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In this paper, the problem of analyzing hyperspectral data is presented.  The 

complexity of multi-dimensional data leads to the need for computer assisted data 

compression and labeling of important features.  A brief overview of Self-Organizing 

Maps and their variants is given and then two possible methods of data analysis are 

examined.  These methods are incorporated into a program derived from 

som_toolbox2.  In this program, ASD data (data collected by an Analytical Spectral 

Device sensor) is read into a variable, relevant bands for discrimination between 

classes are extracted, and several different methods of analyzing the results are 

employed.  A GUI was developed for easy implementation of these three stages. 
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CHAPTER I 

INTRODUCTION 

 

 

Hyperspectral data of crops is being analyzed to extract some meaning of the 

full knowledge of the plants.  Classification of images in a hyperspectral cube is one 

of the most difficult tasks when analyzing hyperspectral data.  The high 

dimensionality of the data makes it very difficult for a human to visualize, and 

differences in similar plants’ hyperspectral signatures are not obvious. 

Typical hyperspectral signatures contain hundreds of frequency bands.  Some 

of the bands contain information about the plant, some of the bands contain 

information about the atmosphere, and some bands are dominated by electronic noise.  

Researchers are most interested in the bands that contain information about the plant, 

but not just information that is unique to the plant kingdom.  Researchers want to 

know what frequency bands are important for species identification.  This means that 

irrelevant bands should be removed from consideration, and some method of 

determining which bands contain species-specific data must be developed.  

Since pattern recognition is the primary emphasis, a neural network seems to 

be the most logical method for solving this problem.  King et al presented a first look 

at the feasibility of analyzing hyperspectral data with a Self Organized Map (SOM) in 
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Classification of Weed Species Using Self-Organizing Maps [1]. This thesis is an 

expansion of King’s initial work.  In the following chapters, the process in which a 

program that utilizes neural networks for feature extractions was developed is 

described. 
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CHAPTER II 

INTRODUCTION TO NEURAL NETWORKS 

 

2.1 Introduction 

 Since pattern recognition is the primary emphasis in this thesis’ problem, a 

neural network seems like the most logical method, or solution.  In order to better 

visualize the steps taken toward making this decision, a general understanding of the 

basics of neural networks is necessary.     

 Kohonen suggests that three categories of neural networks exist: feedforward, 

feedback, and a third group known as “competitive, unsupervised, or self-organizing” 

[2].  Feedforward networks are formed by a set of inputs propagating through a 

system and resulting in an output [3].  The system is modified by externally adjusting 

the weights.  Feedback networks start in an initial state and adjust their inputs, 

continuing until they approach a final output.  Kohonen describes the third category 

as “neighboring cells in a neural network compete in their activities by means of 

mutual lateral interactions, and develop adaptively into specific detectors of different 

signal patterns.”  A self-organized map may be the best tool for extracting subtle 

features in similar hyperspectral images.  The enigma of self-organizing maps is their 

ability to find regularities and correlations in the input layer and group them into 

vectors without any external adjustment or knowledge of expected outcomes.  One 
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interpretation of Kohonen’s definition of the SOM is that it is “an artificial neural 

network which defines a nonlinear transform from the input space to the set of nodes 

in the output space.  Each node is associated with a model of the input space” [4].  Of 

self-organizing maps, basically two different models exist.   

Willshaw and Von Der Malsburg developed a model that focuses on mapping 

inputs to outputs of the same dimension [5].  This model is not very useful in analysis 

of hyperspectral data, due to the high dimensionality of the data.  The map must 

contain some method of compressing the data into a manageable form.  Kohonen’s 

self-organizing map is one of the most referenced mapping techniques because of its 

ability to take high dimensional data and flatten it into two- or three-dimensional data.  

One extremely important attribute of Kohonen’s SOM is that it performs data 

compression without loss to relative distance between data points.  A SOM typically 

uses the Euclidian distance formula to determine the relative closeness or similarity of 

data.  Through an iterative process of selecting a neuron and determining whether 

other neurons in a “neighborhood” should move closer or further away, it is able to 

sort data into similar groups [6].  The learning rate controls how far a neuron is 

moved.  At the beginning of the process, the neighborhood size is at least half the 

map [7], and the learning rate is close to one. Over the course of the process, the 

neighborhood size and learning rate are independently decreased until the map no 

longer makes significant adjustments [8][9].   

In the case of hyperspectral data, there are three dimensions, consisting of 

sample number, band number, and amplitude.  Though the actual dimensionality of 
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the data is only three, the length of two of the three dimensions is very long.  The 

number of samples can be extremely large and the number of bands is already several 

hundred.  When these two numbers are multiplied together to yield the number of 

points, the data size becomes extremely large and potentially cumbersome.  The SOM 

is capable of flattening the data into two or three dimensions of which the lengths can 

be set, therefore resulting in a manageable data size.  In addition, the total number of 

points in the SOM can more closely match the number of types of samples multiplied 

by the number of bands.  For instance, 400 hyperspectral signatures, containing 300 

bands, of 10 types of plants would contain 120000 points in a data cube, but could 

contain as few as 3000 points in a SOM.  The map also displays the data from a 

different viewpoint; instead of viewing the data as a cube, it can be viewed as a two-

dimensional plot.  This is where human analysis is aided.  Instead of looking at the 

spectral signature of a sample and trying to determine what the sample type is, one 

can look at the location of the sample on the map and try to determine what the 

sample type is. 

 

2.2 Applications of the SOM 

Kohonen’s SOM has been successfully applied to many areas in science, 

ranging from understanding the human brain “to subsystems for engineering 

applications”[9].  Many variants of the Kohonen SOM have appeared over the last 

couple of decades.  Many problems with the architecture of the SOM have been 

addressed.  H. S. Hosseini and R. Safabakhsh created a time-adaptive self-organizing 
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map (TASOM) to handle non-stationary input distributions and changing 

environments.  The TASOM assumes that each neuron has its own learning rate and 

neighborhood function [7].   

Another problem with the basic SOM is that the size of the map has to be 

predefined.  D. Alahakoon et al proposed a growing self-organizing map (GSOM) to 

address this problem.  The GSOM starts out with a minimal number of neurons and 

increases the number as needed [10].  This can save processor time as well as human 

analysis time.  Processor time is a huge concern when using neural networks.  

Depending on processor speed and the size of the application, a neural network can 

take days to train.   

Another way of decreasing training time has been proposed by M. C. Su and 

H. T. Chang.  Su and Chang use a three-step process in which a K-means algorithm is 

used to select N2, and says, “then a heuristic assignment strategy is employed to 

organize the N2 selected data points into an N x N neural array”[11]. Finally, the 

Kohonen SOM is employed to fine-tune the network. 

 

2.3 Analysis of the SOM 

The largest problem with the SOM comes from its inherent nature of use.  The 

SOM is used to organize high dimensional data into a two- or three-dimensional map 

because humans are not very effective at handling hyper dimensional data.  Since 

humans are not effective at handling the hyper dimensional data, just what the map 
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should look like is unknown.  Two basic facts need to be determined after the SOM 

has been created: 

1. Is the SOM actually organized? 

2. What features did the SOM use to separate the data? 

A. P. Azcarraga presents a very legible overview of average unit disorder (AUD).  

Order is defined as “the degree by which physically (spatially) close map units are  

assigned values that are similar in the input environment”[12].  Azcarraga labels lij by 

where wij is a weight of node ui, v is the number of input units, and lij is the average 

absolute difference between the weights of nodes ui and uj [12].  Once lij is 

determined, AUD can be found by evaluating 

where “dij is the Euclidean distance between ui and uj” and “ N is the number of units 

in the map” [12].   

According to A. P. Azcarraga, AUD can be used to evaluate the degree to 

which the map is organized regardless of the variant of Kohonen’s SOM.  This is an 

especially important attribute of this method in that it will provide a solution to 

problem number one regardless of the way in which that state was achieved.    The 

usefulness of the AUD in hyperspectral data should be apparent.  It will give us the 

stopping point needed to be sure the map is organized.  The most common approach 
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to solve problem number one is to arbitrarily pick some fixed number of intervals.  

This technique is far superior in that it is more processor efficient and more reliable.   

A. P. Azcarraga’s study of the behavior of the AUD curve has led to a general 

graph that represents a correctly organized map.  The graph displays three distinct 

behaviors.  In the first part, AUD increases because “the map units are being 

sensitized to the different input patterns”[12].  In the second phase, AUD decreases; 

Azcarraga refers to this as “Global Ordering.”  In this phase, the different groups are 

being developed.  This phase will continue until it becomes organized on a global 

scale. That is, large clusters of data are spatially organized, but the organization 

within the clusters is not complete.  The final phase consist of moving units around 

within the clusters.  This will affect the overall AUD very little.  By measuring the 

change in AUD, the map will “know” when to stop [12]. 

Figure 2-1.  General curve for the AUD metrice [12]  

A second characteristic of this process is that the actual shape of the AUD 

curve, as shown in Figure 2-1, must be closely matched or the data will not be 

clustered in ways that will make sense to humans [12].  Since parameters such as  
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learning rate and neighborhood size are arbitrarily chosen in some variants of 

Kohonen’s SOM, this would provide feedback as to whether or not the initial guesses 

were close enough.   

 This brings us to the second question: “What features did the SOM use to 

separate the data?”.  D. Merkl and A. Rauber devised another variant of Kohonen’s 

SOM that provides a “label” for the different units on the map.  Merkl and Rauber’s 

labelSOM derives its labels from the important features it used to determine where 

the unit should be.  This technique was developed for archiving journal articles of 

similar topics.  To apply this technique to hyperspectral data analysis would take 

some manipulation, but should be feasible. 

 D. Merkl and A. Rauber use Kohonen’s SOM, also known as the basic SOM, 

to organize the data but, then, runs an additional algorithm to provide “labels” for the 

data clusters.  In this algorithm, Merkl and Rauber analyze the co-occurrence 

patterns. That is, they use “the deviation between weight vector components and the 

respective components of the input vectors”[8].  Merkl and Rauber define ikδ  as  

where Di denotes the set of documents mapped onto unit i.  ikδ  is the deviation of a 

particular vector component k.  Index terms that have a certain range of deviation are 

used as the labels for that unit.  [Merkl] presents a successful application of this 

process in which the groupings of labels give a sufficient description of the set. 

 

  
) ) ( ( 2 ∑ − = 

Di xj 
jk ik ik x m 

ε 
δ (3)  
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2.4 Conclusion 

 Hyperspectral images do not contain words as in D. Merkl and A. Rauber’s 

example, but hyperspectral images do contain spectral bands.  Applying multiple 

models to hyperspectral data should allow critical knowledge of the data to be 

obtained.  Specifically, by applying A. P. Azcarraga’s parameters of the AUD and D. 

Merkl and A. Rauber’s labelSOM, knowledge of the important spectral bands in 

hyperspectral data can be extracted with high confidence.  This is an important and 

necessary step towards reducing the amount of data required to sufficiently describe 

an image. 
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CHAPTER III 

WHAT IS REMOTE SENSING? 

Remote sensing is a method of acquiring information about an object from a 

distance without physically being in contact with the object.  This is accomplished by 

sensing electromagnetic energy that is reflected or emitted by the object and 

analyzing its spectral signature.    Imaging systems such as ASD have seven elements 

involved in remote sensing.  The seven elements are:  the energy source, radiation in 

the atmosphere, interaction with the target, recording of the energy by the sensor, 

processing the recording into an image, interpretation of the image, and, finally, 

application of the analysis to solve a problem.   

