorrelation matrix Cxx; the lateral inhibition weights become zero. To learn the weight vectors bi, a gra-
dient descend may be used. Nevertheless, with (2.2) this leads to complicated expressions for wi and uij. In-
stead, with (2.8) we can conclude that a simplified learning rule for wi which ensures the convergence to the 
eigenvectors of Cxx will also reach the goal.  

     For this purpose, we change our neural modeling. For the learning of W, we replace our complicated 
model by a much simpler one which will give the same results. Different to the activity model of eqn (2.1), for 
learning we consider a net of simple, linear neurons which are not coupled in the activity phase, i.e., yi = wi

Tx, 
but only in the learning phase. For the objective function (2.6) which now depends only on wi the minimum can 
be approximated by a gradient search for the weight vectors wi directly, assuring conditions (2.3), (2.4), (2.5) 
by the usage of the objective function (2.6) for b = w. The learning rule for the lateral weights which has to 
implement the demand of eqn (2.7) is split apart and is  treated separately.  

Thus, the (t+1)-th iteration step for the input weights is 

     ~w i (t+1) = wi(t) - γ(t) ∇wR(wi)                                (2.9) 

     wi(t+1) = ~wi (t+1)/| ~wi (t+1)|            normalization            (2.10) 

denoting the gradient by the Nabla-operator ∇w = (∂/∂w1, …. ,∂/∂wn)T and a proportional constant by γ 
which generally depends on the iteration (time) step t.  

The gradient of R(.) is computed in Appendix A, eqn (A.2). Substituting (A.2) into the deterministic learning 
rule (2.9) we get 

     ~w i (t+1) = wi(t) - γ(t) (βΣ j≠i 〈yiyj〉 〈xyj〉 − 〈xyi〉 ) 

This becomes with definition (2.7)  
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     ~w i (t+1) = wi(t) + γ(t)〈x (yi + βΣj≠i uijyj)〉   = wi(t) + γ(t)∆wi         (2.11) 

In our new learning model we do not use the lateral activity, only the correlations. With yi = wi
Tx we get 

           ∆wi = γ(t) (〈xxT〉wi- βΣj≠i 〈xxT〉wj(wj
T〈xxT〉wi)) 

       =   γ(t) (Cxxwi- βCxx(Σ j≠iwjwj
T)Cxxwi)                  (2.12) 

and the stochastic version of (2.11) is 

     ~w i (t+1) = wi(t) + γ(t) x (yi+ βΣ j≠i uijyj)                          (2.13) 

or         ∆wi = γ(t) x (yi+ βΣ j≠i uijyj)                            (2.14) 

 

It should be noted that all learning eqns (2.11)-(2.14) assume that the lateral weights have already perfectly 
converged to the goal of definition (2.7).  

     Thus, the lateral weights should be updated separately by a rule which let them become the expected cross-
correlation as fast as possible. In Appendix B, a learning rule for learning the expectation value of a stationary 
random variable v by a parameter r is presented. By replacing literally v by yiyj, r by uij and α by –1 in eqns 
(B.1) and (B.2) we can apply the proof of appendix B, and (B.1) becomes the learning rule 

               uij (t) = uij(t-1) − 
t
1 (uij(t-1) + yi(t)yj(t))                    (2.15) 

using a learning rate of γ(t) = 1/t. This learning rule gets the average of the random variable v = yiyj; the learn-
ing rate of 1/t weights all observations of v by the same amount, independently of the observed order, see 
Pfaffelhuber and Damle (1973). But be aware: This is not the quantity we are looking for, because v is not 
stationary for changing wi. Therefore, random initial values of the weights can disturb the average for a long 
period of simulation time. To remove these random values and to accelerate the convergence, we might use 
instead of the learning rule (2.15) the constant learning rate γ(t) = γ  = const or the temporal floating average of 
a small number q of observed data 

uij (t) = − (1/q) 
k t q

t

= −

−

∑
1

 yi(k)yj(k)                         (2.16) 

which is a kind of weight decay process. 
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2.3 Stability Conditions and the Learned Fixed Points 

The fixed points of the learning system are calculated in Appendix A. Nevertheless, they do not indicate under 
what conditions (cross-correlation parameter β  and learning rate γ) the desired fixed points are stable.  

     The sequential gradient descend algorithm (2.9) only confirms the existence of fixed points by the mono-
tonic decrease of the quadratic objective function (2.6), because we have for b = w 

     dR(t) = Σ  ∂R(wi) ∂wi  = − Σ ∂R(wi) γ ∂R(wi) = −γΣ (∂Ri )2 < 0       (2.17) 
     dt         i  ∂wi    ∂t      i ∂wi     ∂wi       i  ∂wi 

for γ > 0. The objective function R has a lower bound for m neurons of  

     min(R) = min(R1+R2),   R1 > 0 

which is limited by the finite value of 

     min(R2) = min(–½Σ i〈yi
2〉) =  –½ m max(wi

T〈xxT〉wi) = –½ m max(wi
TCxxwi)  

            = –½ m max(e i
Te iλi) = –½ m λmax ,     with λmax = max λi 

                                                  i 
for linear systems.  

     Now we know by relation (2.17) that during the iteration the objective function will diminish until it reaches 
a minimal value. Finally, in the limit we will have dR(t)/dt = 0, i.e., a fixed point of R(t). By (2.17) the objective 
function satisfies the Ljapunov conditions (see Bronstein & Semendjajew, 1990) for a stable fixed point. 
Started in a convergence region Vi the iteration will converge to the single fixed point Wi* = (w1*,…,wm*) 
which depends on the starting point W = (w1,…,wm)|t = 0, the input statistics and the parameters β  and γ. The 
boundaries of the domains of attraction, the convergence regions Vi, generally separate different (e.g. glo bal 
and local) minima of R(t) and are not further evaluated in this paper. 

     Thus, for the sequential case principally we have shown the convergence of the learning system (2.9) which 
is a general property of all gradient descend learning rules for bounded objective functions (Bronstein & Se-
mendjajew,1990). Nevertheless, we have to take care if the stable fixed point is a desired one. Let us evaluate 
the conditions for the parameters β  and γ to get the desired eigenvectors.  
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2.3.1 The Crosscorrelation Factor β  

In Appendix A it is proven that all the possible fixed points of the system are at the eigenvectors of the auto-
correlation matrix. Note that this means that only the fixed points of the system are eigenvectors, they have not 
to be necessarily different ones. If we regard the objective function as a kind of "energy" and its values at the 
fixed points as "energy levels", the question arises whether the neurons ("atoms") might stay all at different en-
ergy levels or if they cluster all (or some) at the lowest energy level. What are the conditions which let them 
drop from higher levels to lower levels?  
For discrete time steps ∆t = 1, the convergence condition (2.17) transforms to 

                        ∆R : = R(t+1) - R(t) < 0                             (2.18) 

and allows a change in the weights only if the energy decreases. Let us assume that one weight vector w = ek at 
a fixed point differs from the others. Since they are all the eigenvectors of Cxx, a jump of the "atom" from en-
ergy level k down to level p augments the energy of the additional correlation term ∆R1 = βspλp

2/2 when we 
already have sp weight vectors converged to eigenvector ep, and decreases the autocorrelation term by ∆R2 = 
−(λp-λk)/2. Condition (2.18) becomes 

                       ∆R = ∆R1 + ∆R2 = βspλp
2/2 − (λp-λk)/2  < 0 

The transition to sp = 2 will be prohibited and the convergence to different eigenvectors will be assured when 
for sp = 1 the condition 

