
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-14-2001

Use of Self Organized Maps for Feature Extraction of Use of Self Organized Maps for Feature Extraction of

Hyperspectral Data Hyperspectral Data

Thomas C. Null

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Null, Thomas C., "Use of Self Organized Maps for Feature Extraction of Hyperspectral Data" (2001).
Theses and Dissertations. 4876.
https://scholarsjunction.msstate.edu/td/4876

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4876&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/4876?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4876&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

USE OF SELF ORGANIZED MAPS FOR FEATURE EXTRACTION OF

HYPERSPECTRAL DATA

By

Thomas Calvin Null III

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Electrical Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

December 2001

USE OF SELF ORGANIZED MAPS FOR FEATURE EXTRACTION OF

HYPERSPECTRAL DATA

By

Thomas Calvin Null III

Approved:

_______________________ _______________________
Roger L. King A. Wayne Bennett
Professor of Electrical and Computer Engineering Dean of the College of Engineering
(Director of Thesis)

_______________________ _______________________
Randy Follett Nick Younan
Assistant Professor of Electrical and Computer Graduate Coordinator of the
Engineering Department of Electrical and
(Committee Member) Computer Engineering
 (Committee Member)

Name: Thomas Calvin Null III

Date of Degree: December 14, 2001

Institution: Mississippi State University

Major Field: Electrical Engineering

Major Professor: Dr. Roger King

Title of Study: USE OF SELF ORGANIZED MAPS FOR FEATURE
EXTRACTION OF HYPERSPECTRAL DATA

Pages in Study: 123

Candidate for the Degree of Master of Science

In this paper, the problem of analyzing hyperspectral data is presented. The

complexity of multi-dimensional data leads to the need for computer assisted data

compression and labeling of important features. A brief overview of Self-Organizing

Maps and their variants is given and then two possible methods of data analysis are

examined. These methods are incorporated into a program derived from

som_toolbox2. In this program, ASD data (data collected by an Analytical Spectral

Device sensor) is read into a variable, relevant bands for discrimination between

classes are extracted, and several different methods of analyzing the results are

employed. A GUI was developed for easy implementation of these three stages.

 ii

ACKNOWLEDGEMENTS

I would like to thank Dr. Roger King for all of his input, assistance, and

encouragement in the research, preparation, and writing of this thesis, as well as for

his overall guidance and instruction throughout my master’s program studies at MSU.

I would like to thank Libba LaMastus for sharing her data with me for use in

this thesis. Without her original research efforts and data, the amount of time

required to complete this work would have been overwhelming.

I would like to thank Dr. David Shaw for his guidance throughout my

master’s program, as well as the suggestion on creating the GUI in the first place.

Finally, I would like to thank my fiancée, Sarah Nagle, for her enduring and

overall support and assistance. In particular, her editorial and typing skills came in

handy during the final days of this thesis—she is the reason this work maintains a

certain level of technical knowledge while also being aesthetically appealing.

 --TCN

 iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. ii

LIST OF TABLES .. v

LIST OF FIGURES... vi

CHAPTER

 I. INTRODUCTION... 1

 II. INTRODUCTION TO NEURAL NETWORKS............................ 3

 2.1 Introduction ... 3
2.2 Applications of the SOM... 5
2.3 Analysis of the SOM... 6
2.4 Conclusion... 10

 III. WHAT IS REMOTE SENSING? ... 11

 IV. INITIAL APPROACH TO PROGRAM CREATION.................... 16

 V. FINE-TUNING AND APPLICATION OF DATA 32

 5.1 Data Collection.. 32
 5.2 Format Conversion.. 36
 5.3 Testing the Data .. 50
 5.4 Analysis of Results.. 55

 VI. CONCLUSIONS... 58

REFERENCES.. 61

APPENDIX

 A MATERIALS AND METHODS.. 63

 iv

 B FLOW CHART AND USER MANUAL.. 66

 C CODE.. 72

 C.1 somasdgui.m.. 73
 C.2 som_asd_gui.m.. 83
 C.3 asd_read_data.m.. 86
 C.4 asd_read_header.m.. 87
 C.5 som_asd_norm.m .. 88
 C.6 som_classplots.m... 88
 C.7 som_sizefinder.m .. 88
 C.8 som_double.m ... 89
 C.9 som_bandfinder.m... 89
 C.10 som_colorhits.m .. 90
 C.11 makehist.m .. 90
 C.12 som_split_data.m... 90
 C.13 som_mapmaker.m ... 91

 D RESULTS GRAPHS... 92

 D.1 Trial 1 .. 93
 D.2 Trial 2 .. 95
 D.3 Trial 3 .. 97
 D.4 Trial 4 .. 99
 D.5 Trial 5 .. 101
 D.6 Trial 6 .. 103
 D.7 Trial 7 .. 105
 D.8 Trial 8 .. 107
 D.9 Trial 9 .. 108
 D.10 Trial 10 .. 109
 D.11 Trial 11 .. 110
 D.12 Trial 12 .. 111
 D.13 Trial 13 .. 112
 D.14 Trial 14 .. 113
 D.15 Trial 15 .. 114
 D.16 Trial 16 .. 115
 D.17 Trial 17 .. 116
 D.18 Trial 18 .. 117
 D.19 Trial 19 .. 118
 D.20 Trial 20 .. 119
 D.21 Trial 21 .. 120
 D.22 Trial 22 .. 121
 D.23 Trial 23 .. 122
 D.24 Trial 24 .. 123

 v

LIST OF TABLES

TABLE Page

 5-1 Data Collection Names and Classifications 33

 vi

LIST OF FIGURES

FIGURE PAGE

 2-1 General curve for the AUD metrice [12]... 8

 3-1 Typical vegetation reflectance spectrum ... 13

 4-1 Example printout of a SOM data struct ... 18

4-2 Hexagonal and rectangular grids used for SOMs.............................. 20

4-3 Sheet, cylinder, and toroid SOMs.. 21

4-4 U-matrix of an SOM.. 25

 4-5 SOM 8 x 8 grid with labels chosen by vote....................................... 27

 4-6 U-matrix with hit histogram overlaid .. 28

 4-7 K-means cluster graphs of GER data .. 29

 4-8 AUD graph of an 8 x 8 SOM using all bands of the GER data set ... 30

 4-9 AUD graph of an 8 x 8 SOM using 41 bands of the GER data set ... 31

 5-1 Sample List of ASD Files.. 33

 5-2 Example of Handwritten Classification Labels on Data Tables........ 35

 5-3 Sample Header File with Classification and

 Subclassification Labels .. 37

 5-4 Example of Crop Outlay Grid ... 38

 5-5 Crop Grid with IPOLA117 Highlighted.. 39

 5-6 Example of Grid with Bad Samples .. 41

 5-7 Inset of Lower Right Corner of U-Matrix of Figure 5-6 42

 5-8 Example Graph of Bad and Mislabeled Data with All Bands 43

 5-9 Example Graph of Mislabeled Data with Water Bands Removed 45

 5-10 Example Graph of Bad Data with Water Bands Removed 46

 5-11 Example of Processed Data ... 48

 5-12 Somasdgui Screen Shot ... 51

 5-13 Classification Results as a Function of Varying Threshold

 Percentage.. 53

 vii

 5-14 Classification Results as a Function of Quantity of Kept

 Bands ... 54

 5-15 Histogram of Selected Bands .. 55

 5-16 Histogram Results Experiment .. 56

1

CHAPTER I

INTRODUCTION

Hyperspectral data of crops is being analyzed to extract some meaning of the

full knowledge of the plants. Classification of images in a hyperspectral cube is one

of the most difficult tasks when analyzing hyperspectral data. The high

dimensionality of the data makes it very difficult for a human to visualize, and

differences in similar plants’ hyperspectral signatures are not obvious.

Typical hyperspectral signatures contain hundreds of frequency bands. Some

of the bands contain information about the plant, some of the bands contain

information about the atmosphere, and some bands are dominated by electronic noise.

Researchers are most interested in the bands that contain information about the plant,

but not just information that is unique to the plant kingdom. Researchers want to

know what frequency bands are important for species identification. This means that

irrelevant bands should be removed from consideration, and some method of

determining which bands contain species-specific data must be developed.

Since pattern recognition is the primary emphasis, a neural network seems to

be the most logical method for solving this problem. King et al presented a first look

at the feasibility of analyzing hyperspectral data with a Self Organized Map (SOM) in

2

Classification of Weed Species Using Self-Organizing Maps [1]. This thesis is an

expansion of King’s initial work. In the following chapters, the process in which a

program that utilizes neural networks for feature extractions was developed is

described.

3

CHAPTER II

INTRODUCTION TO NEURAL NETWORKS

2.1 Introduction

 Since pattern recognition is the primary emphasis in this thesis’ problem, a

neural network seems like the most logical method, or solution. In order to better

visualize the steps taken toward making this decision, a general understanding of the

basics of neural networks is necessary.

 Kohonen suggests that three categories of neural networks exist: feedforward,

feedback, and a third group known as “competitive, unsupervised, or self-organizing”

[2]. Feedforward networks are formed by a set of inputs propagating through a

system and resulting in an output [3]. The system is modified by externally adjusting

the weights. Feedback networks start in an initial state and adjust their inputs,

continuing until they approach a final output. Kohonen describes the third category

as “neighboring cells in a neural network compete in their activities by means of

mutual lateral interactions, and develop adaptively into specific detectors of different

signal patterns.” A self-organized map may be the best tool for extracting subtle

features in similar hyperspectral images. The enigma of self-organizing maps is their

ability to find regularities and correlations in the input layer and group them into

vectors without any external adjustment or knowledge of expected outcomes. One

 4

interpretation of Kohonen’s definition of the SOM is that it is “an artificial neural

network which defines a nonlinear transform from the input space to the set of nodes

in the output space. Each node is associated with a model of the input space” [4]. Of

self-organizing maps, basically two different models exist.

Willshaw and Von Der Malsburg developed a model that focuses on mapping

inputs to outputs of the same dimension [5]. This model is not very useful in analysis

of hyperspectral data, due to the high dimensionality of the data. The map must

contain some method of compressing the data into a manageable form. Kohonen’s

self-organizing map is one of the most referenced mapping techniques because of its

ability to take high dimensional data and flatten it into two- or three-dimensional data.

One extremely important attribute of Kohonen’s SOM is that it performs data

compression without loss to relative distance between data points. A SOM typically

uses the Euclidian distance formula to determine the relative closeness or similarity of

data. Through an iterative process of selecting a neuron and determining whether

other neurons in a “neighborhood” should move closer or further away, it is able to

sort data into similar groups [6]. The learning rate controls how far a neuron is

moved. At the beginning of the process, the neighborhood size is at least half the

map [7], and the learning rate is close to one. Over the course of the process, the

neighborhood size and learning rate are independently decreased until the map no

longer makes significant adjustments [8][9].

In the case of hyperspectral data, there are three dimensions, consisting of

sample number, band number, and amplitude. Though the actual dimensionality of

 5

the data is only three, the length of two of the three dimensions is very long. The

number of samples can be extremely large and the number of bands is already several

hundred. When these two numbers are multiplied together to yield the number of

points, the data size becomes extremely large and potentially cumbersome. The SOM

is capable of flattening the data into two or three dimensions of which the lengths can

be set, therefore resulting in a manageable data size. In addition, the total number of

points in the SOM can more closely match the number of types of samples multiplied

by the number of bands. For instance, 400 hyperspectral signatures, containing 300

bands, of 10 types of plants would contain 120000 points in a data cube, but could

contain as few as 3000 points in a SOM. The map also displays the data from a

different viewpoint; instead of viewing the data as a cube, it can be viewed as a two-

dimensional plot. This is where human analysis is aided. Instead of looking at the

spectral signature of a sample and trying to determine what the sample type is, one

can look at the location of the sample on the map and try to determine what the

sample type is.

2.2 Applications of the SOM

Kohonen’s SOM has been successfully applied to many areas in science,

ranging from understanding the human brain “to subsystems for engineering

applications”[9]. Many variants of the Kohonen SOM have appeared over the last

couple of decades. Many problems with the architecture of the SOM have been

addressed. H. S. Hosseini and R. Safabakhsh created a time-adaptive self-organizing

 6

map (TASOM) to handle non-stationary input distributions and changing

environments. The TASOM assumes that each neuron has its own learning rate and

neighborhood function [7].

Another problem with the basic SOM is that the size of the map has to be

predefined. D. Alahakoon et al proposed a growing self-organizing map (GSOM) to

address this problem. The GSOM starts out with a minimal number of neurons and

increases the number as needed [10]. This can save processor time as well as human

analysis time. Processor time is a huge concern when using neural networks.

Depending on processor speed and the size of the application, a neural network can

take days to train.