A large part of remote sensing requires an interaction between incident 

radiation and the targets of interest.  This means there has to be an energy source to 

provide the electromagnetic energy to the target.  Electromagnetic energy varies 

along a spectrum of wavelengths.  For an ASD, this is the sun.  The sun is the 

equivalent of a black body radiator at 6000 degrees Kelvin.  In other words, it radiates 

in wavelengths increasingly from .2 to .5 micrometers and then decreasingly from .5 

micrometers.  ASD operates in a spectral range from .35 to 2.15 micrometers, 

utilizing the highest energy range radiated from the sun.  However, not all of this 

energy reaches the surface. 
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Some of the sun’s radiated energy is lost in the atmosphere.  Losses of the 

sun’s incident energy are caused by scattering, reflection, and absorption.  The losses 

in the atmosphere are not evenly distributed across the magnetic spectrum.  Ozone 

filters the ultraviolet part of the spectrum out, while there are also wavelengths 

missing completely in the visible and infrared spectrum due to water vapor 

absorption.  The electromagnetic energy absorbed by the water vapor is converted 

into heat.  Other wavelengths can be diffused or reflected to varying degrees due to 

aerosols, depending on the thickness of the haze.  Rayleigh scattering in the 

atmosphere is a function wavelength and haze.  Scattering varies as λ^-x with x being 

less than or equal to 4 depending on the thickness of the haze.  This has to be taken 

into account when processing the data.  Radiation that passes through the atmosphere 

can then interact with the target.  Energy that strikes the target, or is incident upon the 

surface, can be absorbed, transmitted, and reflected.  Incident energy must interact in 

one or more of these ways.  That is to say that the energy incident to the target must 

equal the sum of the absorbed, transmitted, and reflected energy.  Energy is reflected 

in two forms: specular and diffuse.  Specular reflection occurs on mirror-like 

surfaces this is typical of roads.  Diffuse reflection occurs on rough surfaces and the 

energy is reflected uniformly in all direction this is typical of vegetation as seen in 

Figure 3-1. 
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Figure 3-1. Typical vegetation reflectance spectrum 

Leaves in the spring and summer reflect light in the green wavelengths and 

absorb light in red and blue part of the visible spectrum.  Longer wavelengths such as 

2000nm to 2400nm contain information on moisture content.  It is this diffuse 

reflection characteristic of vegetation that is of interest to us.  Data can be extracted 

from the diffuse energy telling us what kind of plant it is and how healthy it is.  A 

detailed description of the spectral signature of a target is required to extract this kind 

of information.  Hyperspectral sensors are the tools for completing this task.

 Data collection is one of the most tedious and time-consuming parts of remote 

sensing research. Libba Lamastus provided several sets of data, which aided in the 

timely development of the final program. 
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To make good use of the data, we must be able to extract meaningful 

information from the image cube.  In order to interpret and analyze the image cube, 

identification and measurement must be made of various targets.  A target must be an 

object that is distinguishable from other features around it.  Given that many objects 

are often very similar to their surrounding neighbors and the fact that most pixels 

suffer from spectral mixing, hyperspectral images are indispensable because of their 

ability to detect subtle differences in the electromagnetic spectrum.  Spectral mixing 

occurs when a pixel is not homogeneous.  For example, if an image of a leaf was 

collected and an aphid was on that leaf, the pixel would be mixed.  There are 

subspace projection methods and linear unmixing techniques that allow the removal 

of undesired components from an image and detect a known target in the presence of 

mixed pixels.  The SOM should be able to decide if the pixel is mixed and place it on 

the map accordingly.  

Classification can be difficult with agriculture because the spectral signature 

of a plant changes over a growing season.  Spectral signatures can also change 

according to how they are stressed.  Stress can occur by under- or over-fertilizing, 

improper irrigation, and the presences of pests.  Though this has a negative impact 

upon image classification, this is a very useful effect when it comes to management 

of agricultural resources. When managing a crop, classification of different species is 

not a high priority in analyzing hyperspectral data.  The top priority is to ensure a 

healthy crop, one that is not stressed, which will maximize growth.  After analyzing 

an image cube and determining how a crop is stressed, proper steps can be taken to 



  15 

 

rectify the situation; but this process can be seen as classification of variously stressed 

crop.  Equipment can be sent to specific areas to treat the crops according to their 

specific needs.  Multi-spectral satellites must be the final platform for remote sensing 

when it comes to agricultural management.  The reasons for this are the enormous 

monetary and time cost associated with flying a sensor as well as collecting terabytes 

of data.   
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CHAPTER IV 

INITIAL APPROACH TO PROGRAM CREATION 

There were two initial reasons for finding a way to reduce the amount of data 

that is stored.  The first reason is that hyperspectral data files are extremely large.  

They require massive data storage devices and take long periods of time to process.  

The second motivation came from researchers desires to know the locations of 

relevant spectral bands in order to implement other data analysis techniques such as 

NDVI (Normalized Difference Vegetation Index).   

Where NIR (Near Infra-Red) is the reflectance value of a band around 1000nm and 

red is a value around 600nm.  By offering a list of the most relevant spectral bands, 

NDVI could be more useful.  This is just one example; there are many other programs 

that could benefit by being presented with only the most relevant bands. 

 As presented in the conclusion of Chapter 2, by employing a couple of 

techniques to the basic SOM, critical knowledge of the data can be obtained.  After 

experimenting with various neural network platforms, Matlab was chosen.  It was 

chosen because of the easy to use and well documented somtoolbox2, a program that 

runs under Matlab.  Esa Alhoniemi, Johan Himberg, Juha Parhankangas and Juha 

Vesanto, the authors of somtoolbox2, offer this program for free.  Somtoolbox2 has 

redNIR
redNIRNDVI

+
−= (4) 
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several capabilities.  First and foremost, it will create a SOM if presented with the 

data and some input parameters.  The second qualifying ability is that it keeps track of 

the AUD, as A. P. Azcarraga refers to it and as will be done throughout this paper, or 

quantization error as Alhoniemi et al refer to it.  Another exciting attribute of this 

program is that it has a walk through tutorial explaining how to use most of the 

graphing features built into the program.  Once this program was explored and 

chosen, programming for analysis of hyperspectral data began. 

 Initial developments were made using data recorded with a Geophysical 

Environmental Research 1500® (GER).  The GER records less data than the ASD; 

therefore by using the GER data, as opposed to ASD data, processing time could be 

minimized.  The program, that still needed to be developed for this project, required 

three phases: read the data, processes the data, and, finally, to present the data in a 

way that could be easily analyzed. 

  



  18 

 

Reading in the GER data proved to be fairly simple.  Somtoolbox2 contains a  

Figure 4-1. Example printout of a SOM data struct 

program, som_read_data that is fairly universal.  It reads data from an ASCII file, 

which is expected to be in som_pak format.  The GER data that was provided was in 

SNNS format. With a simple modification to the GER data file and to the 

som_read_data program, the data was loaded into the proper variables.  The various 

variables are all part of the SOM data struct.  Figure 4-1 shows a typical display of a 

SOM data struct, where “intake” is the variable that receives the data read from a file.  

“data” contains 80 samples of GER data. “labels” contains the label for each sample, 

such as “CASOB.”  “comp_names” contains the wavelength at which each band was 

recorded.  “comp_norm” contains the normalizing variable for each wavelength if 

normalization is requested for the initial read, otherwise it contains nothing. 

 The next step is to process the data.  This was initially envisioned to be a 

three-step process: make the original SOM, extract the relevant spectral bands, and 

finally to present a graph of the AUD and the plot of the final SOM created using just 

the extracted spectral bands. 

intake = 
 
    data: [80x512 double] 
 labels: {80x1 cell} 
comp_names: {512x1 cell} 
  comp_norm: {512x1 cell} 
   type: ‘som_data’ 

LABELS_NAMES: {80X1 CELL} 
NAME: ‘WEEDS2.M’ 
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 Making the original SOM requires some planning.  There are several options 

when making an SOM, which include specifying: initialization function, training 

algorithm, map size, map lattice, map shape, neighborhood function, and training 

rate.  All of which have a default that works nicely, but in order to achieve optimum 

results each option had to be explored. 

 The first option is the initialization function.  There are two settings for this, 

random and linear.  For an undetermined reason, the linear initialization setting 

results in lower AUD and is a more repeatable process.  In addition, the linear 

initialization setting is the preset default option in the program.  It is for these two 

reasons that the linear initialization setting was chosen. 

 The second option is the training algorithm; the three available settings for 

this option are sequential, batch, and sompak.  All three settings were explored at 

length, and the batch setting was determined to be the best option.  Again, it happened 

that the batch training algorithm setting was the program’s preset default option. 

 The third option is map size.  The settings available for this are multi-fold:  

small, medium, and large, or grid size specification or the preferred number of units 

in the map.  Only one of these options can be chosen at a time; in other words, the 

user can define either the grid size or the number of map units, but not both 

simultaneously.  This is because they are mutually exclusive.  The program 

automatically determines the exact grid size if small, medium, or large is specified.  If 

grid size is specified, then the user set grid size will be used.  The last option, 
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preferred number of units, leaves the exact number of units in the x and y direction up 

to the program to decide, but x times y will result in a number close to that specified 

by the user.  In this instance, an 8 x 8 map (or the grid size specification setting) was 

determined to deliver the results in a more preferable format than that of the other 

settings. 

 The fourth option, lattice, also has to do with the format of the resulting map.  

The map grids can appear as either rectangles or hexagons as seen in Figure 4-2.  

While the hexagon option occasionally outperformed the rectangular option, the 

rectangular option was selected for the overall project.  There was only a marginal 

difference between the performances of the two options; quite simply, the rectangular 

option provided a more concise and clear result. 

 

  

  

  

  

 Figure 4-2.  Hexagonal and rectangular grids used for SOMs 

 The fifth option, map shape, is another aspect of the end result’s format.  The 

available options are sheet, cylinder, and toroid.  Figure 4-3 shows an example of 

what the three shapes look like in map form.  It can be seen that the different shapes 

cause the data to interact differently.  Since the SOM attempts to put like objects 
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together and different objects away from each other, folding the sheet into a cylinder 

takes away two of the edge positions forcing the data into a different region.  If the 

cylinder is then folded into a toroid, there are no edge positions.  This forces the data 

into yet another region.  For this project, the sheet setting was chosen; again, the sheet 

setting provided the clearest visualization of the results.  Future researchers should 

note that more in-depth exploration of the map shape option may result in further 

enhanced classifications. 

Figure 4-3. Sheet, cylinder, and toroid SOMs 
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 The sixth option is neighborhood function.  The available options for this are 

bubble, Gaussian (the default), cutgauss, and ep, which are defined by equations 5, 6, 

7, and 8, respectively.  These are the functions that are used to try to fit the map to the 

data.  As stated in the som_batchtrain function,  

In principle the updating step goes like this: replace each map unit 

by the average of the data vectors that were in its neighborhood. The 

contribution, or activation, of data vectors in the mean can be varied 

with the neighborhood function [given by equation 9]. This 

activation is given by matrix H. So, for each map unit the new 

weight vector is where i denotes the index of data vector.  Since the 

values of neighborhood function h_i are the same for all data vectors 

belonging to the Voronoi set of the same map unit, the calculation is 

actually done by first calculating a partition matrix P with elements 

p_ij=1 if the BMU of data vector j is i. 
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Gaussian worked best for organizing agricultural data onto an 8 x 8 sheet map.  It is 

possible that some of the other functions may work better for maps of different shapes 

or sizes. 