            βλp
2 −(λp-λk) > 0 

or           β  > (λp-λk)/λp
2              ∀ k, p                   (2.19) 

is guaranteed. Let us assume that we have m different eigenvalues. What is the best choice for β  to assure 
different weight vectors ? With a = λk, x = λp the function f(x) = (x–a)x-2 corresponds to eqn (2.19). It takes 
its maximum at x = 2a with f(2a) = 1/4a. The function has its maximal value at λk = λmin and condition (2.19) 
becomes  

                              β  > (4 λmin)–1    with λmin =  min  λi             (2.20) 
                                        i = 1…m 

as a necessary condition for the convergence under the same β for all neurons to all m desired eigenvectors. It 
is evident that in the trivial case for λmin = 0 there is no value of β  fitting and therefore no convergence to an 
eigenvector guaranteed, because in this case every arbitrary, non-orthogonal vector satisfies the characteristic  
eqn. 
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2.3.2 The Learning Rate γ 

It is evident that with decreasing γ the discrete step dynamics becomes the continuous time dynamics and the 
convergence is treated by the previous section. Nevertheless, for finite γ this is not true and we have to deal 
with it separately. Unfortunately, the development of the learning system due to initial and developing mutual 
correlations is quite complicated. To get some simple conditions for the learning rate which simulations showed 
to be relevant we limit our analysis to local stability considerations for the nearly converged system. 

After step t+1, the new weight vector wi(t+1) is, combining eqns (2.9) and (2.10), given by 

         wi(t+1) = wi(t) + ∆wi                              (2.21) 
                    |wi(t) + ∆wi| 

Now we might write the weight vector as a linear combination wi(t) = Σκ
 aik(t)ek of special base vectors, the 

eigenvectors ek. In Appendix D, eqn (2.21) is evaluated for aik, the k-th component of the weight vector and 
gives us 

      aik(t+1) = 
g
1  {aik(t) + γλkaik(t) − γλkβΣ j≠i ajk(t)bij }               (D.1) 

     with vector length g = |wi(t) + ∆wi| 

     and the weighted cross-correlation coefficients bij : = Σk ajke(t) aik(t)λk  of different neurons. 

Since the ratio aik(t)/aip(t) of two components k and p of the weight vector wi(t+1) is independent of the 
length g of the weight vector itself, it is interesting to observe the behavior of the weight vector with the changes 
of the absolute ratio in different eigenvector directions k and p. If the absolute value of this ratio |aik(t)/aip(t)| 
increases at each time step for every component p, we can conclude that weight vector wi converges to eigen-
vector ek of the autocorrelation matrix Cxx, even when the sign of the ratio itself changes at each iteration step 
(which can be observed in some simulations). 

For the case of just one neuron, the sum Σj≠i in eqn (D.1) becomes zero and the ratio is 

            |aik(t+1)|   =    |aik(t)(1 + γ λk)|  
            |aip(t+1)|         |aip(t)(1 + γ λp)| 

and will increase, if the condition (1+γλk) > (1+γλp), i.e., λk>λp holds for all other components p. Thus, inde-
pendently of the initial weights, the learning rate γ and the cross-correlation factor β  the weight vector will con-
verge to the eigenvector with the biggest eigenvalue. 
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     Now, assume that already m weight vectors have converged to the m eigenvectors with the biggest eigen-
values. Then the (m+1)-th weight vector wi converges to eigenvector ek = em+1 with λk < λp, p = 1…m and 
not to one of the eigenvectors with a bigger eigenvalue λp, if and only if with eqn (D.2) the ratio 

     |aik(t+1)|   =   |aik(t)| |1 + γλk (1 − βΣ j≠i ajk(t)bij / aik(t) )|   >    |aik(t)|  
      aip(t+1)|       | aip(t)| |1 + γλp (1 − βΣ j≠i ajp(t)bij / aip(t) )|          | aip(t)|  

holds in a certain small environment of ek. In this case, the component ajk of an already converged weight vec-
tor wj relative to the (m+1)-th (orthogonal!) eigenvector ek = em+1 is zero. This means that 

     ajk = 0,    ∀j∈[1…k–1]          ⇒ Σj≠i ajkbij/aik = 0 

      ajl =  




=
≠

l
l

j   1
j   0      j, l ∈[1…k–1]          ⇒ bij = aijλj 

which is also true for ajp, i.e., when l is denoted as p.  

Therefore, we have 

         Σ j≠i ajpbij/aip = Σ j≠i ajpaijλj/aip = appaipλp/aip = λp 

and the necessary convergence relation becomes finally 

                |1 + γλk|   ____   > 1                               (2.22)              |1 + γλp (1 − βλp)|        
 For 1 − βλp > 0 or β < 1/λp, this means 

           1 + γλk > 1 + γλp(1 −βλp)   or  λk > λp− βλp
2 

which does not depend on the learning rate but only on the relation 

            β  > β 1 = (λp-λk)/λp
2                                (2.23) 

and is our well-known relation (2.19). So, if condition (2.22) is at no time satisfied because of a cross-
correlation factor β < β 1 which is too small, the convergence of wk to a not already existing eigenvector ek is 
impossible. This is especially true for negative β. 

For 1−βλp < 0, i.e., β  >1/λp, the value of the whole term can become negative and the sign of the component 
can alternate after each iteration. Nevertheless, even the oscillating weight vector will converge to eigenvector 
ek if  
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           1 + γ λk > − (1 + γ λp(1–βλp))    or     2 > γ(λp(βλp–1) – λk)  

and thus γ < 2/(βλp
2 – (λp+λk))    for    (βλp

2 – (λp+λk)) > 0        (2.24a) 

                       γ > 2/(βλp
2 – (λp+λk))    for    (βλp

2 – (λp+λk)) < 0        (2.24b) 

 

Since (2.24b) always holds for γ > 0, with eqn (2.24a) there is only one limit β 2 with (β2λp
2 – (λp+λk))  = 0 

or 

                        β 2 = (λp+λk)/λp
2                                  (2.25) 

If β  > β 2 the condition (2.24a) for γ must be satisfied, otherwise the convergence will not achieve different 
eigenvectors.  

Now, we can summarize the necessary parameter values for convergence to different eigenvectors:     

0 < β < β 1 = (λp-λk)/λp
2  no convergence to different eigenvectors possible 

β 1 < β  < β2 = (λp+λk)/λp
2   convergence with no constraint on γ  

β 2 < β                 convergence if γ < 2/(βλp
2 – (λp+λk)) 

In a small environment around ek, the values are also sufficient.  

     Is there a universal set of parameters β  and γ for all eigenvalues which guarantee the convergence to the 
different desired eigenvectors for a PCA? With the previous results, we can not rely on the parameter regime 
β 2 > β > β 1 because for certain eigenvalues λk « λp the parameter β 2 can become maximally β 2 ≈ 1/λmax 
which is not always bigger than 1/(4λmin) as required by eqn(2.20).  

     Thus, we have to consider the other possible interval β > β 2 with the weight vector component aik alternat-
ing in sign. For λk ≈ λp, this transforms to β > 2/λp. Thus, to guarantee the different fixpoints for all pairs of 
eigenvalues λp, λk and all values of λp we have to choose the parameters to satisfy the relations 

             β  > 2/λmin      and by (2.24a)    γ < 2/λ2
max               (2.26) 

as necessary conditions for a proper convergence to all eigenvectors with different eigenvalues. 

3. CONVERGENCE SIMULATION  

For demonstration purposes let us regard the simulation of a picture processing procedure. Since our con-
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verged model with uij = 0 contains only non-coupled, linear neurons in the subpicture processing network, this 
part of the system implements a simple linear transformation.  

