10 research outputs found

    Spectrally Based Material Color Equivalency: Modeling and Manipulation

    Get PDF
    A spectrally based normalization methodology (Wpt normalization) for linearly transforming cone excitations or sensor values (sensor excitations) to a representation that preserves the perceptive concepts of lightness, chroma and hue is proposed resulting in a color space with the axes labeled W , p, t. Wpt (pronounced “Waypoint ) has been demonstrated to be an effective material color equivalency space that provides the basis for defining Material Adjustment Transforms that predict the changes in sensor excitations of material spectral reflectance colors due to variations in observer or illuminant. This is contrasted with Chromatic Adaptation Transforms that predict color appearance as defined by corresponding color experiments. Material color equivalency as provided by Wpt and Wpt normalization forms the underlying foundation of this doctoral research. A perceptually uniform material color equivalency space (“Waypoint Lab or WLab) was developed that represents a non-linear transformation of Wpt coordinates, and Euclidean WLab distances were found to not be statistically different from ∆E⋆94 and ∆E00 color differences. Sets of Wpt coordinates for variations in reflectance, illumination, or observers were used to form the basis of defining Wpt shift manifolds. WLab distances of corresponding points within or between these manifolds were utilized to define metrics for color inconstancy, metamerism, observer rendering, illuminant rendering, and differences in observing conditions. Spectral estimation and manipulation strategies are presented that preserve various aspects of “Wpt shift potential as represented by changes in Wpt shift manifolds. Two methods were explored for estimating Wpt normalization matrices based upon direct utilization of sensor excitations, and the use of a Wpt based Material Adjustment Transform to convert Cone Fundamentals to ”XYZ-like Color Matching Functions was investigated and contrasted with other methods such as direct regression and prediction of a common color matching primaries. Finally, linear relationships between Wpt and spectral reflectances were utilized to develop approaches for spectral estimation and spectral manipulation within a general spectral reflectance manipulation framework – thus providing the ability to define and achieve “spectrally preferred color rendering objectives. The presented methods of spectral estimation, spectral manipulation, and material adjustment where utilized to: define spectral reflectances for Munsell colors that minimize Wpt shift potential; manipulate spectral reflectances of actual printed characterization data sets to achieve colorimetry of reference printing conditions; and lastly to demonstrate the spectral estimation and manipulation of spectral reflectances using images and spectrally based profiles within an iccMAX color management workflow

    Individual Colorimetric Observers for Personalized Color Imaging

    Get PDF
    Colors are typically described by three values such as RGB, XYZ, and HSV. This is rooted to the fact that humans possess three types of photoreceptors under photopic conditions, and human color vision can be characterized by a set of three color matching functions (CMFs). CMFs integrate spectra to produce three colorimetric values that are related to visual responses. In reality, large variations in CMFs exist among color-normal populations. Thus, a pair of two spectrally different stimuli might be a match for one person but a mismatch for another person, also known as observer metamerism. Observer metamerism is a serious issue in color-critical applications such as soft proofing in graphic arts and color grading in digital cinema, where colors are compared on different displays. Due to observer metamerism, calibrated displays might not appear correctly, and one person might disagree with color adjustments made by another person. The recent advent of wide color gamut display technologies (e.g., LEDs, OLEDs, lasers, and Quantum Dots) has made observer metamerism even more serious due to their spectrally narrow primaries. The variations among normal color vision and observer metamerism have been overlooked for many years. The current typical color imaging workflow uses a single standard observer assuming all the color-normal people possess the same CMFs. This dissertation provides a possible solution for observer metamerism in color-critical applications by personalized color imaging introducing individual colorimetric observers. In this dissertation, at first, color matching data were collected to derive and validate CMFs for individual colorimetric observers. The data from 151 color-normal observers were obtained at four different locations. Second, two types of individual colorimetric observer functions were derived and validated. One is an individual colorimetric observer model, an extension of the CIE 2006 physiological observer incorporating eight physiological parameters to model individuals in addition to age and field size inputs. The other is a set of categorical observer functions providing a more convenient approach towards the personalized color imaging. Third, two workflows were proposed to characterize human color vision: one using a nomaloscope and the other using proposed spectral pseudoisochromatic images. Finally, the personalized color imaging was evaluated in a color image matching study on an LCD monitor and a laser projector and in a perceived color difference study on a SHARP Quattron display. The personalized color imaging was implemented using a newly introduced ICC profile, iccMAX

    Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon

    Get PDF
    In a study of multispectral and hyperspectral reflectance imaging, a Round Robin Test assessed the performance of different systems for the spectral digitisation of artworks. A Russian icon, mass-produced in Moscow in 1899, was digitised by ten institutions around Europe. The image quality was assessed by observers, and the reflectance spectra at selected points were reconstructed to characterise the icon’s colourants and to obtain a quantitative estimate of accuracy. The differing spatial resolutions of the systems affected their ability to resolve fine details in the printed pattern. There was a surprisingly wide variation in the quality of imagery, caused by unwanted reflections from both glossy painted and metallic gold areas of the icon’s surface. Specular reflection also degraded the accuracy of the reconstructed reflectance spectrum in some places, indicating the importance of control over the illumination geometry. Some devices that gave excellent results for matte colour charts proved to have poor performance for this demanding test object. There is a need for adoption of standards for digitising cultural heritage objects to achieve greater consistency of system performance and image quality.This article arose out of a Short-Term Scientific Mission (STSM) conducted by Tatiana Vitorino when visiting University College London during a 2-week period in late October 2015. The research was carried out under the auspices of the European COST Action TD1201 Colour and Space in Cultural Heritage (COSCH). The project website is at http://www.cosch.info. Under the COST rules, TV received funding for travel and accommodation expenses, and all coauthors were able to claim travel expenses to attend the subsequent COSCH project meeting. No other funding was received from COSCH for labour or equipment and all work was done on a voluntary pro bono basis.info:eu-repo/semantics/publishedVersio

    Accurate and Computational: A review of color reproduction in Full-color 3D printing

    Get PDF
    As functional 3D printing becomes more popular with industrial manufacturing applications, it is time to start discussing high-fidelity appearance reproduction of 3D objects, particularly in faithful colors. To date, there is only limited research on accurate color reproduction and on universal color reproduction method for different color 3D printing materials. To systematically understand colorization principles and color transmission in color 3D printing, an exhaustive literature review is stated to show the state of the art of color reproduction methods for full-color 3D printing, such as optical parameter modeling, colorimetric difference evaluation, computer aided colorization and voxel droplet jetting. Meanwhile, the challenges in developing an accurate color reproduction framework suitable for different printing materials are fully analyzed in this literature review. In full-color 3D printing, coloring, rendering and acquisition constitute the core issues for accurate color reproduction, and their specific concepts are explained in concrete examples. Finally, the future perspectives of a universal color reproduction framework for accurate full-color 3D printing are discussed, which can overcome the limitations of printing materials, combined with computational boundary contoning

    Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon

    Get PDF
    In a study of multispectral and hyperspectral reflectance imaging, a Round Robin Test assessed the performance of different systems for the spectral digitisation of artworks. A Russian icon, mass-produced in Moscow in 1899, was digitised by ten institutions around Europe. The image quality was assessed by observers, and the reflectance spectra at selected points were reconstructed to characterise the icon’s colourants and to obtain a quantitative estimate of accuracy. The differing spatial resolutions of the systems affected their ability to resolve fine details in the printed pattern. There was a surprisingly wide variation in the quality of imagery, caused by unwanted reflections from both glossy painted and metallic gold areas of the icon’s surface. Specular reflection also degraded the accuracy of the reconstructed reflectance spectrum in some places, indicating the importance of control over the illumination geometry. Some devices that gave excellent results for matte colour charts proved to have poor performance for this demanding test object. There is a need for adoption of standards for digitising cultural heritage objects to achieve greater consistency of system performance and image quality