  

The last option, training rate, has three settings.  The default setting defines 

the number of epochs, or training cycles, as seen in equation (10) where mpd is the 

number of map units divided by the number of samples as given in equation (11).  
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The training rate can also be set to short or long.  In the short setting the number of 

epochs to be used is divided by four as seen in equation (11) and the long setting 

results in a multiplication by four as seen in equation (12).  After experimenting with 

the three different settings, it was found that the default setting resulted in the best 

organization of the map. 

 With the SOM created and optimized, the process of extracting relevant 

spectral bands began.  By employing a version of equation (1), a program called 

som_bandfinder was written.  The exact details of this program will be discussed 

further in Appendix C.  som_bandfinder accepts in as arguments: a SOM, a set of 

samples, an integer constant that increases the number of bands kept, and a threshold 

percentage.  The SOM used was created, as described previously, by using GER data, 

employing the linear initialization function, the batch training algorithm, a grid size of 

8 x 8, a rectangular map lattice, map shape set to sheet, Gaussian neighborhood 

function, and the default training rate.  The set of samples was the same GER data 

that was used to create the SOM.  Various constants were chosen as well as various 

threshold percentages.  The best combination of which was a constant of one and a 

threshold of ten percent.  This yielded forty-one relevant spectral bands ranging from 

the start of the recorded spectrum to the end of the recorded spectrum. 

 The return from som_bandfinder is the indices of the recommended relevant 

bands.  With the relevant bands located, som_modify_dataset, a built-in function in 

somtoolbox2, is utilized.  The function som_modify_dataset can add/remove 

components/samples from a dataset by specifying the indices of the dataset that need 
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to be added or removed.  The result from this function is a dataset containing only the 

relevant spectral bands.  This leads to the final stage of the preliminary design. 

 Analyzing the data is the most difficult part.  There are many different ways in 

which the data can be viewed and analyzed.  After investigating the options, five 

graphs—two of which overlap—were chosen to display the data: the U-matrix, a hit 

histogram, a labeled grid, k-means clustering, and the AUD. 

 The U-matrix is the backbone of an SOM.  The U-matrix, as seen in Figure 4-

4, is a shaded grid containing the spatial distance between units.  For example, the  

Figure 4-4.  U-matrix of an SOM 

unit in the top right corner of Figure 4-4 is further away from the unit in the bottom 

right corner than the unit in the top left corner is from the unit in the bottom left 

corner.  By examining Figure 4-4, it can be see that whatever the SOM put in the top 



  26 

 

right corner is the least similar of all samples to any other sample on the map.  Once 

the U-matrix has been created, labels can be applied to the map. 

 There are four ways in which to apply labels to the SOM.  Somtoolbox2 

provides a function called som_autolabel, which has labeling options of add, add one, 

frequency, and vote.  Add, the least aesthetically pleasing option, puts a copy of the 

label of each sample into the unit that it best matches.  Add one is similar to add 

except that add one only adds one instance of each label to a unit that is matched.  

Frequency is extremely useful when calculating classification statistics.  The 

frequency option is similar to add one in that it adds one instance of each label, but 

the frequency option also puts a multiplier on the end of the label representing the 

number of samples of that type that were mapped to that unit.  Vote was the option 

that was initially chosen for analyzing the data.  The vote option keeps only the label 

with the most instances. This seems like the best way to make a decision as to how a 

sample mapped to a unit should be classified. An example of this can be seen in 

Figure 4-5.  From Figure 4-5, it can be seen that soil is placed in the top right corner.  

This makes intuitive sense, since all the other samples are vegetation and soil should 

not be easily confused with vegetation. 
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Figure 4-5.  SOM 8 x 8 grid with labels chosen by vote 

 

 The third data visualization method chosen was a hit histogram.  In order to 

create a hit histogram, a program that separated the data by type and assigned a color 

to each type had to be created.  Creating the function som_colorhits did this.  Further 

details about the operation of som_colorhits will be discussed in Appendix C.  Once 

som_colorhits was created, it was overlaid on the U-matrix.  This can be seen in 

Figure 4-6.  Figure 4-6 is an example of a preliminary results map.  Though there is 

some order to the map, clustering is not very strong and there are several map units 

with multiple types mapped to it.  If multiple types are mapped to the same unit, the 

SOM is not finding a way to distinguish between those samples of those types. 
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Figure 4-6.  U-matrix with hit histogram overlaid 

 

 The fourth visualization method employed was to have the map determine the 

best grouping as decided upon by k-means clustering.  Somtoolbox2 contains a 

function that performs this task called som_kmeanscolor.  An example of this can be 

seen in Figure 4-7.  Figure 4-7 has nine subplots; the first eight show the clustering 

according to k-means with k taking on the value of one through eight respectively.  

The last subplot shows the best clustering according to minimum quantization error.  

By examining Figure 4-7, once again it can be seen that the unit in the top right-hand 

corner is definitely different from the rest of the units in the map.  In every iteration 

of the program, with exception to the first one, the top right corner is separated from 

the rest of the map.  The best clustering subplot of Figure 4-7 shows four groups. 
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When comparing the best clustering of Figure 4-7 to the labels of Figure 4-5, it can be 

seen that the four groups are soil, casob, a mixture of xanst, iphol, and iphog, and a  

Figure 4-7. K-means cluster graphs of GER data  

final group that consists of the outliers of every type.  For preliminary testing this was  

an encouraging result.  Separating soil from vegetation should be easy for most any 

discrimination program, but separating different types of vegetation can be vary 

difficult and the program automatically separated soil from the other samples. 



  30 

 

 The last method used for analyzing the data was the AUD.  As stated before, 

the AUD graph monitors the organization of the map.  In addition to the training 

parameter given to som_make, som_make can also be told to return a graph of the 

AUD by setting the tracking to three.  Since A. P. Azcarraga has studied the AUD 

graph and determined that its shape should be similar to that of Figure 2-1, it was 

determined that adjustments that caused the AUD graph to become more similar to 

the shape of Figure 2-1 were beneficial.  Figures 4-8 and 4-9 show an SOM AUD 

with all bands and with relevant bands respectively. 

Figure 4-8.  AUD graph of an 8 x 8 SOM using all bands of the GER data set 

 Having successfully completed the preliminary process of reading in the data, 

processing the data, and viewing acceptable results, the fine-tuning and application of 

data phase began. 
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Figure 4-9.  AUD graph of an 8 x 8 SOM using 41 bands of the GER data set 
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CHAPTER V 

 FINE-TUNING AND APPLICATION OF DATA 

 

 This chapter will discuss the fine-tuning and application of data phase, 

including data collection, format conversion, and troubleshooting of anticipated and 

unanticipated issues with both the data and the programming.  In addition, there will 

be discussion of data file creation, header file creation, filtering of the data, additional 

visualization tools, and improved classification parameters. 

 

5.1 Data Collection 

 Please refer to Appendix A, Materials and Methods, for the full specifications 

for data collection that was applied for the data used in this project.  As regards to the 

data collection criteria, the specifications state:   

 

Weed species evaluated were pitted morningglory, entireleaf 

morningglory, sicklepod, and common cocklebur. Mixed vegetation 

including experimental units (EU) of soybean with a mixed weed 

composition and EU’s of mixed weed composition without soybean, and 

bare soil were also included in the study for comparison.     

 



  33 

 

This is further illustrated by Table 5-1. 

Table 5-1. Data Collection Names and Classifications 
Classification Acronym Used Description 

Pitted morningglory IPOL Weed 

Entireleaf morningglory IPOH Weed 

Sicklepod XANS Weed 

Common cocklebur CASO Weed 

Weeds weed Excludes soil and soyb 

Soybean Soyb Plant 

Weedy Soybean Wsoy Excludes soil 

Soil soil soil 

 The data recorded by the ASD is stored in binary format and contains 

metadata including instrument number and date and time of acquisition.  Each sample 

is collected and stored into a binary file with the name of the file being the date of 

acquisition and a three-digit extension that increments with each sample collected, as 

seen in Figure 5-1.   

Figure 5-1.  Sample List of ASD Files 

In this example, “072500.001” is XANST, “072500.018” is “weedy soybean,” 

and “072500.028” is “soybean.”  All three files were collected on July 25, 2000; 

hence, the same prefix in use on each file.  In addition, these files must be manually 

072500.001 

072500.018 

072500.028 
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labeled by the field technician for classification.  The labels were hand-written on a 

table as seen in Figure 5-2. 
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Figure 5-2.  Example of Handwritten Classification Labels on Data Tables 
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As is clearly seen in the previous figure, there is not a guaranteed match 

between hand-written data and the data recorded by the ASD.   Also, there is not a 

guaranteed preset order to the data results; this is the very definition of raw and 

unfiltered data.  This is one area where further enhancements could be explored and 

utilized by future researchers.  For this process, however, due to the hand-written 

data’s imprecise nature, further visualization techniques were utilized to remove 

extreme outliers, erroneous classifications, and other extraneous data.  In order to 

utilize the visualization techniques, a header file containing classification labels and 

subclassification labels had to be created. 

 

5.2 Format Conversion 

 A header file containing classification and subclassification labels with 

reference to the file name, as seen in Figure 5-3, was created as a spreadsheet in 

Microsoft Excel. 
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Figure 5-3.  Sample Header File with Classification and Subclassification Labels 

072500.042 IPOHG110 

072500.043 IPOHG110 

072500.044 IPOHG111 

072500.045 IPOHG111 

072500.046 IPOHG111 

072500.047 IPOHG111 

072500.048 IPOHG112 

072500.049 IPOHG112 

072500.050 IPOHG112 

072500.051 IPOHG112 

072500.052 ref152 

072500.053 CASOB113 

072500.054 CASOB113 

072500.055 CASOB113 

072500.056 CASOB113 

072500.057 CASOB114 

072500.058 CASOB114 

072500.059 CASOB114 

072500.060 CASOB114 

072500.061 CASOB115 

072500.062 CASOB115 

072500.063 CASOB115 

072500.064 CASOB115 

072500.065 CASOB116 

072500.066 CASOB116 

072500.067 CASOB116 

072500.068 CASOB116 

072500.069 ref117 

072500.070 IPOLA117 

072500.071 IPOLA117 

072500.072 IPOLA117 

072500.073 IPOLA117 
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The Excel spreadsheet provided a simple way to manipulate the raw data into a usable 

format for this process. As can be seen in the last entry of Figure 5-3, 072500.073 is 

referenced to IPOLA117, which means ASD file 072500.073 is of IPOLA species 

and was collected in the first plot. 

 

Figure 5-4.  Example of Crop Outlay Grid 

Figure 5-4 demonstrates the layout of the crops as described in Appendix A.   

The first digit in IPOLA117 indicates plot 1 while the last two digits indicate that it is 
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grid unit seventeen, as can be seen in Figure 5-5 where IPOLA117 is highlighted in 

red. 

 

Figure 5-5. Crop Grid with IPOLA117 Highlighted 

Conversion of binary files into a single ASCII text document was the 

necessary next step in the process.  ASD ViewSpecPro was used to implement this 
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step.  It has a built-in function that allows for ASCII exportation of all files to a single 

document.  It also has a limited capability, as it was unable to convert 612 or more 

samples into one file.  This caused the creation of multiple header files.  Since the 

ASD ViewSpecPro was capable of converting 349 files into a single file—which was 

the largest number of samples collected on a single date—a conversion function that 

allows for one file and one header file to be read in and added to the total data pool 

was necessary, though initial ASD data testing was only performed on the data 

collected on July 7, 2000.  