     Let us concentrate on the more interesting part of the system: the learning of the Karhunen-Loéve transfor-
mation. Since the highlight of this transformation is the adaptation to the sensor signal statistics, for picture 
processing we have to choose a representative picture statistic. 

3.1 The training data 

There have been many attempts to model the statistics of natural pictures, see e.g. Habibi and Wintz (1971). 
One of the most useful is by the autocorrelation function between the pixels x1 and x2 

C(x1,x2) = exp(−a|x1
2 – x1

1| − b|x2
2 – x2

1|)    a ≈ 0.2, b ≈ 0.1          (3.1) 

The form of the analytical solutions for this case are known (Habibi & Wintz, 1971); the two-dim. eigenfunc-
tions are products of cosines and sinus functions determined by the eigenvalues. In the discrete case, the set of 
samples of these eigenfunctions are the eigenvectors of the autocorrelation matrix and have to be numerically 
constructed to serve as a reference for the convergence error.  

     For the picture material presented in Habibi and Wintz (1971) the two coefficients, a for horizontal correla-
tions and b for vertical correlations (measured in 1/pixel-length-units), are different, reflecting the flat, ordered 
arrangements of artificial building or pictures containing an horizon. Such a horizontal-vertical orientation does 
not always exist in natural pictures (e.g. trees) which do not contain horizontal or vertical lines. So, let us con-
veniently assume that we have a = b which covers the correlations in all directions uniformly by the Euclidean 
distance |x1–x2| of the two pixels 

              C(x1,x2) = exp(−a|x1–x2|)                            (3.2) 

How can the autocorrelation matrix be constructed ? The autocorrelation matrix of the two-dim. picture matrix 
will be a four-dim. tensor. To remain in our ordinary notation and to use our ordinary numerical procedure for 
calculating the eigenvectors, we will instead construct an ordinary two-dim. autocorrelation matrix. For this 
purpose we concatenate all the n rows of n pixels xhk to one vector c 

            c = (x11, …, x1n, x21, …, x2n, …, …, xn1, …, xnn) 

The expected autocorrelation 〈ccT〉 of this vector forms the autocorrelation matrix C = (Cij) where every entry 
is of the form 

           Cij = 〈xkhxst〉 = exp(−a|(k,h) – (s,t)| ) = exp(−a ((k–s)2+(h-t)2)1/2) 
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Thus, to construct a n2 × n2 correlation matrix, the Euclidean distances between all the pixels in the prior pic-
ture frame must be computed and filled in the matrix. This contains ones in the main diagonal and is symmetric; 
the smooth value changes outside the diagonal are regularly broken. 

3.2 A Convergence Example 

For the case of m = 4 neurons the non-linear convergence in the learning of the network is demonstrated. For 
3×3 pictures, we have a 9×9 autocorrelation matrix with 9 eigenvectors and 9 eigenvalues. For a = 0.2, the 
maximal eigenvalue is λmax = λ1 = 6.81414 , λ2 = λ3 = 0.639568 and λ4 = 0.22733. According to eqn (2.26) 
we choose β  = 9.1 > 2/λ4 = 8.8 and γ  = 0.043 < 2/λ1

2. The weight vectors are randomly initialized and nor-
malized to length 1. For the deterministic iteration by eqn (2.12) we use the correlation matrix Cxx obtained in 
the previous section.  

Figure 6 shows the convergence of the four weight vectors by their normalized projections cos(wi,ek) = 
wi

Tek/|wi||ek| on the corresponding eigenvector, i.e., the cosines between the weight vector and the eigenvec-
tor, for t = 1,…,5000 iterations on a logarithmic scale.  

Since the second and third eigenvalues are equal, all possible linear combinations of the corresponding eigen-
vectors are also eigenvectors. Instead of one direction, every vector of the whole plane p23 = a2e2 + a3e3 
spanned by the two eigenvectors e2 and e3 is an eigenvector and therefore a convergence goal. 

 1                   10                      100                    1000         5000  t
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Fig. 6 The time course of the weight vector projections on eigenvector e1.The convergence to 
the eigenvector with the biggest eigenvalue is marked by a relative fast speed due to the 
strong autocorrelation feedback in the learning process. 
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   Thus, the convergence can be measured by the projection length cos(wi,p23) of a weight vector into this 
plane which is in this case cos(wi,p23) = |(wi

Te2)e2 + (wi
Te3)e3| / |wi|.  
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Fig. 7 The time course of the weight vector projections on eigenvector plane p23. Since 
for the specific picture statistics the second and third eigenvalues are the same, each 
linear combination of two eigenvectors is also an eigenvector. The convergence can 
only be measured by the projection on the plane spanned by the two eigenvectors and 
is approximately ten times slower than for the biggest component which scales well 
with the ratio of the eigenvalues 

We see that the convergence is not straight and simple; there are quite complicated "movements" of the weight 
vectors in the input space. Comparing Fig. 6 with Fig. 7 we can observe that the convergence to the eigenvector 
with the biggest eigenvalue is the most rapid one. This can be explained by the strong variance (principal com-
ponent) in the eigenvector direction which results in strong Hebbian terms of  eqn (2.11) and therefore in 
strong changes in that direction.  

Fig. 8 shows the convergence of the weight vector to the eigenvector with the smallest eigenvalue in the set of 
the four biggest eigenvalues.  
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Fig. 8 The time course of the weight vector projections on eigenvector e4. The conver-
gence is not as fast as in Fig. 6 or Fig. 7, showing the small influence of the eigen-
value. 

We see that the more the eigenvalues are equal, the convergence speed rapidly decreases.Now, are there 
means to speed up the convergence process ? 

3.3 Growing lateral inhibition 

We know that we can not change the parameter regime very much yet still insuring the convergence of the sys-
tem. Nevertheless, for the biological counterpart we know that the main structure of the neurons are genetically 
preset and develops during the maturing of the nervous system (Kuffler, Nicholls, Martin 1984). This is only 
true for the raw structure. The important fact in the neural developement is the additional growth of the neural 
synapses and dendrites due to some data-specific, build-in pattern processing algorithm which we do not yet 
know. Nevertheless, we do know that in these systems the lateral network connections, and therefore also the 
inhibitions, grow with time to an important amount. What does this mean for our lateral inhibition network? 

     We know for uncoupled neurons (β  = 0), that each neuronal weight vector will converge independently to 
the eigenvector with the biggest eigenvalue λmax. Only by the cross-correlation influence of the lateral inhibition 
are the weight vectors driven to different eigenvectors. If we start with a small lateral inhibition β  the system 
should be oriented towards the eigenvector with the biggest eigenvalue. On the basis of this, augmenting β  
should cause a readjustment of the system on basis of an already found eigenvector and should speed up the 
convergence for the rest of the weight vectors.  

This scheme for β  is shown in Fig. 9.  
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Fig. 9 The increase functions of the lateral inhibition factor β. The linear functions are 
drawn on a logarithmic scale to reflect the scaling of the convergence plots of Fig. 10. 

Here we have 11 different linear functions for β(t), denoted by β i(t) and shown on a logarithmic scale. All of 
them reach the necessary value β  = 9.1 (see above) for t = 1000. This 11 different functions are used to iterate 
the same system of m = 4 neurons of the previous section. The result is shown in Fig. 10 where the objective 
function R(β i,t) is plotted for five different functions βi(t), i = 0,1,2,5,10.  
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Fig. 10 The objective function time course plotted for different increasing lateral inhi-
bition functions. You see that small inhibital connections are necessary to avoid un-
necessary oscillations (β0,β1) of the learning process. Nevertheless, the convergence i t-
self is fast stabilized and remains stable throughout a broad regime of lateral inhibi-
tion growth conditions. 
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As we can see, the increase of the lateral inhibition supports the convergence for a certain degree and yields 
better results as the constant inhibition β 10(t) = const = β for the beginning of the learning process. Neverthe-
less, if we prohibit the inhibition too long (e.g. like β 0), the network converges too much in the wrong direction 
and the new orientation slows the convergence down. For optimal results, the function β(t) should increase 
more than linear. An exponential increase in β(t) which models the biological growing of the axons and den-
drites should provide better results. 