Another way of decreasing training time has been proposed by M. C. Su and

H. T. Chang. Su and Chang use a three-step process in which a K-means algorithm is

used to select N2, and says, “then a heuristic assignment strategy is employed to

organize the N2 selected data points into an N x N neural array”[11]. Finally, the

Kohonen SOM is employed to fine-tune the network.

2.3 Analysis of the SOM

The largest problem with the SOM comes from its inherent nature of use. The

SOM is used to organize high dimensional data into a two- or three-dimensional map

because humans are not very effective at handling hyper dimensional data. Since

humans are not effective at handling the hyper dimensional data, just what the map

 7

should look like is unknown. Two basic facts need to be determined after the SOM

has been created:

1. Is the SOM actually organized?

2. What features did the SOM use to separate the data?

A. P. Azcarraga presents a very legible overview of average unit disorder (AUD).

Order is defined as “the degree by which physically (spatially) close map units are

assigned values that are similar in the input environment”[12]. Azcarraga labels lij by

where wij is a weight of node ui, v is the number of input units, and lij is the average

absolute difference between the weights of nodes ui and uj [12]. Once lij is

determined, AUD can be found by evaluating

where “dij is the Euclidean distance between ui and uj” and “ N is the number of units

in the map” [12].

According to A. P. Azcarraga, AUD can be used to evaluate the degree to

which the map is organized regardless of the variant of Kohonen’s SOM. This is an

especially important attribute of this method in that it will provide a solution to

problem number one regardless of the way in which that state was achieved. The

usefulness of the AUD in hyperspectral data should be apparent. It will give us the

stopping point needed to be sure the map is organized. The most common approach

∑
∑

∑
=

=
≠

≠N

i
ij

ij

ij
ijij

d

dl

N
AUD

1 /1

/
1 (2)

∑ −=
=

v

k
jkikij ww

v
l

1

1
(1)

 8

to solve problem number one is to arbitrarily pick some fixed number of intervals.

This technique is far superior in that it is more processor efficient and more reliable.

A. P. Azcarraga’s study of the behavior of the AUD curve has led to a general

graph that represents a correctly organized map. The graph displays three distinct

behaviors. In the first part, AUD increases because “the map units are being

sensitized to the different input patterns”[12]. In the second phase, AUD decreases;

Azcarraga refers to this as “Global Ordering.” In this phase, the different groups are

being developed. This phase will continue until it becomes organized on a global

scale. That is, large clusters of data are spatially organized, but the organization

within the clusters is not complete. The final phase consist of moving units around

within the clusters. This will affect the overall AUD very little. By measuring the

change in AUD, the map will “know” when to stop [12].

Figure 2-1. General curve for the AUD metrice [12]

A second characteristic of this process is that the actual shape of the AUD

curve, as shown in Figure 2-1, must be closely matched or the data will not be

clustered in ways that will make sense to humans [12]. Since parameters such as

 9

learning rate and neighborhood size are arbitrarily chosen in some variants of

Kohonen’s SOM, this would provide feedback as to whether or not the initial guesses

were close enough.

 This brings us to the second question: “What features did the SOM use to

separate the data?”. D. Merkl and A. Rauber devised another variant of Kohonen’s

SOM that provides a “label” for the different units on the map. Merkl and Rauber’s

labelSOM derives its labels from the important features it used to determine where

the unit should be. This technique was developed for archiving journal articles of

similar topics. To apply this technique to hyperspectral data analysis would take

some manipulation, but should be feasible.

 D. Merkl and A. Rauber use Kohonen’s SOM, also known as the basic SOM,

to organize the data but, then, runs an additional algorithm to provide “labels” for the

data clusters. In this algorithm, Merkl and Rauber analyze the co-occurrence

patterns. That is, they use “the deviation between weight vector components and the

respective components of the input vectors”[8]. Merkl and Rauber define ikδ as

where Di denotes the set of documents mapped onto unit i. ikδ is the deviation of a

particular vector component k. Index terms that have a certain range of deviation are

used as the labels for that unit. [Merkl] presents a successful application of this

process in which the groupings of labels give a sufficient description of the set.

)) ((2 ∑ − =

Di xj
jk ik ik x m

ε
δ (3)

 10

2.4 Conclusion

 Hyperspectral images do not contain words as in D. Merkl and A. Rauber’s

example, but hyperspectral images do contain spectral bands. Applying multiple

models to hyperspectral data should allow critical knowledge of the data to be

obtained. Specifically, by applying A. P. Azcarraga’s parameters of the AUD and D.

Merkl and A. Rauber’s labelSOM, knowledge of the important spectral bands in

hyperspectral data can be extracted with high confidence. This is an important and

necessary step towards reducing the amount of data required to sufficiently describe

an image.

11

CHAPTER III

WHAT IS REMOTE SENSING?

Remote sensing is a method of acquiring information about an object from a

distance without physically being in contact with the object. This is accomplished by

sensing electromagnetic energy that is reflected or emitted by the object and

analyzing its spectral signature. Imaging systems such as ASD have seven elements

involved in remote sensing. The seven elements are: the energy source, radiation in

the atmosphere, interaction with the target, recording of the energy by the sensor,

processing the recording into an image, interpretation of the image, and, finally,

application of the analysis to solve a problem.

A large part of remote sensing requires an interaction between incident

radiation and the targets of interest. This means there has to be an energy source to

provide the electromagnetic energy to the target. Electromagnetic energy varies

along a spectrum of wavelengths. For an ASD, this is the sun. The sun is the

equivalent of a black body radiator at 6000 degrees Kelvin. In other words, it radiates

in wavelengths increasingly from .2 to .5 micrometers and then decreasingly from .5

micrometers. ASD operates in a spectral range from .35 to 2.15 micrometers,

utilizing the highest energy range radiated from the sun. However, not all of this

energy reaches the surface.

 12

Some of the sun’s radiated energy is lost in the atmosphere. Losses of the

sun’s incident energy are caused by scattering, reflection, and absorption. The losses

in the atmosphere are not evenly distributed across the magnetic spectrum. Ozone

filters the ultraviolet part of the spectrum out, while there are also wavelengths

missing completely in the visible and infrared spectrum due to water vapor

absorption. The electromagnetic energy absorbed by the water vapor is converted

into heat. Other wavelengths can be diffused or reflected to varying degrees due to

aerosols, depending on the thickness of the haze. Rayleigh scattering in the

atmosphere is a function wavelength and haze. Scattering varies as λ^-x with x being

less than or equal to 4 depending on the thickness of the haze. This has to be taken

into account when processing the data. Radiation that passes through the atmosphere

can then interact with the target. Energy that strikes the target, or is incident upon the

surface, can be absorbed, transmitted, and reflected. Incident energy must interact in

one or more of these ways. That is to say that the energy incident to the target must

equal the sum of the absorbed, transmitted, and reflected energy. Energy is reflected

in two forms: specular and diffuse. Specular reflection occurs on mirror-like

surfaces this is typical of roads. Diffuse reflection occurs on rough surfaces and the

energy is reflected uniformly in all direction this is typical of vegetation as seen in

Figure 3-1.

 13

Figure 3-1. Typical vegetation reflectance spectrum

Leaves in the spring and summer reflect light in the green wavelengths and

absorb light in red and blue part of the visible spectrum. Longer wavelengths such as

2000nm to 2400nm contain information on moisture content. It is this diffuse

reflection characteristic of vegetation that is of interest to us. Data can be extracted

from the diffuse energy telling us what kind of plant it is and how healthy it is. A

detailed description of the spectral signature of a target is required to extract this kind

of information. Hyperspectral sensors are the tools for completing this task.

 Data collection is one of the most tedious and time-consuming parts of remote

sensing research. Libba Lamastus provided several sets of data, which aided in the

timely development of the final program.

 14

To make good use of the data, we must be able to extract meaningful

information from the image cube. In order to interpret and analyze the image cube,

identification and measurement must be made of various targets. A target must be an

object that is distinguishable from other features around it. Given that many objects

are often very similar to their surrounding neighbors and the fact that most pixels

suffer from spectral mixing, hyperspectral images are indispensable because of their

ability to detect subtle differences in the electromagnetic spectrum. Spectral mixing

occurs when a pixel is not homogeneous. For example, if an image of a leaf was

collected and an aphid was on that leaf, the pixel would be mixed. There are

subspace projection methods and linear unmixing techniques that allow the removal

of undesired components from an image and detect a known target in the presence of

mixed pixels. The SOM should be able to decide if the pixel is mixed and place it on

the map accordingly.

Classification can be difficult with agriculture because the spectral signature

of a plant changes over a growing season. Spectral signatures can also change

according to how they are stressed. Stress can occur by under- or over-fertilizing,

improper irrigation, and the presences of pests. Though this has a negative impact

upon image classification, this is a very useful effect when it comes to management

of agricultural resources. When managing a crop, classification of different species is

not a high priority in analyzing hyperspectral data. The top priority is to ensure a

healthy crop, one that is not stressed, which will maximize growth. After analyzing

an image cube and determining how a crop is stressed, proper steps can be taken to

 15

rectify the situation; but this process can be seen as classification of variously stressed

crop. Equipment can be sent to specific areas to treat the crops according to their

specific needs. Multi-spectral satellites must be the final platform for remote sensing

when it comes to agricultural management. The reasons for this are the enormous

monetary and time cost associated with flying a sensor as well as collecting terabytes

of data.

16

CHAPTER IV

INITIAL APPROACH TO PROGRAM CREATION

There were two initial reasons for finding a way to reduce the amount of data

that is stored. The first reason is that hyperspectral data files are extremely large.

They require massive data storage devices and take long periods of time to process.

The second motivation came from researchers desires to know the locations of

relevant spectral bands in order to implement other data analysis techniques such as

NDVI (Normalized Difference Vegetation Index).

Where NIR (Near Infra-Red) is the reflectance value of a band around 1000nm and

red is a value around 600nm. By offering a list of the most relevant spectral bands,

NDVI could be more useful. This is just one example; there are many other programs

that could benefit by being presented with only the most relevant bands.

 As presented in the conclusion of Chapter 2, by employing a couple of

techniques to the basic SOM, critical knowledge of the data can be obtained. After

experimenting with various neural network platforms, Matlab was chosen. It was

chosen because of the easy to use and well documented somtoolbox2, a program that

runs under Matlab. Esa Alhoniemi, Johan Himberg, Juha Parhankangas and Juha

Vesanto, the authors of somtoolbox2, offer this program for free. Somtoolbox2 has

redNIR
redNIRNDVI

+
−= (4)

 17

several capabilities. First and foremost, it will create a SOM if presented with the

data and some input parameters. The second qualifying ability is that it keeps track of

the AUD, as A. P. Azcarraga refers to it and as will be done throughout this paper, or

quantization error as Alhoniemi et al refer to it. Another exciting attribute of this

program is that it has a walk through tutorial explaining how to use most of the

graphing features built into the program. Once this program was explored and

chosen, programming for analysis of hyperspectral data began.

 Initial developments were made using data recorded with a Geophysical

Environmental Research 1500® (GER). The GER records less data than the ASD;

therefore by using the GER data, as opposed to ASD data, processing time could be

minimized. The program, that still needed to be developed for this project, required

three phases: read the data, processes the data, and, finally, to present the data in a

way that could be easily analyzed.

 18

Reading in the GER data proved to be fairly simple. Somtoolbox2 contains a

Figure 4-1. Example printout of a SOM data struct

program, som_read_data that is fairly universal. It reads data from an ASCII file,

which is expected to be in som_pak format. The GER data that was provided was in

SNNS format. With a simple modification to the GER data file and to the

som_read_data program, the data was loaded into the proper variables. The various

variables are all part of the SOM data struct. Figure 4-1 shows a typical display of a

SOM data struct, where “intake” is the variable that receives the data read from a file.

“data” contains 80 samples of GER data. “labels” contains the label for each sample,

such as “CASOB.” “comp_names” contains the wavelength at which each band was

recorded. “comp_norm” contains the normalizing variable for each wavelength if

normalization is requested for the initial read, otherwise it contains nothing.

 The next step is to process the data. This was initially envisioned to be a

three-step process: make the original SOM, extract the relevant spectral bands, and

finally to present a graph of the AUD and the plot of the final SOM created using just

the extracted spectral bands.

intake =

 data: [80x512 double]
 labels: {80x1 cell}
comp_names: {512x1 cell}
 comp_norm: {512x1 cell}
 type: ‘som_data’

LABELS_NAMES: {80X1 CELL}
NAME: ‘WEEDS2.M’

 19

 Making the original SOM requires some planning. There are several options

when making an SOM, which include specifying: initialization function, training

algorithm, map size, map lattice, map shape, neighborhood function, and training

rate. All of which have a default that works nicely, but in order to achieve optimum

results each option had to be explored.