Two functions were created:  asd_read_data and asd_read_header.  These 

functions were created to meet the design requirements as determined during the data 

acquisition phase.  One additional formatting procedure must be done prior to the 

asd_read_data function being implemented:  the data file must be opened using a text 

editor and “#n “ must be inserted before the term “wavelength.”  The asd_read_data 

function reads the file created by ASD ViewSpecPro, and the asd_read_header 

function reads the header file that corresponds to that same data and combines the two 

sets of information into one single readable format for the next step in the process.   

 There are two options in the asd_read_header function. The first option allows 

the user to remove samples from consideration.  All samples that have labels that 

match inputs specified by the user are eliminated.  For example, if the user desires to 

remove reference files, an input of “ref” would accomplish this. The second option 

allows a choice of label length.  By varying the label length of the single file, the user 

can specify the degree to which the data is subdivided.  This is vitally important here 
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as this is where subclassification labels can be utilized.  By selecting a label length of 

four, eight different classes of data will be created.  Yet with a simple extension of the 

label length to six, twenty-four different classes of data will be created.  This only 

applies if the labeling scheme as described previously in this chapter is used.  Both 

lengths (four and six) were used at varying times in this project. 

 Initially, a label length of four was selected because it allowed a sufficient 

number of letters to differentiate between classes and fit nicely onto a side-by-side U-

matrix with colored hits and 8 x 8 label grid as seen in Figure 5-6.  Since this label 

length had worked for the GER data, it should be sufficient for the ASD data as well. 

Figure 5-6.  Example of Grid with Bad Samples 

 Several trial runs produced SOMs similar to those seen in Figure 5-6.  It can 

be seen that some of the classes are separated nicely, such as those of the “CASO” in 
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the lower left corner and “soil” in the top left.  However, there are several samples 

that should not be placed where they are, such as the “soyb” sample that is in with 

“soil.”  The most significant setback encountered at this point is that of the bottom 

right corner of the U-matrix, which is enlarged in Figure 5-7. 

Figure 5-7.  Inset of Lower Right Corner of U-Matrix of Figure 5-6 

 In Figure 5-7 there are five different classes of samples mapped to the same 

grid component.  There are several samples of each class mapped to this grid 

component as well.  This is not a desired result, as it will result in a massive number 

of incorrect classifications.  “CASO” is the largest square, signifying the most hits, so 

the grid coordinate would receive the label of “CASO”.  All other samples mapped to 

this grid coordinate would then be a misclassification.  As “IPOH” has almost as 

many hits as “CASO” this would drive the classification rate, for this cell, close to 

fifty percent.  Adding to the misclassification total, the hits resulting from “IPOL,” 

“soil,” and “soybean” would drive the classification rate of this cell to a number much 

closer to zero. 
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 Given that the SOM was resulting in a somewhat organized map, it was 

determined that a vast number of the misclassifications were coming from either 

mislabeled data or extreme outliers.  Since at that time there was no way of knowing 

exactly which samples were erroneous, the som_classplots function was created.  

This function plots a graph for each class, plotting all class respective samples to each 

graph.  This is also the first step in which the label length specification of six was 

used.  Setting the label length to six allowed the sample to be subdivided into smaller 

groups making it easier to locate the erroneous samples.  Figure 5-8 shows an 

example of the first set of graph created by som_classplots. 

Figure 5-8.  Example Graph of Bad and Mislabeled Data with All Bands 

In Figure 5-8 it can be seen that several bands contain values inconsistent with 

the rest of the signal.  These bands are referred to as water bands.  They are bands in 

which water in the atmosphere plays a large role in determining the amount of energy 
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that is transmitted.  Since these bands mostly contain information about the 

atmosphere and not about the desired targets, they were eliminated from 

consideration.  Since the beginning wavelength is 350nm the band number and band 

wavelength differ by this amount.  This is the reason Figure 5-8 does not have values 

past 2150.  Somtoolbox2 provides a data manipulation function called 

som_modify_dataset.  In this function, as previously stated in Chapter 4, 

som_modify_dataset can add/remove components/samples from a dataset by 

specifying the indices of the dataset that need to be added or removed.  The band 

ranges chosen for removal were 1285nm to 1500nm and 1763nm to 2500nm.  Figure 

5-9 is an example of the first set of graph created by som_classplots with the water 

bands removed. 
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Figure 5-9.  Example Graph of Mislabeled Data with Water Bands Removed 

In Figure 5-9 it can easily be seen that one of the samples is a 

misclassification.  Since the sample cannot be correctly identified, the sample should 

be removed.  Knowing that the sample is a “CASOB” in plot 2 allows for cross-

referencing of the file numbers by means of the header file.  ASD ViewSpecPro can 

then be used to manually locate the mislabeled file.  At this point, there are two 

options: delete the mislabeled file and recreate the data file or simply type “ref” in 

front of the label in the header file.  Either option will result in the sample not being 

used. 
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Figure 5-10.  Example Graph of Bad Data With Water Bands Removed 

The second largest reason for misclassified data can be seen in Figure 5-10.  

As indicated by the red marks in Figure 5-10, the samples do not have characteristics 

remotely similar to the group.  These samples are known as outliers.  Many different 

situations can cause outliers, such as a gust of wind causing the leaf to move or 

fatigue of the technician causing the ASD to move.  The waveform marked by the 

middle pointer in Figure 5-10 contains equal energy in the green and red bands, but 

has little energy in the blue region.  This sample, if properly recorded, is of a brown 

leaf, which is probably dead.  Since the objective of this program is to distinguish 

between different living plants, not dead plants, this sample was eliminated.  

Whatever the reason for these extreme outliers, these samples were subsequently 

removed from the data pool.   
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Another function for identification of outliers was attempted, 

som_map_classes.  In this function, the SOM was utilized.  The idea was that since 

the SOM is specifically designed to separate data, any outliers should be moved away 

from the mass.  Each class of samples was applied a separate SOM and then the SOM 

was analyzed.  There were two problems with this method.  The first problem came 

from the way in which the SOM separated the data.  It was difficult to determine 

which sample was an outlier.  Since the SOM did not contain samples of other 

species, the SOM did not group the samples into a cluster with outliers.  The SOM 

separated the data in other ways, not relevant to species separation.  On the rare 

instances that a sample was distinctly separated, determining which sample was 

separated was very difficult.  In order to make us of this method, much more 

programming would have been required, including adding a field to the SOM 

datastruct.  Comparing the som_map_classes method with the som_classplots method 

resulted in abandonment of som_map_classes. 

The next step taken to improve the classification rate was to normalize the 

data and set the range.  This was done in two parts: subtract the minimum value of 

each sample out of each sample and divide each sample by the maximum value in 

each sample.  This was done for several reasons.  Since the amount of solar energy 

reaching the target is not constant throughout the collection phase, the magnitude of a 

single spectral band without reference to at least one other spectral band is of no use 

in classification.  However, the SOM could decide to separate the samples into groups 

with high-energy values and low-energy values.  This would not be a desired 
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outcome.  By forcing the minimum value of a sample to be zero and the maximum 

value of a sample to be one, the energy value should be more uniform within a class.   

Figure 5-11.  Example of Processed Data 

Figure 5-11 is an example of a subclass that has had mislabeled samples 

removed and data values set to a range of zero to one.  It can be seen, by comparing 

Figure 5-9 with Figure 5-11, that these steps result in much more uniform data.  This 

improved classification rates slightly, but not as much as expected.  Since 

classification rates of processed data sets with only water bands removed was still 

well below fifty percent, additional steps to improve classification rates were needed. 

The next step to improve classification was to increase the size of the data set.  

Combining the sets of ASD data collected July 25, 2000, and August 9, 2000, 

accomplished this.  The combined data set resulted in a classification rate ranging 
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between fifty-six and sixty-two percent, almost doubling the classification rate.  

There were two reasons that the combined data set resulted in a better classification 

rate.  The first reason was that the data collected on August 9, 2000, was much more 

consistent than the data collected on July 25, 2000.  That is to say that there were not 

as many obvious outliers especially in the “CASOB” samples.  The second reason for 

an improved classification rate has to do with the nature of neural networks.  The 

more samples of a particular type that a neural network uses to train, the better the 

network is capable of finding the subtle differences between classes.  As combining 

the two data sets did drastically improve the classification rate, the classification rate 

was still far below a desired value.   

Som_doublesize was created.  It doubles the size of classes that have less than 

half the number of samples of the largest class.  One aspect of the som is to display 

probability density of the data.  That means that if a class makes up less than 10 

percent of a data set, then the number of cells labeled as that class will probably be 

less than 10 percent of the total number of cells. In some cases, this can mean 

complete elimination of a class from the map.  Using som_doublesize had various 

results, but typically increased classification rates, particularly in smaller maps. The 

unacceptable classification rate then led to further exploration of the somtoolbox2.   

Upon further investigation of somtoolbox2, som_supervised was discovered.  

Som_supervised works similar to som_make except that it adds a vector, with length 

equal to the number of different classes, to each data sample.  The component 

corresponding to the sample in the new vector is set to one and all other components 
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in the new vector are set to zero.  This is only used during the training phase of the 

map.  Once the map is trained, the new vector is removed.  Since the component 

vector of the data is several hundred components and the new vector attached is very 

short, eight in this case, the overall shape of the map is not severely affected.  

However, it does cause clustering of classes.  The clustered classes provide a large 

spatial target for the test samples.  Most of the misclassifications up to this point have 

been along the borders of correct labels.  Employing the som_supervised function 

raised classification rates to a range of 72 percent to 76 percent.  This is an acceptable 

classification rate.  Once an acceptable level for classification was reached, testing of 

the som_bandfinder function began. 

In order to test som_bandfinder, the data had to be split into two sets: a 

training set and a test set.  It is customary to withhold 15 percent of the samples for 

testing.  Testing on data that was used to train the map is, in essence, cheating.  In 

addition, testing on training data does not simulate a real-world application.  Because 

of this, som_split_data was created.  Som_split_data takes a data set and a percent as 

inputs and returns two mutually exclusive data sets containing (1 -%) and (%) of the 

original data set. 

 

5.3 Testing the Data 

 Several attributes were explored in the testing phase using the classification 

rate as the measuring device.  The controllable variables that affect the classification 

rate are threshold, map size, and number of bands per best matching unit to keep.  
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Threshold directly affects which bands are kept by som_bandfinder, whereas map 

size and number of bands per best matching unit directly affect the total amount of 

bands that are kept.  But, before testing began, a Graphical User Interface (GUI) was 

developed. 

 Figure 5-12 shows somasdgui.  It allows for the input of up to nine datasets 

and their respective header files.  In addition, up to eight ranges of bands and four 

types of samples can be removed.  On the right side of the screen there are several 

options, which include pre and post band selection; graphing; enabling kmeans; and 

doubling small classes.  The lower left-hand corner contains inputs for the control 

variables. 

Figure 5-12.  Somasdgui Screen Shot 
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 The purpose of the first experiment was to see how the classification rate 

changed as the threshold was adjusted to a series of values between 1 percent and 99 

percent.  In Figure 5-13, each trial maintains the same training and test set throughout 

the range of thresholds.  The random number generator which is used to split the 

data was set to state 0, 10, and 100 for trials 1, 2, and 3, respectively.   