Up to now, the optimal inhibition function β(t) for the model which depends on the parameter set of the input 
statistics is still unknown and subject to future research. 

4. SELF-ORGANIZATION OF A CELLULAR NEURAL NETWORK 

The lateral inhibited network, introduced in section 2, is often used in biologically motivated models of nerve 
functions. One of the most popular ones is the self-organizing map of Kohonen (1982) which is based on the 
model of Willshaw and von der Malsburg (1976) and has been analyzed by Amari (1980). In this section we 
show how the previous introduced symmetric model can be used to implement a new kind of self-organization 
which can be seen as a generalization of the Kohonen map.  

     After we have shown the relations of this popular self-organizing network to the one we have developed so 
far, we will show that our model also leads to a kind of self-organization, related to but essentially different to 
the former one. Additionally, we will show how this self-organization leads to a two-dim. encoding of pictures 
which can be used in a VLSI implementation of the transform coding model by a special kind of net, the so-
called “cellular neural networks".  

     Now, let us first regard the relations of the self-organizing Kohonen map to the previously introduced lateral 
inhibition model. 

4.1 The Shortcut Algorithm of the Kohonen Map and the Eigenvector Jets  

Let us assume that we have one sensor layer providing the input and another layer of processing neurons. The 
processing neurons have locally distributed, lateral connections uij and are located at a position vi in the output 
space. The situation is shown in figure 4.1.  
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Fig. 11 A locally lateral connected continuous neural layer field. Every neuron in the 
continuous neuron field (lower layer) receives its input from a local region of a con-
tinuous input field X (upper layer) and influences its neighbors locally by its output y. 

The lateral inhibited, self-organizing network activity is in a discrete form (see e.g. Kohonen 1988b) for neuron 
i  

           yi = S(zi)       S(.) = activation function, squashing function           

with   zi = Σ j wijxj + Σ j uijyj = wi
Tx + ui

Ty                      (4.1) 

modelling the threshold by a special weight and a constant input line. For linear neurons with yi = S(zi) = zi/2 
and normalized self-exitation uii = 1 eqn (4.1) becomes  eqn (2.1). Thus, our activity model of section 2 is a 
special case of the of the self-organizing neural layer activity model. The main difference lies in the generally 
non-linear squashing function S(.). With fixed lateral inhibition weights according to a ON centre/OFF sur-
round (the mexican hat function) this leads to a grouped winner-take-all mechanism (population encoding, 
"bubbles") for the self-organizing neural layer at normalized input (Kohonen 1993), whereas our linear model 
just gives a linear response. 

The learning  eqn for neuron i in the self-organizing neural layer is a Hebbian term, reduced to adaptively nor-
malize the weights by a "forgetting term" f(.)wi, see (Kohonen,1989) . 

wi(t+1) = wi(t) + γ (yix – f(yi)wi(t))                     (4.2) 

Conveniently, the continuous function f(.) has only to meet the conditions f(0) = 0, f(1) = 1. In the middle of the 
activity group, the output becomes saturated with yi = S(zi) = 1, f(yi) = 1 and the activity (4.1) becomes with 
constant ui

Ty at the centre neuron c 
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       zc =  wc
Tx  with wc

Tx = max wi
Tx   correlation winner-take all rule   (4.3) 

                             i 

For a given input x and normalized weight vector length |wi|, this corresponds by the  equation (x-wi)2 = |x|2–
2wi

Tx + |wi|2 to the selection rule 

           |x-wc| = min |x-wi|        distance winner-take all rule      (4.4) 
                          i 

and the learning rule for the active neurons, including the centre neuron becomes 

           wi(t+1) = wi(t) + γ h(i,c,t)(x–wi(t))                       (4.5) 

where the neighbourhood function h(i,c,t) implements a kind of mexican hat function by the fixed lateral weights 
uij. For example, the neighbourhood function could be constant with value one for all neighbours around neu-
ron c, otherwise zero. Or, we can take it as the Gaussian of the neural output position v as h(i,c,t) = exp(-(vc-
vi)2/σ2(t)). 

     By this, the Kohonen map describes the learning of the centre neuron c. Eqns (4.2) and (4.5) do not de-
scribe the same situation and cannot be directly interchanged (see Acker and Kurz, 1990).  Eqn (4.2) de-
scribes the change of weights at implicitly normalized weights, whereas  eqn (4.5) assumes this situation and 
describes the change of weights without referring to normalization any more. Thus, the self-organized map in-
duced by (4.5) forms itself on the hypersphere with radius 1 of the weight vectors of  eqn (4.2), whereas the 
weight vector of  eqn (4.5) has one dimension less: it lacks the offset parameter of the threshold, giving not 
normalized weight vectors, and describes the coordinates just on the hypersphere. 

     For the Kohonen map, the weight vector can be seen as a the class prototype of a classification process 
which results in clustering the input space. The iterative algorithm of (4.5) which narrows down the neighbor-
hood in time to one neuron lets the weight vector converge to the least mean squared error solution for R(w) = 
〈(x-wi)2〉 of the set of local input patterns. Thus, similar to section 1.2, in the limit case for normalized weight 
vectors each class prototype represents the eigenvector of the local cluster on the hypersphere with the biggest 
eigenvalue. The whole self-organization process arranges a kind of non-linear PCA in the input space: the tes-
sellation is a patchwork of local, linear PCAs which represent at each place the cluster mean vector as the 
most important feature.  

     Now, the remaining sections try to show that this can be extended to yield in each region not only the prin-
cipal eigenvector, but also the whole set of the eigenvector decomposition coefficients. Here, as patches of the 
input space we consider the non-overlapping subspaces of the original input space, i.e., the subpictures of Fig. 
3. 
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     First, we introduce a discrete version of a continuous neuronal field which has become very popular by 
multiple application and implementation efforts: the cellular neuronal network. Then, using this model, we will 
show how we can derive locally self-organized eigenvector jets, representing a new kind of self-organization. 

4.2 Cellular Neural Nets 

A kind of modular organization for the activity phase of lateral inhibited networks has been coined by Chua 
and Yang (1988) with the term cellular neural networks and has been adopted by an international group of 
scientists as a paradigm for a supercomputer mainly used for image processing (Roska 1993, TCS 1993). 
Here, the weights of the neurons (templates) are set arbitrarily by the user and can be seen as a form of pro-
gramming.  

     One of the main new ideas of this paradigm of neural networks is the devotion of a neuron to only "local" 
data processing, restricted to a subset of all possible input lines. This idea fits well to the needs of VLSI design 
which favors building big systems by the replication of small, modular, local functions. Since the VLSI design is 
normally implemented on a two-dim. wafer, the approach is well suited for two-dim. sensor fields, e.g. for 
image processing. Nevertheless, the networks can also principally used in a one-dim. or three-dim. design or 
any other number of neighborhood dimensions. A typical input layout is shown in Fig. 12. Here, only the sen-
sor elements (disks) and the neurons (rectangles), but no output lines are shown. 

