983 research outputs found

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    Investigation of the effects of image compression on the geometric quality of digital protogrammetric imagery

    Get PDF
    We are living in a decade, where the use of digital images is becoming increasingly important. Photographs are now converted into digital form, and direct acquisition of digital images is becoming increasing important as sensors and associated electronics. Unlike images in analogue form, digital representation of images allows visual information to· be easily manipulated in useful ways. One practical problem of the digital image representation is that, it requires a very large number of bits and hence one encounters a fairly large volume of data in a digital production environment if they are stored uncompressed on the disk. With the rapid advances in sensor technology and digital electronics, the number of bits grow larger in softcopy photogrammetry, remote sensing and multimedia GIS. As a result, it is desirable to find efficient representation for digital images in order to reduce the memory required for storage, improve the data access rate from storage devices, and reduce the time required for transfer across communication channels. The component of digital image processing that deals with this problem is called image compression. Image compression is a necessity for the utilisation of large digital images in softcopy photogrammetry, remote sensing, and multimedia GIS. Numerous image Compression standards exist today with the common goal of reducing the number of bits needed to store images, and to facilitate the interchange of compressed image data between various devices and applications. JPEG image compression standard is one alternative for carrying out the image compression task. This standard was formed under the auspices ISO and CCITT for the purpose of developing an international standard for the compression and decompression of continuous-tone, still-frame, monochrome and colour images. The JPEG standard algorithm &Us into three general categories: the baseline sequential process that provides a simple and efficient algorithm for most image coding applications, the extended DCT-based process that allows the baseline system to satisfy a broader range of applications, and an independent lossless process for application demanding that type of compression. This thesis experimentally investigates the geometric degradations resulting from lossy JPEG compression on photogrammetric imagery at various levels of quality factors. The effects and the suitability of JPEG lossy image compression on industrial photogrammetric imagery are investigated. Examples are drawn from the extraction of targets in close-range photogrammetric imagery. In the experiments, the JPEG was used to compress and decompress a set of test images. The algorithm has been tested on digital images containing various levels of entropy (a measure of information content of an image) with different image capture capabilities. Residual data was obtained by taking the pixel-by-pixel difference between the original data and the reconstructed data. The image quality measure, root mean square (rms) error of the residual was used as a quality measure to judge the quality of images produced by JPEG(DCT-based) image compression technique. Two techniques, TIFF (IZW) compression and JPEG(DCT-based) compression are compared with respect to compression ratios achieved. JPEG(DCT-based) yields better compression ratios, and it seems to be a good choice for image compression. Further in the investigation, it is found out that, for grey-scale images, the best compression ratios were obtained when the quality factors between 60 and 90 were used (i.e., at a compression ratio of 1:10 to 1:20). At these quality factors the reconstructed data has virtually no degradation in the visual and geometric quality for the application at hand. Recently, many fast and efficient image file formats have also been developed to store, organise and display images in an efficient way. Almost every image file format incorporates some kind of compression method to manage data within common place networks and storage devices. The current major file formats used in softcopy photogrammetry, remote sensing and · multimedia GIS. were also investigated. It was also found out that the choice of a particular image file format for a given application generally involves several interdependent considerations including quality; flexibility; computation; storage, or transmission. The suitability of a file format for a given purpose is · best determined by knowing its original purpose. Some of these are widely used (e.g., TIFF, JPEG) and serve as exchange formats. Others are adapted to the needs of particular applications or particular operating systems