As can be seen in Figure 5-13, the classification rate increases to an 

acceptable level at a threshold ranging from approximately 10 percent up to about 75 

percent.  The highest values for threshold percentage occur at 15 and 50 percent, with 

relatively high classification rates occurring in between these values.  This is a 

desired trend, because, as stated earlier, the threshold should be set high enough so 

that features that are only relevant to individual samples are not selected.  However, if 

the threshold is set too high, the features that are needed to distinguish between the 

five classes will be eliminated.  The 15 to 50 percent range seems to satisfy this 

condition.   
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Figure 5-13.  Classification Results as a Function of Varying Threshold Percentage   

 The results from the second test of som_bandfinder can be seen in Figure 5-

14.  There were 24 trial runs, with 8 changes in parameters.  Every time a change in 

parameter occurs, the somasdgui is activated with the random number generator state 

set to 0, 10, and 100.   

In Figure 5-14, map size and number of bands per BMU were varied to 

explore their effects on classification rate and total number of kept bands.  Another 

difference in this experiment versus experiment one is that every threshold in one 

percent increments was tested to find the highest classification rate.  Only the highest 

classification rate was kept and then, all information resulting from using the 

threshold associated with the highest classification rate was recorded and can be seen 

in Appendix D.  Important observations that can be made regarding this experiment’s 

Trial 1 Trial 2 Trial 3

range percent # of BMU X Y % correct % correct % correct

1 1 8 8 55.22 44.78 44.78

5 1 8 8 62.69 68.66 64.18

10 1 8 8 76.12 71.64 67.16

15 1 8 8 80.6 71.64 71.74

20 1 8 8 79.1 62.69 68.66

25 1 8 8 73.13 76.12 70.15

30 1 8 8 73.13 71.64 70.15

35 1 8 8 71.64 71.64 73.13

40 1 8 8 76.12 76.12 67.16

45 1 8 8 76.12 71.64 71.64

50 1 8 8 74.63 77.61 65.67

55 1 8 8 77.61 76.12 62.69

60 1 8 8 73.13 68.66 67.16

65 1 8 8 68.66 73.13 70.15

70 1 8 8 65.67 73.13 68.66

75 1 8 8 65.67 62.69 62.69

80 1 8 8 65.67 62.69 62.69

85 1 8 8 67.16 62.69 67.16

90 1 8 8 62.69 71.64 65.67

95 1 8 8 67.16 59.7 64.18

99 1 8 8 68.66 64.18 56.72
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results are that classification rates of 80 percent were achieved with as few as 49 

bands, yet the best classification rate 86.6 percent was recorded when 95 bands 

were used. 

Figure 5-14.  Classification Results as a Function of Quantity of Kept Bands 

 There was a large fluctuation in the bands chosen in trials 1 through 24, but 

several bands made repeated appearances and were present in more than one trial.  

The first band, 361 nm, was present in every sample and the last band, 949 nm, was 

present in most samples.  This is due to the characteristics of som_bandfinder; the 

first band and last band not removed from consideration will be chosen by default in 

Best
# of BMU X Y % correct # of bands Threshold

Trial 1 1 8 8 78 49 8
Trial 2 1 8 8 80.6 49 59
Trial 3 1 8 8 73.13 55 34

Trial 4 2 8 8 80.6 69 3
Trial 5 2 8 8 79.1 73 65
Trial 6 2 8 8 76.12 97 40

Trial 7 1 10 10 83.58 59 3
Trial 8 1 10 10 77.61 72 15
Trial 9 1 10 10 79.1 76 12

Trial 10 2 10 10 86.6 95 4
Trial 11 2 10 10 77.61 148 21
Trial 12 2 10 10 79.1 123 8

Trial 13 1 6 6 74.63 30 37
Trial 14 1 6 6 76.12 27 66
Trial 15 1 6 6 68.66 27 53

Trial 16 1 5 5 70.15 19 71
Trial 17 1 5 5 73.13 21 34
Trial 18 1 5 5 67.16 18 76

Trial 19 1 4 4 71.64 13 35
Trial 20 1 4 4 68.66 12 74
Trial 21 1 4 4 62.69 13 33

Trial 22 2 4 4 73.13 25 39
Trial 23 2 4 4 67.16 26 22
Trial 24 2 4 4 64.18 21 24

Average 74.52 50.71 34.83
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certain situations.  In order to find the bands most commonly chosen, and therefore 

the most relevant, a histogram was created, which can be seen in Figure 5-14.  It 

should be noted that future researchers may certainly utilize alternate techniques for 

organizing the data created by som_bandfinder. 

 

5.4 Analysis of Results 

Figure 5-15.  Histogram of Selected Bands 

In looking at the histogram, it is clear that, despite the unsupervised selection 

process of som_bandfinder, particular bands are repeatedly chosen in the highest 

classification thresholds.  Since these bands appear to be significant in the 
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classification process, one could theorize that these bands are related to some key 

physical characteristics that are different in each class of plant species.  On the basis 

of that theory, an additional experiment was performed, the results of which can be 

seen in Figure 5-16. 

 
Figure 5-16.  Histogram Results Experiment 

In order to analyze the results of the histogram, three thresholds were 

examined in-depth.  Particular attention was paid to achievable classification rates 

with relation to total number of bands selected.  A map size of 10x10 was chosen due 

to its prior positive track record in these experiments.  Ideally, three separate data sets 

should have been used for the three trials of the selected thresholds to eliminate any 

unintentional correlation between the data and the selected bands; however, limited 

time and resources made that option unfeasible.  Instead, the original data set was 

used for three trials with three different test groups. 

50.1262.6961.1910x1087 or more

64.1867.1661.1910x10176 or more

65.6780.670.1510x10485 or more

Trial 3Trial 2Trial 1

% CorrectMap SizeTotal # of 
Bands

Histogram 
Threshold
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In the last experiment, it can be seen that a decent classification rate can be 

achieved with the eight most commonly chosen bands.  Lowering the histogram 

threshold from seven to six more than doubled the number of kept bands and yet had 

marginal effect on the classification rate, while lowering the histogram threshold even 

further to five had a clear and positive effect on the classification rate.  It became 

evident while looking at the results of the final experiment, the histogram, that a more 

preferable classification rate requires a higher number of the most common bands.  

This is an understandable result in that keeping additional bands provides additional 

information, from which the SOM can make better decisions.  However, there is the 

law of diminishing returns stating “the application of additional units of any one 

input…to fixed amounts of the other inputs yields successively smaller increments in 

the output of a system of production” [13].   Not only does the classification rate stop 

increasing, it actually decreases.  This could be due to the inclusion of bands not 

related to the five preset classes. 
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CHAPTER VI 

CONCLUSIONS 

 

As the overall experiment contained many smaller but interrelated 

experiments, there are several conclusions to make.  Some of the conclusions have to 

do with the approach to the training sets, some with species classification and how 

these results are obtained, and still others involve the usefulness of the threshold 

requirement.  These conclusions, and more, will be discussed in this chapter. 

As obvious as it appears in hindsight, a vital part of the experiment setup 

necessary for workable/usable results is the preprocessing of the training sets.  

Through trial and error, it became clear that elimination of extreme outliers—which 

could be mislabeled data or simply an anomaly—prior to conducting the data-mining 

portion of the experiment reduces the possibility of the extreme outliers dominating 

the experiment’s findings and ending up with bad results.  Oftentimes, the bad results 

were not immediately obvious as such, and only later in the process would they arise 

and cause further difficulty in the overall experiment, requiring backtracking and 

duplication of effort. 

Similar to the necessity for elimination of outlier samples, the elimination of 

irrelevant bands is required and tremendously useful towards obtaining clean and 

workable results.  Determining which bands are relevant and which are irrelevant 
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requires some in-depth knowledge of the physical characteristics of the subject being 

examined and the conditions in which the data was acquired.  In the case of this 

experiment, it was vitally necessary to remove water bands, contaminated bands, and 

bands that drastically fluctuated within expected classes.  Water bands typically 

contain information about the atmosphere, contaminated bands are those in which the 

physical characteristics of the sensor caused minor malfunctions in the gathered data, 

and the drastically fluctuating bands are in the SWIR (or short wave infrared) range.  

Removal of these outlaw bands prior to performing the experiments using the data 

sets not only enabled a faster running time for the experiment, but also resulted in a 

significant increase in classification rate. 

As a side finding to the overall experiment, the self-organized map using the 

selected bands does an adequate job of species classification.  While its classification 

rate could be improved, it nevertheless shows value for this particular use.  Further 

research using this technique in the field of plant species classification should 

consider using the self-organized map.  However, researchers using the self-organized 

map who are not familiar with or well versed in the subject’s physical properties 

ought not to rely solely upon it for accurate classification. 

Finally, similar to Merkel and Rauber’s findings with the label_som, it has 

been determined through these experiments that a threshold high enough to eliminate 

bands that are too specific, yet low enough to keep bands that are relevant to species 

classification is absolutely essential to the success of the experiment when using this 

approach to data mining.  The use of a discriminating threshold provides results that 
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are satisfactory, particularly as pertains to species classification.  The bands chosen 

by setting a selective or proper threshold will generally return bands that are 

significant in class separation.  Future researchers should regard the bands chosen in 

the final stages of the experiment as a priority for further examination. 
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By Libba Lamastus 

This experiment was designed to observe the spectral response of four 

different weed species and soybean. Mixed vegetation including experimental units 

(EU) of soybean with a mixed weed composition and EUs of mixed weed 

composition without soybean, and bare soil were also included in the study for 

comparison.    Weed species evaluated were pitted morningglory, entireleaf 

morningglory, sicklepod, and common cocklebur. Experimental units were 4 x 4 m, 

with a 2-m alley surrounding each unit to help prevent contamination across 

experimental units.  For ease of management, a grid was established to separate each 

plot into 16 1-m by 1-m units.  All experimental units were hand planted on June 10, 

1998, and June 1, 1999.  Due to extremely dry environmental conditions in 1998, 

experimental units were irrigated approximately two weeks after planting, resulting in 

late emergence of the weeds.  Experimental units were maintained to specific species 

by hand removal of all other vegetation on a weekly basis.   

 Leaf reflectance was detected using two different narrow-bandwidth 

visible/near-infrared spectroradiometers, an Analytical Spectral Device Full Range 

FieldSpec Pro® (ASD) and a Geophysical Environmental Research 1500® (GER). 

The ASD has a spectral range of 350 nm to 2500 nm with sampling intervals of 1.4 

nm in the 350 - 100 nm range and 2 nm in the 1000 - 2500nm range.  The GER had a 

spectral range of 350- 1050nm with a sampling interval of 1.5nm.  GER spectral data 

were collected August 17-18, 1998, and August 5, 1999, using a 3-degree field of 

view (FOV) optic, at a nadir height of 12 to 18 cm from the target, depending on leaf 
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size.  ASD data were collected on August 5, and 26, 1999, using an 8-degree FOV 

optic at a nadir height of 10-15 cm. When possible, the uppermost leaf of the plant 

was used as the target for data collection. All measurements were made during 

highest sun angle, 10:00 a.m. - 2:00 p.m. in cloud-free conditions.   Four random 

observations were recorded in each experimental unit, totaling 320 observations for 

each data collection timing.  Optimizing the instrument for the environmental 

conditions at the time of the measurements standardized spectral responses.  This was 

achieved by using a calibrated, tripod-mounted, level white reflectance Spectralon® 

panel as a standard reference.  Reflectance standard measurements were made after 

the completion of each experimental unit, or every four samples.  An average of 6 

scans for the GER and 10 scans for the ASD was used as the sample reflectance 

response for each observation. Data collected on August 26, 1999, were collected in 

the same manner as previously stated; however, due high temperatures and the 

sensitivity of the ASD to heat, only one sample was collected from each experimental 

unit. 
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APPENDIX B 

FLOW CHART AND USER MANUAL 
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B.1 Flow Chart of Process 
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plot all  
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B.2 Process Manual 

This manual is a walkthrough of how to analyze ASD data using somasdgui. 