   
Fig. 12 An example of a two-dim. cellular neural network. Here, shaded disks denote the 
sensor elements (like light sensitive transistors), rectangles denote the artificial neurons 
and the lines are the input connections to them. For clarity, the output connect ions are 
not shown. The thickened lines are the input connections for one neuron; the dotted line 
denotes its receptive input field. 
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     More formally, a CNN can be defined as a n-dimensional array of identical dynamical systems (cells), 
which have most interactions locally within a finite radius r and have only continuous valued state variables, see 
Chua and Roska (1993). The input connections of a cell with index (i,j) can be described by a matrix Bij, the 
local interconnections between the other cells by a matrix Aij. Both matrices are referenced as "templates". In 
general, the activity influence is a non-linear function of these weight matrices. All connections are real-valued 
and can also model time delays. The internal activity state is modelled by an "evolution law" (ODE, differen-
tial/difference equations, functional maps, etc.) and includes the input and interconnection influences.  

     As an example, let us consider a simple, linear feedforward network where each neuron computes the lin-
ear sum of the input values of 9 image pixels. The differential equation for the state of such a neuron is given, 
using the original notation by the expression 

           ∂zij(t)/∂t = – zij(t) + Σ   Aij
kl ykl + Σ  Bij

kl xkl + Iij   
                              k,l∈N(i,j)           k,l∈N(i,j)

         N(i,j) = neighbourhood of cell (i,j) 

and by the matrices 
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              w11  w12  w13 
 Bij =     w21  w22  w23    
              w31  w32  w33  

  

   Iij = 0

       
where the matrix coefficients ukl and wkl generally depend on the location, i.e., on the cell indices (i,j) with ukl = 
ukl(i,j) and wkl = wkl(i,j).  

     Since the matrix Bij is used at all sensor points, it can be seen as a local picture processing operator which 
is identical to the operators used in conventional image processing, see for example Ballard and Brown (1982). 
Thus, a chip containing an array of CNNs performs like a high-speed image processing supercomputer, having 
a performance of 1012 = 1000 GOPS (Giga operations per second) in currently available technology (Roska, 
1993).  

If the connection templates are identical, they are called "cloning templates". Although the templates are often 
cloned and fixed, this is not necessarily the case. In the next section, the use of the neural network of section 2 
shows this for the self-organized developement of non-identical input templates. 

4.3  Simulation of the Self-organization Process 

Let us consider a symmetrical, lateral inhibited network as it has been introduced in section 2. Additionally, let 
us have only a discrete, limited radius R of inhibition influence as it is defined for CNNs. For a one-dim. 
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neighbourhood network, as used for instance for the coding of time signals x(t) discretized by a tapped delay 
line, the interconnection scheme for R = 1 and R = 2 is shown in Fig. 13. 

 
Fig. 13 One-dim. lateral inhibition interconnections. The double-arrowed lines 
show the lateral inhibition influence between a neuron and its neighbors. Nei-
ther output nor input lines are shown. 

The simulation used input patterns of n = 36 components, each one set as a random variable by independent 
Gaussian noise with different variances. The input weights for m = 8 neurons are randomly initialized with a 
fixed vector length |wi| = 1, the lateral weights are initialized with zero. The parameters β and γ(t = 0) are set 
according to  eqn (2.26) with decreasing γ(t). 

     The result of a simulation is shown in Table 1. Here, the index of the approximated eigenvector, denoted by 
the order of the corresponding eigenvalues, is listed for an inhibition radius of R = 1. 

Table 1 The Goal of Convergence for R = 1 
   

Neuron                           1   2   3   4   5   6   7   8 
Eigenvector index           1   2   1   2   1   2   1   2 

  

How can this result be explained? The eigenvector with index 1 is the one with the biggest eigenvalue λ1>λ2. 
Therefore, each neuron tries to converge to eigenvector 1 and will do this if no lateral connections exist. If two 
neurons have mutual lateral inhibition, the one having the initial weight vector most similar to eigenvector 1 will 
win the competition and converge to it, disabling all other neurons connected to it to converge to this eigenvec-
tor. Thus, the radius R = 1 disables the neighbours to converge to eigenvector 1, leaving them only the possibil-
ity to converge to the one with the next smaller eigenvalue which results in an alternating order of eigenvectors. 
In Table 2 the results of similar simulations are shown, but with R = 2. It shows two simulation runs, each one 
starting with randomly initialized weights. 
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Table 2  The goal of convergence for R = 2 

              Neuron             1   2   3   4   5   6   7   8 
run 1:    Eigenvector       1   2   3   1   2   3   1   2 
run 2:    Eigenvector       2   1   3   2   1   3   2   1 

 
Here, the same considerations as for Table 1 are valid. Within the enlarged radius we know that all other ei-
genvectors can exist except the one to where the centre neuron weight vector will converge. This is valid for all 
neurons. Thus, different sets of eigenvectors can be observed; the PCA is performed by local groups of neu-
rons. For example, in Table 2 for run 1 the sets are {1,2,3}, {2,3,4}, {3,4,5}, {4,5,6}, {5,6,7}, {6,7,8}. The 
coefficients of this local base vectors decomposition can be termed eigenvector jets analogously to the well 
known "Gabor jets" of local Fourier transform (Buhmann et al., 1989).  

     Now, let us extend this model to the important case of two dimensions, for instance for image encoding on 
the sensor chip by cellular neural nets. In Fig. 14 and Fig. 15 two networks of m = 16 neurons enlarged by 
additional two-dim. horizontal and vertical connections are studied, one with R = 1 and one with R = 2. The 
simulation results are also shown in these figures.  

  

  1   2   1   2
  2   1   2   1
  1   2   1   2
  2   1   2   1

 

Fig. 14 The mapping of eigenvector indices to neural locations after simulated in-
hibition and the net structure of the lateral inhibitions for the lateral inhibition 
distance R = 1. The index matrix shows only two alternating indices. This structure 
is shifted for different simulation runs, but remains principally the same. 
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neuron, converged to e 2 

neuron, converged to e1 

lateral inhibited area  
Fig. 15 The sites of possible neighboured neurons of the same component. The alternating 
structure of the index matrix in Fig. 14 can be explained by inspecting the possible eigenvector 
indices within the inhibition radius of one neuron, showed as a squared line. If we assume the 
convergence to the eigenvector with the next eigenvalue index in horizontal directions, the 
same goes for those neurons within its inhibition fields. Since this argument is also valid for the 
vertical direction, the alternating structure in both dimensions is the one which is stable and 
yield the eigenvectors with the biggest eigenvalues, i.e., a minimum of the global risk function. 

It is evident that the eigenvector index mappings are direct extensions of Table 1 and 2. It is also clear that 
other shifts in one row or column of the basic pattern can be observed.  

     In Fig. 16 the situation of Fig. 14 with the inhibition neighborhood of one neural unit is shown for a geomet-
rical discussion of the organization process.  

1  2  3  1          2  3  1  2          2  1  3  2
3  1  2  3          3  1  2  3          1  3  2  1
2  3  1  2          1  2  3  1          3  2  1  3
1  2  3  1          2  3  1  2          2  1  3  2  

  
Fig. 16 The formation of local eigenvector sets and the lateral inhibitions for the horizontal 
and vertical inhibitions with R = 2. In contrast to Fig. 15, the vertically and horizontally in-
creased inhibition suppresses the same eigenvector indices within the inhibition radius and 
cause the appearance of other eigenvectors with smaller eigenvalues. The index assignments 
are listed for different simulation runs . 
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The convergence result is indicated by the full black unit (eigenvector 1) or the shaded unit (eigenvector 2). As 
already argued before, the inhibition enables the convergence of a weight vector with the same index only out-
side the reach of the inhibition. For R = 1, this leads to an alternating formation of eigenvectors in both horizon-
tal and vertical directions and generates a chessboard-like appearance. Here again, we see that the formation 
of local eigenvector sets is automatically obtained by the existence of the discrete inhibition radius. 