 The first option is the initialization function. There are two settings for this,

random and linear. For an undetermined reason, the linear initialization setting

results in lower AUD and is a more repeatable process. In addition, the linear

initialization setting is the preset default option in the program. It is for these two

reasons that the linear initialization setting was chosen.

 The second option is the training algorithm; the three available settings for

this option are sequential, batch, and sompak. All three settings were explored at

length, and the batch setting was determined to be the best option. Again, it happened

that the batch training algorithm setting was the program’s preset default option.

 The third option is map size. The settings available for this are multi-fold:

small, medium, and large, or grid size specification or the preferred number of units

in the map. Only one of these options can be chosen at a time; in other words, the

user can define either the grid size or the number of map units, but not both

simultaneously. This is because they are mutually exclusive. The program

automatically determines the exact grid size if small, medium, or large is specified. If

grid size is specified, then the user set grid size will be used. The last option,

 20

preferred number of units, leaves the exact number of units in the x and y direction up

to the program to decide, but x times y will result in a number close to that specified

by the user. In this instance, an 8 x 8 map (or the grid size specification setting) was

determined to deliver the results in a more preferable format than that of the other

settings.

 The fourth option, lattice, also has to do with the format of the resulting map.

The map grids can appear as either rectangles or hexagons as seen in Figure 4-2.

While the hexagon option occasionally outperformed the rectangular option, the

rectangular option was selected for the overall project. There was only a marginal

difference between the performances of the two options; quite simply, the rectangular

option provided a more concise and clear result.

 Figure 4-2. Hexagonal and rectangular grids used for SOMs

 The fifth option, map shape, is another aspect of the end result’s format. The

available options are sheet, cylinder, and toroid. Figure 4-3 shows an example of

what the three shapes look like in map form. It can be seen that the different shapes

cause the data to interact differently. Since the SOM attempts to put like objects

 21

together and different objects away from each other, folding the sheet into a cylinder

takes away two of the edge positions forcing the data into a different region. If the

cylinder is then folded into a toroid, there are no edge positions. This forces the data

into yet another region. For this project, the sheet setting was chosen; again, the sheet

setting provided the clearest visualization of the results. Future researchers should

note that more in-depth exploration of the map shape option may result in further

enhanced classifications.

Figure 4-3. Sheet, cylinder, and toroid SOMs

 22

 The sixth option is neighborhood function. The available options for this are

bubble, Gaussian (the default), cutgauss, and ep, which are defined by equations 5, 6,

7, and 8, respectively. These are the functions that are used to try to fit the map to the

data. As stated in the som_batchtrain function,

In principle the updating step goes like this: replace each map unit

by the average of the data vectors that were in its neighborhood. The

contribution, or activation, of data vectors in the mean can be varied

with the neighborhood function [given by equation 9]. This

activation is given by matrix H. So, for each map unit the new

weight vector is where i denotes the index of data vector. Since the

values of neighborhood function h_i are the same for all data vectors

belonging to the Voronoi set of the same map unit, the calculation is

actually done by first calculating a partition matrix P with elements

p_ij=1 if the BMU of data vector j is i.

 23

Gaussian worked best for organizing agricultural data onto an 8 x 8 sheet map. It is

possible that some of the other functions may work better for maps of different shapes

or sizes.

The last option, training rate, has three settings. The default setting defines

the number of epochs, or training cycles, as seen in equation (10) where mpd is the

number of map units divided by the number of samples as given in equation (11).

4**20
4/*20

/
*20

mpdepochs
mpdepochs

dlenmunitsmpd
mpdepochs

=
=

=
= (10)

(11)

(12)

(13)









≥

≤−
=

rUd

rUd
r

Ud

H
,0

,1









≥
≤=

−

rUd
rUdeH

r
Ud

,0
,*2





≥
≤=

rUd
rUdH

,0
,1

r
Ud

eH *2
−

=

(5)

(6)

(7)

(8)

(9)

∑
∑=

hi
dihim *

 24

The training rate can also be set to short or long. In the short setting the number of

epochs to be used is divided by four as seen in equation (11) and the long setting

results in a multiplication by four as seen in equation (12). After experimenting with

the three different settings, it was found that the default setting resulted in the best

organization of the map.

 With the SOM created and optimized, the process of extracting relevant

spectral bands began. By employing a version of equation (1), a program called

som_bandfinder was written. The exact details of this program will be discussed

further in Appendix C. som_bandfinder accepts in as arguments: a SOM, a set of

samples, an integer constant that increases the number of bands kept, and a threshold

percentage. The SOM used was created, as described previously, by using GER data,

employing the linear initialization function, the batch training algorithm, a grid size of

8 x 8, a rectangular map lattice, map shape set to sheet, Gaussian neighborhood

function, and the default training rate. The set of samples was the same GER data

that was used to create the SOM. Various constants were chosen as well as various

threshold percentages. The best combination of which was a constant of one and a

threshold of ten percent. This yielded forty-one relevant spectral bands ranging from

the start of the recorded spectrum to the end of the recorded spectrum.

 The return from som_bandfinder is the indices of the recommended relevant

bands. With the relevant bands located, som_modify_dataset, a built-in function in

somtoolbox2, is utilized. The function som_modify_dataset can add/remove

components/samples from a dataset by specifying the indices of the dataset that need

 25

to be added or removed. The result from this function is a dataset containing only the

relevant spectral bands. This leads to the final stage of the preliminary design.

 Analyzing the data is the most difficult part. There are many different ways in

which the data can be viewed and analyzed. After investigating the options, five

graphs—two of which overlap—were chosen to display the data: the U-matrix, a hit

histogram, a labeled grid, k-means clustering, and the AUD.

 The U-matrix is the backbone of an SOM. The U-matrix, as seen in Figure 4-

4, is a shaded grid containing the spatial distance between units. For example, the

Figure 4-4. U-matrix of an SOM

unit in the top right corner of Figure 4-4 is further away from the unit in the bottom

right corner than the unit in the top left corner is from the unit in the bottom left

corner. By examining Figure 4-4, it can be see that whatever the SOM put in the top

 26

right corner is the least similar of all samples to any other sample on the map. Once

the U-matrix has been created, labels can be applied to the map.

 There are four ways in which to apply labels to the SOM. Somtoolbox2

provides a function called som_autolabel, which has labeling options of add, add one,

frequency, and vote. Add, the least aesthetically pleasing option, puts a copy of the

label of each sample into the unit that it best matches. Add one is similar to add

except that add one only adds one instance of each label to a unit that is matched.

Frequency is extremely useful when calculating classification statistics. The

frequency option is similar to add one in that it adds one instance of each label, but

the frequency option also puts a multiplier on the end of the label representing the

number of samples of that type that were mapped to that unit. Vote was the option

that was initially chosen for analyzing the data. The vote option keeps only the label

with the most instances. This seems like the best way to make a decision as to how a

sample mapped to a unit should be classified. An example of this can be seen in

Figure 4-5. From Figure 4-5, it can be seen that soil is placed in the top right corner.

This makes intuitive sense, since all the other samples are vegetation and soil should

not be easily confused with vegetation.

 27

Figure 4-5. SOM 8 x 8 grid with labels chosen by vote

 The third data visualization method chosen was a hit histogram. In order to

create a hit histogram, a program that separated the data by type and assigned a color

to each type had to be created. Creating the function som_colorhits did this. Further

details about the operation of som_colorhits will be discussed in Appendix C. Once

som_colorhits was created, it was overlaid on the U-matrix. This can be seen in

Figure 4-6. Figure 4-6 is an example of a preliminary results map. Though there is

some order to the map, clustering is not very strong and there are several map units

with multiple types mapped to it. If multiple types are mapped to the same unit, the

SOM is not finding a way to distinguish between those samples of those types.

 28

Figure 4-6. U-matrix with hit histogram overlaid

 The fourth visualization method employed was to have the map determine the

best grouping as decided upon by k-means clustering. Somtoolbox2 contains a

function that performs this task called som_kmeanscolor. An example of this can be

seen in Figure 4-7. Figure 4-7 has nine subplots; the first eight show the clustering

according to k-means with k taking on the value of one through eight respectively.

The last subplot shows the best clustering according to minimum quantization error.

By examining Figure 4-7, once again it can be seen that the unit in the top right-hand

corner is definitely different from the rest of the units in the map. In every iteration

of the program, with exception to the first one, the top right corner is separated from

the rest of the map. The best clustering subplot of Figure 4-7 shows four groups.

 29

When comparing the best clustering of Figure 4-7 to the labels of Figure 4-5, it can be

seen that the four groups are soil, casob, a mixture of xanst, iphol, and iphog, and a

Figure 4-7. K-means cluster graphs of GER data

final group that consists of the outliers of every type. For preliminary testing this was

an encouraging result. Separating soil from vegetation should be easy for most any

discrimination program, but separating different types of vegetation can be vary

difficult and the program automatically separated soil from the other samples.

 30

 The last method used for analyzing the data was the AUD. As stated before,

the AUD graph monitors the organization of the map. In addition to the training

parameter given to som_make, som_make can also be told to return a graph of the

AUD by setting the tracking to three. Since A. P. Azcarraga has studied the AUD

graph and determined that its shape should be similar to that of Figure 2-1, it was

determined that adjustments that caused the AUD graph to become more similar to

the shape of Figure 2-1 were beneficial. Figures 4-8 and 4-9 show an SOM AUD

with all bands and with relevant bands respectively.

Figure 4-8. AUD graph of an 8 x 8 SOM using all bands of the GER data set

 Having successfully completed the preliminary process of reading in the data,

processing the data, and viewing acceptable results, the fine-tuning and application of

data phase began.

 31

Figure 4-9. AUD graph of an 8 x 8 SOM using 41 bands of the GER data set

32

CHAPTER V

 FINE-TUNING AND APPLICATION OF DATA

 This chapter will discuss the fine-tuning and application of data phase,

including data collection, format conversion, and troubleshooting of anticipated and

unanticipated issues with both the data and the programming. In addition, there will

be discussion of data file creation, header file creation, filtering of the data, additional

visualization tools, and improved classification parameters.

5.1 Data Collection

 Please refer to Appendix A, Materials and Methods, for the full specifications

for data collection that was applied for the data used in this project. As regards to the

data collection criteria, the specifications state:

Weed species evaluated were pitted morningglory, entireleaf

morningglory, sicklepod, and common cocklebur. Mixed vegetation

including experimental units (EU) of soybean with a mixed weed

composition and EU’s of mixed weed composition without soybean, and

bare soil were also included in the study for comparison.

 33

This is further illustrated by Table 5-1.

Table 5-1. Data Collection Names and Classifications
Classification Acronym Used Description

Pitted morningglory IPOL Weed

Entireleaf morningglory IPOH Weed

Sicklepod XANS Weed

Common cocklebur CASO Weed

Weeds weed Excludes soil and soyb

Soybean Soyb Plant

Weedy Soybean Wsoy Excludes soil

Soil soil soil

 The data recorded by the ASD is stored in binary format and contains

metadata including instrument number and date and time of acquisition. Each sample

is collected and stored into a binary file with the name of the file being the date of

acquisition and a three-digit extension that increments with each sample collected, as

seen in Figure 5-1.

Figure 5-1. Sample List of ASD Files

In this example, “072500.001” is XANST, “072500.018” is “weedy soybean,”

and “072500.028” is “soybean.” All three files were collected on July 25, 2000;

hence, the same prefix in use on each file. In addition, these files must be manually

072500.001

072500.018

072500.028

 34

labeled by the field technician for classification. The labels were hand-written on a

table as seen in Figure 5-2.

 35

Figure 5-2. Example of Handwritten Classification Labels on Data Tables

 36

As is clearly seen in the previous figure, there is not a guaranteed match

between hand-written data and the data recorded by the ASD. Also, there is not a

guaranteed preset order to the data results; this is the very definition of raw and

unfiltered data. This is one area where further enhancements could be explored and

utilized by future researchers. For this process, however, due to the hand-written

data’s imprecise nature, further visualization techniques were utilized to remove

extreme outliers, erroneous classifications, and other extraneous data. In order to

utilize the visualization techniques, a header file containing classification labels and

subclassification labels had to be created.

5.2 Format Conversion

 A header file containing classification and subclassification labels with

reference to the file name, as seen in Figure 5-3, was created as a spreadsheet in

Microsoft Excel.