1. Collect data using the ASD while recording the class description of each 

target. 

2. Convert files from binary to ASCII using ASD Viewspec Pro.  Select all 

files, click process, click ASCII export, and check the box that says, 

“output to a single file”.  Then click “ok”. 

Note: There is a limit of about 400 files that ASD Viewspec Pro can convert into one file.  

This is not a limit of somasdgui. 

3. Open the ASCII file using Windows WordPad and replace “wavelength” 

with “#n w”. 

4. Create a two-column header file that contains the binary file name in the 

first column and the class name in the second column. 

Note: Choose class and subclass label lengths to be the same for each type of class or 

subclass.  Consider IPOH1, CASO1, IPOH2, and CASO2 where the first four characters 

represent the class and the fifth character represents the subclass.  This can be useful if 

trying to find differences between subclasses. 

5. Put somtoolbox2 and asdsomtoolbox in the toolbox directory and set the 

path in MATLAB. 

6. Move data files and header files to the bin directory. 

7. Type asdsomgui from the MATLAB command window. 

8. Enter the name of the data files in the first column of “none” and the 

corresponding header files in the second column of “none”. 
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9. Under the label that reads “Remove Bands” is where entire ranges of 

bands can be removed.  There is no problem if two sets of ranges overlap. 

10.  Beside the label that reads, “# of bands/BMU to keep”, enter the number 

of bands per best matching unit to keep. 

Note: At least one band per BMU must be kept.  Increasing this number will increase the 

total number of bands kept. 

11. Beside the label that reads, “Percent of samples to hold back”, enter the 

percentage of the total number of samples to hold back for testing 

purposes. 

12. Under the label that reads, “Range to Search”, enter the start and end 

threshold percentages to search through. 

Note: This is done in one percent increments. 

13. Under the label that reads, “Grid Size”, enter the size of the SOM to 

create. 

Note: As the total number of cells increases, the total number of bands that will be kept is 

increased. 

14. Beside the label that reads, “Labels to remove”, enter the names of the 

classes that should not be used. 

15. Under the label that reads, “Label length”, enter the length of the class 

label to be used for distinguishing between classes or subclasses.  Refer to 

step 4. 

16. On the right-hand side of the GUI screen is a list of self-explanatory 

options that can be selected. 
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17. Click “Go”. 

Note: This may take a long time.  A bell will ring when done if speakers are on.  Do not 

switch to figures until the program finishes or errors will occur in the plots. 

18. The best classification rate will be displayed to the command window.  

Other information about the best classification rate is stored in variables. 

a. Bands chosen   highstrain.comp_names 

b. Indices of bands chosen highkeptbands 

c.  Threshold percentage  highpercent 

d. Classification rate  highrate 

e. Training data struct  highstrain 

f. Test data struct  highstest 

g. Map     highsmap 

19. Data structs created before band selection are stored in other variables. 

a. Training set   trainset 

b. Test set   testset 

c. Map created using all bands smap 
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APPENDIX C 

CODE 
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C.1  somasdgui.m 

clc; 
clear; 
load fig_test 
%This file contains the callback function initializations for som_asd_gui 
global h_normsamp h_plotall h_plottest h_plottrain h_smalldouble; 
global h_plotstrain h_plotstest h_runkmeans h_labellegth; 
global h_data1 h_data2 h_data3 h_data4 h_data5 h_data6 h_data7 h_data8 h_data9; 
global h_head1 h_head2 h_head3 h_head4 h_head5 h_head6 h_head7 h_head8 h_head9; 
global h_start1 h_start2 h_start3 h_start4 h_start5 h_start6 h_start7 h_start8; 
global h_end1 h_end2 h_end3 h_end4 h_end5 h_end6 h_end7 h_end8 h_bmubands h_pset h_runkmeans; 
global h_pstart h_pend h_y h_x h_remlabel1 h_remlabel2 h_remlabel3 h_remlabel4; 
 
 
  
 
h0 = figure('Units','points', ... 
 'Color',[0.8 0.8 0.8], ... 
 'Colormap',mat0, ... 
 'FileName','C:\MATLABR11\bin\Thesis\fig_test.m', ... 
 'PaperPosition',[18 180 576 432], ... 
 'PaperUnits','points', ... 
 'Position',[279.75 146.25 420 315], ... 
 'Tag','Fig2', ... 
 'ToolBar','none'); 
h_normsamp = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[283.5 277.5 113.25 15], ... 
 'String','Normalize each sample', ... 
 'Style','checkbox', ... 
 'Tag','Checkbox1', ... 
 'Value',1); 
h_plotall = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[283.5 258 115.5 15], ... 
 'String','Plot all samples by class', ... 
 'Style','checkbox', ... 
 'Tag','Checkbox2'); 
h_plottest = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[283.5 219 113.25 15], ... 
 'String','Plot test samples by class', ... 
 'Style','checkbox', ... 
 'Tag','Checkbox3'); 
h_plottrain = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[283.5 238.5 116.25 15], ... 
 'String','Plot training samples by class', ... 
 'Style','checkbox', ... 
 'Tag','Checkbox4'); 
h_smalldouble = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
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 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[283.5 199.5 130.5 15], ... 
 'String','Double small classes for training', ... 
 'Style','checkbox', ... 
 'Tag','Checkbox5'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[37.5 288 45 15], ... 
 'String','Data files', ... 
 'Style','text', ... 
 'Tag','StaticText1'); 
h_pstart = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[120 46.5 19.5 15], ... 
 'String','5', ... 
 'Style','edit', ... 
 'Tag','EditText1', ... 
 'UserData','[ ]'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'Callback','som_asd_control', ... 
 'FontSize',24, ... 
 'ListboxTop',0, ... 
 'Position',[311.25 37.5 66 57.75], ... 
 'String','Go', ... 
 'Tag','Pushbutton1', ... 
 'UserData','[ ]'); 
h_data1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[23.25 265.5 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h_data2 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[23.25 247.40625 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h_data3 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[23.25 229.3125 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h_data4 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
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 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[23.25 211.21875 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h_data5 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[23.25 193.125 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h_data6 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[23.25 175.03125 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h_data7 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[23.25 156.9375 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h_data8 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[23.25 138.84375 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h_data9 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[23.25 120.75 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[123.75 289.5 45 15], ... 
 'String','Header files', ... 
 'Style','text', ... 
 'Tag','StaticText2'); 
h_head9 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
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 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[110.25 120.75 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h_head8 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[110.25 139.5 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h_head7 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[110.25 157.5 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h_head6 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[110.25 174.75 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h_head5 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[110.25 192 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h_head4 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[110.25 210 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h_head3 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[110.25 228 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
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 'TooltipString','Enter a data file'); 
h_head2 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[110.25 246.75 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h_head1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[110.25 265.5 73.5 15], ... 
 'String','none', ... 
 'Style','edit', ... 
 'Tag','EditText2', ... 
 'TooltipString','Enter a data file'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[201.75 290.25 45 20.25], ... 
 'String','Remove Bands', ... 
 'Style','text', ... 
 'Tag','StaticText3'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[192 275.25 23.25 15], ... 
 'String','Start', ... 
 'Style','text', ... 
 'Tag','StaticText4'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[228.75 275.25 20.25 15], ... 
 'String','End', ... 
 'Style','text', ... 
 'Tag','StaticText4'); 
h_start1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[187.5 259.1250000000001 27.75 15], ... 
 'String','950', ... 
 'Style','edit', ... 
 'Tag','EditText3'); 
h_end1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[226.5 259.1250000000001 27.75 15], ... 
 'String','2500', ... 
 'Style','edit', ... 
 'Tag','EditText3'); 
h_end2 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
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 'ListboxTop',0, ... 
 'Position',[226.5 240.1607142857143 27.75 15], ... 
 'String','360', ... 
 'Style','edit', ... 
 'Tag','EditText3'); 
h_start2 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[187.5 240.1607142857143 27.75 15], ... 
 'String','350', ... 
 'Style','edit', ... 
 'Tag','EditText3'); 
h_end3 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[226.5 221.1964285714286 27.75 15], ... 
 'String','2500', ... 
 'Style','edit', ... 
 'Tag','EditText3'); 
h_start3 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[187.5 221.1964285714286 27.75 15], ... 
 'String','1763', ... 
 'Style','edit', ... 
 'Tag','EditText3'); 
h_end4 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[226.5 202.2321428571429 27.75 15], ... 
 'String','1500', ... 
 'Style','edit', ... 
 'Tag','EditText3'); 
h_start4 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[187.5 202.2321428571429 27.75 15], ... 
 'String','1285', ... 
 'Style','edit', ... 
 'Tag','EditText3'); 
h_end5 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[226.5 183.2678571428572 27.75 15], ... 
 'String','972', ... 
 'Style','edit', ... 
 'Tag','EditText3'); 
h_start5 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[187.5 183.2678571428572 27.75 15], ... 
 'String','967', ... 
 'Style','edit', ... 
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 'Tag','EditText3'); 
h_end6 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',mat1, ... 
 'String','0', ... 
 'Style','edit', ... 
 'Tag','EditText3'); 
h_start6 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',mat2, ... 
 'String','0', ... 
 'Style','edit', ... 
 'Tag','EditText3'); 
h_end7 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[226.5 145.3392857142857 27.75 15], ... 
 'String','0', ... 
 'Style','edit', ... 
 'Tag','EditText3'); 
h_start7 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[187.5 145.3392857142857 27.75 15], ... 
 'String','0', ... 
 'Style','edit', ... 
 'Tag','EditText3'); 
h_end8 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[226.5 126.375 27.75 15], ... 
 'String','0', ... 
 'Style','edit', ... 
 'Tag','EditText3'); 
h_start8 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[187.5 126.375 27.75 15], ... 
 'String','0', ... 
 'Style','edit', ... 
 'Tag','EditText3'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[20.625 78.75 45 30], ... 
 'String','# of bands/BMU to keep ', ... 
 'Style','text', ... 
 'Tag','StaticText5'); 
h_bmubands = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
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 'ListboxTop',0, ... 
 'Position',[69 86.25 27.75 15], ... 
 'String','1', ... 
 'Style','edit', ... 
 'Tag','EditText4'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[20.625 44.25 45 30.75], ... 
 'String','Percent of samples to hold back', ... 
 'Style','text', ... 
 'Tag','StaticText6'); 
h_pset = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[70.5 52.125 22.5 15], ... 
 'String','15', ... 
 'Style','edit', ... 
 'Tag','EditText5'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[127.5 83.25 45 21], ... 
 'String','Range to Search', ... 
 'Style','text', ... 
 'Tag','StaticText7'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[155.25 64.5 20.25 15], ... 
 'String','End', ... 
 'Style','text', ... 
 'Tag','StaticText4'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[118.5 64.5 23.25 15], ... 
 'String','Start', ... 
 'Style','text', ... 
 'Tag','StaticText4'); 
h_pend = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[156 46.5 19.5 15], ... 
 'String','20', ... 
 'Style','edit', ... 
 'Tag','EditText1', ... 
 'UserData','[ ]'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[275.25 294.75 105.75 15], ... 
 'String','Pre band selection options', ... 
 'Style','text', ... 
 'Tag','StaticText8'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
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 'ListboxTop',0, ... 
 'Position',[275.25 148.5 108 15], ... 
 'String','Post band selection options', ... 
 'Style','text', ... 
 'Tag','StaticText9'); 
h_plotstrain = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[283.5 130.5 116.25 15], ... 
 'String','Plot training samples by class', ... 
 'Style','checkbox', ... 
 'Tag','Checkbox4'); 
h_plotstest = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[283.5 108.75 113.25 15], ... 
 'String','Plot test samples by class', ... 
 'Style','checkbox', ... 
 'Tag','Checkbox3'); 
h_y = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[221.25 48 19.5 15], ... 
 'String','8', ... 
 'Style','edit', ... 
 'Tag','EditText1', ... 
 'UserData','[ ]'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[195 66.75 17.25 15], ... 
 'String','X', ... 
 'Style','text', ... 
 'Tag','StaticText4'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[220.5 66.75 20.25 15], ... 
 'String','Y', ... 
 'Style','text', ... 
 'Tag','StaticText4'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[195.75 83.25 45 21], ... 
 'String','Grid Size', ... 
 'Style','text', ... 
 'Tag','StaticText7'); 
h_x = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[193.5 48 19.5 15], ... 
 'String','8', ... 
 'Style','edit', ... 
 'Tag','EditText1', ... 
 'UserData','[ ]'); 
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h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[20.625 17.25 45 19.5], ... 
 'String','Labels to remove', ... 
 'Style','text', ... 
 'Tag','StaticText10'); 
h_remlabel1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[78.75 19.5 45 15], ... 
 'String','ref', ... 
 'Style','edit', ... 
 'Tag','EditText6'); 
h_remlabel2 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[129.75 19.5 45 15], ... 
 'String','wsoy', ... 
 'Style','edit', ... 
 'Tag','EditText6'); 
h_remlabel3 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[180.75 19.5 45 15], ... 
 'String','bad', ... 
 'Style','edit', ... 
 'Tag','EditText6'); 
h_remlabel4 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[231.75 19.5 45 15], ... 
 'String','weed', ... 
 'Style','edit', ... 
 'Tag','EditText6'); 
h_runkmeans = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'Callback','', ... 
 'ListboxTop',0, ... 
 'Position',[283.5 179.25 130.5 15], ... 
 'String','Enable K-means', ... 
 'Style','checkbox', ... 
 'Tag','Checkbox5'); 
h1 = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ... 
 'ListboxTop',0, ... 
 'Position',[248.25 84 39 21], ... 
 'String','Label length', ... 
 'Style','text', ... 
 'Tag','StaticText11'); 
h_labellength = uicontrol('Parent',h0, ... 
 'Units','points', ... 
 'BackgroundColor',[1 1 1], ... 
 'Callback','', ... 
 'FontSize',10, ... 
 'ListboxTop',0, ... 
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 'Position',[255.75 61.5 25.5 18], ... 
 'String','4', ... 
 'Style','edit', ... 
 'Tag','EditText7'); 
 