    High throughput image compression and decompression on GPUs

    Get PDF
    Diese Arbeit befasst sich mit der Entwicklung eines GPU-freundlichen, intra-only, Wavelet-basierten Videokompressionsverfahrens mit hohem Durchsatz, das für visuell verlustfreie Anwendungen optimiert ist. Ausgehend von der Beobachtung, dass der JPEG 2000 Entropie-Kodierer ein Flaschenhals ist, werden verschiedene algorithmische Änderungen vorgeschlagen und bewertet. Zunächst wird der JPEG 2000 Selective Arithmetic Coding Mode auf der GPU realisiert, wobei sich die Erhöhung des Durchsatzes hierdurch als begrenzt zeigt. Stattdessen werden zwei nicht standard-kompatible Änderungen vorgeschlagen, die (1) jede Bitebebene in nur einem einzelnen Pass verarbeiten (Single-Pass-Modus) und (2) einen echten Rohcodierungsmodus einführen, der sample-weise parallelisierbar ist und keine aufwendige Kontextmodellierung erfordert. Als nächstes wird ein alternativer Entropiekodierer aus der Literatur, der Bitplane Coder with Parallel Coefficient Processing (BPC-PaCo), evaluiert. Er gibt Signaladaptivität zu Gunsten von höherer Parallelität auf und daher wird hier untersucht und gezeigt, dass ein aus verschiedensten Testsequenzen gemitteltes statisches Wahrscheinlichkeitsmodell eine kompetitive Kompressionseffizienz erreicht. Es wird zudem eine Kombination von BPC-PaCo mit dem Single-Pass-Modus vorgeschlagen, der den Speedup gegenüber dem JPEG 2000 Entropiekodierer von 2,15x (BPC-PaCo mit zwei Pässen) auf 2,6x (BPC-PaCo mit Single-Pass-Modus) erhöht auf Kosten eines um 0,3 dB auf 1,0 dB erhöhten Spitzen-Signal-Rausch-Verhältnis (PSNR). Weiter wird ein paralleler Algorithmus zur Post-Compression Ratenkontrolle vorgestellt sowie eine parallele Codestream-Erstellung auf der GPU. Es wird weiterhin ein theoretisches Laufzeitmodell formuliert, das es durch Benchmarking von einer GPU ermöglicht die Laufzeit einer Routine auf einer anderen GPU vorherzusagen. Schließlich wird der erste JPEG XS GPU Decoder vorgestellt und evaluiert. JPEG XS wurde als Low Complexity Codec konzipiert und forderte erstmals explizit GPU-Freundlichkeit bereits im Call for Proposals. Ab Bitraten über 1 bpp ist der Decoder etwa 2x schneller im Vergleich zu JPEG 2000 und 1,5x schneller als der schnellste hier vorgestellte Entropiekodierer (BPC-PaCo mit Single-Pass-Modus). Mit einer GeForce GTX 1080 wird ein Decoder Durchsatz von rund 200 fps für eine UHD-4:4:4-Sequenz erreicht.This work investigates possibilities to create a high throughput, GPU-friendly, intra-only, Wavelet-based video compression algorithm optimized for visually lossless applications. Addressing the key observation that JPEG 2000’s entropy coder is a bottleneck and might be overly complex for a high bit rate scenario, various algorithmic alterations are proposed. First, JPEG 2000’s Selective Arithmetic Coding mode is realized on the GPU, but the gains in terms of an increased throughput are shown to be limited. Instead, two independent alterations not compliant to the standard are proposed, that (1) give up the concept of intra-bit plane truncation points and (2) introduce a true raw-coding mode that is fully parallelizable and does not require any context modeling. Next, an alternative block coder from the literature, the Bitplane Coder with Parallel Coefficient Processing (BPC-PaCo), is evaluated. Since it trades signal adaptiveness for increased parallelism, it is shown here how a stationary probability model averaged from a set of test sequences yields competitive compression efficiency. A combination of BPC-PaCo with the single-pass mode is proposed and shown to increase the speedup with respect to the original JPEG 2000 entropy coder from 2.15x (BPC-PaCo with two passes) to 2.6x (proposed BPC-PaCo with single-pass mode) at the marginal cost of increasing the PSNR penalty by 0.3 dB to at most 1 dB. Furthermore, a parallel algorithm is presented that determines the optimal code block bit stream truncation points (given an available bit rate budget) and builds the entire code stream on the GPU, reducing the amount of data that has to be transferred back into host memory to a minimum. A theoretical runtime model is formulated that allows, based on benchmarking results on one GPU, to predict the runtime of a kernel on another GPU. Lastly, the first ever JPEG XS GPU-decoder realization is presented. JPEG XS was designed to be a low complexity codec and for the first time explicitly demanded GPU-friendliness already in the call for proposals. Starting at bit rates above 1 bpp, the decoder is around 2x faster compared to the original JPEG 2000 and 1.5x faster compared to JPEG 2000 with the fastest evaluated entropy coder (BPC-PaCo with single-pass mode). With a GeForce GTX 1080, a decoding throughput of around 200 fps is achieved for a UHD 4:4:4 sequence