    Dyadic behavior in co-manipulation :from humans to robots

    Get PDF
    To both decrease the physical toll on a human worker, and increase a robot’s environment perception, a human-robot dyad may be used to co-manipulate a shared object. From the premise that humans are efficient working together, this work’s approach is to investigate human-human dyads co-manipulating an object. The co-manipulation is evaluated from motion capture data, surface electromyography (EMG) sensors, and custom contact sensors for qualitative performance analysis. A human-human dyadic co-manipulation experiment is designed in which every human is instructed to behave as a leader, as a follower or neither, acting as naturally as possible. The experiment data analysis revealed that humans modulate their arm mechanical impedance depending on their role during the co-manipulation. In order to emulate the human behavior during a co-manipulation task, an admittance controller with varying stiffness is presented. The desired stiffness is continuously varied based on a scalar and smooth function that assigns a degree of leadership to the robot. Furthermore, the controller is analyzed through simulations, its stability is analyzed by Lyapunov. The resulting object trajectories greatly resemble the patterns seen in the human-human dyad experiment.Para tanto diminuir o esforço fĂ­sico de um humano, quanto aumentar a percepção de um ambiente por um robĂŽ, um dĂ­ade humano-robĂŽ pode ser usado para co-manipulação de um objeto compartilhado. Partindo da premissa de que humanos sĂŁo eficientes trabalhando juntos, a abordagem deste trabalho Ă© a de investigar dĂ­ades humano-humano co-manipulando um objeto compartilhado. A co-manipulação Ă© avaliada a partir de dados de um sistema de captura de movimentos, sinais de eletromiografia (EMG), e de sensores de contato customizados para anĂĄlise qualitativa de desempenho. Um experimento de co-manipulação com dĂ­ades humano-humano foi projetado no qual cada humano Ă© instruĂ­do a se comportar como um lĂ­der, um seguidor, ou simplesmente agir tĂŁo naturalmente quanto possĂ­vel. A anĂĄlise de dados do experimento revelou que os humanos modulam a rigidez mecĂąnica do braço a depender de que tipo de comportamento eles foram designados antes da co-manipulação. Para emular o comportamento humano durante uma tarefa de co-manipulação, um controle por admitĂąncia com rigidez variĂĄvel Ă© apresentado neste trabalho. A rigidez desejada Ă© continuamente variada com base em uma função escalar suave que define o grau de liderança do robĂŽ. AlĂ©m disso, o controlador Ă© analisado por meio de simulaçÔes, e sua estabilidade Ă© analisada pela teoria de Lyapunov. As trajetĂłrias resultantes do uso do controlador mostraram um padrĂŁo de comportamento muito parecido ao do experimento com dĂ­ades humano-humano

    Modeling and Halftoning for Multichannel Printers: A Spectral Approach

    Get PDF
    Printing has been has been the major communication medium for many centuries. In the last twenty years, multichannel printing has brought new opportunities and challenges. Beside of extended colour gamut of the multichannel printer, the opportunity was presented to use a multichannel printer for ‘spectral printing’. The aim of spectral printing is typically the same as for colour printing; that is, to match input signal with printing specific ink combinations. In order to control printers so that the combination or mixture of inks results in specific colour or spectra requires a spectral reflectance printer model that estimates reflectance spectra from nominal dot coverage. The printer models have one of the key roles in accurate communication of colour to the printed media. Accordingly, this has been one of the most active research areas in printing. The research direction was toward improvement of the model accuracy, model simplicity and toward minimal resources used by the model in terms of computational power and usage of material. The contribution of the work included in the thesis is also directed toward improvement of the printer models but for the multichannel printing. The thesis is focused primarily on improving existing spectral printer models and developing a new model. In addition, the aim was to develop and implement a multichannel halftoning method which should provide with high image quality. Therefore, the research goals of the thesis were: maximal accuracy of printer models, optimal resource usage and maximal image quality of halftoning and whole spectral reproduction system. Maximal colour accuracy of a model but with the least resources used is achieved by optimizing printer model calibration process. First, estimation of the physical and optical dot gain is performed with newly proposed method and model. Second, a custom training target is estimated using the proposed new method. These two proposed methods and one proposed model were at the same time the means of optimal resource usage, both in computational time and material. The third goal was satisfied with newly proposed halftoning method for multichannel printing. This method also satisfies the goal of optimal computational time but with maintaining high image quality. When applied in spectral reproduction workflow, this halftoning reduces noise induced in an inversion of the printer model. Finally, a case study was conducted on the practical use of multichannel printers and spectral reproduction workflow. In addition to a gamut comparison in colour space, it is shown that otherwise limited reach of spectral printing could potentially be used to simulate spectra and colour of textile fabrics

    Color appearance processing using iccMAX

    No full text
    ICC.2:2017 is a revision to the next-generation colour management specification iccMAX that introduces new support for colour appearance processing. iccMAX includes a built-in colour appearance model IccCAM, together with a rich programming environment, and support for spectral data, material channel connections, BRDF and processing elements that make it possible to functionally encode any appearance model. ICC.2:2017 introduces many new capabilities, including the ability to provide environment variables which allow parameters such as image statistics or viewing conditions to be passed to the transform at run-time. ICC.2:2017 supports a wide range of colour appearance computations within the colour management workflow

    Color appearance processing using iccMAX

    No full text
    corecore