C.2 som_asd_gui.m 

%This program reads ASD data 
%clear; 
%clc; 
%remstart(1)=950;  %used to set the start of the bands to be removed before calculations 
%remend(1)=2500;  %used to set the end of the bands to be removed before calculations 
%remstart(2)=1; 
%remend(2)=10 
%rem_ind=0;  %stores the total array of bands to be removed 
%normsamp=1;   %should the samples be normalized 0 => no (default) 1 => yes 
%plotall=0;  %plot all samples by class 
%plottest=0;  %plot test samples by class 
%plottrain=0; %plot training samples by class 
%smalldouble=1; %double small sets 
%bmubands=2;   %number of bands to keep 
%pstart=5;  %start of range of percentages to search 
%pend=10;   %end of range of percentages to search 
%plotstrain=0;  %plot results of training set by class 
%plotstest=1;  %plot results of test set by class 
%pset=15;  %percent to hold back for testing 
%X=8;    %x size of grid 
%Y=8;    %y size of grid 
%labellength=4; %length of label to keep 
%runkmeans=0; %run kmeans section in mapmaker yew or no 
 
%This section converts GUI values to local values 
normsamp=get(h_normsamp,'value'); 
plotall=get(h_plotall,'value'); 
plottest=get(h_plottest,'value'); 
plottrain=get(h_plottrain,'value'); 
smalldouble=get(h_smalldouble,'value'); 
pstart=str2num(get(h_pstart,'string')); 
pend=str2num(get(h_pend,'string')); 
plotstrain=get(h_plotstrain,'value'); 
plotstest=get(h_plotstest,'value'); 
runkmeans=get(h_runkmeans,'value'); 
labellength=str2num(get(h_labellength,'string')); 
 
data{1}=get(h_data1,'string'); 
data{2}=get(h_data2,'string'); 
data{3}=get(h_data3,'string'); 
data{4}=get(h_data4,'string'); 
data{5}=get(h_data5,'string'); 
data{6}=get(h_data6,'string'); 
data{7}=get(h_data7,'string'); 
data{8}=get(h_data8,'string'); 
data{9}=get(h_data9,'string'); 
head{1}=get(h_head1,'string'); 
head{2}=get(h_head2,'string'); 
head{3}=get(h_head3,'string'); 
head{4}=get(h_head4,'string'); 
head{5}=get(h_head5,'string'); 
head{6}=get(h_head6,'string'); 
head{7}=get(h_head7,'string'); 
head{8}=get(h_head8,'string'); 
head{9}=get(h_head9,'string'); 
remstart(1)=str2num(get(h_start1,'string')); 
remstart(2)=str2num(get(h_start2,'string')); 
remstart(3)=str2num(get(h_start3,'string')); 
remstart(4)=str2num(get(h_start4,'string')); 



  84 

 

remstart(5)=str2num(get(h_start5,'string')); 
remstart(6)=str2num(get(h_start6,'string')); 
remstart(7)=str2num(get(h_start7,'string')); 
remstart(8)=str2num(get(h_start8,'string')); 
remend(1)=str2num(get(h_end1,'string')); 
remend(2)=str2num(get(h_end2,'string')); 
remend(3)=str2num(get(h_end3,'string')); 
remend(4)=str2num(get(h_end4,'string')); 
remend(5)=str2num(get(h_end5,'string')); 
remend(6)=str2num(get(h_end6,'string')); 
remend(7)=str2num(get(h_end7,'string')); 
remend(8)=str2num(get(h_end8,'string')); 
bmubands=str2num(get(h_bmubands,'string')); 
pset=str2num(get(h_pset,'string')); 
 
 
Y=str2num(get(h_y,'string')); 
X=str2num(get(h_x,'string')); 
remlabel1=get(h_remlabel1,'string'); 
remlabel2=get(h_remlabel2,'string'); 
remlabel3=get(h_remlabel3,'string'); 
remlabel4=get(h_remlabel4,'string'); 
 
%read the data 
sintake=asd_read_data(data{1}); 
sintake=asd_read_header(sintake,head{1},'len',labellength,remlabel1,remlabel2,remlabel3,remlabel4); 
%determine how many data files to use 
for m=2:9 
   temptest=data{m}; 
   if temptest(1:4)~='none' 
    aintake=asd_read_data(data{m}); 
  aintake=asd_read_header(aintake,head{m},'len',labellength,remlabel1,remlabel2,remlabel3,remlabel4); 
  sintake = som_modify_dataset(sintake, 'addsamp', aintake); 
  [sintake.labels b]=sort(sintake.labels); 
      sintake.data=sintake.data(b,:); 
   end 
end 
 
%This can be used to aid in data reduction by eliminating entire blocks 
%sintake=som_modify_dataset(sintake,'removecomp',(1763-350):length(sintake.comp_names)); 
%sintake=som_modify_dataset(sintake,'removecomp',(1285-350):(1500-350)); 
%sintake=som_modify_dataset(sintake,'removecomp',(967-350):(972-350)); 
%sintake=som_modify_dataset(sintake,'removecomp',(950-350):length(sintake.comp_names)); 
%sintake=som_modify_dataset(sintake,'removecomp',1:10); 
 
%This section determines exactly which band numbers are to be removed 
temp=350; 
step=0; 
for m=1:length(remstart) 
     if remstart(m)>349 
    for n=1:remend(m)-(remstart(m)-1) 
         temp(n+step)=remstart(m)+n-1; 
      end 
     end 
     step=length(temp); 
end 
temp=sort(temp); 
rem_ind(1)=temp(1); 
count=1; 
for m=2:length(temp); 
   if rem_ind(count)<temp(m) 
      count=count+1; 
      rem_ind(count)=temp(m); 
   end 
end 
%Remove undesired bands 
sintake=som_modify_dataset(sintake,'removecomp',rem_ind-349); 
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if normsamp==1; 
 %Normalize the data 
 %Sets the range of all samples as [0 1] 
   sintake=som_asd_norm(sintake); 
end 
 
%This section maps the individual classes to determine if there are any extreme outliers 
%%%%%%REMOVED BECAUSE OF COMPLICATIONS AND REPLACED WITH som_classplots 
%%%%%%%%% %som_map_classes(sintake); 
 
 
if plotall==1 
   %This creates plots of classes, usefull in locating misslabeled data and outliers 
 som_classplots(sintake); 
end 
 
%This section creates two data sets, one for training and one for testing 
[trainset testset]=som_split_data(sintake,pset*.01); 
 
if plottest==1 
   %plot testset by class 
   som_classplots(testset); 
end 
 
if plottrain==1 
   %plot training set by class; 
   som_classplots(trainset); 
end 
 
if smalldouble==1 
 %This doubles the importance of classes that have less than half the number of sample of the largest class 
 %for training purposes only 
    trainset=som_double(trainset); 
end 
 
%make original map 
smap=som_make(trainset,'rect','init','lininit','msize',[Y X]); 
smap = som_autolabel(smap,trainset,'vote'); 
%som_mapmaker(smap,trainset,runkmeans); 
 
%%%%REMOVED AND REPLACED BECAUSE OF GUI INTERFACE 
%find some relivant bands 
%[intake1,smap1,tb{1},tbsize1]=som_newmap(smap,trainset,1,.001); 
%[intake2,smap2,tb{2},tbsize2]=som_newmap(smap,trainset,1,.01); 
%[intake3,smap3,tb{1},tbsize3]=som_newmap(smap,trainset,1,.09); 
%[intake4,smap4,tb{2},tbsize4]=som_newmap(smap,trainset,1,.15); 
%[intake5,smap5,tb{3},tbsize5]=som_newmap(smap,trainset,1,.2); 
%[intake6,smap6,tb{4},tbsize6]=som_newmap(smap,trainset,1,.05); 
 
%%%%%%GUI METHOD OF FINDING RELIVANT BANDS 
%%%%%%%%%%%%%%%evaluate data 
highrate=0;                 %initialize high classification rate 
for percent=pstart:pend 
 %Call som_bandfinder using preset parameters and incremental parameter percent 
    [keptbands,tbsize]=som_bandfinder(smap,trainset,bmubands,.01*percent); 
   