 37

Figure 5-3. Sample Header File with Classification and Subclassification Labels

072500.042 IPOHG110

072500.043 IPOHG110

072500.044 IPOHG111

072500.045 IPOHG111

072500.046 IPOHG111

072500.047 IPOHG111

072500.048 IPOHG112

072500.049 IPOHG112

072500.050 IPOHG112

072500.051 IPOHG112

072500.052 ref152

072500.053 CASOB113

072500.054 CASOB113

072500.055 CASOB113

072500.056 CASOB113

072500.057 CASOB114

072500.058 CASOB114

072500.059 CASOB114

072500.060 CASOB114

072500.061 CASOB115

072500.062 CASOB115

072500.063 CASOB115

072500.064 CASOB115

072500.065 CASOB116

072500.066 CASOB116

072500.067 CASOB116

072500.068 CASOB116

072500.069 ref117

072500.070 IPOLA117

072500.071 IPOLA117

072500.072 IPOLA117

072500.073 IPOLA117

 38

The Excel spreadsheet provided a simple way to manipulate the raw data into a usable

format for this process. As can be seen in the last entry of Figure 5-3, 072500.073 is

referenced to IPOLA117, which means ASD file 072500.073 is of IPOLA species

and was collected in the first plot.

Figure 5-4. Example of Crop Outlay Grid

Figure 5-4 demonstrates the layout of the crops as described in Appendix A.

The first digit in IPOLA117 indicates plot 1 while the last two digits indicate that it is

 39

grid unit seventeen, as can be seen in Figure 5-5 where IPOLA117 is highlighted in

red.

Figure 5-5. Crop Grid with IPOLA117 Highlighted

Conversion of binary files into a single ASCII text document was the

necessary next step in the process. ASD ViewSpecPro was used to implement this

 40

step. It has a built-in function that allows for ASCII exportation of all files to a single

document. It also has a limited capability, as it was unable to convert 612 or more

samples into one file. This caused the creation of multiple header files. Since the

ASD ViewSpecPro was capable of converting 349 files into a single file—which was

the largest number of samples collected on a single date—a conversion function that

allows for one file and one header file to be read in and added to the total data pool

was necessary, though initial ASD data testing was only performed on the data

collected on July 7, 2000.

Two functions were created: asd_read_data and asd_read_header. These

functions were created to meet the design requirements as determined during the data

acquisition phase. One additional formatting procedure must be done prior to the

asd_read_data function being implemented: the data file must be opened using a text

editor and “#n “ must be inserted before the term “wavelength.” The asd_read_data

function reads the file created by ASD ViewSpecPro, and the asd_read_header

function reads the header file that corresponds to that same data and combines the two

sets of information into one single readable format for the next step in the process.

 There are two options in the asd_read_header function. The first option allows

the user to remove samples from consideration. All samples that have labels that

match inputs specified by the user are eliminated. For example, if the user desires to

remove reference files, an input of “ref” would accomplish this. The second option

allows a choice of label length. By varying the label length of the single file, the user

can specify the degree to which the data is subdivided. This is vitally important here

 41

as this is where subclassification labels can be utilized. By selecting a label length of

four, eight different classes of data will be created. Yet with a simple extension of the

label length to six, twenty-four different classes of data will be created. This only

applies if the labeling scheme as described previously in this chapter is used. Both

lengths (four and six) were used at varying times in this project.

 Initially, a label length of four was selected because it allowed a sufficient

number of letters to differentiate between classes and fit nicely onto a side-by-side U-

matrix with colored hits and 8 x 8 label grid as seen in Figure 5-6. Since this label

length had worked for the GER data, it should be sufficient for the ASD data as well.

Figure 5-6. Example of Grid with Bad Samples

 Several trial runs produced SOMs similar to those seen in Figure 5-6. It can

be seen that some of the classes are separated nicely, such as those of the “CASO” in

 42

the lower left corner and “soil” in the top left. However, there are several samples

that should not be placed where they are, such as the “soyb” sample that is in with

“soil.” The most significant setback encountered at this point is that of the bottom

right corner of the U-matrix, which is enlarged in Figure 5-7.

Figure 5-7. Inset of Lower Right Corner of U-Matrix of Figure 5-6

 In Figure 5-7 there are five different classes of samples mapped to the same

grid component. There are several samples of each class mapped to this grid

component as well. This is not a desired result, as it will result in a massive number

of incorrect classifications. “CASO” is the largest square, signifying the most hits, so

the grid coordinate would receive the label of “CASO”. All other samples mapped to

this grid coordinate would then be a misclassification. As “IPOH” has almost as

many hits as “CASO” this would drive the classification rate, for this cell, close to

fifty percent. Adding to the misclassification total, the hits resulting from “IPOL,”

“soil,” and “soybean” would drive the classification rate of this cell to a number much

closer to zero.

 43

 Given that the SOM was resulting in a somewhat organized map, it was

determined that a vast number of the misclassifications were coming from either

mislabeled data or extreme outliers. Since at that time there was no way of knowing

exactly which samples were erroneous, the som_classplots function was created.

This function plots a graph for each class, plotting all class respective samples to each

graph. This is also the first step in which the label length specification of six was

used. Setting the label length to six allowed the sample to be subdivided into smaller

groups making it easier to locate the erroneous samples. Figure 5-8 shows an

example of the first set of graph created by som_classplots.

Figure 5-8. Example Graph of Bad and Mislabeled Data with All Bands

In Figure 5-8 it can be seen that several bands contain values inconsistent with

the rest of the signal. These bands are referred to as water bands. They are bands in

which water in the atmosphere plays a large role in determining the amount of energy

 44

that is transmitted. Since these bands mostly contain information about the

atmosphere and not about the desired targets, they were eliminated from

consideration. Since the beginning wavelength is 350nm the band number and band

wavelength differ by this amount. This is the reason Figure 5-8 does not have values

past 2150. Somtoolbox2 provides a data manipulation function called

som_modify_dataset. In this function, as previously stated in Chapter 4,

som_modify_dataset can add/remove components/samples from a dataset by

specifying the indices of the dataset that need to be added or removed. The band

ranges chosen for removal were 1285nm to 1500nm and 1763nm to 2500nm. Figure

5-9 is an example of the first set of graph created by som_classplots with the water

bands removed.

 45

Figure 5-9. Example Graph of Mislabeled Data with Water Bands Removed

In Figure 5-9 it can easily be seen that one of the samples is a

misclassification. Since the sample cannot be correctly identified, the sample should

be removed. Knowing that the sample is a “CASOB” in plot 2 allows for cross-

referencing of the file numbers by means of the header file. ASD ViewSpecPro can

then be used to manually locate the mislabeled file. At this point, there are two

options: delete the mislabeled file and recreate the data file or simply type “ref” in

front of the label in the header file. Either option will result in the sample not being

used.

 46

Figure 5-10. Example Graph of Bad Data With Water Bands Removed

The second largest reason for misclassified data can be seen in Figure 5-10.

As indicated by the red marks in Figure 5-10, the samples do not have characteristics

remotely similar to the group. These samples are known as outliers. Many different

situations can cause outliers, such as a gust of wind causing the leaf to move or

fatigue of the technician causing the ASD to move. The waveform marked by the

middle pointer in Figure 5-10 contains equal energy in the green and red bands, but

has little energy in the blue region. This sample, if properly recorded, is of a brown

leaf, which is probably dead. Since the objective of this program is to distinguish

between different living plants, not dead plants, this sample was eliminated.

Whatever the reason for these extreme outliers, these samples were subsequently

removed from the data pool.

 47

Another function for identification of outliers was attempted,

som_map_classes. In this function, the SOM was utilized. The idea was that since

the SOM is specifically designed to separate data, any outliers should be moved away

from the mass. Each class of samples was applied a separate SOM and then the SOM

was analyzed. There were two problems with this method. The first problem came

from the way in which the SOM separated the data. It was difficult to determine

which sample was an outlier. Since the SOM did not contain samples of other

species, the SOM did not group the samples into a cluster with outliers. The SOM

separated the data in other ways, not relevant to species separation. On the rare

instances that a sample was distinctly separated, determining which sample was

separated was very difficult. In order to make us of this method, much more

programming would have been required, including adding a field to the SOM

datastruct. Comparing the som_map_classes method with the som_classplots method

resulted in abandonment of som_map_classes.

The next step taken to improve the classification rate was to normalize the

data and set the range. This was done in two parts: subtract the minimum value of

each sample out of each sample and divide each sample by the maximum value in

each sample. This was done for several reasons. Since the amount of solar energy

reaching the target is not constant throughout the collection phase, the magnitude of a

single spectral band without reference to at least one other spectral band is of no use

in classification. However, the SOM could decide to separate the samples into groups

with high-energy values and low-energy values. This would not be a desired

 48

outcome. By forcing the minimum value of a sample to be zero and the maximum

value of a sample to be one, the energy value should be more uniform within a class.

Figure 5-11. Example of Processed Data

Figure 5-11 is an example of a subclass that has had mislabeled samples

removed and data values set to a range of zero to one. It can be seen, by comparing

Figure 5-9 with Figure 5-11, that these steps result in much more uniform data. This

improved classification rates slightly, but not as much as expected. Since

classification rates of processed data sets with only water bands removed was still

well below fifty percent, additional steps to improve classification rates were needed.

The next step to improve classification was to increase the size of the data set.

Combining the sets of ASD data collected July 25, 2000, and August 9, 2000,

accomplished this. The combined data set resulted in a classification rate ranging

 49

between fifty-six and sixty-two percent, almost doubling the classification rate.

There were two reasons that the combined data set resulted in a better classification

rate. The first reason was that the data collected on August 9, 2000, was much more

consistent than the data collected on July 25, 2000. That is to say that there were not

as many obvious outliers especially in the “CASOB” samples. The second reason for

an improved classification rate has to do with the nature of neural networks. The

more samples of a particular type that a neural network uses to train, the better the

network is capable of finding the subtle differences between classes. As combining

the two data sets did drastically improve the classification rate, the classification rate

was still far below a desired value.

Som_doublesize was created. It doubles the size of classes that have less than

half the number of samples of the largest class. One aspect of the som is to display

probability density of the data. That means that if a class makes up less than 10

percent of a data set, then the number of cells labeled as that class will probably be

less than 10 percent of the total number of cells. In some cases, this can mean

complete elimination of a class from the map. Using som_doublesize had various

results, but typically increased classification rates, particularly in smaller maps. The

unacceptable classification rate then led to further exploration of the somtoolbox2.

Upon further investigation of somtoolbox2, som_supervised was discovered.

Som_supervised works similar to som_make except that it adds a vector, with length

equal to the number of different classes, to each data sample. The component

corresponding to the sample in the new vector is set to one and all other components

 50

in the new vector are set to zero. This is only used during the training phase of the

map. Once the map is trained, the new vector is removed. Since the component

vector of the data is several hundred components and the new vector attached is very

short, eight in this case, the overall shape of the map is not severely affected.

However, it does cause clustering of classes. The clustered classes provide a large

spatial target for the test samples. Most of the misclassifications up to this point have

been along the borders of correct labels. Employing the som_supervised function

raised classification rates to a range of 72 percent to 76 percent. This is an acceptable

classification rate. Once an acceptable level for classification was reached, testing of

the som_bandfinder function began.

In order to test som_bandfinder, the data had to be split into two sets: a

training set and a test set. It is customary to withhold 15 percent of the samples for

testing. Testing on data that was used to train the map is, in essence, cheating. In

addition, testing on training data does not simulate a real-world application. Because

of this, som_split_data was created. Som_split_data takes a data set and a percent as

inputs and returns two mutually exclusive data sets containing (1 -%) and (%) of the

original data set.

5.3 Testing the Data

 Several attributes were explored in the testing phase using the classification

rate as the measuring device. The controllable variables that affect the classification

rate are threshold, map size, and number of bands per best matching unit to keep.

 51

Threshold directly affects which bands are kept by som_bandfinder, whereas map

size and number of bands per best matching unit directly affect the total amount of

bands that are kept. But, before testing began, a Graphical User Interface (GUI) was

developed.

 Figure 5-12 shows somasdgui. It allows for the input of up to nine datasets

and their respective header files. In addition, up to eight ranges of bands and four

types of samples can be removed. On the right side of the screen there are several

options, which include pre and post band selection; graphing; enabling kmeans; and

doubling small classes. The lower left-hand corner contains inputs for the control

variables.

Figure 5-12. Somasdgui Screen Shot

 52

 The purpose of the first experiment was to see how the classification rate

changed as the threshold was adjusted to a series of values between 1 percent and 99

percent. In Figure 5-13, each trial maintains the same training and test set throughout

the range of thresholds. The random number generator which is used to split the

data was set to state 0, 10, and 100 for trials 1, 2, and 3, respectively.

As can be seen in Figure 5-13, the classification rate increases to an

acceptable level at a threshold ranging from approximately 10 percent up to about 75

percent. The highest values for threshold percentage occur at 15 and 50 percent, with

relatively high classification rates occurring in between these values. This is a

desired trend, because, as stated earlier, the threshold should be set high enough so

that features that are only relevant to individual samples are not selected. However, if

the threshold is set too high, the features that are needed to distinguish between the

five classes will be eliminated. The 15 to 50 percent range seems to satisfy this

condition.