     In figures 17 and 18 diagonal inhibition connections are added to the nets and we can observe the mapping 
of eigenvector indices to neural location convergence configurations after different runs with randomly initialized 
weights.  

3  4  3  1          1  4  1  5          2  3  4  1
2  1  5  2          3  2  3  2          5  1  5  2
4  3  4  3          1  5  4  1          4  3  4  3
1  2  1  2          2  3  2  3          1  2  1  2   

  
Fig. 17 The formation of local eigenvector sets and the lateral inhibitions for the horizontal, 
vertical and diagonal inhibitions with R = 1.The additional diagonal inhibition also 
enlarges the inhibition radius and has similar effects as in Fig. 16.  

 

2  1  5  3          4  3  2  1          2  1  3  2
3  6  2  1          2  5  6  3          3  6  5  1
1  4  3  5          3  4  1  2          1  7  4  3
5  2  1  4          1  2  3  4          2  3  1  2  

  
Fig. 18 The formation of local eigenvector sets and the lateral inhibitions for the hori-
zontal, vertical and diagonal inhibitions with R = 2. 

     Here again, an enlarged inhibition radius forces the convergence of the other neurons within the radius to 
eigenvectors with smaller eigenvalues, enabling the self-organized formation of two-dimensional eigenvector 
jets. Simulations with other radii confirm the principal mechanisms. 
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Although the whole input is received by all neuronal units as it is the case in the Kohonen map, the same results 
can be obtained for discrete CNN systems with restricted localized input regions (local receptive fields) if the 
input statistics are translation-invariant. For most data like speech and image this is the case, because the 
neighbour data points are more correlated than ones with a longer distance, independent of the absolute posi-
tion in time or picture coordinates. Although the localized input leads to localized statistics which produces no 
more classical Karhunen-Loéwe transforms because the input set is different for all components, we can obtain 
the same classical transformation results. Experiments for this postulation are under development. 

     There is another important remark. Due to the randomized initial conditions, the weights of the neurons can 
converge in all simulations in a transparent manner. Nevertheless, let us assume for instance as special initial 
weight conditions that the weights of neurons 1 and 4 in Fig. 13 have both converged to eigenvector e1. Then, 
for R = 1 under the assumption of only small random perturbations caused by the input variance, there is no 
reason why the weights of neurons 1 and 4 should change their fixed points: all perturbations by the lateral inhi-
bitions are smaller than the autocorrelation part, leaving the weights at the "strongest" fixed points. Thus, the 
weights of neurons 2 and 3 will only evolve to the less stronger eigenvectors e2 and e3, and not to the configu-
ration of Table 1 with the lowest possible objective function value or "energy". 

     This irregularity can be compared with the formation of regular crystal lattice by atom bindings: due to ther-
mal effects (random perturbations) there is no global coordination of the local ordering process which results in 
the effect of local crystal disorders. For large, randomly initialized arrays of neurons (which we cannot yet 
simulate), this effect should lead to analogue observations. 

     Now, let us take a closer look at the question: what are the "native", fault-free structures of this kind of self-
organization with lowest energy? If we can already deduce the two-dim. structure of the stable configurations, 
we can artificially initialize it as ROM on the chip in order to provide complete local sets of eigenvector de-
composition coefficients for the best distributed picture encoding and decoding possible by this kind of archi-
tecture. 

4.4 The Proportions of the Self-organization 

For the self-organizing process as a whole, there are many questions still unresolved. For instance, given the 
inhibition radius, how many stable states are principally possible? Are the different components of the 
eigenvector jets always equally distributed?  

     In this section, we want to focus on some of theses questions and try to sketch the design of an optimal 
eigenvector jet system. Since the regions of influence of the lateral inhibitions are sharply limited, the question of 
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global convergence reduces to the question if a specific assignment of eigenvectors to weight vectors are con-
sistent or not and can be solved by the following geometrical reasoning.  

     Let us consider an array of neurons, very densely packed, i.e., a nearly continuous field. In this field, every 
neuron inhibits the formation of the same eigenvector within the field bordered by a circle of radius R. Thus, if 
we have nF eigenvector jets per area unit, a first rough estimation yields at most N jet = nFA = nFπR2 ~ R2 other 
eigenvector components within this radius.  

     Now, let us evaluate this more accurately. Let us regard one neuron with its lateral inhibition of radius R 
(see Fig. 19) and let us assume that this neuron has weights which have converged to the first eigenvector e1, 
i.e., to the eigenvector with the biggest eigenvalue λmax.  

 

  
Fig. 19 The forming of two-dim. discrete structures by lateral inhibition. In a continu-
ous neural field and a discrete inhibition radius, the next neuron with the same eigen-
vector will lie on the inhibition radius. Selecting arbitrary one point on the radius, a 
third one should lie outside the first inhibition radius and the second one (dotted 
line). If we choose the cross points of these two radii as locations for other neural units 
of the same eigenvector as weight vector, we get first an equal-sided triangle and then 
end up with a hexagonal structure (solid and dotted line units). Since this is the maxi-
mal number of the same kind of units on the inhibition boarder, this structure yields 
the lowest risk function value of the region; it contains most of the units with the same 
(maximal) eigenvalue in the nearest neighbourhood of our first unit. 

Then, within its radius R no other neuron can converge to e1. Since it is the dominant eigenvalue, there is at 
least one neuron beyond the circle of radius R which will converge also to e1. Let us assume that the circle line 
indicates the site of the first neurons with distance greater than R to the centre neuron, then a second neuron is 
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situated on this circle. Here, again, we have a lateral inhibition area, limited by a circle with radius R, shown as 
a dotted line on Fig. 19. Certainly, on the crossing of the circles of the first neuron and the second neuron a 
third neuron will exist which converges to the dominant e1 and has also a lateral inhibition area, shown by a 
dotted circle. We see now that in this neuronal field, all neurons with the dominant eigenvector are situated at a 
distance R from each other. The first three neurons form an equal-sided triangle, enclosing an angle of 60° at 
each corner. Since a stable state of lowest "energy" around the first neuron is only possible when a natural 
number of neurons forms the neighborhood, we have 360o/60o = 6 neurons as neighbors on the circle. Thus, 
each neuron is the centre of six neighbors, forming a kind of hexagon structure. For the second eigenvector, 
this is also true. Since it does not interfere with the first eigenvector, there will be also an hexagonal structure 
build up by those neurons which are inhibited to converge to the first eigenvector because they are located 
within the inhibited area. This structure can be seen as a "copy" or "shadow structure" of the first one, shifted 
within the inhibition area. 

   Thus, the maximal number of components of the eigenvector jets is the maximal number of hexagon copies 
which can be arranged within the inhibition area using the spare neurons. Since every copy uses more than one 
spare neuron in the area, there are certainly less components than units in the area. To compute the exact num-
ber, let us assume that the inhibition radius is scaled in inter-unit distance lengths. Within an inhibition distance R 
of a unit we can reach R-1 other units (drawn in Fig. 20 with different textures at the line crossings) containing 
different eigenvectors as weights.    

  Therefore, as a discrete, regular pattern of neuronal locations we assume a regular, two-dim. lattice structure. 
With two degrees of freedom, this allows us to shift the hexagonal inhibition structure an integer number of 
increments in the two main index directions x1 and x2 maximally R-1 times. 