 %This section creates a map using all "keptbands" 
 strain = som_modify_dataset(trainset, 'extractcomp', keptbands); 
 stest=som_modify_dataset(testset,'extractcomp',keptbands); 
       %make comparison map 
 smap2 = som_supervised(strain,'rect','msize',[Y X]);%'init','lininit', 
 
 %calculate classification rate 
 templabels=smap2.labels; 
 tempmap = som_autolabel(smap2,stest,'add'); 
 [rows cols]=size(tempmap.labels); 
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 correct=0; 
 for n=2:cols 
    for m=1:rows 
       if isempty(templabels{m}), % ignore empties 
       elseif strcmp(templabels{m},tempmap.labels{m,n}),  
    correct=correct+1; 
       end       
    end 
 end 
 total=length(testset.labels); 
   rate=correct/total; 
    
   %keep track of best percent 
   if rate>highrate 
      highkeptbands=keptbands; 
      highsmap=smap2; 
      highrate=rate; 
      highstrain=strain; 
      highstest=stest; 
      highpercent=percent; 
   end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%end of find best 
percent%%%%%%%%%%%%%%%%%%%%%%%%% 
highrate    %Display highest classification rate 
 
%Display labeled map 
smap2 = som_autolabel(highsmap,highstest,'freq'); 
 
som_mapmaker(smap2,highstest,runkmeans); 
figure; 
som_show(smap2,'empty','Labels'); 
som_show_add('label',smap2,'Textsize',8,'TextColor','r'); 
 
if plotstrain==1 
    %plot post band selection traing sets  
   som_classplots(highstrain); 
end 
 
if plotstest==1 
    %plot post band selection test sets 
 som_classplots(highstest); 
end 
 
%Ding when done 
y=wavread('Ding.wav'); 
soundsc(y); 
 
C.3 asd_read_data.m 

function sintake = asd_read_data(filename) 
%This program reads properly formated ASD data 
 
%This section calls som_read_data and manipulates the data to be in the correct format 
dummy=som_read_data(filename); 
sintake.data=dummy.data(:,2:end)'; 
sintake.labels=dummy.comp_names(2:end); 
for m=1:length(sintake.data) 
 sintake.comp_names{m,1}=dummy.data(m,1); 
end 
sintake.comp_norm=cell(length(sintake.data),1); 
sintake.type=dummy.type; 
sintake.label_names=sintake.labels; 
sintake.name=dummy.name; 
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C.4 asd_read_header.m 

function sintake = asd_read_header(sintake, headerfile, varargin) 
%This program reads the header file created for asd data and replaces the filenames stored in  
%sintake.labels with the new labels from the header file the data is sorted by label name when returned 
%optional arguments are to remove white reference files and length of data label 
%   'remstring' (scalar) any string other than "len" and files with labels that begin with "varargin" will %be removed 
%  'len'    (scalar) any value other than zero and the label will be read to the specified number of letters 
% <<< Do Not enter a number longer than the shortest label>>> 
% defaults 
len=0;   %if no length for label read is given, the default is to read the entire label 
remref=0;   %if not specified all labels begining with "ref" will be removed 
 
% varargin 
i=1; 
m=0; 
while i<=length(varargin),  
  argok = 1;  
  if ischar(varargin{i}),  
    switch varargin{i},  
      % argument IDs 
     case 'len',       i=i+1; len = varargin{i};      
   otherwise argok=0; 
      m=m+1; 
        remstring{m}=varargin{i}; 
     end 
  end 
  %if ~argok,  
  %  disp(['(som_make) Ignoring invalid argument #' num2str(i+1)]);  
  %end 
  i = i+1;  
end 
 
 
 
%This section replaces the individual file names of ASD data with their labels from a header file 
[filenames labels] = textread(headerfile,'%s %s'); 
n=length(filenames); 
next=1; 
for m=1:length(sintake.labels); 
   count=1; 
   while count<=n 
      if sintake.labels{m}==filenames{count}; 
         a=labels{count}; 
         if len==0 
            sintake.labels{m}=a(1,1:end); 
         else 
          sintake.labels{m}=a(1,1:len); %This can be adjusted to select labels length 
         end 
         count=n; 
      end 
      count=count+1; 
   end 
   %This part keeps track of files to remove 
   for remsize=1:length(remstring) 
    if a(1,1:length(remstring{remsize}))==remstring{remsize} 
          ind(next)=m; 
          next=next+1; 
      end 
   end    
end 
 
%This section removes bad files 
sintake=som_modify_dataset(sintake,'removesamp',ind); 
 
%This section organizes the data 
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[sintake.labels b]=sort(sintake.labels); 
sintake.data=sintake.data(b,:); 
 

C.5 som_asd_norm.m 

function sintake=som_asd_norm(sintake) 
%this function set the range from 1 to 0 for asd data 
[r c]=size(sintake.data); 
 for a=1:r 
    sintake.data(a,:)=sintake.data(a,:)-min(sintake.data(a,:)); 
    sintake.data(a,:)=sintake.data(a,:)/max(sintake.data(a,:)); 
   end 
 

C.6 som_classplots.m 

function tsize=som_classplots(sintake) 
%This function plots all samples of each class seperately on each graph 
 
%find the size and location of each class 
tsize=som_sizefinder(sintake); 
 
%initialize counter 
start=0; 
 
%create x axis for plots 
for k=1:length(sintake.comp_names) 
    x(k)=sintake.comp_names{k}; 
end 
 
%create plots 
for m=1:length(tsize) 
   figure; 
   hold on; 
   title(sintake.labels(start+1)); 
   for n=start+1:start+tsize(m)       
    plot(x,sintake.data(n,:),'x'); 
 end 
   hold off; 
   start=start+tsize(m); 
end 
 
C.7 som_sizefinder.m 

function tsize=som_sizefinder(sintake) 
%This function finds the locations and sizes of a sorted list of the different classes 
tcount=0; 
newtype=1; 
for n=1:length(sintake.labels), 
   if n==newtype, 
      tcount=tcount+1; 
      tsize(tcount)=0; 
      for m=n:length(sintake.labels), 
         if sintake.labels{n}==sintake.labels{m}; 
            tsize(tcount)=tsize(tcount)+1; 
      end 
      end 
      newtype=n+tsize(tcount);    
   end 
end 
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C.8 som_double.m 

function train=som_double(train) 
%This program doubles the number of samples of classes that have less than half the  
%number of samples of the largest class 
 
%set the size for the training set 
[trsize]=som_sizefinder(train); 
 
%This section increases the importance of smaller samples 
for m=1:length(trsize) 
   if trsize(m)<(max(trsize)/2) 
      start=0; 
      start=sum(trsize(1:m-1)); 
      temp=som_modify_dataset(train,'extractsamp',start+1:start+trsize(m)); 
      train = som_modify_dataset(train,'addsamp',temp); 
      [train.labels b]=sort(train.labels); 
  train.data=train.data(b,:); 
      trsize(m)=2*trsize(m); 
   end 
end 
 
C.9 som_bandfinder.m 

function [Tb,tbsize]=som_bandfinder(smap,intake,bands,Tpercent) 
%This function attempts to find the relevant inputs for sorting an som 
 
%this section computes the Euclidean distance of inputs to there BMU 
[Bmus Qerrors]=som_bmus(smap,intake); 
eucdist=zeros(size(smap.codebook)); 
for m=1:length(Bmus) 
   dist=smap.codebook(Bmus(m),:)-intake.data(m,:); 
 dist=dist.^2; 
   eucdist(Bmus(m),:)=dist+eucdist(Bmus(m),:); 
end 
   eucdist=eucdist.^(.5); 
 
 
%This section computes the threshold 
range=max(eucdist')-min(eucdist'); 
thershold=(Tpercent*range+min(eucdist'))'; 
 
%This section finds the (bands) number of important inputs for map units that have labels 
for m=1:length(thershold) 
   [y x]=sort(eucdist(m,:)); 
   found=0; 
   n=0; 
   while ~found 
      n=n+1; 
      if thershold(m)<=y(n) 
         for k=1:bands 
            if n-1+k<=length(x) 
               bandselected(m,k)=x(n-1+k); 
            end 
         end 
         found=1; 
      end 
   end 
end 
 
%This section elminates duplicate bands 
[l w]=size(bandselected); 
for m=1:l; 
   for n=1:w 
      pos=(m-1)*w+n; 
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      tb(pos)=bandselected(m,n); 
   end 
end 
tb=sort(tb); 
%ensure that 0 is not selected 
for m=1:length(tb) 
   if tb(m)==0 
      tb(m)=1; 
   end 
end 
 
tbcount=0; 
newtb=1; 
for n=1:length(tb), 
   if n==newtb, 
      tbcount=tbcount+1; 
      tbsize(tbcount)=0; 
      for m=n:length(tb), 
         if tb(n)==tb(m); 
            tbsize(tbcount)=tbsize(tbcount)+1;    
         end 
       Tb(tbcount)=tb(n);    
      end 
      newtb=n+tbsize(tbcount);    
   end 
end 
 
 
C.10 som_colorhits.m 

function tsize=som_colorhits(smap,intake); 
%this program determines how many different classes there are and colors the U-matrix accordingly 
tsize=som_sizefinder(intake); 
 
m=0; 
a=hsv(length(tsize)); 
for n=1:length(tsize), 
   h = som_hits(smap,intake.data(m+1:m+tsize(n),:)); 
   newtype(n)=m+1; 
   m=m+tsize(n); 
   b(n)=som_show_add('hit',h,'MarkerColor',a(n,:),'Subplot',1); 
end 
 
legend([b],intake.labels{newtype},-1); 
 
C.11 makehist.m 

function keptbands=makehist(bandlist,threshold); 
%this function makes a list of bands that were repeted atleast "threshold" times 
n=hist(bandlist,max(bandlist)); 
step=1; 
for x=1:length(n) 
   if n(x)>=threshold 
      keptbands(step)=x; 
    step=step+1;    
   end 
end 
hist(keptbands,max(keptbands)); 
 
C.12 som_split_data.m 

function [trainset,testset]=som_split_data(sintake,percent) 
%This function splits a som data struct into two different sets.  A percent of each class will be split. 
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%   sintake    (struct) data struct 
%  percent  (scalar)  
 
%This section calculates the location of the samples to extract 
 
[sintake.labels b]=sort(sintake.labels); 
sintake.data=sintake.data(b,:); 
 
[tsize]=som_sizefinder(sintake); 
start=0; 
testcount=0; 
for m=1:length(tsize) 
   ksize=floor(percent*tsize(m)); 
   testind(testcount+1:testcount+ksize)=round((tsize(m)-1)*rand(ksize,1))+1+start; 
   testcount=ksize+testcount; 
   start=start+tsize(m); 
end 
 
%This seperates the data into 2 sets, a training set and a test set 
testind=sort(testind); 
testset=som_modify_dataset(sintake,'extractsamp',testind); 
trainset=som_modify_dataset(sintake,'removesamp',testind); 
 
C.13 som_mapmaker.m 

function tsize=som_mapmaker(smap,intake,runkmeans); 
%This function creates color maps using som_colorhits, som_kmeanscolor, som_show, and som_show_add 
figure; 
colormap(1-gray); 
som_show(smap,'umat','all','empty','Labels'); 
som_show_add('label',smap,'Textsize',8,'TextColor','r','Subplot',2); 
tsize=som_colorhits(smap,intake); 
if runkmeans 
 figure; 
 [color,b]=som_kmeanscolor(smap,8); 
 som_show(smap,'color',color,'color',{color(:,:,b),'"Best clustering"'}); 
end 
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