 53

Figure 5-13. Classification Results as a Function of Varying Threshold Percentage

 The results from the second test of som_bandfinder can be seen in Figure 5-

14. There were 24 trial runs, with 8 changes in parameters. Every time a change in

parameter occurs, the somasdgui is activated with the random number generator state

set to 0, 10, and 100.

In Figure 5-14, map size and number of bands per BMU were varied to

explore their effects on classification rate and total number of kept bands. Another

difference in this experiment versus experiment one is that every threshold in one

percent increments was tested to find the highest classification rate. Only the highest

classification rate was kept and then, all information resulting from using the

threshold associated with the highest classification rate was recorded and can be seen

in Appendix D. Important observations that can be made regarding this experiment’s

Trial 1 Trial 2 Trial 3

range percent # of BMU X Y % correct % correct % correct

1 1 8 8 55.22 44.78 44.78

5 1 8 8 62.69 68.66 64.18

10 1 8 8 76.12 71.64 67.16

15 1 8 8 80.6 71.64 71.74

20 1 8 8 79.1 62.69 68.66

25 1 8 8 73.13 76.12 70.15

30 1 8 8 73.13 71.64 70.15

35 1 8 8 71.64 71.64 73.13

40 1 8 8 76.12 76.12 67.16

45 1 8 8 76.12 71.64 71.64

50 1 8 8 74.63 77.61 65.67

55 1 8 8 77.61 76.12 62.69

60 1 8 8 73.13 68.66 67.16

65 1 8 8 68.66 73.13 70.15

70 1 8 8 65.67 73.13 68.66

75 1 8 8 65.67 62.69 62.69

80 1 8 8 65.67 62.69 62.69

85 1 8 8 67.16 62.69 67.16

90 1 8 8 62.69 71.64 65.67

95 1 8 8 67.16 59.7 64.18

99 1 8 8 68.66 64.18 56.72

 54

results are that classification rates of 80 percent were achieved with as few as 49

bands, yet the best classification rate 86.6 percent was recorded when 95 bands

were used.

Figure 5-14. Classification Results as a Function of Quantity of Kept Bands

 There was a large fluctuation in the bands chosen in trials 1 through 24, but

several bands made repeated appearances and were present in more than one trial.

The first band, 361 nm, was present in every sample and the last band, 949 nm, was

present in most samples. This is due to the characteristics of som_bandfinder; the

first band and last band not removed from consideration will be chosen by default in

Best
of BMU X Y % correct # of bands Threshold

Trial 1 1 8 8 78 49 8
Trial 2 1 8 8 80.6 49 59
Trial 3 1 8 8 73.13 55 34

Trial 4 2 8 8 80.6 69 3
Trial 5 2 8 8 79.1 73 65
Trial 6 2 8 8 76.12 97 40

Trial 7 1 10 10 83.58 59 3
Trial 8 1 10 10 77.61 72 15
Trial 9 1 10 10 79.1 76 12

Trial 10 2 10 10 86.6 95 4
Trial 11 2 10 10 77.61 148 21
Trial 12 2 10 10 79.1 123 8

Trial 13 1 6 6 74.63 30 37
Trial 14 1 6 6 76.12 27 66
Trial 15 1 6 6 68.66 27 53

Trial 16 1 5 5 70.15 19 71
Trial 17 1 5 5 73.13 21 34
Trial 18 1 5 5 67.16 18 76

Trial 19 1 4 4 71.64 13 35
Trial 20 1 4 4 68.66 12 74
Trial 21 1 4 4 62.69 13 33

Trial 22 2 4 4 73.13 25 39
Trial 23 2 4 4 67.16 26 22
Trial 24 2 4 4 64.18 21 24

Average 74.52 50.71 34.83

 55

certain situations. In order to find the bands most commonly chosen, and therefore

the most relevant, a histogram was created, which can be seen in Figure 5-14. It

should be noted that future researchers may certainly utilize alternate techniques for

organizing the data created by som_bandfinder.

5.4 Analysis of Results

Figure 5-15. Histogram of Selected Bands

In looking at the histogram, it is clear that, despite the unsupervised selection

process of som_bandfinder, particular bands are repeatedly chosen in the highest

classification thresholds. Since these bands appear to be significant in the

 56

classification process, one could theorize that these bands are related to some key

physical characteristics that are different in each class of plant species. On the basis

of that theory, an additional experiment was performed, the results of which can be

seen in Figure 5-16.

Figure 5-16. Histogram Results Experiment

In order to analyze the results of the histogram, three thresholds were

examined in-depth. Particular attention was paid to achievable classification rates

with relation to total number of bands selected. A map size of 10x10 was chosen due

to its prior positive track record in these experiments. Ideally, three separate data sets

should have been used for the three trials of the selected thresholds to eliminate any

unintentional correlation between the data and the selected bands; however, limited

time and resources made that option unfeasible. Instead, the original data set was

used for three trials with three different test groups.

50.1262.6961.1910x1087 or more

64.1867.1661.1910x10176 or more

65.6780.670.1510x10485 or more

Trial 3Trial 2Trial 1

% CorrectMap SizeTotal # of
Bands

Histogram
Threshold

 57

In the last experiment, it can be seen that a decent classification rate can be

achieved with the eight most commonly chosen bands. Lowering the histogram

threshold from seven to six more than doubled the number of kept bands and yet had

marginal effect on the classification rate, while lowering the histogram threshold even

further to five had a clear and positive effect on the classification rate. It became

evident while looking at the results of the final experiment, the histogram, that a more

preferable classification rate requires a higher number of the most common bands.

This is an understandable result in that keeping additional bands provides additional

information, from which the SOM can make better decisions. However, there is the

law of diminishing returns stating “the application of additional units of any one

input…to fixed amounts of the other inputs yields successively smaller increments in

the output of a system of production” [13]. Not only does the classification rate stop

increasing, it actually decreases. This could be due to the inclusion of bands not

related to the five preset classes.

58

CHAPTER VI

CONCLUSIONS

As the overall experiment contained many smaller but interrelated

experiments, there are several conclusions to make. Some of the conclusions have to

do with the approach to the training sets, some with species classification and how

these results are obtained, and still others involve the usefulness of the threshold

requirement. These conclusions, and more, will be discussed in this chapter.

As obvious as it appears in hindsight, a vital part of the experiment setup

necessary for workable/usable results is the preprocessing of the training sets.

Through trial and error, it became clear that elimination of extreme outliers—which

could be mislabeled data or simply an anomaly—prior to conducting the data-mining

portion of the experiment reduces the possibility of the extreme outliers dominating

the experiment’s findings and ending up with bad results. Oftentimes, the bad results

were not immediately obvious as such, and only later in the process would they arise

and cause further difficulty in the overall experiment, requiring backtracking and

duplication of effort.

Similar to the necessity for elimination of outlier samples, the elimination of

irrelevant bands is required and tremendously useful towards obtaining clean and

workable results. Determining which bands are relevant and which are irrelevant

 59

requires some in-depth knowledge of the physical characteristics of the subject being

examined and the conditions in which the data was acquired. In the case of this

experiment, it was vitally necessary to remove water bands, contaminated bands, and

bands that drastically fluctuated within expected classes. Water bands typically

contain information about the atmosphere, contaminated bands are those in which the

physical characteristics of the sensor caused minor malfunctions in the gathered data,

and the drastically fluctuating bands are in the SWIR (or short wave infrared) range.

Removal of these outlaw bands prior to performing the experiments using the data

sets not only enabled a faster running time for the experiment, but also resulted in a

significant increase in classification rate.

As a side finding to the overall experiment, the self-organized map using the

selected bands does an adequate job of species classification. While its classification

rate could be improved, it nevertheless shows value for this particular use. Further

research using this technique in the field of plant species classification should

consider using the self-organized map. However, researchers using the self-organized

map who are not familiar with or well versed in the subject’s physical properties

ought not to rely solely upon it for accurate classification.

Finally, similar to Merkel and Rauber’s findings with the label_som, it has

been determined through these experiments that a threshold high enough to eliminate

bands that are too specific, yet low enough to keep bands that are relevant to species

classification is absolutely essential to the success of the experiment when using this

approach to data mining. The use of a discriminating threshold provides results that

 60

are satisfactory, particularly as pertains to species classification. The bands chosen

by setting a selective or proper threshold will generally return bands that are

significant in class separation. Future researchers should regard the bands chosen in

the final stages of the experiment as a priority for further examination.

61

REFERENCES

[1] R. L. King, C. Ruffin, L. Lamastus, and D. Shaw, “Classification of Weed

Species Using Self-Organizing Maps” Proceedings of the 2nd ICGIA&F, vol.
II, pp. 151−158, Jan. 2000

[2] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, pp.

1464-1480, Sept. 1990.

[3] T. Kohonen, “Self-Organized formation of topologically correct feature

maps,” Biological Cybernetics, vol. 43, pp. 59-69, 1982.

[4] P. Somervuo, “Competing hidden Markov models on the self-organizing

map,” IEEE Trans. Nerual Networks, vol. 3, pp. 169-174, 2000.

[5] D. J. Willshaw and C. Malsburg, “How patterned neural connections can be

set up by self-organization,” Proc. Roy. Soc. London B, vol. 194, pp. 431-445,
1976.

[6] T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas, “Engineering

application of the self-organizing map,” Proc. IEEE, vol. 84, pp. 1358-1383,
Oct. 1996.

[7] J. Kangas, T. Kohonen, J. Laaksonen, O. Simula, and O. Venta, “Variants of

the self-organizing maps,” IEEE Trans. Nerual Networks, vol. 1, pp. 93-99,
March 1990.

[8] H. S. Hosseini and R. Safabakhsh, “TASOM: the time adaptive self-

organizing map,” Trans. Information Technology: Coding and Computing, pp.
422-427, 2000.

[9] D. Merkl and A. Rauber, “Automatic labeling of self-organizing maps for

information retrieval,” ICONIP, vol. 1, 1999.

[10] M. C. Su and H. T. Chang, “A new model of self-organizing neural networks

and its application in data projection,” IEEE Trans. Nerual Networks, vol. 12,
pp. 153-158, Jan. 2001

 62

[11] D. Alahakoon, S. K. Halgamuge, and B. Srinivasan, “Dynamic self-organizing
Maps with controlled growth for knowledge discovery,” IEEE Trans. Neural
Networks, vol. 11, pp. 601 614, May 2000.

[12] M. C. Su and H. T. Chang, “Fast self-organizing feature map algorithm,”

IEEE Trans. Nerual Networks, vol. 11, pp. 721-733, May 2000.

[13] A. P. Azcarraga, “Assessing self-organization using Order Metrics,” IEEE

Trans. Nerual Networks, vol. 6, pp. 159-164, 2000.

[14] Klaus Krippendorf, “Dictionary of Cybernetics,” unpublished report dated

February 2, 1986, University of Pennsylvania.

63

APPENDIX A

MATERIALS AND METHODS

 64

By Libba Lamastus

This experiment was designed to observe the spectral response of four

different weed species and soybean. Mixed vegetation including experimental units

(EU) of soybean with a mixed weed composition and EUs of mixed weed

composition without soybean, and bare soil were also included in the study for

comparison. Weed species evaluated were pitted morningglory, entireleaf

morningglory, sicklepod, and common cocklebur. Experimental units were 4 x 4 m,

with a 2-m alley surrounding each unit to help prevent contamination across

experimental units. For ease of management, a grid was established to separate each

plot into 16 1-m by 1-m units. All experimental units were hand planted on June 10,

1998, and June 1, 1999. Due to extremely dry environmental conditions in 1998,

experimental units were irrigated approximately two weeks after planting, resulting in

late emergence of the weeds. Experimental units were maintained to specific species

by hand removal of all other vegetation on a weekly basis.

 Leaf reflectance was detected using two different narrow-bandwidth

visible/near-infrared spectroradiometers, an Analytical Spectral Device Full Range

FieldSpec Pro® (ASD) and a Geophysical Environmental Research 1500® (GER).

The ASD has a spectral range of 350 nm to 2500 nm with sampling intervals of 1.4

nm in the 350 - 100 nm range and 2 nm in the 1000 - 2500nm range. The GER had a

spectral range of 350- 1050nm with a sampling interval of 1.5nm. GER spectral data

were collected August 17-18, 1998, and August 5, 1999, using a 3-degree field of

view (FOV) optic, at a nadir height of 12 to 18 cm from the target, depending on leaf

 65

size. ASD data were collected on August 5, and 26, 1999, using an 8-degree FOV

optic at a nadir height of 10-15 cm. When possible, the uppermost leaf of the plant

was used as the target for data collection. All measurements were made during

highest sun angle, 10:00 a.m. - 2:00 p.m. in cloud-free conditions. Four random

observations were recorded in each experimental unit, totaling 320 observations for

each data collection timing. Optimizing the instrument for the environmental

conditions at the time of the measurements standardized spectral responses. This was

achieved by using a calibrated, tripod-mounted, level white reflectance Spectralon®

panel as a standard reference. Reflectance standard measurements were made after

the completion of each experimental unit, or every four samples. An average of 6

scans for the GER and 10 scans for the ASD was used as the sample reflectance

response for each observation. Data collected on August 26, 1999, were collected in

the same manner as previously stated; however, due high temperatures and the

sensitivity of the ASD to heat, only one sample was collected from each experimental

unit.