    Dense light field coding: a survey

    Get PDF
    Light Field (LF) imaging is a promising solution for providing more immersive and closer to reality multimedia experiences to end-users with unprecedented creative freedom and flexibility for applications in different areas, such as virtual and augmented reality. Due to the recent technological advances in optics, sensor manufacturing and available transmission bandwidth, as well as the investment of many tech giants in this area, it is expected that soon many LF transmission systems will be available to both consumers and professionals. Recognizing this, novel standardization initiatives have recently emerged in both the Joint Photographic Experts Group (JPEG) and the Moving Picture Experts Group (MPEG), triggering the discussion on the deployment of LF coding solutions to efficiently handle the massive amount of data involved in such systems. Since then, the topic of LF content coding has become a booming research area, attracting the attention of many researchers worldwide. In this context, this paper provides a comprehensive survey of the most relevant LF coding solutions proposed in the literature, focusing on angularly dense LFs. Special attention is placed on a thorough description of the different LF coding methods and on the main concepts related to this relevant area. Moreover, comprehensive insights are presented into open research challenges and future research directions for LF coding.info:eu-repo/semantics/publishedVersio

    A family of stereoscopic image compression algorithms using wavelet transforms

    Get PDF
    With the standardization of JPEG-2000, wavelet-based image and video compression technologies are gradually replacing the popular DCT-based methods. In parallel to this, recent developments in autostereoscopic display technology is now threatening to revolutionize the way in which consumers are used to enjoying the traditional 2-D display based electronic media such as television, computer and movies. However, due to the two-fold bandwidth/storage space requirement of stereoscopic imaging, an essential requirement of a stereo imaging system is efficient data compression. In this thesis, seven wavelet-based stereo image compression algorithms are proposed, to take advantage of the higher data compaction capability and better flexibility of wavelets. [Continues.