As you can see in Fig. 20, all units with negative values of an index x1 or x2 are covered by the circle units 
when we assume positive shifting only. Because the other neurons on the hexagonal circle around the centre 
neuron have the same eigenvector, the shifting can be restricted to the positive direction of indices x1 and x2. 
Counting all units within the x1/x2 area, we have without the circle boarder units (which are the same as those 
on the x1/x2 axis) just R2 different units 

                 Njet = R2  
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      x2

    x1  
Fig. 20 The hexagon base structure and the self-organization of eigenvector jets within 
the structure. The units with the maximal eigenvalue (black and shaded solid disk s ) 
form a hexagon structure. Assuming an additional unit between them, the inter-unit 
inhibition radius is R = 2. This allows a certain number of different eigenvectors for 
the other units within this radius. To calculate it, we assign two coordinate axes x1 and 
x2 to the two-dim. structure. As we can see, shifting the centre of the hexagonal struc-
ture within the region (dotted lines) of {(0,0), (R,0), (0,R), (R,R)} suffices to determine 
a consistent assignment of eigenvectors indices to all other units within the inhibition 
radius of the unit (0,0). 

Comparing this with our rough estimation, we get nF = 1/π units per area. At least for this kind of structure, we 
can predict that regular patterns of convergence can evolve and are stable, providing us with Njet = R2 different 
eigenvectors on a chip area of R2. By construction, this is an optimal value. All other, non-hexagonal kind of 
unit layout pattern structures will yield a smaller number of different eigenvectors, because due to the misfittings 
of the projection of the dominant hexagon eigenvector structure to the unit layout pattern there will be less un-
used units for higher components.    

     The local picture encoding by these eigenvector jets can be compared with the commonly used color dot 
triples of the matrix in color TV display screen tubes. Those also encode locally the linearly decomposed 
brightness by three frequency bands, represented naturally by the brightness of the three color dots. Here, the 
local amplitudes of the three dots can be also seen as a "color jet".  
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5.  CONCLUSION 

After an introduction of encoding frequent events and the idea of breaking whole sensor fields like images into 
small patches, the paper focused on the linear transformation with the smallest achievable error for reproduc-
tion of one patch: the transform coding approach using the principal component analysis (PCA). 

     A new symmetrical, lateral inhibited neural network model for the implementation of principal component 
analysis is introduced, an objective function for it is proposed from which the corresponding learning rules are 
deduced. Then the necessary conditions for the learning rate and the inhibition parameter for balancing the 
cross-correlations and the autocorrelations are computed. The simulation revealed the interesting feature that a 
slowly increasing inhibition parameter can speed up the convergence process in the beginning. 

     Finally, the use of non-completely connected, lateral inhibited networks for the self-organized formation of 
templates in cellular neural networks is shown. Hereby, the classical transform picture coding scheme is 
changed to a parallel, local model of linear transformation by locally changing sets of eigenvector jets with 
overlapping input receptive fields which are self-organizing its structure. The well-known Kohonen map can be 
regarded as the first order version of this more general encoding scheme. Geometrical analysis reveals that the 
most appropriate structure for this kind of encoding in a plane are arrays of neurons providing hexagonal struc-
tures of eigenvector jets.  

     Our approach shows how an self-organized implementation of sensor encoding can be arranged directly on 
the sensor or display chip. This enables effective, cheap chip implementations which is an important clue for 
many applications in real-time image, speech and music encoding for telecommunication, multi-media applica-
tion and environmental picture data banks. 

     It should be emphasized that this self-organization does not depend on the specific PCA model introduced 
in this paper but should be valid also for other models using symmetrical, lateral inhibition connections, e.g., the 
models of Freisleben (1993), Földiák (1989) or Leen (1991). 

     Further research will be done on extensions of the schema presented here. For instance, different inhibition 
radii for different components will naturally lead to a adaptive multi-resolution schema of sensor encoding or an 
whitening filter network, see Plumbley (1993).  
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NOMENCLATURE 
AT transpose of vector or matrix A 

 x (t)       tth input data vector 
Cxx       autocorrelation matrix of x 
zi        activity of neuron i 
Ti        lateral influence on neuron i 
yi        output of neuron i 
y         vector of outputs 
w~         unnormalized weight vector 
wi       normalized feed-forward weight vector of ith neuron 
W         matrix with weight vectors as rows 
uij        lateral weight from neuron i to neuron j 
U         matrix of lateral weights 
B         matrix of all weights of the network 
I         identity matrix 
e i        ith eigenvector of Cxx 
λi        ith eigenvalue of Cxx 
λmin(λmax)   minimal (maximal) eigenvalue of Cxx 
pij       subspace (plane) spanned by eigenvectors i and j 
R(.)       risk function, objective function 
S(.)       output (activation or squashing) function 
L(.)       Lagrange function  
R         lateral inhibition radius of a neuron 
n         number of input dimensions 
m         number of neurons in the net 
N         length of picture 
M         width of picture 
c         two-dim. pixel data, ordered in vector form 
K         number of subpictures in the picture 
β          cross-correlation/autocorrelation ratio parameter 
γ         proportional factor in learning  equations (learning rate) 
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APPENDIX A: THE EXTREMES OF THE OBJECTIVE FUNCTION 

Theorem:    

The objective function  

             R(b1,…,bm) = 1/4 βΣiΣ j≠i (〈yiyj〉)2 − 1/2 Σi 〈yi
2〉 

      with the condition |bk| = 1 has as necessary condition for an extremum R(b1
*,…,bm

*) that the 
b1

*,…,bm
* are eigenvectors of the autocorrelation matrix C. 

Proof: 

The constrained extremes of the objective function can be obtained by the method of Lagrange multipliers. 
Here, we construct the Lagrange function 

     L(b1,…,bm, µ1,…,µm) = R(b1,…,bm) + µ1(|b1|2–1) + …+ µm(|bm|2–1) 

The 2m necessary conditions characterize the multivariate extremes 

           ∂L = 0   ∂L = 0    ∀k = 1, …, m 
            ∂bk       ∂µk 

and give us beside our m restrictions |bk| = 1 the m conditions 

  ∇b L(bk
*) =  ∇bR(bk

*) + µk∇b(|bk
*|2–1)  = 0              ∀k = 1, …, m     (A.1) 

using the Nabla operator ∇bF(b) = (∂F(b)/∂b1, …. ,∂F(b)/∂bn)T. 

Let us evaluate the gradient ∇bR(bk) first. 

With eqn(2.6) we have  

           ∇bR(bk) = 1/4β  ∇b Σ i Σj≠i (〈yiyj〉)2 − 1/2∇bΣi 〈yi
2〉 

With a different ordering of the sum 
Σ  Σ 〈yiyj〉2 =  Σ Σ  〈yiyj〉2 + Σ 〈ykyj〉2 = Σ Σ  〈yiyj〉2 + Σ 〈ykyj〉2 + Σ  〈yiyk〉2

 

  
i   j≠i                        i≠k j≠i                 j≠k            i≠k j≠i             j≠k              i≠k 

and by eqn (2.1) only the terms containing yk remain non–zero in ∇bR(bk) and we get 

     ∇bR(bk) = βΣ j≠k 〈ykyj〉∇b(〈ykyj〉) − 〈yk∇byk〉 

      = βΣ j≠k 〈ykyj〉 〈xyj〉 − 〈xyk〉                                      (A.2) 
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      = βΣ j≠k 〈xxT〉bj (bj
T〈xxT〉bk) − 〈xxT〉bk = βΣ j≠k Cbjbj

TCbk − Cbk 

      = [βC(Σ j≠k bjbj
T)C − C] bk                                     (A.3) 

The condition (A.1) becomes 

       ∇a L(bk
*) =  [βC(Σ j≠k bj

*bj
*T)C − C] bk

* + 2µkbk
*  = 0        ∀k = 1,…,m 

or   [C − βC(Σj≠k bj
*bj

*T)C] bk
*  = θkbk

*           θk = 2µk                      ∀k = 1,…,m     (A.4) 