66

APPENDIX B

FLOW CHART AND USER MANUAL

 67

B.1 Flow Chart of Process

Collect
Data

Record
Metadata

Convert binary
files to ASCII

Convert metadata
files to ASCII Run

somasdgui

Specify data files, header files, bands to remove,
samples to remove, # of BMUs to keep,

threshold range to search, plotting options, scaling options

som_asd_control

read data using
som_asd_read

Replace filenames with labels using
som_asd_header

sort bands
to remove

remove bands using
som_modify

normalize
the data?

call som_normalize
YES

NO

plot all
classes?

call som_classplots
YES

NO

split data into a test set
and a training set using

som_split_data

CONTINUED ON NEXT PAGE

 68

plot
test

classes?
call som_classplots

YES

NO

Plot
Training
classes?

call som_classplots
YES

NO

double
small

classes?
call som_double

YES

NO

make map using som_make

label map using som_autolabel

for range to search

call
som_bandfinder

modify training
set using

som_modify

modify test set
using

som_modify

calculate
classification

rate

make map using
som_supervise

best
rate
yet?

store as
high rate

YES

NO

label high rate map
using som_autolabel

END

plot map and plot k-means
if specified

using som_mapmaker

plot labels

plot
training set
with kept
bands?

YES

call som_classplots

plot
test set

with kept
bands?

YES

call som_classplots

NO

DING
WHEN
DONE

 69

B.2 Process Manual

This manual is a walkthrough of how to analyze ASD data using somasdgui.

1. Collect data using the ASD while recording the class description of each

target.

2. Convert files from binary to ASCII using ASD Viewspec Pro. Select all

files, click process, click ASCII export, and check the box that says,

“output to a single file”. Then click “ok”.

Note: There is a limit of about 400 files that ASD Viewspec Pro can convert into one file.

This is not a limit of somasdgui.

3. Open the ASCII file using Windows WordPad and replace “wavelength”

with “#n w”.

4. Create a two-column header file that contains the binary file name in the

first column and the class name in the second column.

Note: Choose class and subclass label lengths to be the same for each type of class or

subclass. Consider IPOH1, CASO1, IPOH2, and CASO2 where the first four characters

represent the class and the fifth character represents the subclass. This can be useful if

trying to find differences between subclasses.

5. Put somtoolbox2 and asdsomtoolbox in the toolbox directory and set the

path in MATLAB.

6. Move data files and header files to the bin directory.

7. Type asdsomgui from the MATLAB command window.

8. Enter the name of the data files in the first column of “none” and the

corresponding header files in the second column of “none”.

 70

9. Under the label that reads “Remove Bands” is where entire ranges of

bands can be removed. There is no problem if two sets of ranges overlap.

10. Beside the label that reads, “# of bands/BMU to keep”, enter the number

of bands per best matching unit to keep.

Note: At least one band per BMU must be kept. Increasing this number will increase the

total number of bands kept.

11. Beside the label that reads, “Percent of samples to hold back”, enter the

percentage of the total number of samples to hold back for testing

purposes.

12. Under the label that reads, “Range to Search”, enter the start and end

threshold percentages to search through.

Note: This is done in one percent increments.

13. Under the label that reads, “Grid Size”, enter the size of the SOM to

create.

Note: As the total number of cells increases, the total number of bands that will be kept is

increased.

14. Beside the label that reads, “Labels to remove”, enter the names of the

classes that should not be used.

15. Under the label that reads, “Label length”, enter the length of the class

label to be used for distinguishing between classes or subclasses. Refer to

step 4.

16. On the right-hand side of the GUI screen is a list of self-explanatory

options that can be selected.

 71

17. Click “Go”.

Note: This may take a long time. A bell will ring when done if speakers are on. Do not

switch to figures until the program finishes or errors will occur in the plots.

18. The best classification rate will be displayed to the command window.

Other information about the best classification rate is stored in variables.

a. Bands chosen highstrain.comp_names

b. Indices of bands chosen highkeptbands

c. Threshold percentage highpercent

d. Classification rate highrate

e. Training data struct highstrain

f. Test data struct highstest

g. Map highsmap

19. Data structs created before band selection are stored in other variables.

a. Training set trainset

b. Test set testset

c. Map created using all bands smap

72

APPENDIX C

CODE

 73

C.1 somasdgui.m

clc;
clear;
load fig_test
%This file contains the callback function initializations for som_asd_gui
global h_normsamp h_plotall h_plottest h_plottrain h_smalldouble;
global h_plotstrain h_plotstest h_runkmeans h_labellegth;
global h_data1 h_data2 h_data3 h_data4 h_data5 h_data6 h_data7 h_data8 h_data9;
global h_head1 h_head2 h_head3 h_head4 h_head5 h_head6 h_head7 h_head8 h_head9;
global h_start1 h_start2 h_start3 h_start4 h_start5 h_start6 h_start7 h_start8;
global h_end1 h_end2 h_end3 h_end4 h_end5 h_end6 h_end7 h_end8 h_bmubands h_pset h_runkmeans;
global h_pstart h_pend h_y h_x h_remlabel1 h_remlabel2 h_remlabel3 h_remlabel4;

h0 = figure('Units','points', ...
 'Color',[0.8 0.8 0.8], ...
 'Colormap',mat0, ...
 'FileName','C:\MATLABR11\bin\Thesis\fig_test.m', ...
 'PaperPosition',[18 180 576 432], ...
 'PaperUnits','points', ...
 'Position',[279.75 146.25 420 315], ...
 'Tag','Fig2', ...
 'ToolBar','none');
h_normsamp = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[283.5 277.5 113.25 15], ...
 'String','Normalize each sample', ...
 'Style','checkbox', ...
 'Tag','Checkbox1', ...
 'Value',1);
h_plotall = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[283.5 258 115.5 15], ...
 'String','Plot all samples by class', ...
 'Style','checkbox', ...
 'Tag','Checkbox2');
h_plottest = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[283.5 219 113.25 15], ...
 'String','Plot test samples by class', ...
 'Style','checkbox', ...
 'Tag','Checkbox3');
h_plottrain = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[283.5 238.5 116.25 15], ...
 'String','Plot training samples by class', ...
 'Style','checkbox', ...
 'Tag','Checkbox4');
h_smalldouble = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...

 74

 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[283.5 199.5 130.5 15], ...
 'String','Double small classes for training', ...
 'Style','checkbox', ...
 'Tag','Checkbox5');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[37.5 288 45 15], ...
 'String','Data files', ...
 'Style','text', ...
 'Tag','StaticText1');
h_pstart = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[120 46.5 19.5 15], ...
 'String','5', ...
 'Style','edit', ...
 'Tag','EditText1', ...
 'UserData','[]');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'Callback','som_asd_control', ...
 'FontSize',24, ...
 'ListboxTop',0, ...
 'Position',[311.25 37.5 66 57.75], ...
 'String','Go', ...
 'Tag','Pushbutton1', ...
 'UserData','[]');
h_data1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[23.25 265.5 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h_data2 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[23.25 247.40625 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h_data3 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[23.25 229.3125 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h_data4 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...

 75

 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[23.25 211.21875 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h_data5 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[23.25 193.125 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h_data6 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[23.25 175.03125 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h_data7 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[23.25 156.9375 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h_data8 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[23.25 138.84375 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h_data9 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[23.25 120.75 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[123.75 289.5 45 15], ...
 'String','Header files', ...
 'Style','text', ...
 'Tag','StaticText2');
h_head9 = uicontrol('Parent',h0, ...
 'Units','points', ...

 76

 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[110.25 120.75 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h_head8 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[110.25 139.5 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h_head7 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[110.25 157.5 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h_head6 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[110.25 174.75 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h_head5 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[110.25 192 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h_head4 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[110.25 210 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h_head3 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[110.25 228 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...

 77

 'TooltipString','Enter a data file');
h_head2 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[110.25 246.75 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h_head1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[110.25 265.5 73.5 15], ...
 'String','none', ...
 'Style','edit', ...
 'Tag','EditText2', ...
 'TooltipString','Enter a data file');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[201.75 290.25 45 20.25], ...
 'String','Remove Bands', ...
 'Style','text', ...
 'Tag','StaticText3');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[192 275.25 23.25 15], ...
 'String','Start', ...
 'Style','text', ...
 'Tag','StaticText4');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[228.75 275.25 20.25 15], ...
 'String','End', ...
 'Style','text', ...
 'Tag','StaticText4');
h_start1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[187.5 259.1250000000001 27.75 15], ...
 'String','950', ...
 'Style','edit', ...
 'Tag','EditText3');
h_end1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[226.5 259.1250000000001 27.75 15], ...
 'String','2500', ...
 'Style','edit', ...
 'Tag','EditText3');
h_end2 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...

 78

 'ListboxTop',0, ...
 'Position',[226.5 240.1607142857143 27.75 15], ...
 'String','360', ...
 'Style','edit', ...
 'Tag','EditText3');
h_start2 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[187.5 240.1607142857143 27.75 15], ...
 'String','350', ...
 'Style','edit', ...
 'Tag','EditText3');
h_end3 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[226.5 221.1964285714286 27.75 15], ...
 'String','2500', ...
 'Style','edit', ...
 'Tag','EditText3');
h_start3 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[187.5 221.1964285714286 27.75 15], ...
 'String','1763', ...
 'Style','edit', ...
 'Tag','EditText3');
h_end4 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[226.5 202.2321428571429 27.75 15], ...
 'String','1500', ...
 'Style','edit', ...
 'Tag','EditText3');
h_start4 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[187.5 202.2321428571429 27.75 15], ...
 'String','1285', ...
 'Style','edit', ...
 'Tag','EditText3');
h_end5 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[226.5 183.2678571428572 27.75 15], ...
 'String','972', ...
 'Style','edit', ...
 'Tag','EditText3');
h_start5 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[187.5 183.2678571428572 27.75 15], ...
 'String','967', ...
 'Style','edit', ...

 79

 'Tag','EditText3');
h_end6 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',mat1, ...
 'String','0', ...
 'Style','edit', ...
 'Tag','EditText3');
h_start6 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',mat2, ...
 'String','0', ...
 'Style','edit', ...
 'Tag','EditText3');
h_end7 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[226.5 145.3392857142857 27.75 15], ...
 'String','0', ...
 'Style','edit', ...
 'Tag','EditText3');
h_start7 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[187.5 145.3392857142857 27.75 15], ...
 'String','0', ...
 'Style','edit', ...
 'Tag','EditText3');
h_end8 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[226.5 126.375 27.75 15], ...
 'String','0', ...
 'Style','edit', ...
 'Tag','EditText3');
h_start8 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[187.5 126.375 27.75 15], ...
 'String','0', ...
 'Style','edit', ...
 'Tag','EditText3');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[20.625 78.75 45 30], ...
 'String','# of bands/BMU to keep ', ...
 'Style','text', ...
 'Tag','StaticText5');
h_bmubands = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...

 80

 'ListboxTop',0, ...
 'Position',[69 86.25 27.75 15], ...
 'String','1', ...
 'Style','edit', ...
 'Tag','EditText4');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[20.625 44.25 45 30.75], ...
 'String','Percent of samples to hold back', ...
 'Style','text', ...
 'Tag','StaticText6');
h_pset = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[70.5 52.125 22.5 15], ...
 'String','15', ...
 'Style','edit', ...
 'Tag','EditText5');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[127.5 83.25 45 21], ...
 'String','Range to Search', ...
 'Style','text', ...
 'Tag','StaticText7');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[155.25 64.5 20.25 15], ...
 'String','End', ...
 'Style','text', ...
 'Tag','StaticText4');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[118.5 64.5 23.25 15], ...
 'String','Start', ...
 'Style','text', ...
 'Tag','StaticText4');
h_pend = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[156 46.5 19.5 15], ...
 'String','20', ...
 'Style','edit', ...
 'Tag','EditText1', ...
 'UserData','[]');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[275.25 294.75 105.75 15], ...
 'String','Pre band selection options', ...
 'Style','text', ...
 'Tag','StaticText8');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...