    Low Power Architectures for MPEG-4 AVC/H.264 Video Compression

    Get PDF

    A family of stereoscopic image compression algorithms using wavelet transforms

    Get PDF
    With the standardization of JPEG-2000, wavelet-based image and video compression technologies are gradually replacing the popular DCT-based methods. In parallel to this, recent developments in autostereoscopic display technology is now threatening to revolutionize the way in which consumers are used to enjoying the traditional 2D display based electronic media such as television, computer and movies. However, due to the two-fold bandwidth/storage space requirement of stereoscopic imaging, an essential requirement of a stereo imaging system is efficient data compression. In this thesis, seven wavelet-based stereo image compression algorithms are proposed, to take advantage of the higher data compaction capability and better flexibility of wavelets. In the proposed CODEC I, block-based disparity estimation/compensation (DE/DC) is performed in pixel domain. However, this results in an inefficiency when DWT is applied on the whole predictive error image that results from the DE process. This is because of the existence of artificial block boundaries between error blocks in the predictive error image. To overcome this problem, in the remaining proposed CODECs, DE/DC is performed in the wavelet domain. Due to the multiresolution nature of the wavelet domain, two methods of disparity estimation and compensation have been proposed. The first method is performing DEJDC in each subband of the lowest/coarsest resolution level and then propagating the disparity vectors obtained to the corresponding subbands of higher/finer resolution. Note that DE is not performed in every subband due to the high overhead bits that could be required for the coding of disparity vectors of all subbands. This method is being used in CODEC II. In the second method, DEJDC is performed m the wavelet-block domain. This enables disparity estimation to be performed m all subbands simultaneously without increasing the overhead bits required for the coding disparity vectors. This method is used by CODEC III. However, performing disparity estimation/compensation in all subbands would result in a significant improvement of CODEC III. To further improve the performance of CODEC ill, pioneering wavelet-block search technique is implemented in CODEC IV. The pioneering wavelet-block search technique enables the right/predicted image to be reconstructed at the decoder end without the need of transmitting the disparity vectors. In proposed CODEC V, pioneering block search is performed in all subbands of DWT decomposition which results in an improvement of its performance. Further, the CODEC IV and V are able to perform at very low bit rates(< 0.15 bpp). In CODEC VI and CODEC VII, Overlapped Block Disparity Compensation (OBDC) is used with & without the need of coding disparity vector. Our experiment results showed that no significant coding gains could be obtained for these CODECs over CODEC IV & V. All proposed CODECs m this thesis are wavelet-based stereo image coding algorithms that maximise the flexibility and benefits offered by wavelet transform technology when applied to stereo imaging. In addition the use of a baseline-JPEG coding architecture would enable the easy adaptation of the proposed algorithms within systems originally built for DCT-based coding. This is an important feature that would be useful during an era where DCT-based technology is only slowly being phased out to give way for DWT based compression technology. In addition, this thesis proposed a stereo image coding algorithm that uses JPEG-2000 technology as the basic compression engine. The proposed CODEC, named RASTER is a rate scalable stereo image CODEC that has a unique ability to preserve the image quality at binocular depth boundaries, which is an important requirement in the design of stereo image CODEC. The experimental results have shown that the proposed CODEC is able to achieve PSNR gains of up to 3.7 dB as compared to directly transmitting the right frame using JPEG-2000

    Scalable video compression with optimized visual performance and random accessibility

    Full text link
    This thesis is concerned with maximizing the coding efficiency, random accessibility and visual performance of scalable compressed video. The unifying theme behind this work is the use of finely embedded localized coding structures, which govern the extent to which these goals may be jointly achieved. The first part focuses on scalable volumetric image compression. We investigate 3D transform and coding techniques which exploit inter-slice statistical redundancies without compromising slice accessibility. Our study shows that the motion-compensated temporal discrete wavelet transform (MC-TDWT) practically achieves an upper bound to the compression efficiency of slice transforms. From a video coding perspective, we find that most of the coding gain is attributed to offsetting the learning penalty in adaptive arithmetic coding through 3D code-block extension, rather than inter-frame context modelling. The second aspect of this thesis examines random accessibility. Accessibility refers to the ease with which a region of interest is accessed (subband samples needed for reconstruction are retrieved) from a compressed video bitstream, subject to spatiotemporal code-block constraints. We investigate the fundamental implications of motion compensation for random access efficiency and the compression performance of scalable interactive video. We demonstrate that inclusion of motion compensation operators within the lifting steps of a temporal subband transform incurs a random access penalty which depends on the characteristics of the motion field. The final aspect of this thesis aims to minimize the perceptual impact of visible distortion in scalable reconstructed video. We present a visual optimization strategy based on distortion scaling which raises the distortion-length slope of perceptually significant samples. This alters the codestream embedding order during post-compression rate-distortion optimization, thus allowing visually sensitive sites to be encoded with higher fidelity at a given bit-rate. For visual sensitivity analysis, we propose a contrast perception model that incorporates an adaptive masking slope. This versatile feature provides a context which models perceptual significance. It enables scene structures that otherwise suffer significant degradation to be preserved at lower bit-rates. The novelty in our approach derives from a set of "perceptual mappings" which account for quantization noise shaping effects induced by motion-compensated temporal synthesis. The proposed technique reduces wavelet compression artefacts and improves the perceptual quality of video

    Real-time scalable video coding for surveillance applications on embedded architectures

    Get PDF
    • …
    corecore