This is an eigenvector  eqn for the matrix [.]. It is easy to see that this has as solutions the m eigenvectors of C: 
Suppose the ek are all eigenvectors of C and we have si weight vectors bj converged to eigenvector e i. Then 
(A.4) becomes 

  [C − βC(Σ j≠k bj
*bj

*T)C] ek  = λkek − βC(Σj≠k bj
*bj

*T)λkek = λkek − βC(Σi sieie i
T)λkek 

            = λkek − βCλkskek  = (λk − βλk
2sk)ek = θkek  

The eigenvectors of C are also the eigenvectors of the matrix [.] and fulfill condition (A.4).  
Now, note that the rank of a linear transformation (i.e., the number of independent base vectors of the pro-

jection space or the number of independent row vectors of the corresponding matrix), which is composed of 
several linear transforms (e.g. G = DB) can not be bigger then the rank of any of its transforms. This is based 
on the fact that two linear dependent base vectors bi and bj of a space remain dependent after a linear trans-
form (e.g. 0 = D⋅0 = D(abi+bbj ) = aDbi + bDbj = agi + bgj = 0) and reduce the dimension of the projection 
space to the dimension of the input space, i.e., the rank of the first matrix. This is also true for the transpose of 
G, for BTDT, and means that the rank of G is reduced to the minimum of both, D and B. Since this is true for 
all pairs of matrices in a chain, it is also true for the whole chain. 

For our problem, this means that the rank of the matrix [.] is the minimum of the ranks of C and (Σ j≠k bj
*bj

*T) 
and we have maximally as many eigenvectors of matrix [.] as eigenvectors of C exist. Therefore, the eigenvec-
tors of C are the only solutions for the extremes of the objective function,  

Q.E.D.  



44 R. W .Brause  

APPENDIX B: LEARNING AN EXPECTATION VALUE 

Theorem:  

By the learning rule 

           r(t) = r(t–1) − 1/t (r(t–1) – αv(t))                         (B.1) 

at every time step t the parameter m represents the expectation value 

            r(t) = 〈αv〉 t                                      (B.2) 

of the stationary random variable v. 

 

Proof: By inspection: 
For t = 1, we have r(1) = αv(1), independently of the initial value r(0). Now, to prove eqn (B.1) by complete 
induction, it suffices to show that (B.1) is also valid for an arbitrary t under the assumption that it holds for t–1. 

For that purpose, let us assume that r(t–1) = α〈v〉 = α  [1/(t–1)] ∑
−

=

1t

1k

v (k) holds. Then the new average be-

comes 

             α [1/t] ∑
=

t

1k

v (k) = α  [v(t)/t] + α  [(t–1)/(t–1)t] ∑
−

=

1t

1k

v (k)  

                       = a [v(t)/t] + [1–1/t] r(t–1) 

                       =  r(t–1) − 1/t[–αv(t) + r(t–1)] = r(t) . 

 

Thus, after each learning step (B.1) the weight r represents the average of αv. 
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APPENDIX C: NON-CENTRED INPUT 

Many networks (e.g., Oja et al. 1992; Sanger, 1989; Rubner & Tavan, 1989) assume that the pattern statis-
tics are centred, i.e., the expected input 〈x〉 is zero. Then the covariance matrix 〈(x-〈x〉)(x-〈x〉)T〉 becomes the 
autocorrelation matrix Cxx = 〈xxT〉. For the latter case, the normalized Hebbian (or anti-Hebbian) rule, let the 
weight vector converge to an eigenvector of the autocorrelation matrix, implementing a PCA. If the patterns 
are not centred, we are in trouble – how can we learn the eigenvectors of the covariance matrix for the PCA ? 

This can be overcome by the following approach. Let us redefine the input xT = (x1,…,xn) → x~ T = 
(x1,…,xn,1) by an additional, constant line xn+1 = 1. Then the corresponding input weight wn+1 of w~ T = 
(wT,wn+1) = (w1,…,wn,wn+1) is learned by the anti-Hebbian rule  

           wn+1(t+1) =  wn+1(t) – γ(t+1) xn+1(t+1) y(t+1)                   (C.1) 

For the decreasing learning rate γ(t) := 1/t and the output y(t+1) = w~ T(t) x~ (t+1) = wT(t)x(t+1) + xn+1wn+1 this 
becomes with the definition z = wTx 

           wn+1(t+1) =  wn+1(t) – 1/(t+1) (z(t+1) + wn+1(t))                (C.2) 

Replacing in eqn (C.2) literally z(t+1) by v and wn+1 by r makes the learning rule (C.2) become the learning 
rule (B.1) with α  = –1. For this rule Appendix B proved that it learns the average α〈z(t)〉 at each time step. 
Thus, by the additional weight the output becomes y = z – 〈z〉 with the mean value 〈y〉 = 〈z– 〈z〉〉 = 0. 

     Please note that the time scale of this iteration must be smaller than the one we use for learning the other 
weights by the learning rules of eqn (2.11)-(2.14) in the neuron. This is necessary because we use the output y 
in the Hebb-type learning rules itself, demanding centred input, i.e., centred output for PCA convergence 
goals. Thus, to implement a PCA, the offset weight wn+1 must converge much faster than the other weights to 
ensure the convergence of the weights to the eigenvectors of the cross-correlation matrix, not to the ones of the 
autocorrelation matrix.  

It can be shown (Brause, 1992b) that the autocorrelation matrix of the augmented input has the same 
eigenvectors as the covariance matrix of the non-augmented input. 



46 R. W .Brause  

APPENDIX D: THE ITERATION OF THE WEIGHT VECTOR 

One iteration step of the learning rule is by eqns. (2.9), (2.10) and (2.12) 

     wi(t+1) = wi(t) + ∆wi    =  1 [wi(t) + γ(t) (Cwi – βC(Σj≠iwjwj
T)Cwi)]          

                    |wi(t) + ∆wi|       g 

with   g = |wi(t) + ∆wi| .         
Let us write this in the base of the orthonormal eigenvectors e1, …, en of C by using the coefficients ail in this 
base which are given by the identity 

           wi(t) = Σl ail (t) el  

Then, the kth component, in the direction of ek, denoted also by indexed brackets [.]k, evolves to  

 aik(t+1) = {aik(t) + γ ( [C (Σl ail (t) el)]k − [βC(Σ j≠iwjwj
T)C (Σl ail (t) el)]k ) } / g 

      = {aik(t) + γ λk aik(t) − γ[βC Σj≠iwjwj
T (Σl ail (t)λ lel)]k } / g 

      = {aik(t) + γ λk aik(t) − γ[βC Σj≠i(Σl ajl (t) el)(Σ l ajl (t) el)T (Σl ail (t)λ lel)]k }/ g 

      = {aik(t) + γ λk aik(t) − γ[βC Σj≠i(Σl ajl (t) el)(Σ l ajl (t) ail (t)λ l)]k } / g 

With the abbreviation bij : = Σl ajl (t) ail (t)λ l , concluded by the definition we have 

          [Σl ajlel ]k = ajk  

and finally get 

      aik(t+1)   = {aik(t) + γ λk aik(t) − γ[βC Σ j≠ibij Σl ajlel ]k } / g 

            = {aik(t) + γ λk aik(t) − γβ  Σj≠i bij Σl ajl (t)[Cel ]k  } / g 

            = {aik(t) + γ λk aik(t) − γ λk βΣ j≠i ajk(t)bij } / g               (D.1) 

or     

aik(t+1)  =  aik(t){1 + γλk (1 − βΣj≠i ajk(t)bij/aik(t) ) } / g  .          (D.2) 