 81

 'ListboxTop',0, ...
 'Position',[275.25 148.5 108 15], ...
 'String','Post band selection options', ...
 'Style','text', ...
 'Tag','StaticText9');
h_plotstrain = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[283.5 130.5 116.25 15], ...
 'String','Plot training samples by class', ...
 'Style','checkbox', ...
 'Tag','Checkbox4');
h_plotstest = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[283.5 108.75 113.25 15], ...
 'String','Plot test samples by class', ...
 'Style','checkbox', ...
 'Tag','Checkbox3');
h_y = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[221.25 48 19.5 15], ...
 'String','8', ...
 'Style','edit', ...
 'Tag','EditText1', ...
 'UserData','[]');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[195 66.75 17.25 15], ...
 'String','X', ...
 'Style','text', ...
 'Tag','StaticText4');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[220.5 66.75 20.25 15], ...
 'String','Y', ...
 'Style','text', ...
 'Tag','StaticText4');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[195.75 83.25 45 21], ...
 'String','Grid Size', ...
 'Style','text', ...
 'Tag','StaticText7');
h_x = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[193.5 48 19.5 15], ...
 'String','8', ...
 'Style','edit', ...
 'Tag','EditText1', ...
 'UserData','[]');

 82

h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[20.625 17.25 45 19.5], ...
 'String','Labels to remove', ...
 'Style','text', ...
 'Tag','StaticText10');
h_remlabel1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[78.75 19.5 45 15], ...
 'String','ref', ...
 'Style','edit', ...
 'Tag','EditText6');
h_remlabel2 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[129.75 19.5 45 15], ...
 'String','wsoy', ...
 'Style','edit', ...
 'Tag','EditText6');
h_remlabel3 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[180.75 19.5 45 15], ...
 'String','bad', ...
 'Style','edit', ...
 'Tag','EditText6');
h_remlabel4 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[231.75 19.5 45 15], ...
 'String','weed', ...
 'Style','edit', ...
 'Tag','EditText6');
h_runkmeans = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'Callback','', ...
 'ListboxTop',0, ...
 'Position',[283.5 179.25 130.5 15], ...
 'String','Enable K-means', ...
 'Style','checkbox', ...
 'Tag','Checkbox5');
h1 = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588], ...
 'ListboxTop',0, ...
 'Position',[248.25 84 39 21], ...
 'String','Label length', ...
 'Style','text', ...
 'Tag','StaticText11');
h_labellength = uicontrol('Parent',h0, ...
 'Units','points', ...
 'BackgroundColor',[1 1 1], ...
 'Callback','', ...
 'FontSize',10, ...
 'ListboxTop',0, ...

 83

 'Position',[255.75 61.5 25.5 18], ...
 'String','4', ...
 'Style','edit', ...
 'Tag','EditText7');

C.2 som_asd_gui.m

%This program reads ASD data
%clear;
%clc;
%remstart(1)=950; %used to set the start of the bands to be removed before calculations
%remend(1)=2500; %used to set the end of the bands to be removed before calculations
%remstart(2)=1;
%remend(2)=10
%rem_ind=0; %stores the total array of bands to be removed
%normsamp=1; %should the samples be normalized 0 => no (default) 1 => yes
%plotall=0; %plot all samples by class
%plottest=0; %plot test samples by class
%plottrain=0; %plot training samples by class
%smalldouble=1; %double small sets
%bmubands=2; %number of bands to keep
%pstart=5; %start of range of percentages to search
%pend=10; %end of range of percentages to search
%plotstrain=0; %plot results of training set by class
%plotstest=1; %plot results of test set by class
%pset=15; %percent to hold back for testing
%X=8; %x size of grid
%Y=8; %y size of grid
%labellength=4; %length of label to keep
%runkmeans=0; %run kmeans section in mapmaker yew or no

%This section converts GUI values to local values
normsamp=get(h_normsamp,'value');
plotall=get(h_plotall,'value');
plottest=get(h_plottest,'value');
plottrain=get(h_plottrain,'value');
smalldouble=get(h_smalldouble,'value');
pstart=str2num(get(h_pstart,'string'));
pend=str2num(get(h_pend,'string'));
plotstrain=get(h_plotstrain,'value');
plotstest=get(h_plotstest,'value');
runkmeans=get(h_runkmeans,'value');
labellength=str2num(get(h_labellength,'string'));

data{1}=get(h_data1,'string');
data{2}=get(h_data2,'string');
data{3}=get(h_data3,'string');
data{4}=get(h_data4,'string');
data{5}=get(h_data5,'string');
data{6}=get(h_data6,'string');
data{7}=get(h_data7,'string');
data{8}=get(h_data8,'string');
data{9}=get(h_data9,'string');
head{1}=get(h_head1,'string');
head{2}=get(h_head2,'string');
head{3}=get(h_head3,'string');
head{4}=get(h_head4,'string');
head{5}=get(h_head5,'string');
head{6}=get(h_head6,'string');
head{7}=get(h_head7,'string');
head{8}=get(h_head8,'string');
head{9}=get(h_head9,'string');
remstart(1)=str2num(get(h_start1,'string'));
remstart(2)=str2num(get(h_start2,'string'));
remstart(3)=str2num(get(h_start3,'string'));
remstart(4)=str2num(get(h_start4,'string'));

 84

remstart(5)=str2num(get(h_start5,'string'));
remstart(6)=str2num(get(h_start6,'string'));
remstart(7)=str2num(get(h_start7,'string'));
remstart(8)=str2num(get(h_start8,'string'));
remend(1)=str2num(get(h_end1,'string'));
remend(2)=str2num(get(h_end2,'string'));
remend(3)=str2num(get(h_end3,'string'));
remend(4)=str2num(get(h_end4,'string'));
remend(5)=str2num(get(h_end5,'string'));
remend(6)=str2num(get(h_end6,'string'));
remend(7)=str2num(get(h_end7,'string'));
remend(8)=str2num(get(h_end8,'string'));
bmubands=str2num(get(h_bmubands,'string'));
pset=str2num(get(h_pset,'string'));

Y=str2num(get(h_y,'string'));
X=str2num(get(h_x,'string'));
remlabel1=get(h_remlabel1,'string');
remlabel2=get(h_remlabel2,'string');
remlabel3=get(h_remlabel3,'string');
remlabel4=get(h_remlabel4,'string');

%read the data
sintake=asd_read_data(data{1});
sintake=asd_read_header(sintake,head{1},'len',labellength,remlabel1,remlabel2,remlabel3,remlabel4);
%determine how many data files to use
for m=2:9
 temptest=data{m};
 if temptest(1:4)~='none'
 aintake=asd_read_data(data{m});
 aintake=asd_read_header(aintake,head{m},'len',labellength,remlabel1,remlabel2,remlabel3,remlabel4);
 sintake = som_modify_dataset(sintake, 'addsamp', aintake);
 [sintake.labels b]=sort(sintake.labels);
 sintake.data=sintake.data(b,:);
 end
end

%This can be used to aid in data reduction by eliminating entire blocks
%sintake=som_modify_dataset(sintake,'removecomp',(1763-350):length(sintake.comp_names));
%sintake=som_modify_dataset(sintake,'removecomp',(1285-350):(1500-350));
%sintake=som_modify_dataset(sintake,'removecomp',(967-350):(972-350));
%sintake=som_modify_dataset(sintake,'removecomp',(950-350):length(sintake.comp_names));
%sintake=som_modify_dataset(sintake,'removecomp',1:10);

%This section determines exactly which band numbers are to be removed
temp=350;
step=0;
for m=1:length(remstart)
 if remstart(m)>349
 for n=1:remend(m)-(remstart(m)-1)
 temp(n+step)=remstart(m)+n-1;
 end
 end
 step=length(temp);
end
temp=sort(temp);
rem_ind(1)=temp(1);
count=1;
for m=2:length(temp);
 if rem_ind(count)<temp(m)
 count=count+1;
 rem_ind(count)=temp(m);
 end
end
%Remove undesired bands
sintake=som_modify_dataset(sintake,'removecomp',rem_ind-349);

 85

if normsamp==1;
 %Normalize the data
 %Sets the range of all samples as [0 1]
 sintake=som_asd_norm(sintake);
end

%This section maps the individual classes to determine if there are any extreme outliers
%%%%%%REMOVED BECAUSE OF COMPLICATIONS AND REPLACED WITH som_classplots
%%%%%%%%% %som_map_classes(sintake);

if plotall==1
 %This creates plots of classes, usefull in locating misslabeled data and outliers
 som_classplots(sintake);
end

%This section creates two data sets, one for training and one for testing
[trainset testset]=som_split_data(sintake,pset*.01);

if plottest==1
 %plot testset by class
 som_classplots(testset);
end

if plottrain==1
 %plot training set by class;
 som_classplots(trainset);
end

if smalldouble==1
 %This doubles the importance of classes that have less than half the number of sample of the largest class
 %for training purposes only
 trainset=som_double(trainset);
end

%make original map
smap=som_make(trainset,'rect','init','lininit','msize',[Y X]);
smap = som_autolabel(smap,trainset,'vote');
%som_mapmaker(smap,trainset,runkmeans);

%%%%REMOVED AND REPLACED BECAUSE OF GUI INTERFACE
%find some relivant bands
%[intake1,smap1,tb{1},tbsize1]=som_newmap(smap,trainset,1,.001);
%[intake2,smap2,tb{2},tbsize2]=som_newmap(smap,trainset,1,.01);
%[intake3,smap3,tb{1},tbsize3]=som_newmap(smap,trainset,1,.09);
%[intake4,smap4,tb{2},tbsize4]=som_newmap(smap,trainset,1,.15);
%[intake5,smap5,tb{3},tbsize5]=som_newmap(smap,trainset,1,.2);
%[intake6,smap6,tb{4},tbsize6]=som_newmap(smap,trainset,1,.05);

%%%%%%GUI METHOD OF FINDING RELIVANT BANDS
%%%%%%%%%%%%%%%evaluate data
highrate=0; %initialize high classification rate
for percent=pstart:pend
 %Call som_bandfinder using preset parameters and incremental parameter percent
 [keptbands,tbsize]=som_bandfinder(smap,trainset,bmubands,.01*percent);

 %This section creates a map using all "keptbands"
 strain = som_modify_dataset(trainset, 'extractcomp', keptbands);
 stest=som_modify_dataset(testset,'extractcomp',keptbands);
 %make comparison map
 smap2 = som_supervised(strain,'rect','msize',[Y X]);%'init','lininit',

 %calculate classification rate
 templabels=smap2.labels;
 tempmap = som_autolabel(smap2,stest,'add');
 [rows cols]=size(tempmap.labels);

 86

 correct=0;
 for n=2:cols
 for m=1:rows
 if isempty(templabels{m}), % ignore empties
 elseif strcmp(templabels{m},tempmap.labels{m,n}),
 correct=correct+1;
 end
 end
 end
 total=length(testset.labels);
 rate=correct/total;

 %keep track of best percent
 if rate>highrate
 highkeptbands=keptbands;
 highsmap=smap2;
 highrate=rate;
 highstrain=strain;
 highstest=stest;
 highpercent=percent;
 end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%end of find best
percent%%%%%%%%%%%%%%%%%%%%%%%%%
highrate %Display highest classification rate

%Display labeled map
smap2 = som_autolabel(highsmap,highstest,'freq');

som_mapmaker(smap2,highstest,runkmeans);
figure;
som_show(smap2,'empty','Labels');
som_show_add('label',smap2,'Textsize',8,'TextColor','r');

if plotstrain==1
 %plot post band selection traing sets
 som_classplots(highstrain);
end

if plotstest==1
 %plot post band selection test sets
 som_classplots(highstest);
end

%Ding when done
y=wavread('Ding.wav');
soundsc(y);

C.3 asd_read_data.m

function sintake = asd_read_data(filename)
%This program reads properly formated ASD data

%This section calls som_read_data and manipulates the data to be in the correct format
dummy=som_read_data(filename);
sintake.data=dummy.data(:,2:end)';
sintake.labels=dummy.comp_names(2:end);
for m=1:length(sintake.data)
 sintake.comp_names{m,1}=dummy.data(m,1);
end
sintake.comp_norm=cell(length(sintake.data),1);
sintake.type=dummy.type;
sintake.label_names=sintake.labels;
sintake.name=dummy.name;

 87

C.4 asd_read_header.m

function sintake = asd_read_header(sintake, headerfile, varargin)
%This program reads the header file created for asd data and replaces the filenames stored in
%sintake.labels with the new labels from the header file the data is sorted by label name when returned
%optional arguments are to remove white reference files and length of data label
% 'remstring' (scalar) any string other than "len" and files with labels that begin with "varargin" will %be removed
% 'len' (scalar) any value other than zero and the label will be read to the specified number of letters
% <<< Do Not enter a number longer than the shortest label>>>
% defaults
len=0; %if no length for label read is given, the default is to read the entire label
remref=0; %if not specified all labels begining with "ref" will be removed

% varargin
i=1;
m=0;
while i<=length(varargin),
 argok = 1;
 if ischar(varargin{i}),
 switch varargin{i},
 % argument IDs
 case 'len', i=i+1; len = varargin{i};
 otherwise argok=0;
 m=m+1;
 remstring{m}=varargin{i};
 end
 end
 %if ~argok,
 % disp(['(som_make) Ignoring invalid argument #' num2str(i+1)]);
 %end
 i = i+1;
end

%This section replaces the individual file names of ASD data with their labels from a header file
[filenames labels] = textread(headerfile,'%s %s');
n=length(filenames);
next=1;
for m=1:length(sintake.labels);
 count=1;
 while count<=n
 if sintake.labels{m}==filenames{count};
 a=labels{count};
 if len==0
 sintake.labels{m}=a(1,1:end);
 else
 sintake.labels{m}=a(1,1:len); %This can be adjusted to select labels length
 end
 count=n;
 end
 count=count+1;
 end
 %This part keeps track of files to remove
 for remsize=1:length(remstring)
 if a(1,1:length(remstring{remsize}))==remstring{remsize}
 ind(next)=m;
 next=next+1;
 end
 end
end

%This section removes bad files
sintake=som_modify_dataset(sintake,'removesamp',ind);

%This section organizes the data

 88

[sintake.labels b]=sort(sintake.labels);
sintake.data=sintake.data(b,:);

C.5 som_asd_norm.m

function sintake=som_asd_norm(sintake)
%this function set the range from 1 to 0 for asd data
[r c]=size(sintake.data);
 for a=1:r
 sintake.data(a,:)=sintake.data(a,:)-min(sintake.data(a,:));
 sintake.data(a,:)=sintake.data(a,:)/max(sintake.data(a,:));
 end

C.6 som_classplots.m

function tsize=som_classplots(sintake)
%This function plots all samples of each class seperately on each graph

%find the size and location of each class
tsize=som_sizefinder(sintake);

%initialize counter
start=0;

%create x axis for plots
for k=1:length(sintake.comp_names)
 x(k)=sintake.comp_names{k};
end

%create plots
for m=1:length(tsize)
 figure;
 hold on;
 title(sintake.labels(start+1));
 for n=start+1:start+tsize(m)
 plot(x,sintake.data(n,:),'x');
 end
 hold off;
 start=start+tsize(m);
end

C.7 som_sizefinder.m

function tsize=som_sizefinder(sintake)
%This function finds the locations and sizes of a sorted list of the different classes
tcount=0;
newtype=1;
for n=1:length(sintake.labels),
 if n==newtype,
 tcount=tcount+1;
 tsize(tcount)=0;
 for m=n:length(sintake.labels),
 if sintake.labels{n}==sintake.labels{m};
 tsize(tcount)=tsize(tcount)+1;
 end
 end
 newtype=n+tsize(tcount);
 end
end

 89

C.8 som_double.m

function train=som_double(train)
%This program doubles the number of samples of classes that have less than half the
%number of samples of the largest class

%set the size for the training set
[trsize]=som_sizefinder(train);

%This section increases the importance of smaller samples
for m=1:length(trsize)
 if trsize(m)<(max(trsize)/2)
 start=0;
 start=sum(trsize(1:m-1));
 temp=som_modify_dataset(train,'extractsamp',start+1:start+trsize(m));
 train = som_modify_dataset(train,'addsamp',temp);
 [train.labels b]=sort(train.labels);
 train.data=train.data(b,:);
 trsize(m)=2*trsize(m);
 end
end

C.9 som_bandfinder.m

function [Tb,tbsize]=som_bandfinder(smap,intake,bands,Tpercent)
%This function attempts to find the relevant inputs for sorting an som

%this section computes the Euclidean distance of inputs to there BMU
[Bmus Qerrors]=som_bmus(smap,intake);
eucdist=zeros(size(smap.codebook));
for m=1:length(Bmus)
 dist=smap.codebook(Bmus(m),:)-intake.data(m,:);
 dist=dist.^2;
 eucdist(Bmus(m),:)=dist+eucdist(Bmus(m),:);
end
 eucdist=eucdist.^(.5);

%This section computes the threshold
range=max(eucdist')-min(eucdist');
thershold=(Tpercent*range+min(eucdist'))';

%This section finds the (bands) number of important inputs for map units that have labels
for m=1:length(thershold)
 [y x]=sort(eucdist(m,:));
 found=0;
 n=0;
 while ~found
 n=n+1;
 if thershold(m)<=y(n)
 for k=1:bands
 if n-1+k<=length(x)
 bandselected(m,k)=x(n-1+k);
 end
 end
 found=1;
 end
 end
end

%This section elminates duplicate bands
[l w]=size(bandselected);
for m=1:l;
 for n=1:w
 pos=(m-1)*w+n;

 90

 tb(pos)=bandselected(m,n);
 end
end
tb=sort(tb);
%ensure that 0 is not selected
for m=1:length(tb)
 if tb(m)==0
 tb(m)=1;
 end
end

tbcount=0;
newtb=1;
for n=1:length(tb),
 if n==newtb,
 tbcount=tbcount+1;
 tbsize(tbcount)=0;
 for m=n:length(tb),
 if tb(n)==tb(m);
 tbsize(tbcount)=tbsize(tbcount)+1;
 end
 Tb(tbcount)=tb(n);
 end
 newtb=n+tbsize(tbcount);
 end
end

C.10 som_colorhits.m

function tsize=som_colorhits(smap,intake);
%this program determines how many different classes there are and colors the U-matrix accordingly
tsize=som_sizefinder(intake);

m=0;
a=hsv(length(tsize));
for n=1:length(tsize),
 h = som_hits(smap,intake.data(m+1:m+tsize(n),:));
 newtype(n)=m+1;
 m=m+tsize(n);
 b(n)=som_show_add('hit',h,'MarkerColor',a(n,:),'Subplot',1);
end

legend([b],intake.labels{newtype},-1);

C.11 makehist.m

function keptbands=makehist(bandlist,threshold);
%this function makes a list of bands that were repeted atleast "threshold" times
n=hist(bandlist,max(bandlist));
step=1;
for x=1:length(n)
 if n(x)>=threshold
 keptbands(step)=x;
 step=step+1;
 end
end
hist(keptbands,max(keptbands));

C.12 som_split_data.m

function [trainset,testset]=som_split_data(sintake,percent)
%This function splits a som data struct into two different sets. A percent of each class will be split.

 91

% sintake (struct) data struct
% percent (scalar)

%This section calculates the location of the samples to extract

[sintake.labels b]=sort(sintake.labels);
sintake.data=sintake.data(b,:);

[tsize]=som_sizefinder(sintake);
start=0;
testcount=0;
for m=1:length(tsize)
 ksize=floor(percent*tsize(m));
 testind(testcount+1:testcount+ksize)=round((tsize(m)-1)*rand(ksize,1))+1+start;
 testcount=ksize+testcount;
 start=start+tsize(m);
end

%This seperates the data into 2 sets, a training set and a test set
testind=sort(testind);
testset=som_modify_dataset(sintake,'extractsamp',testind);
trainset=som_modify_dataset(sintake,'removesamp',testind);

C.13 som_mapmaker.m

function tsize=som_mapmaker(smap,intake,runkmeans);
%This function creates color maps using som_colorhits, som_kmeanscolor, som_show, and som_show_add
figure;
colormap(1-gray);
som_show(smap,'umat','all','empty','Labels');
som_show_add('label',smap,'Textsize',8,'TextColor','r','Subplot',2);
tsize=som_colorhits(smap,intake);
if runkmeans
 figure;
 [color,b]=som_kmeanscolor(smap,8);
 som_show(smap,'color',color,'color',{color(:,:,b),'"Best clustering"'});
end

92

APPENDIX D

RESULTS GRAPHS

 93

D.1 Trial 1

 CASO IPOH

IPOL SOIL

SOYB XANS

 94

 95

D.2 Trial 2

CASO IPOH

IPOL SOIL

SOYB XANS

 96

 97

D.3 Trial 3

CASO IPOH

IPOL SOIL

SOYB XANS

 98

 99

D.4 Trial 4

CASO IPOH

IPOL SOIL

SOYB XANS

 100

 101

D.5 Trial 5

CASO IPOH

IPOL SOIL

SOYB XANS

 102

 103

D.6 Trial 6

CASO IPOH

IPOL SOIL

SOYB XANS

 104

 105

D.7 Trial 7

CASO IPOH

IPOL SOIL

SOYB XANS

 106

 107

D.8 Trial 8

 108

D.9 Trial 9

 109

D.10 Trial 10

 110

D.11 Trial 11

 111

D.12 Trial 12

 112

D.13 Trial 13

 113

D.14 Trial 14

 114

D.15 Trial 15

 115

D.16 Trial 16

 116

D.17 Trial 17

 117

D.18 Trial 18

 118

D.19 Trial 19

 119

D.20 Trial 20

 120

D.21 Trial 21

 121

D.22 Trial 22

 122

D.23 Trial 23

 123

D.24 Trial 24

	Use of Self Organized Maps for Feature Extraction of Hyperspectral Data
	Recommended Citation

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	CHAPTER II
	INTRODUCTION TO NEURAL NETWORKS
	2.1	Introduction
	2.2	Applications of the SOM
	2.3	Analysis of the SOM
	
	Figure 2-1. General curve for the AUD metrice [12]

	2.4	Conclusion

	CHAPTER III
	WHAT IS REMOTE SENSING?
	
	
	Figure 3-1. Typical vegetation reflectance spectrum

	CHAPTER IV
	INITIAL APPROACH TO PROGRAM CREATION
	
	
	Figure 4-1. Example printout of a SOM data struct
	Figure 4-2. Hexagonal and rectangular grids used for SOMs
	Figure 4-3. Sheet, cylinder, and toroid SOMs
	Figure 4-4. U-matrix of an SOM
	Figure 4-5. SOM 8 x 8 grid with labels chosen by vote
	Figure 4-6. U-matrix with hit histogram overlaid
	Figure 4-7. K-means cluster graphs of GER data
	Figure 4-8. AUD graph of an 8 x 8 SOM using all bands of the GER data set
	Figure 4-9. AUD graph of an 8 x 8 SOM using 41 bands of the GER data set

	CHAPTER V
	FINE-TUNING AND APPLICATION OF DATA
	5.1	Data Collection
	
	
	Table 5-1. Data Collection Names and Classifications

	Figure 5-1. Sample List of ASD Files
	Figure 5-2. Example of Handwritten Classification Labels on Data Tables

	5.2	Format Conversion
	
	Figure 5-3. Sample Header File with Classification and Subclassification Labels
	Figure 5-4. Example of Crop Outlay Grid
	Figure 5-5. Crop Grid with IPOLA117 Highlighted
	Figure 5-6. Example of Grid with Bad Samples
	Figure 5-7. Inset of Lower Right Corner of U-Matrix of Figure 5-6
	Figure 5-8. Example Graph of Bad and Mislabeled Data with All Bands
	Figure 5-9. Example Graph of Mislabeled Data with Water Bands Removed
	Figure 5-10. Example Graph of Bad Data With Water Bands Removed
	Figure 5-11. Example of Processed Data

	5.3	Testing the Data
	
	Figure 5-12. Somasdgui Screen Shot
	Figure 5-13. Classification Results as a Function of Varying Threshold Percentage
	Figure 5-14. Classification Results as a Function of Quantity of Kept Bands

	5.4	Analysis of Results
	
	Figure 5-15. Histogram of Selected Bands
	Figure 5-16. Histogram Results Experiment

	CHAPTER VI
	CONCLUSIONS
	REFERENCES
	APPENDIX A
	MATERIALS AND METHODS
	APPENDIX B
	FLOW CHART AND USER MANUAL
	
	B.1	Flow Chart of Process
	B.2	Process Manual

	APPENDIX C
	CODE
	C.1 	somasdgui.m
	C.2	som_asd_gui.m
	C.3	asd_read_data.m
	C.4	asd_read_header.m
	C.5	som_asd_norm.m
	C.6	som_classplots.m
	C.7	som_sizefinder.m
	C.8	som_double.m
	C.9	som_bandfinder.m
	C.10	som_colorhits.m
	C.11	makehist.m
	C.12	som_split_data.m
	C.13	som_mapmaker.m

	APPENDIX D
	RESULTS GRAPHS
	D.1	Trial 1
	D.2	Trial 2
	D.3	Trial 3
	D.4	Trial 4
	D.5	Trial 5
	D.6	Trial 6
	D.7	Trial 7
	D.8	Trial 8
	D.9	Trial 9
	D.10	Trial 10
	D.11	Trial 11
	D.12	Trial 12
	D.13	Trial 13
	D.14	Trial 14
	D.15	Trial 15
	D.16	Trial 16
	D.17	Trial 17
	D.18	Trial 18
	D.19	Trial 19
	D.20	Trial 20
	D.21	Trial 21
	D.22	Trial 22
	D.23	Trial 23
	D.24	Trial 24

